
An Automated Interaction Application on Twitter

Cuong Chau

Department of Computer Science

The University of Texas at Austin
Austin, Texas, USA

ckcuong@cs.utexas.edu

Abstract

Automated interaction behaviors via textual

methods have been studied by several research

groups using various Natural Language Pro-

cessing (NLP) techniques. Some of them em-

ploy pattern matching techniques to make rel-

evant and human-like interactions

(Weizenbaum, 1966; Mauldin, 1994). There
are two main disadvantages of these tech-

niques. First, the chat bot always replies the

same message to the same user input. Second,

the response messages are not diverse due to

the limited number of pattern matching rules.

This paper discusses the detailed implementa-

tion of an automated interaction application on

Twitter based on other NLP and Machine

Learning techniques.

1 Introduction

In this project, I try to implement an interaction

application on Twitter that automatically replies

to every message sent to the bot. There are a lot

of techniques for extending and improving the

automated interaction capabilities. One simple

way is to employ some search engine to find

possible response tweets, where the query is the

message sent to the bot, then select the top re-

sponse returned by the search engine for replying

to the user. The main drawback of this approach

is the poor interaction behaviors of the bot due to

its irrelevant responses when interacting with the

user. There are a couple of main reasons for this

poor performance.

First, the immediate message might be provide

little information about the person tweeting to

the bot as well as the context of the conversation.

For example, with the user’s message “What is

your decision?”, the bot cannot know the user

asks about the decision on what problem since it

was mentioned in previous tweets. In addition,

the new message can refer to something men-

tioned in the previous discussion using

coreference, e.g., “How do you feel about it?”.

However, the bot cannot know what thing the

word it refers to due to lack of information about

the previous discussion. Therefore, user’s previ-

ous tweets will provide more information about

the conversation and hence can help the bot reply

more relevant to that user.

Second, the ranking criteria are crucial. How-

ever, the criteria of search engines are often not

suitable for interaction task on Twitter. Having

that said, the selection of the response message

needs to be improved. In general, the most im-

portant criterion in interaction and communica-

tion tasks is relevance. Hence, the system can

select the responses which are best matches to

the user input; with the hope that the better

matching to the user input, the more relevant the

responses are. In this project, the system employs
textual similarity measures via lexical and topic

overlap between each response candidate and the

user input as ranking criteria. These measures are

described in more detail in the next section.

In addition, to increase the number as well as

diversity of possible responses, the system also
generates new tweets via a bigram language

model constructed from the retrieved tweets.

These new tweets combining with the ranking

criteria mentioned above can help the bot to

make more relevant and interesting responses.

2 System Architecture

The overall system architecture is shown in Fig-

ure 1. The application is implemented using the

Actor model. In particular, there are two actors

named Collector and Replier in the system. They

communicate through Lucene Indexer and

Lucene Searcher. The detail of each component

in the system is described in the following sub-

sections.

Figure 1: System Architecture. The blue arrows indicate the activities of Collector and Lucene Indexer. The red
arrows indicate the activities of Replier and Lucene Searcher.

2.1 Lucene

Lucene
1
 is an open-source search engine library

written in Java. It has been widely recognized for

its indexing and searching capability. The careful

exposure of its straightforward indexing and

searching API requires a user only needs to use a

handful of its classes. That said, the system em-

ploys Lucene to do two following tasks:

• Index tweets received from Collector in-

to Lucene database via Lucene Indexer.

• Search tweets from Lucene database via

Lucene Searcher, where a query is sent by

Replier.

2.2 Collector

The Collector regularly collects a bag of one

hundred tweets using sample() method of a Twit-

ter stream. The system filters the non-English

and vulgar tweets, removes the mentions in the

tweets and then sends to Lucene Indexer for in-

dexing into Lucene database.

