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Bioinformatics and Computational Biosciences 
Branch (BCBB) at NIAID

BCBB offers the following scientific services & resources such as 
software development, collaboration & training, and 

biocomputing resources for the NIAID research community and 
its collaborators:

Biovisualization and 3D Printing
Clinical Genomics 

Data Science and Biostatistics
Imaging

Metagenomics
Non-Human / Microbial Genomics

Structural Biology

More about BCBB:
https://www.niaid.nih.gov/research/bioinformatics-and-computational-biosciences-branch-scientific-services
Looking for bioinformatic and genomics analysis expertise? bioinformatics@niaid.nih.gov 2
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Learning Objectives of Part 1

• understand concepts underlying spatial transcriptomics (STx) methods
• consider important aspects of experimental design depending on biological 

sample and research question and select best suited STx method for your 
experiments

(quick 5 min break)
• understand techniques for processing and analyzing STx data with Seurat and 

potential downstream analysis

Github page for workshop
https://github.com/margaretc-ho/BCBB_STx_workshop_2024

Followup questions and inquiries are welcome!
margaret.ho@nih.gov
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Spatial Transcriptomics Concepts
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Image credit to Bo Xia

bulk RNA-seq single-cell RNA-seq (scRNAseq) spatial transcriptomics (STx)

the original organ

Cell- cell interaction 
networks
Spatial information 
preserved
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Jeon, H., Xie, J., Jeon, Y., Jung, K. J., Gupta, A., Chang, W., & Chung, D. (2023). Statistical power analysis for designing bulk, single-cell, and spatial 
transcriptomics experiments: Review, tutorial, and perspectives. Biomolecules, 13(2), 221. https://doi.org/10.3390/biom13020221
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Why spatial transcriptomics?
• Location, location, location!

• Despite the success of scRNA-seq, 
one needs to liberate viable cells 
from whole tissue without inducing 
stress, cell death, or cell aggregation

• Two major advantages: No need for 
dissociation and preserves the 
spatial context of cells

• Subcellular localization of RNA can 
be very important for function

https://www.flickr.com/photos/zeissmicro/10799673016/in/photostream/
Mouse hippocampal neurons (depth coded projection)
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Imaging vs
Sequencing-based

STx methods

Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R., & 
Haque, A. (2022). An introduction to spatial transcriptomics 
for biomedical research. Genome Medicine, 14(1), 68.

MERFISH Visium

GeoMX

In all methods, tissues are 
stained with other antibodies / 
histology and imaged for overall 
spatial orientation

Tradeoffs include:
• Multiplexing (# of transcripts)
• Resolution
• Throughput
•  Sensitivity
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A tradeoff between cellular resolution and # of transcripts

Cell resolution: https://doi.org/10.1038/s41576-023-00586-w

100uM

10uM

1uM
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Sequencing-based STx

• Can profile whole transcriptome

• Unbiased / Less need for a priori knowledge

• Lower spatial resolution

• Typically lower than cellular resolution depending 
on tissue – can require deconvolution and/or 
mapping with scRNA-seq datasets to analyze

• More accessible (ie. standard NGS system with 
some fluorescence and brightfield imaging to 
capture spot information or use of Visium 
CytAssist machine)

Longo, S. K., Guo, M. G., Ji, A. L., & Khavari, P. A. (2021). Integrating single-cell and spatial 
transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews. Genetics, 22(10), 627–644.

e.g. Visium
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Imaging-based STx

• Based off of single molecule FISH (smFISH)

• Single Cell to Subcellular Resolution via 
localization of single mRNA molecules

• Often relies on cell segmentation with 
immunostaining with membrane markers to 
delineate cell boundaries

• Requires good tissue clearing methods

• A priori knowledge needed to select genes and 
design/use existing probe set

• Typically 500-1000 genes

• Need to consider issue of molecular crowding

At least one paper gets around this with ExM to do ten thousand 
genes and looking at ER subcellular localization of transcripts but it 
has not been implemented in commercial kits -- Xia Fan et al. PNAS 
2019 -- https://www.pnas.org/doi/10.1073/pnas.1912459116

Xenium, MERFISH, seqFISH, etc.

