Tweets about ‘scala’, but not about ‘scala’

Simon Hafner
{hafnersimon@gmail .com}

Abstract

Document relevancy is an important
question that has been approached in
various ways. With the advent of so-
cial media, especially Twitter, the doc-
uments of interest shrank in size. Peo-
ple tend to tweet a lot of information.
The generated tweets are often only rel-
evant to a very specific group of people
and perceived as irrelevant by the rest.
(Analytics, 2009) This phenomenon has
been researched since the beginning of
twitter. (Java et al., 2007) As a help to
find informative tweets, the twitter bot
allows a user to subscribe to a topic.
To improve the accuracy of the tweet
selection, relevant twitter users have to
be specified. The bot then retweets
only if the status is similar enough to
what the specified users tweet. The
bot itself also tweets about scala. If
the bot tweets a tweet that is not rel-
evant, it can be marked as irrelevant
and this will be used to further im-
prove the model. This idea is similar to
NELL, (Carlson et al., 2010) and other
projects of life-long learning. (Banko
and Etzioni, 2007)

1 Introduction

Condensing streams of information can be a
non-trivial task, as each user has a differ-
ent perception of what renders a tweet rele-
This problem is approached with ma-
chine learning. Because machine learning re-
sults can be improved with response from the
user, this program is implemented in a bot that
can be responded to.

vant.

Twitter users are more interested in what
is happening now than in outdated informa-

tion, the relevancy decreases over time. (Tee-
van et al., 2011) This implies that the bot
should retweet within a useful time frame, from
seconds to minutes. This adds a real-time
constraint to the solution. Training a model
for another user should not interfere with the
retweeting functionality of the bot.

A problem with using keywords as the basis
for relevance evaluation is that words are am-
biguous. The word ‘scala’ as an example has a
wide range of possible meanings. !

This problem is approached by allowing the
user to specify twitter users of interest. By
analyzing the specified users, the bot knows
which kind of ‘scala’ the user would like to hear
about. This seeding is one option to achieve
a disambiguation. Further methods that use
a wider range of features are discussed in (Kr-
ishnamurthy and Mitchell, 2011). This dataset
does not imply a problem with ‘scala’ disam-
biguation. 2

The bot uses the keyword to ask twitter
for tweets of relevance. A model is created
from tweets from the users the relevant tweets
should be similar to. Whenever a tweet is clas-
sified as relevant by this model, it is retweeted.

2 Detailed Description

The bot is built to satisfy three goals. It should
always react to a new tweet within a reason-
able time, preferably seconds. It should only
retweet tweets that are relevant for the topic
that is given by the user. It should learn from
its mistakes, if it gets adequate feedback.

Thttp://en.wikipedia.org/wiki/Scala

Zhttp://rtw.ml.cmu.edu/rtw /kbbrowser/programminglanguage:scala

A search for ‘scala’ in the searchbox (I can’t link it)
reveals there are a lot of words containing ‘scala’,
but nothing of relevance besides the programming
language for only the word ‘scala’.

2.1 Realtime

The bot must classify the tweet within a set
time span, otherwise the bot does not stay
up to date with the newest ideas on twitter.
This is achieved by pre-training the model and
training this model in the background. While
the bot is functioning normally, using the old
model. Whenever a user responds with a learn-
ing request, a new model has to be trained.
This takes time, and the new model has to re-
place the old one as soon as it is ready.

2.2 Relevancy

The positive tweets for the model are taken
from the last 2k tweets from each user that
the interacting person specified. The maxi-
mum amount of tweets fetched this way is 3.2k.

After fetching the tweets, a twitter query
for the keyword is issued and twitter users are
collected from the answer. Any user that is
followed by a specified user is dropped. For
each user, the last 200 tweets are fetched. If it
doesn’t reduce the sample size too much, users
with less than two or one mentions of the key-
word are dropped.

Each tweet is tokenized with the ARK twit-
ter POS tagger (Owoputi et al., 2013) and
single Token, Tag, combined Token and Tag,
as well as both Token bigrams and Tag bi-
grams are used as features. The keyword is
removed from the tweet, as the negative exam-
ples may contain the keyword less often. This
would lead to an imbalance of the model, as
the tweets to be classified always contain the
keyword.

Whenever twitter provides a tweet and it is
classified to be a tweet relevant to the key-
word, the model is asked to classify if it is also
relevant given the relevant users. If the tweet
achieves a score higher than 0.6, it is replied
to with an ‘@$botuser’ prepended, so it shows
up in the tweet stream as relevant to that bot
user.

The threshold is chosen low, because the bot
can only be trained if it tweeted something
wrong. This value might have to be imple-
mented as adaptive to the current status of
the rate limit.

2.3 Training the bot

The starting information is not much, so the
first few classifications of tweets are uncertain.
It is possible to tell the bot it shouldn’t con-
sider certain tweets as relevant in the future.
Reply with ‘no’ or ‘bad bot!” and it will learn
from the experience by adding this tweet to
the negative dataset twenty times.