2.3 Replier

This actor replies to user whenever the user
sends a new message to the bot. Besides the new

message, the replier also collects the fifteen re-

cent tweets sent to the bot by that user as the

previous context. As discussed before, the previ-

1 http://lucene.apache.org/

ous tweets provide more information to the repli-

er in order to specify the content of the conversa-

tion and try to make the bot reply more relevant

not only to the new message, but also to the pre-

vious discussion. And hence, this makes the con-

versation tend to have higher connection and be

more interesting. If the bot only considers the

current message, its responses often have low

connection in the conversation. There are many

ways of utilizing the previous context to support

the bot’s interaction with the user. My approach

is to specify the most frequently mentioned top-

ics in the previous discussion. Within the key-

word level, using a pre-computed topic model

(Steyvers and Griffiths, 2007), the system tries to

find the main topics of the user input based on

the number of times the words in these topics are

mentioned. In particular, the system uses a word-

topic map to compute the topics mentioned in a

text and then select the dominant ones based on

the number of times the topics are mentioned.

Query Creator: creates a query from a new

message and previous context sent to the bot.

The query consists of three parts:

• The English words of length at least

three in the new message, excluding all

stop-words. This message is considered as

one of the main parts of the query because

it is the most important information that

the bot needs to know in order to reply to

the user.

• The top five most frequently used Eng-

lish words of length at least three in previ-

ous context, excluding all stop-words.

• Randomly pick three English words in

each of three main topics, where the main

topics are specified using the technique

discussed above with a topic model built

from the 20 Newsgroups dataset
2

(Lang,

1995).

The query is then sent to the Lucene Searcher

to retrieve the relevant-to-query tweets from the

Lucene database.

 Response Creator: A list of tweets returned

by Lucene Searcher will be sent to the Response

Creator module in order to generate response

candidates. There are three methods of generat-

ing response candidates in this module, the first

two of them use a bigram language model built

from all the retrieved tweets.
3

• Generate the best tweet from the bigram

language model. Initializing an empty re-

sponse tweet, the program iteratively

chooses the best next token to append to

the tweet based on the probability of this

token given the last token added in the bi-

gram model. This bigram will then be

marked to not select again. Initially, the
program assumes that the last token added

to the tweet is the begin-boundary token

where the begin and end-boundary tokens

were added to each retrieved tweet. The

process will terminate either the chosen

next token is the end-boundary token or

the length of the tweet exceeds the maxi-

mum length parameter. In case there is no

more next token to choose, it is assigned

to end-boundary token.

• Create 200 new tweets by randomly

sampling tweets from the bigram model.

These tweets help to increase the diversity

of response candidates and hence make
the bot have more options when selecting

the best response. However, the problem

of this technique is that many tweets do

not look like tweets posted by real people

(Wilson and Rajani, 2013). For example,

“Saw your big ol indian guy don”, or

“aww that's the hood people I love again?.

don't remember all emotional haha people

2 http://qwone.com/~jason/20Newsgroups/
3 The maximum number of returned tweets from

Lucene database is set to 1,000.

i just makes you don't know but on?Look

at”.

• Select the first 100 tweets from the list of

tweets retrieved from Lucene database in

the previous step. These tweets are also

the most relevant-to-query tweets ranked

by Lucene. Furthermore, they were posted

on Twitter by actual users; therefore, they

are usually more human-like than those

created from the two previous methods.

The response candidates are then ranked based

on their textual similarity with the user input and

the optimal candidate will be selected in order to

reply to the user.

Ranking response candidates based on tex-
tual similarity: There is no clear criterion for

choosing the best response from a list of candi-

dates. In this project, the system uses the textual

similarity between each candidate and the user

input as ranking criterion. In particular, it com-

putes the lexical overlap (Adams et al., 2007)

and topic overlap between each candidate and

the user input. The final score is then the

weighted average of individual scores.

Lexical overlap (LexOverlap) between two

texts t1 and t2 is the fraction of the number of

common tokens between in t1 and t2 divided by

the maximum number of tokens in t1 and t2.

