- treceId (YO4R743DHIHgk6pR/vdFKA==) ## Step 0 - attributes.input.value ({\"log_entry\": \"ActionStep(agent_memory=None, tool_calls=None, start_time=1738150784.891076, end_time=None, step_number=0, error=None, duration=None, llm_output=None, observations=None, observations_images=None, action_output=) ## LiteLLMModel.__call__ - attributes.input.mime_type (application/json) - attributes.input.value ({\"messages\": [{\"role\": \"system\", \"content\": [{\"type\": \"text\", \"text\": \"You are an expert assi.....) - attributes.llm.invocation_parameters ({"max_tokens": 4096}) - attributes.llm.input_messages.0.message.role (system) - attributes.lm.input_messages.1.message.role (user) - attributes.llm.token_count.prompt (1026) - attributes.llm.token_count.completion (53) - attributes.llm.model_name (ollama/llama3.1) - attributes.llm.token_count.total (1079) - attributes.llm.output_messages.0.message.role (assistant) - attributes.llm.output_messages.0.message.content (```py\n# Thought: We need the length of the b....) - attributes.output.mime_type (application/json) - attributes.output.value ({\"role\": \"assistant\", \"content\": \"```py\\n# Thought: We need the lengt...) ## CodeAgent.run - attributes.input.value ({\"task\": \"How many seconds would it take for a leopard at ....) - attributes.smolagents.max_steps (6) - attributes.smolagents.tools_names (final_answer) - attributes.llm.token_count.prompt (7182) - attributes.llm.token_count.completion (1657) - attributes.llm.token_count.total (8839) - attributes.output.value ("## Step 1: Understand the problem\nThe problem asks us to calculate how many seco...)