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Abstract 

Automated interaction behaviors via textual 

methods have been studied by several research 

groups using various Natural Language Pro-

cessing (NLP) techniques. Some of them em-

ploy pattern matching techniques to make rel-

evant and human-like interactions 

(Weizenbaum, 1966; Mauldin, 1994). There 
are two main disadvantages of these tech-

niques. First, the chat bot always replies the 

same message to the same user input. Second, 

the response messages are not diverse due to 

the limited number of pattern matching rules. 

This paper discusses the detailed implementa-

tion of an automated interaction application on 

Twitter based on other NLP and Machine 

Learning techniques. 

1 Introduction 

In this project, I try to implement an interaction 

application on Twitter that automatically replies 

to every message sent to the bot. There are a lot 

of techniques for extending and improving the 

automated interaction capabilities. One simple 

way is to employ some search engine to find 

possible response tweets, where the query is the 

message sent to the bot, then select the top re-

sponse returned by the search engine for replying 

to the user. The main drawback of this approach 

is the poor interaction behaviors of the bot due to 

its irrelevant responses when interacting with the 

user. There are a couple of main reasons for this 

poor performance. 

First, the immediate message might be provide 

little information about the person tweeting to 

the bot as well as the context of the conversation. 

For example, with the user’s message “What is 

your decision?”, the bot cannot know the user 

asks about the decision on what problem since it 

was mentioned in previous tweets. In addition, 

the new message can refer to something men-

tioned in the previous discussion using 

coreference, e.g., “How do you feel about it?”. 

However, the bot cannot know what thing the 

word it refers to due to lack of information about 

the previous discussion. Therefore, user’s previ-

ous tweets will provide more information about 

the conversation and hence can help the bot reply 

more relevant to that user. 

Second, the ranking criteria are crucial. How-

ever, the criteria of search engines are often not 

suitable for interaction task on Twitter. Having 

that said, the selection of the response message 

needs to be improved. In general, the most im-

portant criterion in interaction and communica-

tion tasks is relevance. Hence, the system can 

select the responses which are best matches to 

the user input; with the hope that the better 

matching to the user input, the more relevant the 

responses are. In this project, the system employs 
textual similarity measures via lexical and topic 

overlap between each response candidate and the 

user input as ranking criteria. These measures are 

described in more detail in the next section. 

In addition, to increase the number as well as 

diversity of possible responses, the system also 
generates new tweets via a bigram language 

model constructed from the retrieved tweets. 

These new tweets combining with the ranking 

criteria mentioned above can help the bot to 

make more relevant and interesting responses.  

2 System Architecture  

The overall system architecture is shown in Fig-

ure 1. The application is implemented using the 

Actor model. In particular, there are two actors 

named Collector and Replier in the system. They 

communicate through Lucene Indexer and 

Lucene Searcher. The detail of each component 

in the system is described in the following sub-

sections.  

 



 

Figure 1: System Architecture. The blue arrows indicate the activities of Collector and Lucene Indexer. The red 
arrows indicate the activities of Replier and Lucene Searcher. 

 

2.1 Lucene 

Lucene
1
 is an open-source search engine library 

written in Java. It has been widely recognized for 

its indexing and searching capability. The careful 

exposure of its straightforward indexing and 

searching API requires a user only needs to use a 

handful of its classes. That said, the system em-

ploys Lucene to do two following tasks: 

• Index tweets received from Collector in-

to Lucene database via Lucene Indexer. 

• Search tweets from Lucene database via 

Lucene Searcher, where a query is sent by 

Replier. 

2.2 Collector 

The Collector regularly collects a bag of one 

hundred tweets using sample() method of a Twit-

ter stream. The system filters the non-English 

and vulgar tweets, removes the mentions in the 

tweets and then sends to Lucene Indexer for in-

dexing into Lucene database. 

2.3 Replier 

This actor replies to user whenever the user 
sends a new message to the bot. Besides the new 

message, the replier also collects the fifteen re-

cent tweets sent to the bot by that user as the 

previous context. As discussed before, the previ-

                                                
1 http://lucene.apache.org/ 

ous tweets provide more information to the repli-

er in order to specify the content of the conversa-

tion and try to make the bot reply more relevant 

not only to the new message, but also to the pre-

vious discussion. And hence, this makes the con-

versation tend to have higher connection and be 

more interesting. If the bot only considers the 

current message, its responses often have low 

connection in the conversation. There are many 

ways of utilizing the previous context to support 

the bot’s interaction with the user. My approach 

is to specify the most frequently mentioned top-

ics in the previous discussion. Within the key-

word level, using a pre-computed topic model 

(Steyvers and Griffiths, 2007), the system tries to 

find the main topics of the user input based on 

the number of times the words in these topics are 

mentioned. In particular, the system uses a word-

topic map to compute the topics mentioned in a 

text and then select the dominant ones based on 

the number of times the topics are mentioned. 

