Reading

LEGEND-specific:

- GitHub: Encoded waveforms load slower than compressed waveforms #77
- Confluence: Investigation of LH5 File Structure and I/O

Other

- HDF5 format
- HDF5 datasets
- hdf5plugin Python module
- LZF filter distributed with h5py

- LH5 uses two custom encoders for **raw** Ge waveforms
 - ZigZag for waveform_presummed
 - radware-sigcompress for waveform_windowed
- These achieve good compression ratio but are very slow
- HDF5 / h5py are distributed with standard filters (GZIP, SZIP, LZF, LZ4, etc.) compare these to our custom ones to see if we can improve
- Drop-in replacement no action by users needed, just change a compression argument
- Two metrics: compression ratio and decompression speed
- Mostly don't care about compression speed since **raw** is generated infrequently

3

Advanced

- LH5 stores each variable/column as a separate HDF5 dataset
- Compression filters require chunking of data an entire chunk is compressed together
 - \circ → Want chunks of reasonable size (not too small → bad compression ratio, not too large → slow decompression)
- Datasets (columns) are chunked independently (i.e. not across datasets) and each row is one event → most of our data is so small that we can't use a big enough chunk size for good performance.
- Custom encoded waveforms are a single chunk → probably too large for good performance
- For compression tests with standard filters, just going to let chunking handle itself and not specify → HDF5 will pick something reasonable and we don't really care.

Compression tests

- Tests performed on perlmutter /global/cfs/
- input file = "I200-p08-r000-phy-20231004T160832Z-tier_raw.lh5" (input file size: 1.6 GB)

compression filter	compression write time (s)	overall disk file size (GB)	
custom encoders (default)	-	1.6	
no compression	109	9.4	_
GZIP	193	1.9	20% larger
SZIP	149	1.9	_
LZF	120	2.4	50% larger
LZ4	111	2.6	_

Decompression tests

- Tests performed on perlmutter /dvs_ro/- read all Ge channels in the file
 - 1. waveform_presummed
 - 2. waveform_windowed
 - 3. everything else (default is GZIP compressed, I believe, but these times might be influenced by other stuff? grain of salt)
- Each test performed 5 times in a row, compare only last ~3 attempts to remove influence of file caching (average by eye)

compression filter	waveform_presummed decompression time (s)	waveform_windowed decompression time (s)	everything else decompression time (s)
custom encoders (default)	23.7	17	4.5
no compression	~1.3	1.1	4.3
GZIP	5.3	7.8	3.6
SZIP	9.3	10.6	3.5
LZF	3.2 7x faster	4.6 3x faster	3.5
LZ4	3.0	3.8	3.5

tested on 2 different days and got similar results (within ~10%)

- **recommend switching to LZF** file size is 50% larger but speed increase is nearly an order of magnitude
 - speed increase measured reading all Ge channels, all waveforms
 - suspect that reading random waveforms will be relatively even faster due to chunking layout - not tested - (and the way LH5.store.read works, we don't access random rows but read the whole thing in and then slice it).
- recommend LZF over GZIP due to 2x better decompression speed we can handle the larger file size for raw
- could also consider LZ4, ~10% worse compression ratio for ~10% speed increase