1 2
1 2

1 2

#common tokens between &
(,) (1)

max{#tokens in ,# tokens in }

t t
LexOverlap t t

t t
=

However, two tokens with the same word

form but different part-of-speech (POS) tags will

have different meanings (consider the word saw

in the two following sentences).

I saw you.

A saw is used to cut through

material.

Therefore, the system should treat two tokens

of the same word form different if they have dif-

ferent POS tags (Bar et al., 2012; Saric et al.,

2012). In particular, the system utilizes POS tag-

ger for Twitter (Gimpel et al., 2011) to recognize

the POS tags of the tokens.

On the other hand, different word forms with

the same stemmed version can have the same

meaning. E.g., consider look and looked in the

following tweets:

#tweetdebate generic debate so

far. They won't even look at each

other.

Have you looked at the

#tweetdebate at the top of home

screen?

Thus, each token in a tweet will be replaced

with a pair of the stemmed version of that token

and its POS tag when calculating lexical overlap.

Topic overlap (TopicOverlap) is similar to

lexical overlap, except that a text is represented

by a list of topics instead of a token list.

1 2
1 2

1 2

#common topics between &
(,) (2)

max{# topics in ,# topics in }

t t
TopicOverlap t t

t t
=

Thus, for each response candidate, the system

computes the four following scores and then

computes the weighted average of them as the

final score.

• Lexical overlap score between the can-

didate and the current message.

• Lexical overlap score between the can-

didate and the previous context.

• Topic overlap score between the candi-

date and the current message.

• Topic overlap score between the candi-

date and the previous context.

The weights for lexical and topic overlap

score are empirically set to 0.7 and 0.3, respec-

tively. The final score is then computed as fol-

lows:

(, ,) 0.7*[(,) (,)]

 + 0.3*[(,) (,)] (3)

sim r c p LexOverlap r c LexOverlap r p

TopicOverlap r c TopicOverlap r p

= +

+

where r is the response candidate; c is the cur-

rent message; and p is the previous context. For

example, when the user sends a message “what is

your purpose in life?”, the system produces the

top five following responses along with their fi-

nal score as follows:

(Purpose is what gives life a

meaning!!!, 0.744)

(Life has no purpose; you have

a purpose and you bring it to

life., 0.619)

(The purpose of life is to be

happy, 0.571)

(Purpose of Life is to Love.

How well you Live depends how

well you Love!! #LoveLifeLive,

0.534)

(The #purpose of life is a life

of purpose. -- Robert Byrne #in-

spiration #quotes, 0.529)

This example illustrates the good effect of the

textual similarity score computed by (3) in se-

lecting the best response. These top tweets are all

good candidates that the bot can choose to reply,

although it is unclear which the best one is.

3 Evaluation and Discussion

The system’s performance was evaluated via

making conversations with three actual users.

Before evaluating the interaction, I asked the

evaluators try to talk to my bot around 10-15

messages to help my bot get some initial infor-

mation about the conversation. After that, they

started rating the interaction by continue chatting

with my bot at least 10-15 turns. Their evalua-

tions were based on three measures: relevance,

human-ness, and intelligence; using a scale from

1 to 5 for each measure. The evaluators gave

similar scores as shown in Table 1. The system

got a medium score for its relevance and intelli-

gence, while its human-ness had a higher rate at

4/5 from all three evaluators.

 Relevance Human-

ness

Intelli-

gence

User 1 3 4 3

User 2 3 4 4

User 3 3 4 3

Average 3 4 3.33

Table 1: Evaluation results

Besides the evaluation scores, I also asked the

evaluators give their feedback about the bot’s

interaction. All evaluators agreed that the bot

was actually fun to interact with. After playing

with the bot for a while, they stated that its re-

sponses were interesting to read and sometimes

they were surprised by its clever replies. Below

are some examples that the evaluators were in-

terested:

User> your program is really really retarded!

Bot> your tweet is much appreciated !

User> I just wanna get it done.

