
Lo
ui

s
Va

rr
ia

no
 |

 L
H

5
co

m
pr

es
si

on
 s

et
tin

gs
 |

 1
5

Ja
n.

 2
02

5

1

Reading

LEGEND-specific:
● GitHub: Encoded waveforms load slower than compressed

waveforms #77

● Confluence: Investigation of LH5 File Structure and I/O

Other
● HDF5 format

● HDF5 datasets

● hdf5plugin Python module

● LZF filter distributed with h5py

https://github.com/legend-exp/legend-pydataobj/issues/77
https://github.com/legend-exp/legend-pydataobj/issues/77
https://legend-exp.atlassian.net/wiki/spaces/LEGEND/pages/991953524/Investigation+of+LH5+File+Structure+and+I+O
https://www.alcf.anl.gov/sites/default/files/2022-07/HDF5-Foundation-parallel.pdf
https://docs.h5py.org/en/stable/high/dataset.html#filter-pipeline
http://www.silx.org/doc/hdf5plugin/latest/index.html
https://github.com/h5py/h5py/tree/master/lzf

Lo
ui

s
Va

rr
ia

no
 |

 L
H

5
co

m
pr

es
si

on
 s

et
tin

gs
 |

 1
5

Ja
n.

 2
02

5

2

Basics
● LH5 uses two custom encoders for raw Ge waveforms

○ ZigZag for waveform_presummed
○ radware-sigcompress for waveform_windowed

● These achieve good compression ratio but are very slow

● HDF5 / h5py are distributed with standard filters (GZIP, SZIP, LZF, LZ4, etc.) -
compare these to our custom ones to see if we can improve

● Drop-in replacement - no action by users needed, just change a compression
argument

● Two metrics: compression ratio and decompression speed

● Mostly don’t care about compression speed since raw is generated infrequently

Lo
ui

s
Va

rr
ia

no
 |

 L
H

5
co

m
pr

es
si

on
 s

et
tin

gs
 |

 1
5

Ja
n.

 2
02

5

3

Advanced
● LH5 stores each variable/column as a separate HDF5 dataset

● Compression filters require chunking of data - an entire chunk is compressed
together

○ → Want chunks of reasonable size (not too small → bad compression ratio, not too large
→ slow decompression)

● Datasets (columns) are chunked independently (i.e. not across datasets) and
each row is one event → most of our data is so small that we can’t use a big
enough chunk size for good performance.

● Custom encoded waveforms are a single chunk → probably too large for good
performance

● For compression tests with standard filters, just going to let chunking handle
itself and not specify → HDF5 will pick something reasonable and we don’t really
care.

Lo
ui

s
Va

rr
ia

no
 |

 L
H

5
co

m
pr

es
si

on
 s

et
tin

gs
 |

 1
5

Ja
n.

 2
02

5

4

Compression tests
● Tests performed on perlmutter /global/cfs/

● input file = "l200-p08-r000-phy-20231004T160832Z-tier_raw.lh5" (input file size:
1.6 GB)

compression filter compression write time (s) overall disk file size (GB)

custom encoders (default) - 1.6

no compression 109 9.4

GZIP 193 1.9

SZIP 149 1.9

LZF 120 2.4

LZ4 111 2.6

50% larger

20% larger

Lo
ui

s
Va

rr
ia

no
 |

 L
H

5
co

m
pr

es
si

on
 s

et
tin

gs
 |

 1
5

Ja
n.

 2
02

5

5

Decompression tests
● Tests performed on perlmutter /dvs_ro/- read all Ge channels in the file

1. waveform_presummed
2. waveform_windowed
3. everything else (default is GZIP compressed, I believe, but these times might be influenced by other stuff? - grain of salt)

● Each test performed 5 times in a row, compare only last ~3 attempts to remove influence of file caching (average by eye)

compression filter waveform_presummed
decompression time (s)

waveform_windowed
decompression time (s)

everything else
decompression time (s)

custom encoders (default) 23.7 17 4.5

no compression ~1.3 1.1 4.3

GZIP 5.3 7.8 3.6

SZIP 9.3 10.6 3.5

LZF 3.2 4.6 3.5

LZ4 3.0 3.8 3.5

7x faster 3x faster

tested on 2 different days and got similar results (within ~10%)

Lo
ui

s
Va

rr
ia

no
 |

 L
H

5
co

m
pr

es
si

on
 s

et
tin

gs
 |

 1
5

Ja
n.

 2
02

5

6

Takeaways

● recommend switching to LZF - file size is 50% larger but speed
increase is nearly an order of magnitude
○ speed increase measured reading all Ge channels, all waveforms
○ suspect that reading random waveforms will be relatively even faster due to

chunking layout - not tested - (and the way LH5.store.read works, we don’t
access random rows but read the whole thing in and then slice it).

● recommend LZF over GZIP due to 2x better decompression speed -
we can handle the larger file size for raw

● could also consider LZ4, ~10% worse compression ratio for ~10%
speed increase

