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Bioinformatics and Computational Biosciences
Branch (BCBB) at NIAID

BCBB offers the following scientific services & resources such as
software development, collaboration & training, and
biocomputing resources for the NIAID research community and
its collaborators:

COLLABORATION
& TRAINING

CENTRALIZED

SERVICES & Biovisualization and 3D Printing
RESOURCES o _
Clinical Genomics
Data Science and Biostatistics
Imaging
Metagenomics
Non-Human / Microbial Genomics
Structural Biology

More about BCBB:
https://www.niaid.nih.gov/research/bioinformatics-and-computational-biosciences-branch-scientific-services
Looking for bioinformatic and genomics analysis expertise? bioinformatics@niaid.nih.gov



https://www.niaid.nih.gov/research/bioinformatics-and-computational-biosciences-branch-scientific-services
mailto:bioinformatics@niaid.nih.gov

Learning Objectives of Part 1

* understand concepts underlying spatial transcriptomics (STx) methods

* consider important aspects of experimental design depending on biological
sample and research question and select best suited STx method for your
experiments

(quick 5 min break)

* understand techniques for processing and analyzing STx data with Seurat and
potential downstream analysis

Github page for workshop

Followup questions and inquiries are welcome!
https://github.com/margaretc-ho/BCBB STx workshop 2024

margaret.ho@nih.gov
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Spatial Transcriptomics Concepts
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Cell- cell interaction
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bulk RNA-seq single-cell RNA-seq (scRNAseq) spatial transcriptomics (STx)
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Bulk RNA-Seq
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Jeon, H,, Xie, J.,, Jeon, Y., Jung, K. J., Gupta, A., Chang, W., & Chung, D. (2023). Statistical power analysis for designing bulk, single-cell, and spatial
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transcriptomics experiments: Review, tutorial, and perspectives. Biomolecules, 13(2), 221. https://doi.org/10.3390/biom13020221



https://doi.org/10.3390/biom13020221

Why spatial transcriptomics?

e Location, location, location!

* Despite the success of scRNA-seq,
one needs to liberate viable cells
from whole tissue without inducing
stress, cell death, or cell aggregation

 Two major advantages: No need for
dissociation and preserves the
spatial context of cells

B - Subcellular localization of RNA can
) be very important for function

https://www.flickr.com/photos/zeissmicro/10799673016/in/photostream/
Mouse hippocampal neurons (depth coded projection)



https://www.flickr.com/photos/zeissmicro/10799673016/in/photostream/

Imaging vs
Sequencing-based y Imaging methods
STx methods

Sequencing methods

Visium

2. Image barcode locations

In all methods, tissues are o - T
stained with other antibodies / :
histology and imaged for overall

3. Image fluorophore locations
4. Repeat ntimes to generate 3. Overlay sample on array.
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3. Image fluorophore at each 4. Repeat as necessary to determine
location mRNAs' sequences 3. Release probes from ROI with UV.

Capture via capillary.

Williams, C. G., Lee, H.J., Asatsuma, T., Vento-Tormo, R., &
Haque, A. (2022). An introduction to spatial transcriptomics 3
for biomedical research. Genome Medicine, 14(1), 68.



A tradeoff between cellular resolution and # of transcripts

Imaging
methods
(e.g. MERFISH,
Xenium)

Sequencing-
based

Cellular resolution

Cellular or Subcellular
resolution

Larger than cellular
resolution (array-based
like Visium) or region of
interest (GeoMX or similar)

Cell resolution: https://doi.org/10.1038/s41576-023-00586-w

1uM

Sub-cellular resolution

10uM

Single-cell resolution

100uM

Muilti-cell resolution

# of Transcripts

Detects fewer
transcripts
(panel-based
hundreds of genes)

Detects more
transcripts

(de novo or whole
transcriptome)


https://doi.org/10.1038/s41576-023-00586-w

B Spatial barcoding . .
e.g. Visium

a Experimental approach

Sequencing-based STx T

\

L ol D —>
« Can profile whole transcriptome AL T |

* Unbiased / Less need for a priori knowledge

@

* Lower spatial resolution

)