Query Creator: creates a query from a new 

message and previous context sent to the bot. 

The query consists of three parts: 

•  The English words of length at least 

three in the new message, excluding all 

stop-words. This message is considered as 

one of the main parts of the query because 

it is the most important information that 

the bot needs to know in order to reply to 

the user. 



• The top five most frequently used Eng-

lish words of length at least three in previ-

ous context, excluding all stop-words. 

• Randomly pick three English words in 

each of three main topics, where the main 

topics are specified using the technique 

discussed above with a topic model built 

from the 20 Newsgroups dataset
2  

(Lang, 

1995). 

The query is then sent to the Lucene Searcher 

to retrieve the relevant-to-query tweets from the 

Lucene database. 

 Response Creator: A list of tweets returned 

by Lucene Searcher will be sent to the Response 

Creator module in order to generate response 

candidates. There are three methods of generat-

ing response candidates in this module, the first 

two of them use a bigram language model built 

from all the retrieved tweets.
3
  

• Generate the best tweet from the bigram 

language model. Initializing an empty re-

sponse tweet, the program iteratively 

chooses the best next token to append to 

the tweet based on the probability of this 

token given the last token added in the bi-

gram model. This bigram will then be 

marked to not select again. Initially, the 
program assumes that the last token added 

to the tweet is the begin-boundary token 

where the begin and end-boundary tokens 

were added to each retrieved tweet. The 

process will terminate either the chosen 

next token is the end-boundary token or 

the length of the tweet exceeds the maxi-

mum length parameter. In case there is no 

more next token to choose, it is assigned 

to end-boundary token. 

• Create 200 new tweets by randomly 

sampling tweets from the bigram model. 

These tweets help to increase the diversity 

of response candidates and hence make 
the bot have more options when selecting 

the best response. However, the problem 

of this technique is that many tweets do 

not look like tweets posted by real people 

(Wilson and Rajani, 2013). For example, 

“Saw your big ol indian guy don”, or 

“aww that's the hood people I love again?. 

don't remember all emotional haha people 

                                                
2  http://qwone.com/~jason/20Newsgroups/ 
3  The maximum number of returned tweets from 

Lucene database is set to 1,000. 

i just makes you don't know but on?Look 

at”. 

• Select the first 100 tweets from the list of 

tweets retrieved from Lucene database in 

the previous step. These tweets are also 

the most relevant-to-query tweets ranked 

by Lucene. Furthermore, they were posted 

on Twitter by actual users; therefore, they 

are usually more human-like than those 

created from the two previous methods.  

The response candidates are then ranked based 

on their textual similarity with the user input and 

the optimal candidate will be selected in order to 

reply to the user.  

Ranking response candidates based on tex-
tual similarity: There is no clear criterion for 

choosing the best response from a list of candi-

dates. In this project, the system uses the textual 

similarity between each candidate and the user 

input as ranking criterion. In particular, it com-

putes the lexical overlap (Adams et al., 2007) 

and topic overlap between each candidate and 

the user input. The final score is then the 

weighted average of individual scores. 

Lexical overlap (LexOverlap) between two 

texts t1 and t2 is the fraction of the number of 

common tokens between in t1 and t2 divided by 

the maximum number of tokens in t1 and t2.  
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However, two tokens with the same word 

form but different part-of-speech (POS) tags will 

have different meanings (consider the word saw 

in the two following sentences). 

 
I saw you. 

A saw is used to cut through 

material. 

 

Therefore, the system should treat two tokens 

of the same word form different if they have dif-

ferent POS tags (Bar et al., 2012; Saric et al., 

2012). In particular, the system utilizes POS tag-

ger for Twitter (Gimpel et al., 2011) to recognize 

the POS tags of the tokens. 

On the other hand, different word forms with 

the same stemmed version can have the same 

meaning. E.g., consider look and looked in the 

following tweets: 

 



#tweetdebate generic debate so 

far. They won't even look at each 

other. 

Have you looked at the 

#tweetdebate at the top of home 

screen? 