Longo, S. K., Guo, M. G., Ji, A. L., & Khavari, P. A. (2021). Integrating single-cell and spatial 
transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews. Genetics, 22(10), 627–644. 11
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Choosing an STx method 
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Comparison of major commercial STx platforms 

Platform
# of genes 

profiled
Spatial 

Resolution
RNA Capture 

efficiency
Imaging Area Time Required

Imaging-Based

MERSCOPE 500 100 nm
95% for cells

80–85% for tissue
10 mm × 10 mm 28–30 h

10X Xenium 400 50 nm Unavailable 12 mm × 24 mm 2 days

CosMX SMI 1000 50 nm Unavailable 20mm x 15mm 3 days-1 week

Sequencing-
Based

10X Visium HD
Whole 

Transcriptome
2-8um Unavailable (6.5 mm × 6.5 mm)x2 Few hours

GeoMx DSP
Whole 

Transcriptome
50um/ ROI Unavailable 35.3 mm × 14.1 mm Few hours

Stereo-Seq
Whole 

Transcriptome
0.5um 12,661/100um2 10 mm × 10 mm

13.2 cm × 13.2 cm
Few hours

Adapted from Wang, Y., Liu, B., Zhao, G., Lee, Y., Buzdin, A., Mu, X., Zhao, J., Chen, H., & Li, X. (2023). Spatial 
transcriptomics: Technologies, applications and experimental considerations. Genomics, 115(5), 110671. 13



Within a Region of Interest (ROI), Probe with Gene-Specific Barcode Is Released Upon UV Exposure

Each probe is linked with a gene-specific barcode via UV 
cleavable linker. The barcodes are cleaved from the selected 
region of interest, and collected for library prep and 
sequencing. Resolution of sequencing is limited to ROI, 
throughput is low (96 ROIs)

Platform # of genes profiled Spatial Resolution Imaging Area Time Required

GeoMx DSP Whole Transcriptome 50um / ROI 35.3 mm × 14.1 mm Few hours

GeoMx DSP

https://nanostring.com/products/geomx-digital-spatial-profiler/geomx-dsp-overview/

Launched in 2019
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Spot array-based spatial barcoding
10X Visium

https://kb.10xgenomics.com/hc/en-us/categories/360002304851-Visium

1-10 mammalian cells per spot
depending on tissue type

Fresh Frozen Only

4992 total spots per each of 4 capture areas
15k read pairs per spot
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Launched end of 2019

Platform # of genes profiled Spatial Resolution Imaging Area Time Required

10X Visium Whole Transcriptome 100um (6.5 mm × 6.5 mm)X4 Few hours

https://kb.10xgenomics.com/hc/en-us/categories/360002304851-Visium


Wang, Y., Liu, B., Zhao, G., Lee, Y., Buzdin, A., Mu, X., Zhao, J., Chen, H., & Li, X. (2023). Spatial transcriptomics: Technologies, applications and experimental 
considerations. Genomics, 115(5), 110671.

Platform # of genes profiled Spatial Resolution Imaging Area Time Required

10X Visium Whole Transcriptome 100um (6.5 mm × 6.5 mm)X4 Few hours

https://kb.10xgenomics.com/hc/en-us/articles/360035999152-What-are-the-imaging-system-requirements-for-running-Visium-for-fresh-frozen 

→ Standard NGS

Spot array-based spatial barcoding

10X Visium
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Grid array-based spatial barcoding

Platform # of genes profiled Spatial Resolution Imaging Area Time Required

10X Visium HD
Whole Transcriptome

(Probe-Capture)
2-8um (6.5 mm × 6.5 mm)x2 Few hours

10X Visium HD

Two approaches for binning 2x2 µm barcode squares in Visium HD

https://www.10xgenomics.com/blog/your-introduction-to-visium-hd-spatial-biology-in-high-definition
https://www.10xgenomics.com/analysis-guides/segmentation-visium-hd

11.2 million 2 x 2 μm barcoded squares without gaps

Visium HD launched 2024
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FF, Fixed Frozen and FFPE

Probe-Capture with Visium Cyt Assist
before NGS Sequencing

https://www.10xgenomics.com/blog/your-introduction-to-visium-hd-spatial-biology-in-high-definition
https://www.10xgenomics.com/analysis-guides/segmentation-visium-hd