)
OO0
OXOX)
DO

)
-—

e Typically lower than cellular resolution depending D1 BATGE
. . . 2
on tissue — can require deconvolution and/or D3 CCGGA ..

mapping with scRNA-seq datasets to analyze

b Capture spot transcript mixtures deconvolved by dominant cell type

* More accessible (ie. standard NGS system with
some fluorescence and brightfield imaging to
capture spot information or use of Visium
CytAssist machine)

‘s

Strengths Drawbacks
e Unbiased e Limited to capture spot
e Greater coverage resolution
e Greater field of view e Lower depth (per transcript)

Longo, S. K., Guo, M. G., Ji, A. L., & Khavari, P. A. (2021). Integrating single-cell and spatial * More accessible (typically

transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews. Genetics, 22(10), 627-644. ;e;];i:;ed LoingistanslasdiNts 10




Imaging-based STx

 Based off of single molecule FISH (smFISH)

 Single Cell to Subcellular Resolution via
localization of single mRNA molecules

 Often relies on cell segmentation with
immunostaining with membrane markers to
delineate cell boundaries

 Requires good tissue clearing methods

* A priori knowledge needed to select genes and
design/use existing probe set

* Typically 500-1000 genes

* Need to consider issue of molecular crowding

At least one paper gets around this with ExM to do ten thousand
genes and looking at ER subcellular localization of transcripts but it
has not been implemented in commercial kits -- Xia Fan et al. PNAS
2019 -- https://www.pnas.org/doi/10.1073/pnas.1912459116

Longo, S. K., Guo, M. G., Ji, A. L., & Khavari, P. A. (2021). Integrating single-cell and spatial

transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews. Genetics, 22(10), 627-644.

A High-plex RNA imaging

a Experimental approach Xenium’ MERFISH’ SeqFISH, etc.
mRNA
Stnp
and
rehybrldlze

Barcode key (for n=3)

mRNA1 @0@® Genel
mRNA2 @00 Gene?
mRNA3 @@0 Gene3

Number of unique
barcodes scales to: 3"

=BG N aN

cDNA ' = with
ID sequence

Reverse
transcription

b Localized transcripts coloured by specific gene

Strengths Drawbacks
e Single-cell resolution e Biased (pre-selected gene targets
e Greater depth (per transcript) required)
e Better suited to capture subtype * Lower coverage
change due to spatial influence * Smaller field of view

* More read-out noise 11
* Requires more specialized
equipment



https://www.pnas.org/doi/10.1073/pnas.1912459116

Choosing an STx method



Comparison of major commercial STx platforms

# of genes Spatial RNA Capture . . .
Platform orofiled Resolution efficiency Imaging Area Time Required
95% for cells
MERSCOPE 500 100 nm 80-85% for tissue 10 mm x 10 mm 28-30h
Imaging-Based
10X Xenium 400 50 nm Unavailable 12 mmx 24 mm 2 days
CosMX SMI 1000 50 nm Unavailable 20mm x 15mm 3 days-1 week
.. Whole )
10X Visium HD . 2-8um Unavailable (6.5 mm x 6.5 mm)x2 Few hours
Transcriptome
Whole :
. GeoMx DSP . 50um/ ROI Unavailable 35.3mm x 14.1 mm Few hours
Sequencing- Transcriptome
Based
Whole 5 10 mm x 10 mm
Stereo-Seq Transcriptome 0.5um 12,661/100um 13.2 cm x 13.2 cm Few hours

Adapted from Wang, V., Liu, B., Zhao, G, Lee, Y., Buzdin, A., Mu, X., Zhao, J., Chen, H., & Li, X. (2023). Spatial
transcriptomics: Technologies, applications and experimental considerations. Genomics, 115(5), 110671.
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Platform # of genes profiled Spatial Resolution Imaging Area Time Required