This triggers a full retrain of the specified
model and will take some time until it is ac-
tive. Also, it has to fetch positive examples to
balance the model. Those are currently taken
from the same positive users, by fetching more
tweets. This should lead to an improvement of
the model.

2.4 Scala model

There is a model for the keyword ‘scala’ that
is used by the bot itself so it retweets tweets
that are relevant to the scala programming lan-
guage. The positive tweets are created using a
breadth-first search staring from ‘etorreborre’
and people that used the word ‘scala’ at least
three times in their last 200 tweets.

The negative sample was taken from a query
for ‘scala’ and the users were chosen when they
used ‘scala’ at least two times in their last 200
tweets. Users that follow or are followed by
‘etorreborre’ were excluded. The users were
also manually filtered to ensure the quality of
the data. 2k tweets were collected per user
to create this model. Whenever the keyword
‘scala’ is found in the stream from Twitter (as
described above), it is checked for relevance.

The retweets are not true retweets, but
rather a new tweet as a reply to the status
to be retweeted with an RT beforehand. This
is a technical limitation, as you cannot di-
rectly reply to a retweet. When replying to
a retweet in the web interface, a mention is
added to the original tweeter. When the user
deletes that mention, twitter doesn’t consider
it a reply anymore. Replying to both origi-
nal tweeter and bot would create noise for the
original tweeter.

3 Sample interaction

A tweet such as shown below tells the bot to
fetch the tweets as described above and starts
to tweet as soon as it’s ready.

@botty_anlp tweets about scala such as

etorreborre

The bot answers with a confirmation that it
received your message and understood it.

Quser Working on scala.

As soon as the models are trained, it will tell
you it’s ready.

Quser Ready to tweet about scala.

When the bot tweets something it shouldn’t,
you can reply to it with ‘no’. To circumvent
twitter’s limitation that the same tweet can
only be posted once, additional text can be
added after ‘no’.

. retweet ...
@botty_anlp no don’t do that
Quser Sorry, I’1l not make
that mistake again.

4 Evaluation

For the evaluation of the tweet classification,
the following command is simulated.

tweets about scala like
etorreborre

The evaluation can be run with:

sbt ’run-main
tshrdlu.util.RetweetEvaluation’

This gave 2k positive examples. From the
precompiled corpus of the bot, the first five
negative users were taken. From each of these
users, 400 tweets were collected for the nega-
tive samples. This doesn’t fully correspond to
the 10 users and 200 tweets each for the bot,
but the approximation should be good enough.

The threshold for a decision was set to 0.6,
not to 0.5 as a default nak 3 model would do.
This is to restrict the bot to not spam people
with unrelated tweets.

The testing data is fetched from a twitter
query for ‘scala’ and consists of 420 positive
and 596 negative samples. The data was man-
ually annotated. The data is split into 10 buck-
ets with equal distribution of the positive and
negative examples.

4.1 Baseline

The baseline would be to retweet everything.
Given the sample distribution, this would give
a recall of 100% and an accuracy of roughly
40%.

Shttps://github.com/scalanlp /nak

4.2 Baseline with Model

For the baseline, the model is created by the
data compiled above. This serves as a simple
baseline to compare to the other models.

Precision Recall F-Measure
74.84 71.35 66.86
78.38 72.88 67.60
73.68 66.61 59.81
75.00 64.41 55.70
71.46 62.37 53.59
81.22 80.17 77.19
71.92 63.22 54.88
66.04 64.04 59.92
75.35 72.20 67.94
72.32 67.11 61.28

80

! ' ! ! ' ! ' ! ! !
#0 #1 #2 #3 #4 #5 #6 #1 #8 #9
Id

Figure 1: Baseline

@
3

F.Measure
s
3

N
S

4.3 Improving model

To simulate user feedback, 1/20 of the tweets
were fed back into the model. As only tweets
classified as positive will ever be retweeted,
feedback can only be given to positive tweets.
To increase training impact, each of those
tweets was fed back twenty times. To balance
the model, the same amount of positive tweets
were added.

The order of exposure now plays a role. De-
pending on which tweets were learned, the
model will give different answers. Running
all possible permutations would be unfeasible,
therefore the list of training sets is shifted after
each run. This makes the last data set the first
and moves all others one back. The results are
averaged.

There is no significant improvement when
training with only 5 tweets each. This might
be because 5 tweets each is not enough to re-
train the bot. The bot has a tendency to clas-
sify tweets as positive. Between 2/3 and 3/4
of the tweets are classified as positive.

F.Measure

' ' ' ' ' ' ' ' ' '
#0 #1 #2 #3 #4 #5 #6 #7 #8 #9

Figure 2: Grouped by position in the training
sequence.

According to the data, there is not much dif-
ference in the different training sets. The or-
der presented is not significantly relevant to
the classification.