Bot> Don't wanna know it lol

User> this is stupid

Bot> sorry man. You are nonsense

User> You deserve 0 for this project

Bot> you deserve better!thanks for reading my

cos project soon

User> How would you create a mind?

Bot> How do you run away from your mind?

The evaluators were surprised that they could

not recognize they were talking to a chat bot in

many short conversations:

User> You made me SO confused :(

Bot> Made so many mistakes in past

User> You need to find a better way to im-

prove the situation.

Bot> Did you find better

User> I think we did a better conversation.

Bot> Living In A GOOD LIFE.Don't want

mah Conversation over conversations

User> Do you love me?

Bot> we love you too Turk

User> Haha, you made my day. Thanks for

that!
Bot> haha that made my day!

User> You are so funny!!!

Bot> talking frogs are always funny #haha

The evaluators were also interested in the fact

that the bot also talked about the topics men-

tioned in previous discussion. This helped to cre-

ate the connection in the conversation and made

the conversation more interesting. In the follow-

ing example, although the second response of the

bot made the user confused, he was interested in

the last response when the bot talked about free

topic that he mentioned before but not in his last

message.

User> the truth will set you free

Bot> The truth will set you free.

User> Do not be afraid, for I am with you

Bot> look on this.Be afraid To Win in there

run for worst Mets player do people stop doing a

yr not you make up I'll be playing

User> Here I am

Bot> Don't live life comparing yourself to

everyone else. God has created you to be you and

you are free to be yourself!

However, talking about the previous topics al-

so made the responses become irrelevant in some

cases. In the last response of the following ex-

ample, the bot talked about a person named Liam

who was mentioned in an old user’s tweet. But

the response was totally irrelevant to the user’s

last message.

User> Liam? Who?

…

User> You seem to have a positive mind. I re-

spect that.

Bot> Positive thoughts storm my mind

User> Good! I'm happy to hear that from you.

But notice that negative thoughts are not always

bad.

Bot> I'm not really a fan of the beady eye

tracks but it is good to hear Liam's voice sound-

ing good.

In addition, it appeared that the bot was really

good at answering short questions. The answers

were usually more relevant, surprising and hu-

man-like:

User> where is love?

Bot> Love hurts

User> what is your purpose in life?
Bot> Purpose is what gives life a meaning!!!

User> what are you afraid of?

Bot> People arent afraid of saying "I love

you." Theyre afraid of hearing the response.

#teamfollowback

Sometimes, the bot’s responses really depend-

ed on the trend on Twitter of what was going on.

For example, when a National Basketball Asso-

ciation (NBA) game was going on:

User> I want to know your heart

Bot> The End Of The point for love

KHAN,don't"Run Ride is a bully,how did good

basketball player all of not to actual wins !

All three users stated that the bot was surpris-

ingly smart and made relevant responses in half

of the time. One quarter was not so great. And

one quarter was completely irrelevant. However,

sometimes they ought to pay a little attention to

the response to see its relevance. For example,

one evaluator stated the response below was a

good one after he thought about it:

User> go and take control the website that I

have promised you. That website will have more

access than you would image

Bot> I believe you. I don t understand the

people who follow you and don t believe you, it s

stupid. Have a good night. xx <3

The bot also made, of course, irrelevant re-

sponses to the users:

User> Sometimes it's hard to understand what

you are talking about.

Bot> Sometimes i keep my feelings to myself

because it's hard for someone to understand.

User> But you have so complex feelings, and

I thought you were talking to someone else, not

me :(

Bot> merp.Feel Sooo Good To Good About to

other girls don´t anything and I don't wish to new

people on twitter to hear._.Maybe the

User> Because of you :)). Do you think you're

smart?

Bot> Ya made the RING!What do for MQM.!

And that show full of haha I DON' LIVED A

GOOD EVENING DUDE!Made a don think in

Furthermore, in pattern matching based chat

bots, users can predict the responses after chat-

ting with the bots for a while. However, the

evaluators could not predict the responses of my

bot because the system kept collecting and gen-

erating new tweets even with the same query

input.