 

Thus, each token in a tweet will be replaced 

with a pair of the stemmed version of that token 

and its POS tag when calculating lexical overlap. 

Topic overlap (TopicOverlap) is similar to 

lexical overlap, except that a text is represented 

by a list of topics instead of a token list. 
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Thus, for each response candidate, the system 

computes the four following scores and then 

computes the weighted average of them as the 

final score. 

• Lexical overlap score between the can-

didate and the current message. 

• Lexical overlap score between the can-

didate and the previous context. 

• Topic overlap score between the candi-

date and the current message. 

• Topic overlap score between the candi-

date and the previous context. 

The weights for lexical and topic overlap 

score are empirically set to 0.7 and 0.3, respec-

tively. The final score is then computed as fol-

lows: 

 
( , , ) 0.7*[ ( , ) ( , )]

            + 0.3*[ ( , ) ( , )]  (3)

sim r c p LexOverlap r c LexOverlap r p
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where r is the response candidate; c is the cur-

rent message; and p is the previous context. For 

example, when the user sends a message “what is 

your purpose in life?”, the system produces the 

top five following responses along with their fi-

nal score as follows: 

 
(Purpose is what gives life a 

meaning!!!, 0.744) 

(Life has no purpose; you have 

a purpose and you bring it to 

life., 0.619) 

(The purpose of life is to be 

happy, 0.571) 

(Purpose of Life is to Love. 

How well you Live depends how 

well you Love!! #LoveLifeLive, 

0.534) 

(The #purpose of life is a life 

of purpose. -- Robert Byrne #in-

spiration #quotes, 0.529) 

 

This example illustrates the good effect of the 

textual similarity score computed by (3) in se-

lecting the best response. These top tweets are all 

good candidates that the bot can choose to reply, 

although it is unclear which the best one is. 

3 Evaluation and Discussion  

The system’s performance was evaluated via 

making conversations with three actual users. 

Before evaluating the interaction, I asked the 

evaluators try to talk to my bot around 10-15 

messages to help my bot get some initial infor-

mation about the conversation. After that, they 

started rating the interaction by continue chatting 

with my bot at least 10-15 turns. Their evalua-

tions were based on three measures: relevance, 

human-ness, and intelligence; using a scale from 

1 to 5 for each measure. The evaluators gave 

similar scores as shown in Table 1. The system 

got a medium score for its relevance and intelli-

gence, while its human-ness had a higher rate at 

4/5 from all three evaluators.  

 

 Relevance Human-

ness 

Intelli-

gence 

User 1 3 4 3 

User 2 3 4 4 

User 3 3 4 3 

Average 3 4 3.33 
 

Table 1: Evaluation results 

 

Besides the evaluation scores, I also asked the 

evaluators give their feedback about the bot’s 

interaction. All evaluators agreed that the bot 

was actually fun to interact with. After playing 

with the bot for a while, they stated that its re-

sponses were interesting to read and sometimes 

they were surprised by its clever replies. Below 

are some examples that the evaluators were in-

terested: 

 

User> your program is really really retarded! 

Bot> your tweet is much appreciated ! 

 

User> I just wanna get it done. 

Bot> Don't wanna know it lol 

 



User> this is stupid 

Bot> sorry man. You are nonsense 

 

User> You deserve 0 for this project 

Bot> you deserve better!thanks for reading my 

cos project soon 

 

User> How would you create a mind? 

Bot> How do you run away from your mind? 

 

The evaluators were surprised that they could 

not recognize they were talking to a chat bot in 

many short conversations: 

 

User> You made me SO confused :( 

Bot> Made so many mistakes in past 

User> You need to find a better way to im-

prove the situation. 

Bot> Did you find better 

User> I think we did a better conversation. 

Bot> Living In A GOOD LIFE.Don't want 

mah Conversation over conversations 

 

User> Do you love me? 

Bot> we love you too Turk 

User> Haha, you made my day. Thanks for 

that! 
Bot> haha that made my day! 

User> You are so funny!!! 

Bot> talking frogs are always funny #haha 

 

The evaluators were also interested in the fact 

that the bot also talked about the topics men-

tioned in previous discussion. This helped to cre-

ate the connection in the conversation and made 

the conversation more interesting. In the follow-

ing example, although the second response of the 

bot made the user confused, he was interested in 

the last response when the bot talked about free 

topic that he mentioned before but not in his last 

message. 

  

User> the truth will set you free 

Bot> The truth will set you free. 