F.Measure

T T T T T T T T T T
#0 #1 #2 #3 #4 #5 #6 #7 #8 #9

Figure 3: Grouped by bucket.

5 Future Work

So far, several issues have been encountered
and not resolved. Some of them concern the

implementation, others the NLP side of the
project.

5.1 Using the follower graph

People have used the follower graph to recom-
mend tweets. (Yan et al., 2012) This bot only
makes marginal use of it. Using the rate limit
as discussed below would make use of the fol-
lower graph, as additional information can be
fetched from people that follow the specified
users.

5.2 Quality over Quantity

A certain amount of quality control for the
retweets would be of advantage. The quality
depends heavyly on the users specified. This
has been explored in previous work. (Huang
et al., 2011)

5.3 Integration of external resources

URLs used in tweets are currently treated as
text, without any added information. The ref-
erenced page could be fetched and indexed.
There has been research which focuses on this
part. (Duan et al., 2010) (Gao et al.,)

5.4 Better Assigning to the Models

Currently the bot checks for the existence of
the keyword. However, some tweets, such as
the following example, would be relevant but
don’t contain the keyword.

@clinton_freeman Omarkhibberd
Ombrcknl I think @dibblego
said: "understand FP: 5 mins,
master FP: a lifetime" :-)

5.5 Language

The current model does not take language into
account. Adding a language feature to the
model would help to exclude tweets that are
not of the same language as the specified users.
Twitter provides this feature, but it is not im-
plemented in twitter4;.

5.6 Rate Limit

Twitter limits the amount of queries possible,
and the bot currently blocks or fails if the rate
limit is hit. It would be of advantage to make
the code aware of this limitation.

5.7 Training Access Control

There is no access control about training the
bot. Anyone can tell the bot any tweet is con-
sidered bad and it will count each ‘no’ sep-
arately by adding negative examples to the
dataset. This is only a yes/no question, so
exposing it to the internet is no great risk.
Exposing a natural language machine learning
system to the internet is a risk. 4

6 Conclusion

The bot is overly positive in its classifications.
The experiment of a retweeting bot was a suc-
cess, but the learning did not have the ex-
pected effect on the overall F-Measure. This
might be because the training set was noisy.

7 Bibliography

References

Analytics, P. (2009). Twitter Study—August
2009. San Antonio, TX: Pear Analytics.
Awvailable at: www. pearanalytics. com/blog/wp-
content/uploads/2010/05/ Twitter-Study-
August-2009. pdf.

Banko, M. and Etzioni, O. (2007). Strategies for
lifelong knowledge extraction from the web. In
Proceedings of the 4th international conference
on Knowledge capture, pages 95-102.

Carlson, A., Betteridge, J., Kisiel, B., Settles,
B., , E. R. H J., and Mitchell, T. M.
(2010). Toward an Architecture for Never-
Ending Language Learning. In Proceedings of
the Twenty-Fourth Conference on Artificial In-
telligence (AAAI 2010).

Duan, Y., Jiang, L., Qin, T., Zhou, M., and Shum,
H.-Y. (2010). An empirical study on learning to
rank of tweets. In Proceedings of the 23rd Inter-
national Conference on Computational Linguis-
tics, pages 295-303.

Gao, D., Li, W., and Zhang, R. Beyond Twitter
Text: A preliminary Study on Twitter Hyperlink
and its Application.

Huang, M., Yang, Y., and Zhu, X. (2011). Quality-
biased ranking of short texts in microblogging
services. In Proceedings of the 5th International
Joint Conference on Natural Language Process-
ing, pages 373-382.

Java, A., Song, X., Finin, T., and Tseng, B. (2007).
Why we twitter: understanding microblogging

usage and communities. In Proceedings of the
9th WebKDD and 1st SNA-KDD 2007 work-
shop on Web mining and social network analy-
sis, WebKDD/SNA-KDD ’07, pages 56-65, New
York, NY, USA. ACM.

Krishnamurthy, J. and Mitchell, T. M. (2011).
Which Noun Phrases Denote Which Concepts.
In Proceedings of the Forty Ninth Annual Meet-
ing of the Association for Computational Lin-
guastics.

Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K.,
Schneider, N., and Smith, N. A. (2013). Im-
proved part-of-speech tagging for online conver-

sational text with word clusters. In Proceedings
of NAACL.

Teevan, J., Ramage, D., and Morris, M. R.
(2011). TwitterSearch: a comparison of mi-
croblog search and web search. In Proceedings
of the fourth ACM international conference on
Web search and data mining, pages 35—44.

Yan, R., Lapata, M., and Li, X. (2012). Tweet
recommendation with graph co-ranking. In Pro-
ceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics: Long
Papers-Volume 1, pages 516-525.

“http:/ /www.theatlantic.com/technology/archive/2013/01 /ibms-

watson-memorized-the-entire-urban-dictionary-then-
his-overlords-had-to-delete-it /267047 /

