
Feedback and error collection form

Machine:
MacBook Pro
MacOS Sequoia 15.2
Chip: Apple M2
Memory 16GB

Duration to go through the tutorial: 21hrs (I read everything and did all the exercises)

Feedback:

Overall, great! A very valuable resource.

Here are some errors I ran into:

In Setup https://carpentries-incubator.github.io/deep-learning-
intro/index.html#software-setup

I would add a statement that the jupyter lab needs to be run in the activated venv?

“Machine learning: algorithms that learn … without human programming”: I think I
would rephrase that.

In https://carpentries-incubator.github.io/deep-learning-intro/1-
introduction.html#neural-networks

Introduction of the neuron: It might be useful to actually show the sketch of a neuron
here – not everyone might know what a neuron looks like.

In:
https://carpentries-incubator.github.io/deep-learning-intro/1-introduction.html#what-
makes-deep-learning-deep-learning

Neural networks aren’t… would stick with the standard: are not

In https://carpentries-incubator.github.io/deep-learning-intro/1-
introduction.html#compute-the-mean-squared-error

Compute the Mean Suqared Error: the hat is over the bracket instead of the y, in the MSE
equation

In:
https://carpentries-incubator.github.io/deep-learning-intro/2-keras.html#split-data-
into-training-and-test-set – should render into a list, but does not. Instead is diplpayed
the following:

This	function	takes	a	number	of	parameters	which	are	extensively	explained	in	the	
scikit-learn	documentation	:	-	The	;irst	two	parameters	are	the	dataset	(in	our	
case	features)	and	the	corresponding	targets	(i.e.	de;ined	as	target).	-	Next	is	the	
named	parameter	test_size	this	is	the	fraction	of	the	dataset	that	is	used	for	testing,	in	
this	case	0.2	means	20%	of	the	data	will	be	used	for	testing.	-	random_state	controls	the	
shuf;ling	of	the	dataset,	setting	this	value	will	reproduce	the	same	results	(assuming	you	
give	the	same	integer)	every	time	it	is	called.	-	shuffle	which	can	be	
either	True	or	False,	it	controls	whether	the	order	of	the	rows	of	the	dataset	is	shuf;led	
before	splitting.	It	defaults	to	True.	-	stratify	is	a	more	advanced	parameter	that	
controls	how	the	split	is	done.	By	setting	it	to	target	the	train	and	test	sets	the	function	
will	return	will	have	roughly	the	same	proportions	(with	regards	to	the	number	of	
penguins	of	a	certain	species)	as	the	dataset.	

In:
https://carpentries-incubator.github.io/deep-learning-intro/2-keras.html#build-a-
neural-network-from-scratch

.. “which is surprisingly straightforward” would replace this in line with the Carpentries
Ethos not to use language that such as “easy” etc.

The plot I get does not match what is the instructions

In:
https://carpentries-incubator.github.io/deep-learning-intro/2-keras.html#share-model:
It seems the .keras extension is missing in the model.save('my_first_model') command.

Similarly, the .keras extension needs to be added in the load command:
pretrained_model = keras.models.load_model('my_first_model.keras')

I could not run the second example. I get a ssl certification error:

But I was able to download it directly from Zenodo.

In:

https://carpentries-incubator.github.io/deep-learning-intro/3-monitor-the-
model.html#measure-performance;

The below gives me a warning:

from	sklearn.metrics	import	mean_squared_error

rmse_baseline	=	mean_squared_error(y_test,	y_baseline_prediction,	squared=False)

print('Baseline:',	rmse_baseline)

print('Neural	network:	',	test_metrics['root_mean_squared_error'])

https://carpentries-incubator.github.io/deep-learning-intro/3-monitor-the-
model.html#save-model

save model command requires .keras extension again.
model.save('my_tuned_weather_model.keras')

https://carpentries-incubator.github.io/deep-learning-intro/4-advanced-layer-
types.html#identify-inputs-and-outputs

train_labels.shape
gives ((878,)
 for me, not (878, 1)

https://carpentries-incubator.github.io/deep-learning-intro/4-advanced-layer-
types.html#share-model
model.save('cnn_model.keras')

In
https://carpentries-incubator.github.io/deep-learning-intro/5-transfer-
learning.html#choose-a-pre-trained-model-or-start-building-architecture-from-scratch

upscale layer
method = tf.image.ResizeMethod.BILINEAR
upscale = keras.layers.Lambda(
 lambda x: tf.image.resize_with_pad(x, 160, 160, method=method))(inputs)

ð Tf was not defined – assuming tensor flow?
ð import tensorflow as tf is missing

base_model = keras.applications.DenseNet121(include_top=False,

 pooling='max',
 weights='imagenet',
 input_tensor=upscale,
 input_shape=(160,160,3),
)
Gives me an error:

Fixed it by downloading the weights manually and importing them from disk and also
importing DenseNet121:

from tensorflow.keras.applications import DenseNet121

base_model = keras.applications.DenseNet121(include_top=False,
 pooling='max',
 weights='densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5',
 input_tensor=upscale,
 input_shape=(160,160,3),
)

