

1

CLEAR

Hunting Infostealers:
A Practical Approach

TLP:CLEAR

JANUARY 2025

2

CLEAR

Contents
Overview ... 3

Infostealers Types ... 5

File-Based Infostealers.. 5

Fileless Infostealers... 6

Prevalent Infostealer Variants ... 9

Common Hunting Approaches ... 14

Sysmon Events .. 14

Identifying Domain Generation Algorithm (DGA) and DNS Fast Flux Operations 14

Usage of Legitimate Libraries .. 16

Collecting Network data .. 17

Data exfiltration:.. 18

Suspicious User Agents .. 20

Beacons ... 22

C2 Abuse of Protocols ... 24

Attack Vector ... 27

Usage of Archives .. 29

.txt Files ... 30

C2 Known Tools ... 30

Common Malicious TLDs ... 32

Adaptive Misuse Detection System (AMIDES) .. 32

YARA .. 34

SIGMA Rules .. 35

References ... 36

3

CLEAR

Overview
Infostealers are a category of malware designed specifically to steal sensitive data, such as login

credentials, personal information, and financial details. These malicious programs operate

covertly, making them difficult to detect but extremely damaging to both individuals and

organizations. Effective hunting for infostealers requires a structured, hands-on approach that

combines advanced detection methods, rapid response, and proactive defense strategies.

In this article, we will walk through a practical methodology for identifying, investigating, and

mitigating the impact of infostealers within your environment. The focus will be on real-world

tools and techniques, emphasizing actionable steps that can be taken by security professionals

at any level.

4

CLEAR

Part 1: Infostealer Types

TLP:CLEAR

5

CLEAR

Infostealer Types
Infostealers, like other types of malwares, can be classified based on their method of infection

and how they operate within an infected system. Two common categories are file-based and

fileless infostealers. These two types differ significantly in terms of their delivery mechanisms,

detection challenges, and persistence methods. Understanding the distinctions between file-

based and fileless infostealers is crucial for both detecting and mitigating the threats they pose.

File-Based Infostealers

File-based infostealers are the traditional form of malware, which rely on files being executed
on the system in order to infect and perform their malicious actions. These files can be delivered
through various methods, including phishing emails, malicious downloads, or exploiting
software vulnerabilities.

Common characteristics of file-based infostealers:

• Dependency on files: It is common for these malware variants to be delivered as
executable files (e.g., .exe, .dll, .js or browsers plug-ins1), which are stored on the
infected system's file system. These files generally require either user interaction or a
system process to initiate their execution.

• Detection by signature-based security measures: file-based malware is typically
detectable by signature-based legacy security mechanisms (e.g., antivirus software) due
to the identifiable attributes of the malicious file, such as its hash, which can be
recognized and flagged by these systems.

• Persistence mechanisms: file-based infostealers often include persistence mechanisms
to ensure they remain active on the system. This could involve creating registry entries,
adding files to the startup folder, or modifying scheduled tasks.

• Exfiltration of data: once installed, file-based infostealers will exfiltrate sensitive data
(e.g., passwords, financial information, etc.) to external servers, often using HTTP/S or
other network protocols.

Common Delivery Methods:

1 Browser-in-the-Middle (BITM) Attack

File Based Fileless

6

CLEAR

• Phishing attachments: malicious attachments in emails or downloaded files that, once
executed, drop the infostealer onto the system.

• Drive-by downloads: websites with exploit kits that automatically download and execute
malware when the user visits.

• Trojanized software: legitimate software that has been altered to include malicious
code, which runs when the software is installed or executed.

Examples of file-based infostealers:

• Zeus: one of the most well-known banking Trojans, which uses file-based payloads to
steal banking credentials.

• Dridex: a financial malware that delivers its payload through malicious email
attachments, aiming to steal banking credentials and financial data.

• Emotet: initially a banking Trojan, Emotet has evolved into a malware distribution
platform. It often relies on file-based methods like phishing emails with macros or
malicious attachments.

•

AmsiScanBuffer API Abuse

The Antimalware Scan Interface (AMSI) is a crucial security component in Windows that scans
scripts and other content for malicious activity. However, some sophisticated infostealers
have been observed abusing vulnerabilities or bypassing mechanisms within the
AmsiScanBuffer API to evade detection and execute their malicious payloads.2

Fileless Infostealers

Fileless infostealers, on the other hand, are more sophisticated and stealthier because they do
not rely on traditional files to infect or execute on the system. Instead, fileless malware operates
in-memory or leverages legitimate system tools to carry out its activities. This makes fileless
infostealers harder to detect, as they leave minimal traces on disk and can avoid traditional
antivirus detection.

Common characteristics of fileless infostealers:

• In-memory execution: downloads and executes code directly in memory. These types of
infostealers execute directly in system memory, without writing malicious files to the
disk. This allows them to evade file-based detection systems.

• Evasion techniques: utilizes reflective DLL injection or similar techniques to execute
malicious functions directly in memory, bypassing the need to write files to disk.
Additionally, it randomizes execution patterns and intervals to evade detection by
behavior-based security systems.

2 AMSI Bypass Methods
https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/

7

CLEAR

• Legitimate tools exploited: fileless infostealers often leverage legitimate tools like
PowerShell, Windows Management Instrumentation (WMI), and the Windows Registry
to execute commands or exfiltrate data.

• No local persistence: since fileless malware operates entirely in memory, it doesn’t
require a persistent file on the disk. This means it can evade detection by file-based
security mechanisms. To achieve persistence, some advanced fileless malware employ
network-based redundancy mechanisms. These mechanisms enable the malware to
maintain its presence on the compromised system by leveraging external resources,
ensuring it can reinfect the system even if its memory-based components are cleared.

• Highly stealthy: The lack of files means these infostealers leave fewer traces for
traditional endpoint detection tools to spot. They may also use encryption or
obfuscation techniques to avoid detection.

Common attack vectors leverage by fileless:

• Living off the Land (LOTL): in this scenario, attackers leverage pre-existents tools and
applications (e.g., PowerShell, WMI, regsvr32), CLI and runtime to carry out their
attacks, making them harder to detect since the tools are often seen as legitimate by
security systems. For example, attackers use PowerShell scripts to download and
execute malicious code in memory. These scripts can be used to steal data, including
credentials and financial information.

• Exploitation of Vulnerabilities: attackers may exploit software vulnerabilities to execute
shellcode or malicious scripts directly in memory without touching the disk.

• Macro-based attacks: while traditional macro-based malware writes files to the disk,
some fileless malware uses macros to execute code directly in memory, such as
PowerShell or VBScript commands.

Examples of well-known Fileless: a review of existing research identifies several prominent
examples of fileless infostealers observed in recent years. These include Raccoon, RedLine
Stealer, Mars Stealer, BlackGuard, and Jester Stealer (e.g., Cybereason, 20233).

Advanced Fileless Malware: A Stealthy Threat that Extends Dwell Times in Modern
Computing Systems

In recent years, a notable trend has emerged in the evolution of fileless malware,
characterized by increased sophistication, leading to prolonged dwell times within modern
computing systems.