Important: Visium HD relies on probe sets to capture whole transcriptome, but output is still NGS

Currently, whole transcriptome custom probe sets must be 
designed for species other than human and mouse for Visium HD

https://www.10xgenomics.com/blog/simplifying-spatial-transcriptomics-protocols-with-visium-cytassist

18

v1 = 1 probe pair per gene
v2 = 3 probe pairs per gene



https://www.10xgenomics.com/blog/your-introduction-to-visium-hd-spatial-biology-in-high-definition
https://www.10xgenomics.com/analysis-guides/segmentation-visium-hd

Gene expression library is sequenced at a recommended min depth of 
275 million read pairs for Capture Areas covered fully by tissue

Thickness of 3–10 µm sections 
(recommend 5um)

FF, Fixed Frozen and FFPE
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Ligated Probe Insert

Platform # of genes profiled Spatial Resolution Imaging Area Time Required

10X Visium HD
Whole Transcriptome

(Probe-Capture)
2-8um (6.5 mm × 6.5 mm)x2 Few hours

https://www.10xgenomics.com/blog/your-introduction-to-visium-hd-spatial-biology-in-high-definition
https://www.10xgenomics.com/analysis-guides/segmentation-visium-hd


https://vizgen.com/products/

Platform # of genes profiled Spatial Resolution RNA Capture Efficiency Imaging Area Time Required

MERFISH 500 100 nm
95% for cells

80–85% for tissue
10 mm × 10 mm 28–30 h

MERFISH
Multiplex error-robust FISH

FFPE, FF, and fixed frozen tissue

(Simplified cartoon from product manual, method details covered in next slide)

MERFISH 2.0 launched 2024
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Moffitt, J. R., & Zhuang, X. (2016). RNA Imaging with Multiplexed Error-Robust Fluorescence In 
Situ Hybridization (MERFISH). Methods in Enzymology, 572, 1–49.

MERFISH Probe Hybridization and Fluorescence Readout

Each encoding probe contains a targeting sequence which directs 
their binding to specific RNA, as well as two readout sequences

To increase the signal from each copy of the RNA, 50-100 
encoding probes, each with a different target region, are bound to 
the same RNA.

Primary hybridization of encoding probes
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Moffitt, J. R., & Zhuang, X. (2016). RNA Imaging with Multiplexed Error-Robust Fluorescence In 
Situ Hybridization (MERFISH). Methods in Enzymology, 572, 1–49.

MERFISH Probe Hybridization and Fluorescence Readout

16 rounds of hybridization of secondary fluorescent probes

22

To identify the readout sequences 
contained on the encoding probes 
bound to each RNA, 16 rounds of 
hybridization and imaging are 
performed.

Each round uses a unique, 
fluorescently labeled probe whose 
sequence is complementary to the 
readout sequence for that round.



Moffitt, J. R., & Zhuang, X. (2016). RNA Imaging with Multiplexed Error-Robust Fluorescence In 
Situ Hybridization (MERFISH). Methods in Enzymology, 572, 1–49.

MERFISH Probe Hybridization and Fluorescence Readout

Codebook Design Schema

To identify the readout sequences 
contained on the encoding probes 
bound to each RNA, 16 rounds of 
hybridization and imaging are 
performed.

Each round uses a unique, 
fluorescently labeled probe whose 
sequence is complementary to the 
readout sequence for that round.

23

16-bit code



Moffitt, J. R., & Zhuang, X. (2016). RNA Imaging with Multiplexed Error-Robust Fluorescence In 
Situ Hybridization (MERFISH). Methods in Enzymology, 572, 1–49.

MERFISH error robustness

RNA ID16-bit MHD4 codebook allows for error correction

Probes designed with Hamming Distance of 4 to make robust to errors. 
Errors can then also be corrected to “call” the correct probe

Constant Hamming weight is used to ensure probes have same number 
of 1’s and 0’s (since rate of reading 1 as 0 is > than reading 0 as 1)

24



Platform # of genes profiled Spatial Resolution Imaging Area Time Required

10X Xenium 400 50 nm 12 mm × 24 mm 2 days

FFPE: 5um thickness
FF: 10um thickness

Rounds of hybridization of secondary fluorescent probes

Primary probe hybridization + RCA

Xenium launched 2022

25



5 min break
Resume for next part on STx data analysis
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STx Data Analysis
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Seurat 5.0 package
Developers: Rahul Satija lab at NYU

Analysis of spatial datasets (Sequencing-based)
Analysis of spatial datasets (Imaging-based)

Seurat object

+ associated info:
Metadata such as 
images,
Normalized counts,
Dimension reduction 
Embeddings,
Spatial coordinates 
etc.