GeoMx DSP Whole Transcriptome 50um / ROI 353 mm x 14.1 mm Few hours

Launched in 2019
GeoMx DSP
Within a Region of Interest (ROI), Probe with Gene-Specific Barcode Is Released Upon UV Exposure

UV FROKGRE/NNG Linver Each probe is linked with a gene-specific barcode via UV
Target Complementary '/ cleavable linker. The barcodes are cleaved from the selected
Sequence Indexing Oligo region of interest, and collected for library prep and
NN . sequencing. Resolution of sequencing is limited to ROI,
Target RNA throughput is low (96 ROIs)
Stain slides with RNAscope™ probes Select Regions of UV-cleave and collect Dispense oligos Construct
and GeoMx® DSP oligo-conjugated Interest (ROI) DSP barcodes off RNA into 96-well plate Library,
RNA detection probes probes in ROI Sequence
AED & Count
RNAscope” DSP Barcoded
Probes ~/

GeO MX 5;3;:?;‘ Profiler RNA probes

DSP Barcoded
RNA Probes

e

DSP
Barcoded
Fluorescent probes

antibodies

@ Repeat for each ROI

Contour

Figure 5 : GeoMx DSP workflow enables the analysis of whole transcriptome data from user-defined regions.

14
https://nanostring.com/products/geomx-digital-spatial-profiler/geomx-dsp-overview/



Platform # of genes profiled Spatial Resolution Imaging Area Time Required

10X Visium Whole Transcriptome 100um (6.5 mm x 6.5 mm)X4 Few hours

10X Visium Launched end of 2019
Spot array-based spatial barcoding

¥Yislum Spatlal Gene Capture Area with Vislum Gene Expresslon
Expresslon Slide =5,000 barcoded spots barcoded spots
Fiducial Frame
oo — Bx Elrrrn
o
'Ll_m‘_l_' . Partial Bead 1 . Palyd TN
1] A RO o
L 1
55 um
Spatial
Barcode
W Cuusters
E5xEEmm ‘&' s “ :2:":

B Cuuster 10

Visium Spatial Gene Expression Library 4992 total spots per each of 4 capture areas

Rend 1:28 insest 15k read pairs per spot
Sample Index Spatial BC+UMI Sample Index
{i5: 10 insert) A (i7- 10 insert)
G D — ] 1-10 mammalian cells per spot
G IS 2 Eaa. I depending on tissue type
= TruSeqg Read 1 Spatial  UMI Poly (dTIVN . TruSeq Read 2
Barcode Read 2:90
S Fresh Frozen Only

15
https://kb.10xgenomics.com/hc/en-us/categories/360002304851-Visium



https://kb.10xgenomics.com/hc/en-us/categories/360002304851-Visium

Platform # of genes profiled Spatial Resolution

Imaging Area Time Required
10X Visium Whole Transcriptome 100um (6.5 mm x 6.5 mm)X4 Few hours
10X Visium
PR Spot array-based spatial barcoding

1 Y 3

Staining / imaging Permeabilization & Transfer to tube
barcoding

4

5

Sample preparation Library

construction

Snap-frozen & OCT-embedded IF or H&E RT reaction, 2nd strand gPCR, cDNA amplification & QC Fragmentation, end repair,
tissue sections on Visium slide synthesis & denaturation A-tailing, SI-PCR,
cleanup & QC

Fresh frozen

[STETaTE] ﬁ

>1h

~2h ~2h W ‘ ~4h

o -> Standard NGS

Visium Spatial Gene Expression Library

Sample Index Spatial BC+UMI Sample Index
(i5: 10 insert) (i7- 10 insert)
P5 TruSeq Read 1 Spatial  UMI Paoly (dTIWM TruSeq Read 2
Barcode Read 2-90
insert