In this section, we will examine two prominent examples of these advanced threats:

Trend 1 - BIOS\UEFI Fileless Malware

BIOS\UEFI fileless malware represents a sophisticated and elusive class of cyber threats
targeting the fundamental firmware that underpins modern computing systems. Unlike

3 Fileless Malware 101: Understanding Non-Malware Attacks
https://www.cybereason.com/blog/fileless-malware

8

CLEAR

conventional malware that relies on files stored within the operating system, BIOS\UEFI
fileless malware resides within the system's firmware, rendering it highly persistent and
difficult to detect. Attribution studies have indicated that this technique is frequently
employed by APTs, with a significant proportion linked to nation-state actors.

Key characteristics of BIOS\UEFI fileless malware:

1. Firmware Persistence: Basic Input/Output System (BIOS) or Unified Extensible Firmware

Interface (UEFI) fileless malware achieves unparalleled persistence by embedding itself
within the BIOS or UEFI firmware. This strategic placement ensures its survival even after
significant system alterations, such as operating system reinstallation or hard drive
replacement. By exploiting infrequently scrutinized areas during routine security audits,
the malware evades detection and maintains prolonged control over the system. This
level of persistence demands specialized tools and expertise for effective eradication.

2. Stealthy Operation: a defining characteristic of BIOS\UEFI fileless malware is its capacity
to operate without generating discernible artifacts on the system's disk. This fileless
nature renders it virtually invisible to conventional antivirus solutions and Endpoint
Detection and Response (EDR) tools. Moreover, since it operates below the operating
system level, most OS-based monitoring systems are incapable of identifying its presence.
This high degree of stealth enables attackers to conduct their operations without
triggering immediate alarms.

3. Direct Hardware Control: by residing within the firmware, BIOS\UEFI fileless malware
gains direct access and control over the system's hardware. This capability allows it to
circumvent software-based security mechanisms and establish a more elevated level of
control. For instance, it can manipulate the boot process to gain dominance over the
operating system from the initial system power-on. This direct hardware control also
empowers attackers to execute malicious actions with minimal interference from
traditional security measures.

4. Exploitation Techniques: BIOS\UEFI fileless malware frequently exploits vulnerabilities
within BIOS or UEFI firmware, targeting systems with outdated or unpatched firmware.
Attackers may replace legitimate firmware with a maliciously crafted version, effectively
embedding their code at the firmware level. These exploitation techniques underscore
the critical importance of maintaining up-to-date firmware and implementing robust
security measures to safeguard this crucial layer of the computing stack.

5. Modular Payloads: a notable characteristic of BIOS\UEFI fileless malware is its utilization
of modular payloads. These payloads can be downloaded or executed directly within
memory, enabling fileless execution that evades detection by disk-based monitoring
systems. This modularity also empowers attackers to deliver specific malware or tools
tailored to compromise the operating system or connected networks, thereby expanding
their control and reach.

6. Resilience Against Standard Mitigation Strategies: The firmware-level presence of
BIOS\UEFI fileless malware makes it exceptionally resilient against conventional
mitigation strategies. It can withstand system resets, power cycling, and other basic
remediation efforts. Furthermore, it often exhibits resistance to traditional forensic
techniques, necessitating a complete reflash of the firmware with a verified clean version
for effective removal. This resilience presents significant challenges for incident response
teams and emphasizes the need for advanced detection and recovery capabilities.

9

CLEAR

Trend 2 - Fileless Malware in Containers

Fileless malware poses a growing concern within containerized environments. The ephemeral
nature of containers, coupled with limited availability of comprehensive monitoring and
security tools, significantly exacerbates the challenges associated with detecting and
containing fileless attacks.4

Prevalent Infostealer Variants
From the early days of cyber-crime dark-net forums and specifically the dawn of info-stealers,

the tactics and operation mechanisms have changed quite a bit. As mentioned previously,

initially the info-stealing operations targeted online banking services and popular social media

sites, although it is still being used for those purposes today, cyber-criminals are increasingly

targeting crypto-currency wallets and credentials to sensitive systems. Those might be later

used as an initial access for the attacker itself or as a product to be sold by an IAB (Initial Access

Broker) on dark-net forums.

Most info-stealers today are sold on dark-net forums in the form of MaaS (Malware-as-a-

Service), meaning the tool is sold as a commodity on a per-month basis (usually the price range

is in the hundreds of USD) which allows the "customers" to have access to the tool and easily

manage their information heist operations. Many of those malwares are not necessarily

exclusively sold as info-stealers, rather they are a part of a toolkit or a malware family together

with botnets, downloaders or generally other trojans.

Those malwares are advertised and operate as any other legitimate service, where they offer

different purchasing options, "customer support", they work on new functionalities to compete

with other info-stealers sold in the underground markets and generally they put a high premium

on reputation to attract as many cyber-criminals as they can as their "customers".

Lumma Stealer

Lumma Stealer targets Windows systems, has typical information-stealing capabilities, and

gathers browser information, including credentials, cookies, autofill data, and browser extension

data such as cryptocurrency wallets. Additionally, Lumma Stealer collects files from the user’s

desktop that have a .txt extension and extracts data from programs such as AnyDesk, FileZilla,

KeePass, and Telegram.

Written in the C++ programming language—was first identified in September 2022. Threat

actors have used logs obtained from successful Lumma Stealer infections to gain initial access

and ultimately deploy Cloak ransomware.

4 How Fileless Attacks Work and How to Detect and Prevent Them
https://www.aquasec.com/cloud-native-academy/application-security/fileless-attacks/

10

CLEAR

RedLine Stealer

An information stealer that was first observed in February 2020 and is written in the .NET

programming language—targets Windows systems and is sold on multiple Russian-language

eCrime forums. RedLine Stealer collects data from Chromium-, Mozilla-, and Edge-based web

browsers as well as from cryptocurrency wallets, file transfer protocol (FTP) clients, and instant

messaging clients.

The malware additionally exfiltrates system information, hardware specifications, and details on

the type of VPN software and gaming software running on the victim machines.

Rhadamanthys

Rhadamanthys was first advertised on a Russian-language forum in September 2022. The

information stealer targets Windows systems and collects information from password

managers, cryptocurrency wallets, browser session data, browser credentials, messenger

platforms, note applications, FTP clients, and mail clients.

Rhadamanthys uses the open-source Quake III Arena virtual machine (Q3VM) to obfuscate parts

of its code and hinder technical analysis. The stealer executes in memory to avoid detection and

can bypass Windows Antimalware Scan Interface (AMSI)’s local script-execution capabilities.

Vidar Stealer

An information stealer first observed in November 2018—targets Windows systems and collects

system information, browser credential data, cryptocurrency wallet information, credit card

details, as well as credentials and les from Outlook, Thunderbird, Telegram, Authy, Pidgin,

FileZilla, and WinSCP applications.