We will focus on using the Seurat package next session! 28

https://satijalab.org/seurat/articles/seurat5_spatial_vignette.html
https://satijalab.org/seurat/articles/seurat5_spatial_vignette_2


Image-based spatial transcriptomics: cell segmentation

Heumos, L., Schaar, A.C., Lance, C. et al. Nat Rev Genet 
(2023). https://doi.org/10.1038/s41576-023-00586-w

Cell Segmentation is handled by MERSCOPE and Xenium 
software, but other methods can also be run post-hoc

29
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Multimodal Cell Segmentation
Example from Xenium

Source: https://www.10xgenomics.com/library/ac7cd9 (AGBT 2024 Cell Segmentation Poster from 10X Genomics )

Since Xenium’s boundary segmentation model does not require the presence of a 
nucleus, they were able to correctly segment multinucleate and occasionally 
anucleate cells.

Nuclei: DAPI
Boundary/Membrane: anti-ATPase Ab
Interior RNA: anti-18S rRNA Ab
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Array-based spatial transcriptomics: deconvolution

Heumos, L., Schaar, A.C., Lance, C. et al. Nat Rev 
Genet (2023). https://doi.org/10.1038/s41576-023-
00586-w

Top Deconvolution Methods
• Cell2location
• SpatialDWLS (Giotto)
• RCTD (supported in Seurat)
Reference: Li et al. Nat Methods 2022 Benchmarking 
spatial methods for cell type deconvolution 
https://www.nature.com/articles/s41592-022-01480-9 
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Output:
Gene-Cell Matrix
Location Matrix

Sequencing Array-based STx needs deconvolution

Data Pre-Processing 

Imaging-based STx needs cell segmentation

Summary: Assigning Genes to Cells and their spatial coordinates
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Count Data Preprocessing

Gene-Cell Matrix
Location Matrix
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Without normalization, the analysis would be 
dominated by highly expressed genes

1) Log transformation
2) Square root transformation

Generalized linear model:
3) Pearson residual transformation (used by Seurat’s sctransform)
𝑦𝑖,𝑗 = 𝑤𝑗 ∗ 𝑥𝑖,𝑗 𝑤𝑖=1/ 𝜇𝑖where

Instead of transforming each measurement individually, Pearson 
residuals apply a weight 𝑤𝑖 to all measurements of a given gene 
based on observed mean 𝜇𝑖

𝑦𝑖,𝑗 = 𝑓(𝑥𝑖,𝑗)

Count Normalization

Rationale: Gene expression data is often highly overdispersed (greater variance than expected)
Normalization makes samples more directly comparable and reduces high variance seen in highly expressed genes

Many statistical tests and models require homoskedasticity (constant variance)
Variance stabilization reduces the distortion on plots caused by highly variable genes

Log transformation, square root transform vs pearson transform (scTransform) https://www.youtube.com/watch?v=huxkc2GH4lk&ab_channel=FlorianWagner
Rafa Irizarry’s 2024 lecture on Statistical Methods for Single-Cell RNA-Seq Analysis and Spatial Transcriptomics https://bioinformatics.ccr.cancer.gov/btep/classes/rafael-irizarry

scTransform v2 paper https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02584-9
34
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Dimension Reduction

Data reduction is performed by generating a smaller set of predictors that capture a majority of information in the 
original variables (select most highly variable genes). This has the effect of reducing the correlation of different predictors 
to one another.

Normalization is required beforehand so that larger scaled variables don’t dominate the analysis
For most data reduction techniques, the new predictors are functions of the original predictors.
This class of methods is often called signal extraction or feature extraction techniques.

