
Kakarot governance 1

Kakarot governance

TL;DR - Recommendation
We recommend creating a single smart contract, ProtocolHandler , governed by
KKRT Labs (called Operator henceforth), the Kakarot Security Council (referred to
as Security Council) and a list of guardians (referred as Guardians) in order to
manage the Smart Contracts Ops & on-chain security needs of Kakarot Core
contracts on Starknet.

That ProtocolHandler contract will have simple methods with access controls to call
the Kakarot core contract and will be controlled by the Operator through a
Timelock from OZ. This approach is the most lean (least code and complexity),
most auditable (reusing existing bricks with separation of concerns) as well as
most pragmatic KKRT Labs starts with having a lot of agency). This
recommendation is detailed in the first proposal.

Context
The Kakarot Core contract is critical and needs to be handled carefully. The owner
of the contract has privileged permissions like upgrading or pausing the protocol.

TL;DR Recommendation
Context
Vision
Current Situation

Kakarot Core only owner functions (currently deployed)
First proposal: Separate Timelock and protocol logic

Governance Management Strategy
Spec

Second proposal: merge Timelock and protocol logic
How the governance of kakarot is going to be managed ?
Spec

Third proposal: doing everything in house for maximum flexibility
Decision
Multisigs

https://github.com/OpenZeppelin/cairo-contracts/blob/main/packages/governance/src/timelock/timelock_controller.cairo

Kakarot governance 2

At this stage of Kakarot, decentralized governance is too early and not relevant.
There will be no DAO for now and KKRT labs will be the entity that will submit
proposals and execute them through a multisig. Decentralization of the
governance should done in at a second time. This document propose solutions in
the meantime to safely handle the governance of the Kakarot contract.

See also
⚔ Security Council multisig and Guardians (assumes first proposal accepted)

Vision
A security council will be here to ensure the security of Kakarot contract and any
proposal submitted. It will also have the power to pause / unpause or push an
emergency upgrade. It will be a multisig and it will be comprised of different
actors (each of them should be a multisig):

Starkware

Starknet Fondation

KKRT labs

Zellic

L2BEAT

Others? Security Council target size 12

Guardians are selected entities that can initiate a soft pause in case of suspicious
activity: each of them SHOULD be a multisig contract.

Starkware

Starknet Fondation

KKRT labs

Current Situation

https://www.notion.so/Security-Council-multisig-and-Guardians-1283e373fba0805ebfcdfad1ce2a5d93?pvs=21
https://www.notion.so/Security-Council-multisig-and-Guardians-1283e373fba0805ebfcdfad1ce2a5d93?pvs=21
https://www.notion.so/Security-Council-multisig-and-Guardians-1283e373fba0805ebfcdfad1ce2a5d93?pvs=21

Kakarot governance 3

Kakarot Core only owner functions (currently
deployed)
ADMIN

upgrade

transfer_ownership

pause

unpause

STORAGE

set_base_fee

set_coinbase

set_prev_randao

set_block_gas_limit

set_account_contract_class_hash

set_uninitialized_account_class_hash

set_authorized_cairo_precompile_caller

set_cairo1_helpers_class_hash

upgrade_account

set_authorized_pre_eip155_tx

set_l1_messaging_contract_address

First proposal: Separate Timelock and
protocol logic
Governance Management Strategy
The owner of the Kakarot Core contract will be an intermediary contract: the
ProtocolHandler .
Proposals will be scheduled and executed by KKRT Labs through a

Kakarot governance 4

TimelockController from Open Zeppelin OZ targeting the ProtocolHandler . The
security council will have the canceller role in the TimelockController of Kakarot in
order to veto any proposal if not deemed secure. Guardians can initiates a soft
pause in the ProtocolHandler in case of suspicious activity.

The TimelockController will have the following roles

PROPOSER Operator

EXECUTOR Operator

CANCELLER SecurityCouncil

NO ADMIN / NO OPEN ROLE

The minimum delay for proposal to be executed will be 7 days

https://github.com/OpenZeppelin/cairo-contracts/blob/main/packages/governance/src/timelock/timelock_controller.cairo

Kakarot governance 5

Kakarot governance 6

Spec
ProtocolHandler (owner of Kakarot):