The information stealer can also download additional malware; for example, in February 2024

campaigns, Vidar Stealer downloaded the Amadey malware suite, Xworm, and HijackLoader, the

latter of which contained XMRig and delivered the BadTrip clipjacker. In June 2024, Vidar Stealer

distributed the DarkGate remote access tool (RAT).

Raccoon Stealer

A popular information stealer sold in underground forums since April 2019—is written in the

C++ programming language and targets Windows systems. The Raccoon Stealer developer

operates the information stealer as a Malware-as-a-Service (MaaS) in which customers rent

access to a hosted botnet interface. From this interface, customers can acquire Raccoon

executable copies for distribution, configure instructions on the infected machines, and manage

the data uploaded to the C2 domain.

11

CLEAR

Raccoon Stealer harvests web browser data, including credentials, cookies and credit cards,

messaging applications, mail clients, cryptocurrency platforms, gaming platforms, and system

information such as system language and operating system version.

Following March 2022 law enforcement activity that halted operations, the Raccoon Stealer

developers launched version 2 in June 2022 and later updated the malware with new string

obfuscation, likely to evade detection.

Amadey Stealer

Amadey Stealer is written in the Delphi programming language—targets Windows systems and

was first observed in December 2019 being distributed by Amadey Loader.

The information stealer collects victim credentials from instant messaging software, Chromium-

based browsers, cryptocurrency wallets, files stored in the user's Desktop folder, Telegram,

FileZilla, and email. Amadey Stealer is provided for free when an actor rents Amadey Loader for

$600 USD per month.

Meduza

Meduza Stealer is written in C++ and communicates with its configured command-and-control

(C2) server using a TCP connection. It gathers data from 19 password manager apps, 76 crypto

wallets, 95 web browsers, Discord, Steam, and system metadata, harvests miner-related

Windows Registry entries as well as a list of installed games, indicating a broader financial

motive.

In early June 2023, an actor known as Meduza began advertising a native Windows information

stealer dubbed Meduza Stealer on multiple Russian eCrime forums, offering between $199 USD

per month to $1,199 USD for a lifetime subscription. After purchasing Meduza Stealer, actors

are invited to a private telegram channel MEDUZA CORP Premium, where the developer

provides the latest updated versions of the stealer and other information.

AMOS

AMOS is an information stealer targeting macOS victims, on a Russian-language forum in March

2023. AMOS was initially written in Golang and later, Swift, but was reimplemented in C++ in

January 2024. The information stealer targets the following:

• Web browsers such as Chrome and Firefox

• Desktop- and browser-based cryptocurrency wallets such as Binance and Exodus

• Victim login credentials

• Passwords stored in the macOS keychain

• Files located in the user's Desktop and Documents folders

12

CLEAR

Mystic

Mystic is an info-stealer that began being advertising by an actor (named MysticStealer) for sale

across several Russian-language eCrime forums and a dedicated Telegram channel.

The seller claims MysticStealer is written in C and has a panel coded in Python. MysticStealer

purportedly functions entirely in memory, and the seller claimed the stealer is polymorphic and

it uses string obfuscation, hash-based import resolution, and runtime calculation of constants to

evade detection, the seller also claims it is capable of bypassing Microsoft's antimalware service,

SmartScreen.

Mystic steals credentials from nearly 40 web browsers and more than 70 browser extensions.

The malware also targets cryptocurrency wallets, Steam, and Telegram. Mystic implements a

custom binary protocol that is encrypted with RC4.

StealC

StealC is an information stealer written in the C programming language—targets Windows

systems and was first advertised on an underground forum in January 2023; technical analysis

identified several techniques overlaps between StealC and Raccoon Stealer, including RC4-based

string obfuscation, dynamic API resolution, C2 communication using a token, and use of

configuration files to identify targeted applications. The malware collects the following system

information:

• Operating system version

• Installed messaging software (such as Discord and Telegram)

• Steam data

• Mail client data

• Mozilla- and Chromium-based browser data, including cookies, browsing history, auto fill,

credit cards, credentials, and cryptocurrency extensions

Stealc also has a customizable file grabber, allowing the operator to target any selected file

types. The stealer can take screenshots, exfiltrate files stored on the system, and download and

execute second-stage payloads.

13

CLEAR

Part 2: Common Hunting

Approaches

TLP:CLEAR

14

CLEAR

Common Hunting Approaches
The approaches will be accompanied by search queries, using Splunk’s SPL5 combined with

Zeek6 and Sysmon7, as well as SIGMA8 rules; but the logic can be applied in any tool of your

choosing. We will also provide resources for where to find YARA9 signatures. We recommend

updating your Sysmon software regularly as new features are added all the time. For initial

configuration we recommend one of the configs provided here:

github.com/olafhartong/sysmon-modular. By default windows and Sysmon logging are very

limited, we recommend following this guide: github.com/Yamato-

Security/EnableWindowsLogSettings.

Sysmon Events
Noteworthy Sysmon events for Malware detection and system monitoring :

Event ID Description

1 Process creation

3 Network connection

11 FileCreate

12 RegistryEvent (Object create and delete)

13 RegistryEvent (Value Set)

15 FileCreateStreamHash

22 DNSEvent

Identifying Domain Generation Algorithm (DGA) and DNS Fast Flux Operations
Cybercriminals use Domain Generation Algorithms (DGA) and DNS Fast Flux as sophisticated

techniques to enhance the persistence, redundancy, and resilience of their malware operations,

particularly in the context of Command-and-Control (C2) communication. These methods help

ensure that malware can continue to operate and communicate with its infrastructure, even

when defenders take countermeasures such as blocking known domains or IP addresses.

• A Domain Generation Algorithm (DGA) 1011is a sophisticated technique commonly

employed by malware, particularly botnets and Infostealers, to generate a large number

of domain names that can be used to facilitate communication between infected

5 splunk.com
6 zeek.org
7 learn.microsoft.com/en-us/sysinternals/downloads/sysmon
8 github.com/SigmaHQ/sigma
9 virustotal.github.io/yara
10 DNS Security Analytics
https://docs.paloaltonetworks.com/pan-os/10-0/pan-os-admin/threat-prevention/dns-security/dns-
security-analytics
11 wikipedia.org/wiki/Domain_generation_algorithm

15

CLEAR

systems and C2 servers. The primary purpose of a DGA is to ensure resilience in the face

of domain blacklisting, making it more difficult for defenders to disrupt malware

operations. By dynamically generating domains that change periodically, DGAs enable

attackers to maintain control over compromised machines, even as individual domains

are discovered and blocked.

• DNS Fast Flux is a technique used to obfuscate the location of C2 servers by rapidly

changing the IP addresses associated with a given domain name. The attacker uses a

large pool of IP addresses and rotates them frequently (sometimes within minutes or

seconds), making it difficult to track or block malicious traffic.12

• A Dual DNS Flux attack represents a more sophisticated variation of DNS Flux,

characterized by the frequent rotation of both the authoritative DNS server and its

associated records (e.g., A or NS records).13

A simple approach that can potentially detect usage of DGA is by calculating the Shannon

entropy16 on a domain name. In essence it calculates how “random” a string is. The higher the

resulted number, the more likely it is a malicious domain. The formula is quite simple to

implement:

Where x is the letter, and p(x) is the frequency of x in the domain name.