Adapted from Kuhn and Johnson. Applied Predictive Modeling 2013

Rationale: Reducing the dimensions on high dimension data will speed up computation for downstream analysis such 
as clustering and avoid overfitting (reduces dataset noise from random variation)
See: Curse of dimensionality 

Heumos, L., Schaar, A.C., Lance, C. et al. Best practices for single-cell analysis across modalities. Nat Rev Genet (2023). https://doi.org/10.1038/s41576-023-00586-w 35
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PCA is a commonly used dimension/data reduction technique and seeks to find linear combinations of the predictors, 
known as principal components (PCs), which capture the most possible variance.
The first PC is defined as the linear combination of the predictors that captures the most variability of all possible linear  
combinations. Then, subsequent PCs are derived such that these linear combinations capture the most remaining 
variability while also being uncorrelated with all previous PCs. Mathematically, the jth PC can be written as:

Adapted from Kuhn and Johnson. Applied Predictive Modeling 2013

Because the distance between points from performing PCA are 
interpretable, the results can be directly used for clustering

Principal Components Analysis + Clustering

http://mlwiki.org/index.php/SNN_Clustering

Seurat’s FindNeighbors computes nearest neighbors 
graph for a given dataset (k-nearest neighbors, k-NN and 
shared nearest neighbors, SNN) using PCA space
Seurat’s FindClusters performs cluster detection using 
Louvain (default) or other methods such as Leiden

36



Embedding and Visualization

The distance between points from performing PCA are 
interpretable, so they can be used for clustering, whereas those in 
UMAP and t-SNE embedding are not

Embedding is the practice of mapping high dimensional data into a lower dimensional space, while preserving the 
structure and relationships.

While Principal Component Analysis (PCA) assumes the data is linear
Uniform Manifold Approximation and Projection (UMAP) and 
t-Stochastic Neighbor Embedding (t-SNE) do not assume linearity

Following PCA, we can perform embedding and visualization of the clusters

More info:
Statquest PCA https://www.youtube.com/watch?v=FgakZw6K1QQ
Statquest UMAP https://www.youtube.com/watch?v=eN0wFzBA4Sc

Statquest t-SNE https://www.youtube.com/watch?v=NEaUSP4YerM

t-SNE subtleties https://distill.pub/2016/misread-tsne/
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Annotation: Integration with scRNA-seq data

Cable, DM et al. (2022). Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotech, 40(4), 517–526.

Li, B et al. (2022). Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat Methods, 19(6), 662–670.
Li, Y et al. (2021). Benchmarking computational integration methods for spatial transcriptomics data. bioRxiv https://doi.org/10.1101/2021.08.27.457741 39

Irizarry Lab



Spatially Variable Genes

Heumos, L., Schaar, A.C., Lance, C. et al. Best practices for single-cell analysis across modalities. Nat Rev Genet (2023). https://doi.org/10.1038/s41576-023-00586-w

In contrast to highly variable genes (genes that differ significantly between cells), spatially variable genes show 
a distinct spatial pattern
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Different scenarios of spatially variable genes

Walker, B. L., Cang, Z., Ren, H., Bourgain-Chang, E., & Nie, Q. (2022). Deciphering tissue structure and function using spatial transcriptomics. Communications Biology, 5(1), 220.

The simplest approach is to look for 
spatially contiguous regions of cells with 
maximally similar gene expression 
(Fig. 2a). This is analogous to the typical 
clustering analysis in scRNA-seq analysis 
pipelines, but conscious of spatial 
position.

Most currently methods optimize for 
situations like this, but as methods 
develop they may have to deal with 
situations that are more like “salt and 
pepper” or which have subdomain 
architecture or take into account specific 
patterns of cell-cell interactions (CCI)
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Spatial Autocorrelation

From Radil, S. M. (2011). University of Illinois at Urbana-ChampaignMore info: Moran's I: https://www.youtube.com/watch?v=OJU8GNW9grc

One simple way to look at spatial relationships is by measuring spatial autocorrelation (i.e. for each gene) 
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Moran’s I

Intuitive explanation for understanding and deriving Moran's I:

https://www.youtube.com/watch?v=OJU8GNW9grc&ab_channel=ritvikmath

First and second order nearest 
neighbors graphic from here 
Moran’s I definition from here

Wi,j is a weight matrix that can be either contiguity based (first order, second order, etc) or distance-based