4 Future Work

There is a lot of room for improvement. Below

are some suggestions:

Because the number of topics in the 20 News-

groups dataset is small and some of them are

very closely related to each other, this dataset is

not general enough for covering the diversity of

topics on Twitter. The topic model should be

trained on a more general corpus.

The textual similarity is not simply the lexical

overlap and topic overlap. It should be extended

to handle more complex features like syntactic

information (Saric et al., 2012), semantic infor-
mation, logical inference (Beltagy et al., 2013),

and the combination of individual features at dif-

ferent levels of complexity (Bar et al., 2012).

The ranking criteria are very important and

there is no guarantee that the textual similarity is

the best one for interaction tasks. Thus, deeper

study and analysis of ranking criteria are neces-

sary in order to find better criteria as well as help

to improve the performance.

In the limited time, the system was just evalu-

ated only on the very small number of users and

criteria. In order to get more believable results,

the system’s performance needs to be evaluated

by much more number as well as diversity of

users and criteria.

5 Conclusion

Unlike the limited set of responses in pattern

matching based chat bots, my system can gener-

ate a wide diversity of responses. From a com-

bined list of tweets returned from Lucene search

engine and new tweets produced from a bigram

language model, the system selects the best one
using textual similarity measures. Furthermore,

to make more relevant responses, the system cre-

ates a query from both new message and previ-

ous context using a pre-computed topic model.

References

Daniel Bar, Chris Biemann, Iryna Gurevych, and

Torsten Zesch. 2012. UKP: Computing Semantic

Textual Similarity by Combining Multiple Content

Similarity Measures. In Proc. of First Joint Con-

ference on Lexical and Computational Seman-

tics (*SEM), pages 435-440.

Frane Saric, Goran Glavas, Mladen Karan, Jan

Snajder, and Bojana Dalbelo Basic. 2012.
TakeLab: Systems for Measuring Semantic Text

Similarity. In Proc. of First Joint Conference

on Lexical and Computational Semantics

(*SEM), pages 441-448.

Islam Beltagy, Cuong Chau, Gemma Boleda, Dan

Garrette, Katrin Erk and Raymond Mooney. 2013.

Montague Meets Markov: Deep Semantics with

Probabilistic Logical Form. In Proc. of Second

Joint Conference on Lexical and Computa-

tional Semantics (*SEM).

Joseph Weizenbaum. 1966. ELIZA - A Computer

Program for the Study of Natural Language Com-

munication between Man and Machine. Commu-

nications of the ACM, 9(1):36-45.

Ken Lang. 1995. NewsWeeder: Learning to Filter

Netnews. In the 12th International Machine

Learning Conference (ML95).

Kevin Gimpel, Nathan Schneider, Brendan O'Connor,

Dipanjan Das, Daniel Mills, Jacob Eisenstein, Mi-

chael Heilman, Dani Yogatama, Jeffrey Flanigan,

and Noah A. Smith. 2011. Part-of-Speech Tagging

for Twitter: Annotation, Features, and Experiments.

In Proc. of ACL.

Mark Steyvers and Tom Griffiths. 2007. Probabilis-

tic Topic Models. In T.Landauer, D McNamara,

D; S. Dennis, and W. Kintsch (eds). Latent Seman-

tic Analysis: A Road to Meaning. Laurence

Elrbaum.

Michael L. Mauldin. 1994. ChatterBots, TinyMuds,

and the Turing Test: Entering the Loebner Prize

Competition. In Proc. of AAAI ’94, pages 16-21.

Nick Wilson and Nazneen Rajani. 2013. Generating

Replies Based on User Location. Applied NLP
course project.

Rod Adams, Gabriel Nicolae, Cristina Nicolae, and

Sanda Harabagiu. 2007. Textual Entailment

Through Extended Lexical Overlap and Lexico-

Semantic Matching. In Proc. of the Workshop

on Textual Entailment and Paraphrasing.