The following traffic, captured over the course of a few minutes, has been attributed to a single

Infostealer utilizing a Domain Generation Algorithm (DGA).:

 As observed, the number of IP addresses and domains is substantial, with the domain names

appearing as arbitrary sequences of letters.

12 cloudflare.com/learning/dns/dns-fast-flux
13 Fast Flux 101: How Cybercriminals Improve the Resilience of Their Infrastructure to Evade Detection
and Law Enforcement Takedowns
https://unit42.paloaltonetworks.com/fast-flux-101/
16 splunk.com/en_us/blog/tips-and-tricks/when-entropy-meets-shannon.html

16

CLEAR

The following query analyzes numerous requests to non-existent domains, potentially indicating

the utilization of a DGA:

Splunk –

Sigma –

The following query detects DNS Fast Flux attacks, such as domains associated with numerous IP

addresses within a short time frame:

Usage of Legitimate Libraries
Commonly utilized by web browsers, these libraries can be exploited by attackers to gain read

access to sensitive information stored within databases associated with widely used software,

such as browsers, FTP clients, and mail clients. For typical users, there is no legitimate reason to

download these libraries. Identifying such activity is relatively straightforward, as it often

involves verifying the filenames being downloaded, which attackers rarely rename. The

following is an example of a search query to detect such instances:

| tstats values(uri) as uri values(host) as host values(id.resp_h) as

dest_ip values(status_code) as status_code where index=main

sourcetype=HTTP

(uri="*msvcp140.dll"

OR uri="*vcruntime140.dll"

OR uri="*mozglue.dll"

OR uri="*freebl3.dll"

OR uri="*softokn3.dll"

OR uri="*nss3.dll"

| tstats c(query) as cc dc(query) as dcc values(query) as query where

index="main" sourcetype="*dns*" query!="*in-addr*" query!="*.*.*.*"

query!="*arpa*" query="*.*.*" query!="www*" query!="*.local"

query!="*.main" query!="*.corp" query!="*.com" rcode_name=NXDOMAIN

id.orig_h IN (10*,192.168*,172*) by id.orig_h _time span=8h

| where dcc>=200

| eval query=mvfilter(match(query,"^([a-zA-Z0-9]+)\.([a-zA-Z0-

9]+)\.([a-zA-Z0-9]+)$"))

| where mvcount(query)>=1000

| fields - dcc cc

| tstats dc(answers{}) as num_ips where index="main"

sourcetype="*dns*" answers{}=* AA=true rejected=false (qtype_name=AAAA

OR qtype_name=NS) by query _time span=1h

| where num_ips>=100 and !isnull(query)

17

CLEAR

OR uri="*sqlite3.dll")

by id.orig_h _time span=10m | rename id.orig_h as source_ip

The following is a traffic capture from a machine, illustrating that all the aforementioned

libraries are being downloaded from a malicious IP address.

Further investigation revealed that the specific URI observed is associated with the Raccoon
17Stealer malware.

Collecting Network data
Attackers often obtain information about their victims by leveraging public web services and

data repositions to retrieve the public IP address or, in some cases, approximate geolocation.

This information can assist in gathering additional details about the compromised organization.

For instance, accessing a site like "icanhazip.com" yields the following:

The following is an example of a simple query designed to detect the use of common web

services. Note that the occurrence of false positives will depend on your specific environment,

so adjustments and configurations may be necessary:

17 [Part 2] Typical Steps of a Raccoon Stealer v2 Infection
https://darktrace.com/blog/the-resurgence-of-the-raccoon-steps-of-a-raccoon-stealer-v2-infection-part-2

18

CLEAR

| tstats values(id.resp_h) as dest_ip values(query) as query

count(query) as count values(server_name) as host where index=main

sourcetype=DNS

 query IN ("*wtfismyip.com", "*checkip.*", "*ipecho.net",

 "*ipinfo.io",

 "*api.ipify.org", "*icanhazip.com",

"*ip.anysrc.com","*api.ip.sb", "ident.me",

 "www.myexternalip.com",

 "*zen.spamhaus.org", "*cbl.abuseat.org",

"*b.barracudacentral.org",

 "*dnsbl-1.uceprotect.net",

 "*spam.dnsbl.sorbs.net", "*iplogger.org*", "*ip-api.com*",

"*geoip.*")

 by id.orig_h_time span=4h | rename id.orig_h as source_ip

Data exfiltration:
To exfiltrate stolen data, attackers must transmit it out of the compromised environment, which

can be achieved through various outward network channels. The present study will examine a

selection of widely employed techniques:

• Email: a straightforward method involves sending data via email. If SMTP logs are

accessible, examining recipient addresses and email contents can often reveal

suspicious activity.

• Telegram bots: attackers have also been observed using Telegram bots for

communication. For example, in this case, a Telegram bot (notably named "bot") is used

to transmit stolen email addresses and passwords, as shown in the accompanying

example.

Such behavior can be detected by monitoring network traffic for connections to

api.telegram.org, which is commonly used for Telegram bot communications.

• Living Off Trusted Sites (LOTS): is a cyberattack technique where attackers leverage the

credibility and reputation of legitimate, trusted websites (e.g. public cloud services,

hosting providers) to carry out malicious activities. This approach exploits the fact that

these sites are generally not subject to strict content monitoring or restrictions.

o Gaming platforms and channels:

▪ Another similar method involves the use of Steam bots. In this

example, a Steam user is observed interacting with a malicious IP

address, as illustrated in the accompanying image:

19

CLEAR

▪ Discord can also be used as a C2 channel. If your organization does not

utilize Discord but still permits access, detecting connections to

Discord domains can serve as an initial indicator. Further investigation

into logs is required to distinguish between false positives and

malicious activity. Particularly suspicious are connections to

cdn.discord.com, Discord's content delivery network domain, as this

often indicates file transfers.

o File-uploading and sharing services:

▪ Another method used by attackers involves file-uploading web and

sharing services, such as pastebin.com. By examining the contents

uploaded or the hashes of the files, it is possible to determine whether

the activity is legitimate or potentially malicious.

▪ File uploads via the FTP protocol are also a potential exfiltration

method. To narrow down the search results, filtering for specific file

types, such as .txt or image files, can help identify relevant activity and

reduce noise.

Although the article doesn't provide specific examples, the use of cloud services like S3 is
common for data leakage.