Moran’s I is a spatial autocorrelation metric similar to the Pearson correlation coefficient. Range is -1 to 1.
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Methods to identify cell-cell interactions from STx data

Walker, B. L., Cang, Z., Ren, H., Bourgain-Chang, E., & Nie, Q. (2022). Deciphering tissue structure and function using spatial transcriptomics. Communications Biology, 5(1), 220.44



Ongoing challenges in the spatial transcriptomics field

• Experimental technologies still being improve (cost, applicability to all 
kinds of samples such as FF or FFPE, sensitivity, field of view, depth, etc)

• Methods for data analyses still being developed

• Truly “spatially variable” genes that are not just marker genes

• Spatial DE (example: C-SIDE method using covariate matrix)

• Spatial datasets as 3D maps rather than just 2D coordinates

• Spatial image registration across replicates and samples

• Effective integration with other datasets (scRNA-seq, ATAC-seq, 
proteomics)
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Example Applications 1: Spatial Transcriptomics reveals pathogenesis of viral 
myocarditis (reovirus on ileum and heart with Visium and scRNA-seq)

https://doi.org/10.1038/s44161-022-00138-1Mantri et al. Nature Cardiovascular Research 2022 (Vlaminck Lab)

-- Identified gene module score (230 genes) sig upregulated in reovirus infection 
-- Chronology leading to reovirus-induced myocarditis incl. gut infection, then secondary tissue heart infection
-- Identify role for the basal type-I interferon (innate immune response) in endothelial cells lining cardiac vasculature, 
which secrete chemokines to recruit cytotoxic T cells, then undergo cell death
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Example Applications 2: Spatial transcriptomics reveal 
neuron-astrocyte synergy in long term memory 

FR = fear training and recall
NF = no fear control

-- Spatially resolved ensemble of engram neurons and locally associated astrocyte subtype using MERFISH
-- Evidence supporting idea of perineuronal nets to contribute to memory stabilization in the BLA

Sun et al. Nature 2024 (Quake Lab)

https://doi.org/10.1038/s41586-023-07011-647



Example Applications 3:
Long read Spatial VDJ

reveals B and T cell clonal 
dynamics in both lymphoid 

and cancer tissue 

https://doi.org/10.1126/science.adf8486

Engblom et al., Science 2023 (Lundeberg, Frisen labs)

Visium of tonsils or breast cancer
1) Long read / PacBio Spatial VDJ sequencing of 

spatially barcoded libraries of full length IG and TR 
antigen receptor transcripts

2) Short read Spatial VDJ sequencing of TR sequences 
only of CDR3 regions

Hybridization-capture enrichment of TR and IG 
constant regions to enrich for antigen receptor 
transcripts

-- Able to detect B cell clonal dynamics in germinal 
centers of tonsil tissue and somatic hypermutation
-- Visualize B cell clonality in breast cancer tissue
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Spatial Transcriptomics Resources at NIH

• Spatial Biology Interest Group Listserv / Email List
• https://oir.nih.gov/sigs/spatial-biology-interest-group

• Specialized Instrumentation at NIH:
• NCI CCR 

• 10X Xenium https://ostr.ccr.cancer.gov/emerging-technologies/spatial-biology/xenium/
• 10X Visium https://ostr.ccr.cancer.gov/emerging-technologies/spatial-biology/visium/ (FFPE samples can 

be processed with CytAssist instrument)
• SCAF https://ostr.ccr.cancer.gov/resources/provider_details/nci-ccr-single-cell-analysis-facility-scaf
• CosMX and GeoMX at Spatial Imaging Technology Resource (SpITR) https://spitr.ccr.cancer.gov/

• Vizgen said that NIA (Baltimore) and NEI both each have a MERSCOPE instrument
• Xenium and Visium CytAssist are also at NIAMS, NINDS. NIAID VRC also acquiring both this year
• NIAID RTB (Research Technologies Branch): https://rtb.nih.gov/section/STR have Visium and GeoMX DSP

• Software on Biowulf:
• GeoMX NGS Pipeline: https://hpc.nih.gov/apps/geomx_ngs_pipeline.html
• Xenium Ranger: https://hpc.nih.gov/apps/xeniumranger.html
• Space Ranger (for Visium): https://hpc.nih.gov/apps/spaceranger.html