Wang, Y., Liu, B., Zhao, G., Lee, Y., Buzdin, A., Mu, X., Zhao, J., Chen, H., & Li, X. (2023). Spatial transcriptomics: Technologies, applications and experimental
considerations. Genomics, 115(5), 110671.
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https://kb.10xgenomics.com/hc/en-us/articles /36003599915 2-What-are-the-imaging-system-requirements-for-running-Visium-for-fresh-frozen



https://kb.10xgenomics.com/hc/en-us/articles/360035999152-What-are-the-imaging-system-requirements-for-running-Visium-for-fresh-frozen

Platform # of genes profiled Spatial Resolution Imaging Area Time Required

Whole Transcriptome

10X Visium HD 2-8um (6.5 mm x 6.5 mm)x2 Few hours
(Probe-Capture)
_ 10X Visium !"D . Visium HD launched 2024
Grid array-based spatial barcoding
Fiducial frame
oo 8 X 8; mm
B0 —
:.O..O0.00.00000000 © | 8 X 8 pm bln
Q
= I T . = e
g . : 2um : 2 dm I
E —]me
H 'm’n
1
Capture Area with Grid of 2 x 2 um barcoded squares, Oligo with Spatial Barcode
Visium HD Slide, continuous lawn of oligos, binned to 8 x 8 um
6.5 mm 6.5 x6.5 mm

—
i

FF, Fixed Frozen and FFPE

Probe-Capture with Visium Cyt Assist

before NGS Sequencing Cythssist

I F
L1 LU L1

Two approaches for binning 2x2 um barcode squares in Visium HD

11.2 million 2 x 2 um barcoded squares without gaps



https://www.10xgenomics.com/blog/your-introduction-to-visium-hd-spatial-biology-in-high-definition
https://www.10xgenomics.com/analysis-guides/segmentation-visium-hd

Important: Visium HD relies on probe sets to capture whole transcriptome, but output is still NGS

FFPE Deparaffinization

Immunofluorescence (IF) or  Decrosslinking
Tissue Sections
(human or mouse) on glass slide

Hematoxylin & Eosin (H&E)
@ E S« =2
=

~3 h >1h € -15h

Hematoxylin & Eosin (H&E)  Decrosslinking

(mouse) on glass slide

r
ﬁﬂ@ ~05 h >1h € “1h

FF Methanol Fixation = Hematoxylin & Eosin (H&E)

Tissue Sections
(Chuman or mouse) on glass slide

4
g, 0, &
(eor ~05h >1h G

Currently, whole transcriptome custom probe sets must be

FxF Rehydration
Tissue Sections

Fixed Frozen

designed for species other than human and mouse for Visium HD

Sample Staining Probe Hybridization | Probe Release,
Preparation & Imaging & Ligation Extension & Elution

Library
Construction

Probe Extension, Elution  Pre-amplification, qPCR,

WholeTranscriptome  Probe Release
& Transfer to Tube SI-PCR & QC

Probe-Mediated & Capture
mRNA Detection

Su s
v_— @&
[ ] Z WY
— :

h -4 h D

Overnight e <1h

vl = 1 probe pair per gene
v2 = 3 probe pairs per gene

5 3
A AP
5 2 e— \ ,,PN*‘*P
LHS

3 [T 5
mRNA Target Site

l Probe Hybridization
5 a3
Ry N
20 p— AP

¥ iy 5'
mRNA Target Site
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https://www.10xgenomics.com/blog/simplifying-spatial-transcriptomics-protocols-with-visium-cytassist



Platform # of genes profiled Spatial Resolution Imaging Area Time Required

Whole Transcriptome

10X Visium HD
e (Probe-Capture)

2-8um (6.5 mm x 6.5 mm)x2 Few hours

Thickness of 3—10 pum sections
(recommend 5um)