The following query consolidates all the aforementioned common methods—such as

connections to file-uploading services, Telegram bots, Steam bots, Discord C2 channels, and

public IP services—into a single query that checks for activity across these vectors within the

same timeframe, based on the previous query:

20

CLEAR

| tstats values(query) as query count(query) as count values(command)

as command values(server_name) as server_name values(id.resp_h) as

id.resp_h values(arg) as arg values(service) as service

values(mailfrom) as mailfrom values(rcptto) as rcptto values(from) as

from where index=main

 query IN ("*wtfismyip.com", "*checkip.*", "*ipecho.net",

 "*ipinfo.io",

 "*api.ipify.org", "*icanhazip.com",

"*ip.anysrc.com","*api.ip.sb", "ident.me",

 "www.myexternalip.com",

 "*zen.spamhaus.org", "*cbl.abuseat.org",

"*b.barracudacentral.org",

 "*dnsbl-1.uceprotect.net",

 "*spam.dnsbl.sorbs.net", "*iplogger.org*", "*ip-api.com*",

"*geoip.*") OR (index=main sourcetype="*ftp*" command="stor"

(arg="*.txt" OR arg="*.png" OR arg="*.jpg")) reply_code="2*") OR

(index=main sourcetype="*ssl*" (server_name="api.telegram.org" OR

server_name="*steamcommunity*" OR server_name="*pastebin*") OR

(index=main sourcetype="*conn*" service="*smtp*") OR (index=main

sourcetype=SMTP)

 by id.orig_h _time span=4h

| where count<=6 and !isnull(query) and !isnull(service) and

((!isnull(command) and match(arg,".*\.png.*") and

match(arg,".*\.txt.*")) or !isnull(server_name))

| rename arg as ftp_file id.orig_h as source_ip id.resp_h as dest_ip

server_name as host from as contents

| table source_ip dest_ip host query ftp_file mailfrom rcptto

contents _time

Configure the specifics as needed. Below is an example of traffic captured, where a machine

contacted a public IP web service and also made connections to the Telegram API and Pastebin

within a 3-minute window. This pattern could serve as a valuable lead for an investigation into

potentially malicious activity:

Suspicious User Agents
Many infostealers utilize scripts, such as PowerShell scripts or Curl requests, to automatically

send stolen data at fixed intervals. Without special configuration, the default user agent

associated with the tool will be used, making detection possible by simply searching for those

user agents in network traffic. False positives can be minimized by refining the search. In fact,

the detection of the infostealer using a DGA, as previously mentioned, originated from this lead.

By searching for PowerShell user agents and further filtering results for contents containing a

GUID, we were able to identify this specific infostealer on additional machines. Below are the

observed user agents:

21

CLEAR

The Uris requested by the infected machines (GUID for each unique machine):

Another result we encountered was an online service for capturing screenshots. However, upon

investigation, it was determined to be a legitimate service used by Zoom, and not associated

with any malicious activity:

To identify network traffic associated with the online screen capture service, the following query

can be employed:

22

CLEAR

| tstats values(host) as host values(id.resp_h) as dest_ip

values(status_code) as status_code values(method) as method

values(post_body) as post_body values(client_header_values{}) as

client_header_values max(_time) as last_seen where index=main

(user_agent="*powershell*" OR user_agent="*curl*") by id.orig_h uri

| convert ctime(last_seen) AS last_seen TIMEFORMAT="%Y-%m-%d %H:%M"

| regex uri="([0-9A-Fa-f]{8}-[0-9A-Fa-f]{4}-[0-9A-Fa-f]{4}-[0-9A-Fa-

f]{4}-[0-9A-Fa-f]{12})"

| append

 [| tstats values(uri) as uri values(host) as host

values(id.resp_h) as dest_ip values(status_code) as status_code

values(method) as method values(client_header_values{}) as

client_header_values max(_time) as last_seen where index=main

(user_agent="*powershell*" OR user_agent="*curl*") by id.orig_h

post_body

 | convert ctime(last_seen) AS last_seen TIMEFORMAT="%Y-%m-%d

%H:%M"

 | regex post_body="([0-9A-Fa-f]{8}-[0-9A-Fa-f]{4}-[0-9A-Fa-f]{4}-

[0-9A-Fa-f]{4}-[0-9A-Fa-f]{12})"]

| append

 [| tstats values(uri) as uri values(host) as host

values(id.resp_h) as dest_ip values(status_code) as status_code

values(method) as method values(post_body) as post_body max(_time) as

last_seen where index=main (user_agent="*powershell*" OR

user_agent="*curl*") by id.orig_h client_header_values{}

 | rename client_header_values{} as client_header_values

 | convert ctime(last_seen) AS last_seen TIMEFORMAT="%Y-%m-%d

%H:%M"

 | regex client_header_values="([0-9A-Fa-f]{8}-[0-9A-Fa-f]{4}-[0-

9A-Fa-f]{4}-[0-9A-Fa-f]{4}-[0-9A-Fa-f]{12})"]

| stats values(*) as * by id.orig_h

| rename id.orig_h as source_ip

| table source_ip dest_ip host user_agent method uri post_body

client_header_values last_seen

Beacons
Beacons are a common mechanism used by malware to maintain communication between the

compromised system and an attacker’s C2 infrastructure. A beacon typically refers to a small,

periodic network request sent from an infected machine to a remote server, signaling that the

system is still under control. These periodic "calls" allow the attacker to track the system's status

and issue further commands.

Building upon the previous discussion regarding the transmission and retrieval of data at fixed

intervals, this behavior is commonly referred to as "beaconing." In this process, requests are

sent to the attacker's server at regular intervals, wherein the malware inquires whether the

server has any commands to issue. This cycle continues at these set intervals, with the interval

potentially being slightly randomized to evade detection, until a command is received. In the

case of infostealers, which primarily focus on data collection, the malware typically bypasses the

request step and directly transmits the gathered data without awaiting a response.

23

CLEAR

For instance, the following is traffic captured that is associated with the Amadey infostealer19.

This traffic exhibits the typical beaconing behavior, where the malware periodically

communicates with its C2 server, transmitting stolen data without requesting further

commands.

As demonstrated in the captured traffic, the communication occurs at frequent intervals,

typically every few minutes. The transmitted data includes the computer name along with

images, indicative of the types of information exfiltrated by the Amadey infostealer:

19 Understanding Amadey Info Stealer & N-Day Vulnerabilities
https://darktrace.com/blog/amadey-info-stealer-exploiting-n-day-vulnerabilities

24

CLEAR

This page on the Splunk website outlines 21a method for detecting such beaconing behavior. The

approach includes techniques for monitoring and analyzing network traffic patterns, identifying

periodic communication to external servers, and correlating these patterns with known

malicious activity. By using Splunk's capabilities, it becomes easier to detect anomalies, such as

frequent outbound connections and data exfiltration attempts, that may indicate the presence

of malware like the Amadey infostealer.

C2 Abuse of Protocols
In the previous point, we discussed various ways in which an infostealer communicates

with the attacker, such as through the FTP protocol, APIs, and file hosting sites. While

these methods are legitimate in nature, they are exploited by malicious actors for

nefarious purposes. In contrast, here we will examine an alternative approach, where an

attacker abuses a protocol that was never intended for large-scale data transfer. This

method highlights how protocols designed for different functions can be repurposed to

facilitate malicious activity, often making detection more challenging.