• Looking for bioinformatic and genomics analysis expertise? Contact us at bioinformatics@niaid.nih.gov
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https://oir.nih.gov/sigs/spatial-biology-interest-group
https://ostr.ccr.cancer.gov/emerging-technologies/spatial-biology/xenium/
https://ostr.ccr.cancer.gov/emerging-technologies/spatial-biology/visium/
https://ostr.ccr.cancer.gov/resources/provider_details/nci-ccr-single-cell-analysis-facility-scaf
https://spitr.ccr.cancer.gov/
https://govtribe.com/opportunity/federal-contract-opportunity/maintenance-and-repair-services-for-the-vizgen-merscope-spatial-transcriptomics-instrument-75n95024q00350
https://rtb.nih.gov/section/STR
https://hpc.nih.gov/apps/geomx_ngs_pipeline.html
https://hpc.nih.gov/apps/xeniumranger.html
https://hpc.nih.gov/apps/spaceranger.html
mailto:bioinformatics@niaid.nih.gov


Prepare for Part 2 next week!

Or use these instructions for running R/R Studio Server on Biowulf using tunneling:
https://hpc.nih.gov/apps/rstudio-server.html

Please make sure you install and can run R and either locally or on Biowulf

1) Either download and install Rstudio locally:
https://posit.co/download/rstudio-desktop/

2) Download Quarto Markdown document .qmd (contains R code we’ll run) from Github

https://github.com/margaretc-ho/BCBB_STx_workshop_2024

3) Inside Quarto document in red is code for setup (please run before Part 2 of workshop):
Install packages (Seurat, Seurat-data which includes Visium dataset etc) and check that you can load the libraries
Download Allen cortex scRNA-seq data
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Followup questions and inquiries are welcome!
margaret.ho@nih.gov

https://hpc.nih.gov/apps/rstudio-server.html
https://posit.co/download/rstudio-desktop/
https://github.com/margaretc-ho/BCBB_STx_workshop_2024


Further Reading / Resources
• Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R., & Haque, A. (2022). An introduction to spatial transcriptomics for biomedical 

research. Genome Medicine, 14(1), 68. [REVIEW]

• Longo, S. K., Guo, M. G., Ji, A. L., & Khavari, P. A. (2021). Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue 
dynamics. Nature Reviews. Genetics, 22(10), 627–644.

• Walker, B. L., Cang, Z., Ren, H., Bourgain-Chang, E., & Nie, Q. (2022). Deciphering tissue structure and function using spatial transcriptomics. 
Communications Biology, 5(1), 220.

• Heumos, L., Schaar, A.C., Lance, C. et al. Best practices for single-cell analysis across modalities. Nat Rev Genet (2023)

• Rafa Irizarry 2024 lecture on Statistical Methods for Single-Cell RNA-Seq Analysis and Spatial Transcriptomics 
https://bioinformatics.ccr.cancer.gov/btep/classes/rafael-irizarry

• Li, B et al. (2022). Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell 
type deconvolution. Nat Methods, 19(6), 662–670

• Jeon, H., Xie, J., Jeon, Y., Jung, K. J., Gupta, A., Chang, W., & Chung, D. (2023). Statistical power analysis for designing bulk, single-cell, and 
spatial transcriptomics experiments: Review, tutorial, and perspectives. Biomolecules, 13(2), 221.

• Cable, DM et al. (2022). Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotech, 40(4), 517–526.

• Choudhary, S., & Satija, R. (2022). Comparison and evaluation of statistical error models for scRNA-seq. Genome Biology, 23(1), 27.

• Moffitt, J. R., & Zhuang, X. (2016). RNA Imaging with Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH). Methods in 
Enzymology, 572, 1–49.

• Wang, Y., Liu, B., Zhao, G., Lee, Y., Buzdin, A., Mu, X., Zhao, J., Chen, H., & Li, X. (2023). Spatial transcriptomics: Technologies, applications and 
experimental considerations. Genomics, 115(5), 110671. 51
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Spatial Differential Gene Expression analyses

C-SIDE as part of spacexr Package (Irizarry Lab)
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Spatial Differential Gene Expression analyses

C-SIDE as part of spacexr Package (Irizarry Lab) will perform DE across a covariate (e.g. proximity to pathology or discrete regions)
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