// Contants

soft_pause_expiration = 12 hours

hard_pause_expiration = 7 days

// Storage

struct Storage {

kakarot_core: ContractAddress

security_council: ContractAddress

operator: ContractAddress

guardians Vec<ContractAddress>

gas_price_admin: ContractAddress

protocol_frozen_until: felt252

authorized_operator_selector: Map<felt252, bool>

}

// Authorized operator selectors are set in construcor

// Admin

* fn emergency_execution(call: Call) SECURITY_COUNCIL

* fn upgrade(new_class_hash: felt252) OPERATOR

* fn transfer_ownership(new_owner: ContractAddress) SECURITY_COU

* fn soft_pause() GUARDIAN

* fn hard_pause() SECURITY_COUNCIL

* fn unpause() SECURITY_COUNCIL or delay passed

// Storage modification

// check if the selector is authorized

* fn execute_call(ref self: ContractState, call: Call) OPERATOR

// Self management

* fn change_operator(new_address_operator: ContractAddress) SECU

* fn change_security_council(new_security_council_address: Contr

Kakarot governance 7

* fn add_guardian(new_guardians_address: ContractAddress) SECURI

* fn remove_guardian(guardian_to_remove_address: ContractAddress

* fn change_gas_price_admin(new_gas_price_admin: ContractAddres)

Second proposal: merge Timelock and
protocol logic
How the governance of kakarot is going to be
managed ?
The owner of the Kakarot Core will be a modified TimelockController from OZ. The
latter will be the owner of the Kakarot Core contract directly.
Proposals will be scheduled and executed through the modified
TimelockController with a delay. The security council multisig will have access to
special functions in the modified TimelockController to defend user interest like
pausing or initiate an emergency upgrade. It will also have the CANCELLER role to
have the possibility to veto any proposal.

The TimelockController will have the following roles

PROPOSER Operator

EXECUTOR Operator

CANCELLER SecurityCouncil

SECURITY_COUNCIL SecurityCouncil

GUARDIAN Guardians

NO ADMIN / NO OPEN ROLE

The minimum delay for proposal to be executed will be 7 days

Kakarot governance 8

Kakarot governance 9

Spec

// Will inherit all functions from the timelock controller from

// It will be customized through implementation of the component

// https://docs.openzeppelin.com/contracts-cairo/0.17.0/componen

// Contants

soft_pause_expiration = 12 hours

hard_pause_expiration = 7 days

// Storage

struct Storage {

min_delay: felt252 = 7 days

kakarot_core: ContractAddress

security_council: ContractAddress

operator: ContractAddress

gas_price_admin: ContractAddress

mapping(ContractAddress => bool) guardians

protocol_frozen_until: felt252

}

// Admin bypassing the delay

* fn emergency_execution(call: Call, predecessor: felt252, salt

* fn transfer_ownership(new_owner: felt252) SECURITY_COUNCIL

* fn soft_pause() GUARDIAN

* fn hard_pause() SECURITY_COUNCIL

* fn unpause() SECURITY_COUNCIL or delay passed

// Custom Timelock functions

* fn cancel(id: felt252) CANCELLER

// !!! Need to check the function to execute is in a whitelist

* fn execute(call: Call, predecessor: felt252, salt: felt252) OP

// Self management

* fn change_operator(new_address_operator: ContractAddress) SECU

Kakarot governance 10

* fn change_security_council(new_security_council_address: Contr

* fn add_guardian(new_guardians_address: ContractAddress) SECURI

* fn remove_guardian(guardian_to_remove_address: ContractAddress

* fn change_gas_price_admin(new_gas_price_admin: ContractAddres)

Third proposal: doing everything in house
for maximum flexibility
Multisigs and intermediary contracts would be done in house to have flexibility on
thresholds to set. More work to write hence more risks. Would not advice for this
proposal at this stage of development.

Decision
Audit scope +
cost

Maintainability /
Complexity

1/ OZ Timelock Custom Protocol
Handler

✅ ✅

2/ OZ Timelock merged with protocol
handler

✅ ❌

3/ Fully custom ❌ ❌

The third propose should be discard for several reason: there is no need to do
everything in house for the current need.
The decision should be between proposal 1 and 2

� Pros: protocol logic and time lock logic are separated. Cons: Ops can be more
difficult.

� Pros: only one contract. Cons: More complexity in code.

Proposal 1 should be preferred.

Multisigs
See Security Council multisig for the implementation discussion

Kakarot governance 11

The security council, the guardians and the Operator have to be mutlsig in order to
avoid any takeover or loss of control of the different contracts. Suggestion is also
that each member of those entity should be multisigs.