• Our first example of protocol abuse is the DNS protocol. Two immediate

forms of abuse that come to mind are the DNS query itself and the TXT

record. Both can be exploited in a similar manner—by embedding small

chunks of data within the query request or the TXT record, which can then be

reconstructed by the attacker at the destination. The following are DNS

queries and their corresponding responses captured on a DNS server,

demonstrating this method of data exfiltration.

21 Signs of beaconing activity
https://lantern.splunk.com/Security/UCE/Guided_Insights/Threat_hunting/Monitoring_a_network_for_D
NS_exfiltration/Signs_of_beaconing_activity

25

CLEAR

Note that the TXT record in this case is base64 encoded. This encoding method is

often used to obfuscate the data, making it less obvious and harder to detect

during normal network traffic analysis. The base64 encoding allows the small

chunks of data to be transferred within the DNS protocol without immediately

raising suspicion:

A PowerShell script containing commands for gathering system information and

sending it to a malicious domain is present. The TXT records can be decoded, and by

filtering the decoded content based on specific strings of interest, it is possible to

extract relevant information, such as system details or indicators of compromise,

from the captured DNS traffic. This technique allows attackers to discreetly exfiltrate

data by abusing the DNS protocol.

Also possible is the use of built-in DNS tunneling detection capabilities within Splunk.

This feature enables the identification of unusual DNS traffic patterns, such as

unusually long domain names, frequent requests to suspicious domains, or excessive

TXT record usage. By configuring Splunk to monitor and alert on these behaviors, it

becomes easier to detect potential DNS tunneling activities that may be used for

data exfiltration or C&C communication:

| tstats min(_time) as mn max(_time) as mx sum(bytes) as sum_bytes

where index=main sourcetype="*generic*dns*"

[| inputlookup suspicious_tlds_list.csv

| search metadata_severity IN (Critical, High) NOT

metadata_popularity IN (High, Medium)

| rename url_domain as domain

26

CLEAR

| table domain] NOT

[| inputlookup majestic_million.csv

| table Domain

| rename Domain as domain]

by domain dns_client

| rename dns_client as id.orig_h

| convert ctime(mn) AS first_seen TIMEFORMAT="%Y-%m-%d %H:%M"

| convert ctime(mx) AS last_seen TIMEFORMAT="%Y-%m-%d %H:%M"

| fields - mn mx

| eval src_ip='id.orig_h'

| table domain id.orig_h sum_bytes first_seen last_seen src_ip

In this context, we also apply filtering to exclude likely legitimate domains by

referencing a curated list (https://github.com/kyle-w-brown/majestic_million).

Additionally, we filter traffic based on potentially suspicious top-level domains

(TLDs) using the following resource: https://github.com/mthcht/awesome-

lists/blob/main/Lists/TLDs/suspicious_tlds_list_2023.csv.

For further information on DNS tunneling, refer to the following link:

sansorg.egnyte.com/dl/r4ouqZy5dp..

• The second example involves the ICMP protocol, where each ICMP message

can carry a small data payload. The method of abuse is somewhat analogous

to DNS tunneling. In this case, the attacker might exploit ICMP by generating

a substantial volume of ICMP traffic between two specific machines, or by

creating prolonged "connections" characterized by continuous ICMP traffic

within a given timeframe. Detection typically involves monitoring for an

unusually high volume of ICMP packets or extended, uninterrupted ICMP

sessions, which may indicate the use of ICMP for covert communication or

data exfiltration.

27

CLEAR

| tstats values(duration) as duration values(orig_bytes) as

src_bytes values(resp_bytes) as dest_bytes

values(id.resp_h_name.vals{}) as host where earliest=-1d index=main

sourcetype="*conn*" proto=icmp duration>=2000 orig_bytes>=100000

 (id.resp_h!="172.*" AND id.resp_h!="10.*" AND

id.resp_h!="192.168.*")

 (local_orig="true" OR id.orig_h="172.*" OR id.orig_h="10.*" OR

id.orig_h="192.168.*")

 id.resp_h!=8.8.*

 by id.orig_h id.resp_h _time span=3h

| convert ctime(_time) AS time TIMEFORMAT="%Y-%m-%d %H:%M"

| stats values(*) as * c(id.resp_h) as cc max(src_bytes) as

src_bytes max(dest_bytes) as dest_bytes by id.orig_h

| where cc=1 and abs(src_bytes-dest_bytes)>=2000

| rename id.orig_h as src_ip id.resp_h as dest_ip

| table src_ip dest_ip host time duration src_bytes dest_bytes

• Another protocol to consider is IRC (Internet Relay Chat). Although IRC is

considered outdated and may not be present in many modern environments,

its usage can be a red flag, as any communication over IRC in such settings is

cause for concern. While malware utilizing IRC is relatively rare, it has been

observed in botnet operations. The following search query, derived from the

CTU-13 dataset23, is designed to detect communication between a botnet IRC

controller and multiple infected devices over the IRC protocol. This query

helps identify suspicious IRC traffic indicative of potential botnet activity:

| tstats values(id.resp_h) as dest_ip values(fuid) as fuid

values(command) as command values(value) as value values(addl) as

addl values(nick) as nick values(user) as user where index=main

(sourcetype=IRC) OR (sourcetype="*conn*" service=IRC duration<=4

orig_bytes<=1000 resp_bytes<=1000) by id.orig_h _time span=6h

| where mvcount(dest_ip)>=10

| rename id.orig_h as src_ip

| convert ctime(_time) AS time TIMEFORMAT="%Y-%m-%d %H:%M"

Attack Vector
Infostealer malware typically gains access to a machine through various means, with

one of the most common methods being malicious links embedded in emails. However,

other techniques include malvertising, typosquatting, lookalike URLs, IDN homograph,

social engineering, or the use of malware disguised as legitimate software. Fortunately,

23 The CTU-13 Dataset. A Labeled Dataset with Botnet, Normal and Background traffic.
https://www.stratosphereips.org/datasets-ctu13

28

CLEAR

third-party vendors provide machine learning tools designed to detect such incidents,

leveraging advanced algorithms to identify patterns indicative of malicious activity.