User> Do not be afraid, for I am with you 

Bot> look on this.Be afraid To Win in there 

run for worst Mets player do people stop doing a 

yr not you make up I'll be playing 

User> Here I am 

Bot> Don't live life comparing yourself to 

everyone else. God has created you to be you and 

you are free to be yourself! 

 

However, talking about the previous topics al-

so made the responses become irrelevant in some 

cases. In the last response of the following ex-

ample, the bot talked about a person named Liam 

who was mentioned in an old user’s tweet. But 

the response was totally irrelevant to the user’s 

last message. 

 

User> Liam? Who? 

… 

User> You seem to have a positive mind. I re-

spect that. 

Bot> Positive thoughts storm my mind 

User> Good! I'm happy to hear that from you. 

But notice that negative thoughts are not always 

bad.  

Bot> I'm not really a fan of the beady eye 

tracks but it is good to hear Liam's voice sound-

ing good. 

 

In addition, it appeared that the bot was really 

good at answering short questions. The answers 

were usually more relevant, surprising and hu-

man-like: 

 

User> where is love? 

Bot> Love hurts 

 

User> what is your purpose in life? 
Bot> Purpose is what gives life a meaning!!! 

 

User> what are you afraid of? 

Bot> People arent afraid of saying "I love 

you." Theyre afraid of hearing the response. 

#teamfollowback 

 

Sometimes, the bot’s responses really depend-

ed on the trend on Twitter of what was going on. 

For example, when a National Basketball Asso-

ciation (NBA) game was going on: 

 

User> I want to know your heart 

Bot> The End Of The point for love 

KHAN,don't"Run Ride is a bully,how did good 

basketball player all of not to actual wins ! 

 

All three users stated that the bot was surpris-

ingly smart and made relevant responses in half 

of the time. One quarter was not so great. And 

one quarter was completely irrelevant. However, 

sometimes they ought to pay a little attention to 

the response to see its relevance. For example, 

one evaluator stated the response below was a 

good one after he thought about it: 

 



User> go and take control the website that I 

have promised you. That website will have more 

access than you would image 

Bot> I believe you. I don t understand the 

people who follow you and don t believe you, it s 

stupid. Have a good night. xx <3 

 

The bot also made, of course, irrelevant re-

sponses to the users: 

 

User> Sometimes it's hard to understand what 

you are talking about. 

Bot> Sometimes i keep my feelings to myself 

because it's hard for someone to understand. 

User> But you have so complex feelings, and 

I thought you were talking to someone else, not 

me :( 

Bot> merp.Feel Sooo Good To Good About to 

other girls don´t anything and I don't wish to new 

people on twitter to hear._.Maybe the 

 

User> Because of you :)). Do you think you're 

smart? 

Bot> Ya made the RING!What do for MQM.! 

And that show full of haha I DON' LIVED A 

GOOD EVENING DUDE!Made a don think in 

 
Furthermore, in pattern matching based chat 

bots, users can predict the responses after chat-

ting with the bots for a while. However, the 

evaluators could not predict the responses of my 

bot because the system kept collecting and gen-

erating new tweets even with the same query 

input. 

4 Future Work 

There is a lot of room for improvement. Below 

are some suggestions: 

Because the number of topics in the 20 News-

groups dataset is small and some of them are 

very closely related to each other, this dataset is 

not general enough for covering the diversity of 

topics on Twitter. The topic model should be 

trained on a more general corpus. 

The textual similarity is not simply the lexical 

overlap and topic overlap. It should be extended 

to handle more complex features like syntactic 

information (Saric et al., 2012), semantic infor-
mation, logical inference (Beltagy et al., 2013), 

and the combination of individual features at dif-

ferent levels of complexity (Bar et al., 2012). 

The ranking criteria are very important and 

there is no guarantee that the textual similarity is 

the best one for interaction tasks. Thus, deeper 

study and analysis of ranking criteria are neces-

sary in order to find better criteria as well as help 

to improve the performance. 

In the limited time, the system was just evalu-

ated only on the very small number of users and 

criteria. In order to get more believable results, 

the system’s performance needs to be evaluated 

by much more number as well as diversity of 

users and criteria.   

5 Conclusion 

Unlike the limited set of responses in pattern 

matching based chat bots, my system can gener-

ate a wide diversity of responses. From a com-

bined list of tweets returned from Lucene search 

engine and new tweets produced from a bigram 

language model, the system selects the best one 
using textual similarity measures. Furthermore, 

to make more relevant responses, the system cre-

ates a query from both new message and previ-

ous context using a pre-computed topic model. 
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