These tools enhance the ability to recognize and block malicious attempts before they

compromise the system.

| tstats values(sub) as host values(id.resp_p) as dest_port

values(note) as note where index=main (sourcetype="*notice*"

(note="CorelightML::DomainTyposquattingSuspected" OR

note="CorelightML::SocialEngineeringDomainSuspected") id.resp_p!=53)

by id.orig_h id.resp_h _time

| rename id.orig_h as src_ip id.resp_h as dest_ip

For each suspected domain, we examine whether a subsequent connection has been

established with that domain, which could justify further investigation. This process

helps to identify domains that may require additional scrutiny. However, it is important

to note that this approach may yield results that reflect legitimate typos made by users

or generate false positives, requiring careful analysis to distinguish between genuine

threats and benign activity:

We also recommend integrating your Threat Intelligence (TI) feeds with these queries. For

instance, you can search for DNS requests to low-reputation IPs or domains, such as those

hosting malicious tools.

index=main sourcetype=*dns*

| lookup bad_ips ip_address AS dest_ip OUTPUT ip_address AS bad_ip ```

change the fields for domains ```

| where isnull(bad_ip) = false

| stats count by query, dest_ip, _time

| sort by _time

Alternatively, you can search for DNS queries targeting known top-level domains (TLDs)

commonly associated with phishing activity.

index="main" sourcetype="*dns*"

 [| inputlookup fishing_tlds_list.csv

 | where metadata_phishing_domain_score>50

 | rename dest_nt_domain as query

 | table query]

 by id.orig_h

29

CLEAR

Use the following link for an updated list of TLDs commonly associated with phishing campaigns:

https://github.com/mthcht/awesome-lists/tree/main/Lists/TLDs

Usage of Archives
Infostealers often leverage archive formats such as 7z or WinRAR to facilitate the

exfiltration of stolen data. These formats are commonly used because they allow for the

efficient compression and packaging of large amounts of information, making it easier

for attackers to transmit sensitive data in a smaller, more covert manner. By using these

archive formats, infostealers can bundle a range of file types—such as documents,

images, and system files—into a single, encrypted archive, enhancing the chances of

bypassing security measures such as email filters or intrusion detection systems. The use

of password protection or encryption further obscures the content, making it more

difficult to detect or analyze the exfiltrated data during transmission. Additionally, the

compressed nature of these archives allows for faster transfer, which is particularly

beneficial when transmitting large volumes of stolen data. The abuse of these

commonly used file formats makes detecting malicious activity more challenging, as

they are legitimate tools often employed in everyday computing tasks.

The following query is designed to detect the creation of a uniquely named archive file,

which could indicate an attempt by an infostealer to package and exfiltrate data. This

query focuses on identifying archive formats, such as 7z or WinRAR, with distinctive

names that may suggest malicious activity. Monitoring for unusual or uniquely named

archives helps to identify potential data exfiltration attempts by malware:

The following query is designed to detect the use of the 7z command-line utility, which

is commonly abused by infostealers for creating archives that may contain stolen data:

index="main" file_name IN ("*.zip","*.tar","*.rar","*.7z")

| streamstats c(file_name) as cc | where cc=1

title: Archive download

id: 5966606e-e4d3-4a6b-b852-c6345f061325

status: experimental

description: Detects any download of archive files.

logsource:

 product: windows

 service: sysmon

detection:

 selection:

 file_name|contains|all:

 - '.zip'

 - '.7z'

 - '.rar'

 - '.tar'

 condition: selection

30

CLEAR

index="main" EventCode=1 CommandLine="*7z.exe a *"

title: 7zip command line archive creation

id: 7be2491f-9d60-4da9-8f6a-a39f7461769f

status: experimental

description: Detects creation of a 7zip archive via command line.

logsource:

 product: windows

 service: sysmon

detection:

 selection:

 CommandLine|contains|all:

 - '7z.exe a '

 condition: selection

.txt Files
Another exfiltration technique used by infostealers is the simple transfer of text files,

often containing stolen information. Monitoring the creation of such text files can serve

as a useful indicator, as the creation of text files with specific, unusual names or within

uncommon directories is relatively rare in typical system operations. Detecting these

files can help identify suspicious activities that may be associated with data exfiltration.

index="main" EventCode=11 TargetFilename="*.txt"

TargetFilename!="*gytpol*"

| streamstats c(TargetFilename) as cc by Computer

| where cc=1

title: .txt file creation

id: 88baefc2-f37e-4e4a-a713-c790309a68bb

status: experimental

description: Detects creation of .txt files.

logsource:

 product: windows

 service: sysmon

detection:

 selection:

 TargetFilename|contains|all:

 - '.txt'

 filter:

 TargetFilename|contains|all:

 - '.gytpol'

 condition: selection and not filter

C2 Known Tools

A prevalent exfiltration technique involves the use of known remote connection tools,

which attackers often leverage to send stolen information back to their C2 server.

Among these tools, FTP software and RClone are commonly used, as they allow for the

31

CLEAR

transfer of files to remote locations. Monitoring for the usage of these tools,26 as well as

other remote connection utilities, can provide valuable insight into potential data

exfiltration attempts. The list of tools used for this purpose is extensive, so it is crucial to

customize the detection strategy by adding or removing tools based on the specific

environment and threat landscape of your organization:

index="main" (CommandLine="*ftprequest*") OR (CommandLine IN (

"*pcloud*", "*--config*", "*--progress*", "*--no-check-certificate*",

"*--ignore-existing*", "*--auto-confirm*", "*--transfers*", "*--

multi-thread-streams*")) OR ((EventCode=15

TargetFilename!="*:Zone.Identifier" TargetFilename="*filezilla*") OR

(process_name=msiexec.exe file_name="*filezilla*"))

title: RClone or FTP usage

id: d73cdba6-9a96-4539-ba3b-81fdf41d427a

status: experimental

description: Detects usage of RClone or FTP.

logsource:

 product: windows

 service: sysmon

detection:

 selection1:

 CommandLine|contains|all:

 - 'ftprequest'

 - 'pcloud'

 - '--config'

 - '--progress'

 - '--no-check-certificate'

 - '--ignore-existing'

 - '--auto-confirm'

 - '--transfers'

 - '--multi-thread-streams'

 filter:

 TargetFilename|contains|all:

 - ':Zone.Identifier'

 selection2:

 EventCode: 15

 TargetFilename: *filezilla*

 selection3:

 process_name: msiexec.exe

 file_name: *filezilla*

 condition: selection1 or (not filter and selection2) or

selection3

26 Ransomware-Tool-Matrix
https://github.com/BushidoUK/Ransomware-Tool-Matrix/blob/main/Tools/Exfiltration.mds

32

CLEAR

Common Malicious TLDs
Data exfiltration can often be accomplished by attackers sending stolen information through

HTTP POST requests (including WebSocket) to external servers. This technique involves

embedding the stolen data within the body of the request and transmitting it to a remote server

controlled by the attacker. Monitoring for these HTTP POST requests, especially when combined

with filtering for suspicious or uncommon top-level domains (TLDs) known to be associated with

malware, can help detect such exfiltration attempts:

| tstats sum(request_body_len) as sum_request_body_len

sum(response_body_len) as sum_response_body_len values(extracted_host)

as extracted_host values(id.resp_p) as id.resp_p values(uri) as uri

values(post_body) as post_body values(user_agent) as user_agent

values(id.resp_h) as id.resp_h where index="main" method=post

status_code=200

[| inputlookup suspicious_tlds_list.csv

| search metadata_severity IN (Critical, High) NOT metadata_popularity

IN (High, Medium)

| rename url_domain as extracted_host

| table extracted_host] NOT

[| inputlookup majestic_million.csv

| table Domain

| rename Domain as extracted_host]

by id.orig_h

| rex field=extracted_host ".*\.(?<tld>.*)"

| eval g=""

| foreach mode=multivalue tld

[eval g=g." *.".<<ITEM>>]

| makemv g

| rename g as tld | table id.orig_h extracted_host tld uri post_body

user_agent id.resp_p sum_request_body_len sum_response_body_len | eval

src_ip='id.orig_h', dest_ip='id.resp_h'

Adaptive Misuse Detection System (AMIDES)
“Adaptive Misuse Detection System (AMIDES) extends conventional rule matching of SIEM

systems by machine learning components that aim to detect attacks evading existing SIEM rules

as well as otherwise undetected attack variants. It learns from SIEM rules and historical benign

events and can thus estimate which SIEM rule was tried to be evaded.28”

It is highly recommended that organizations implement behavioral detection approaches (e.g.

AMIDES implementation) in tandem with traditional rule-based strategies. While rules are

relatively easy to deploy, they are often inadequate for covering the full spectrum of tactics and

techniques used by attackers, particularly when their behavior is similar but not identical.

Variations in attack methods, such as obfuscation, reordering of arguments, use of different

commands that achieve similar outcomes, or other subtle changes, make it challenging for rule-

based detection systems to identify all possible attack vectors:

28 Adaptive Misuse Detection System (AMIDES)
https://github.com/fkie-cad/amides

33

CLEAR

AMIDES aims to address the limitations of traditional rule-based approaches by employing an

unsupervised machine learning technique. The core idea is to develop a model that learns from

real-world data, comparing it against previously determined benign activity and existing rule

signatures. This model then classifies new events as either false positives or potentially

malicious based on their similarity to matched rule signatures and historical benign behaviour.

Unlike rule-based detection, which can struggle with novel attack methods or obfuscations,

AMIDES leverages machine learning to detect anomalous behaviours that may deviate from

established patterns. By using an unsupervised approach, AMIDES is capable of identifying

previously unseen attack techniques that do not directly match predefined signatures, thereby

enhancing the detection of emerging threats. This method combines the strengths of both

behavioural analysis and signature-based detection, offering a more adaptable and

comprehensive security solution..

The image above illustrates the process by which AMIDES processes an incoming alert. This

approach is particularly significant as it allows for the detection of malicious activity that might

otherwise evade traditional SIEM systems. By incorporating machine learning, AMIDES improves

detection accuracy, even in cases where attackers employ evasion tactics that bypass typical

rule-based detection methods. Moreover, this method significantly reduces the time and

resources needed for detection, benefiting both security analysts and automated systems.

We strongly recommend adopting this approach within your organization. By doing so, you can

enhance your ability to detect sophisticated threats more efficiently and effectively, reducing

the risk of undetected malicious activity and minimizing the operational burden on your security

teams..

34

CLEAR

YARA
We recommend consulting the following resources for high-quality YARA rules that can be

implemented to enhance your organization's malware detection capabilities:

• https://yaraify.abuse.ch/yarahub/

• https://github.com/malpedia/signator-rules

• https://github.com/InQuest/awesome-yara

• https://github.com/VirusTotal/yara

• https://github.com/ThreatPatcher/yara-rules

• https://github.com/olcf/yara

• https://bazaar.abuse.ch/

• https://github.com/TheHive-Project/YARA

In the contemporary threat landscape, organizations are confronted with a rapidly

evolving array of cyber threats that necessitate robust threat detection and response

capabilities. To effectively mitigate these risks, leveraging YARA rules from reputable

Cyber Threat Intelligence (CTI) providers presents a significant advantage in achieving a

proactive defense posture.

CTI providers consistently monitor the threat landscape, identifying emerging malware

families, variants, and attack techniques. This ongoing research enables them to develop

and maintain an extensive library of YARA rules specifically crafted to detect distinct

malicious patterns and indicators of compromise (IOCs). By integrating these rules into

their security infrastructure, organizations gain a powerful tool for proactive threat

detection, empowering them to identify and respond to threats at early stages.

Moreover, YARA rules sourced from CTI providers greatly enhance an organization’s

threat-hunting capabilities. Security analysts can actively use these rules to search for

malicious activity across their networks, helping to identify and neutralize threats before

they escalate into more severe incidents. In the event of a security breach, these rules

are invaluable in swiftly identifying the scope and impact of the attack, thereby

accelerating incident response efforts and minimizing downtime.

Additionally, by leveraging the expertise and resources of established CTI providers,

organizations gain access to high-quality YARA rules developed by seasoned security

researchers and analysts. This collaboration reduces the need for internal rule

development and the often-tedious process of testing and refining numerous rules,

freeing up security teams to focus on more critical tasks, such as improving overall

security posture and managing complex threats.

35

CLEAR

SIGMA Rules
Sigma rules are a standardized and open-source format designed to create and share threat

detection rules across various Security Information and Event Management (SIEM) systems and

other security tools. These rules provide a consistent and interoperable way to define patterns

of malicious activity, helping organizations detect and respond to potential threats in a unified

manner. The Sigma framework allows security teams to create detection rules using a common

language, independent of the underlying SIEM system or security platform. This enables rules to

be easily shared and adapted across different environments, enhancing collaboration and

accelerating the deployment of effective threat detection capabilities. Sigma rules consist of a

YAML-based format that defines specific conditions, event patterns, and fields to monitor within

log data. This flexible structure ensures that rules can be applied to various log types, including

network traffic, system logs, and application logs, making it a versatile tool for threat detection.

We recommend checking the following resources for SIGMA rules related to Infostealers:

• https://github.com/elastic/protections-artifacts/tree/main/yara

• https://github.com/magicsword-io/LOLRMM

• https://github.com/SigmaHQ/sigma

• https://valhalla.nextron-systems.com/

36

CLEAR

References
1. https://thedfirreport.com/2024/04/01/from-onenote-to-ransomnote-an-ice-cold-

intrusion/

2. https://blog.sekoia.io/stealc-a-copycat-of-vidar-and-raccoon-infostealers-gaining-in-

popularity-part-1/

3. https://www.cybereason.com/blog/research/threat-analysis-report-snake-infostealer-

malware

4. https://www.splunk.com/en_us/blog/security/under-the-hood-of-snakekeylogger-

analyzing-its-loader-and-its-tactics-techniques-and-procedures.html

5. https://www.quorumcyber.com/wp-content/uploads/2023/01/Malware-Analysis-

Vidar.pdf

6. https://gridinsoft.com/spyware/vidar

7. https://community.emergingthreats.net/t/vidar-stealer-picks-up-steam/271

8. https://www.infostealers.com/

9. https://research.splunk.com/stories/

10. https://www.cisa.gov/sites/default/files/2023-04/MAR-10435108.r1.v1.WHITE_.pdf

11. https://unit42.paloaltonetworks.com/fast-flux-101/

12. https://docs.paloaltonetworks.com/pan-os/10-0/pan-os-admin/threat-prevention/dns-

security/dns-security-analytics

13. https://www.crowdstrike.com/en-us/cybersecurity-101/malware/fileless-malware/

14. https://blog.morphisec.com/fileless-malware-attacks

*** End of Document ***