FF, Fixed Frozen and FFPE

500 ym

Visium HD Gene Expression Probe-Based Library

Read 1T:43
Sample Index UMI+10xBC : Sample Index
(i5: 10 insert) N\ Ligated Probe Insert (i7:10 insert)
P5 Read 1T  UMI Spatial Poly (dTOVN ™~ Read 2S
Barcode Read 2S:50

insert

Gene expression library is sequenced at a recommended min depth of
275 million read pairs for Capture Areas covered fully by tissue



https://www.10xgenomics.com/blog/your-introduction-to-visium-hd-spatial-biology-in-high-definition
https://www.10xgenomics.com/analysis-guides/segmentation-visium-hd

Platform # of genes profiled Spatial Resolution  RNA Capture Efficiency Imaging Area Time Required
95% for cells
MERFISH 500 100 nm 0 , 10 mm x 10 mm 28-30 h
80—85% for tissue
MERFISH 2.0 launched 2024
MERFISH
Multiplex error-robust FISH
MERFISH workflows involve four major steps:
Order will vary based on tissue preservation type (FFPE or FF)
Preparation
Tissue samples are mounted on slides and permeabilized.
Staining for protein co-detection can be added at this stage.
Hybridization
Embedding tens of thousands of unique encoding probes onto the sample. WHOLE SECTION WIDE FIELD OF VIEW SUB-CELLULAR
. 9 x7 mm 200 x 200 micron 12 x 12 micron
Cl earing Organization of tissue Cell interaction/function L2/3 IT Glutamatergic
Using a gel embedding and clearing process to remove neuron
unnecessary components while preserving transcripts and bound probes.
maging viZgen
4 ¥ y GENE 1 I g ' “
fffmo J M;D Jfﬂ,,%;on (001001001) (001001001)
0] e 00 _,__,J’Q-' 001 o190 GENE 2 Errors
e - Fhy (00 e ‘—“—R':Mnm - PN, BancoDE corrected
1 a0 100 (100100100) (100100100) ::,1:::"
GENE 3 DETECTED CORRECTED
Each gene in panel Sequential Barcodes checked s wt  BARCODE BARCODE Vizgen,
assigned a unique imaging rounds for accuracy (010101000) (010101001) (010101000)
binary barcode merscope ‘
(Simplified cartoon from product manual, method details covered in next slide) L\ /

FFPE, FF, and fixed frozen tissue ~ https://vizgen.éom/products/



VIERFISH Probe Hybridization and Fluorescence Readout

RNA species

Encoding probes Encoding probes
e T ’ : Each encoding probe contains a targeting sequence which directs
P sequence 4 et their binding to specific RNA, as well as two readout sequences
Primer Targeting sequence Primer Primer Targeting sequence Primer
To increase the signal from each copy of the RNA, 50-100
asiii X50-100, . %50-100 encoding probes, each with a different target region, are bound to

T ™ S N T P s the same RNA.
1 R FEN e N fafe
2 N NG NS
3 - AL/ NS\ Primary hybridization of encoding probes

ncoding
4 : o N NN
M L A0, R, WD 20, N 4
Moffitt, J. R., & Zhuang, X. (2016). RNA Imaging with Multiplexed Error-Robust Fluorescence In 21

Situ Hybridization (MERFISH). Methods in Enzymology, 572, 1-49.



VIERFISH Probe Hybridization and Fluorescence Readout

Encoding probes

Encoding probes

RNA species

Readout Readout Readout

sequence 1 1US sequence 4
Primer Targeting sequence Primer Primer Targeting sequence Primer

.......... xSO-IOO,:": x50-100
2 N ek N AN NN NN N b N A
: s AN KK el % BN N TN 8 NN NP
i : iR WAWAWAWE - ok WA WAWAWR, /L WA WA WAWS

16 rounds of hybridization of secondary fluorescent probes

Moffitt, J. R., & Zhuang, X. (2016). RNA Imaging with Multiplexed Error-Robust Fluorescence In
Situ Hybridization (MERFISH). Methods in Enzymology, 572, 1-49.

To identify the readout sequences
contained on the encoding probes
bound to each RNA, 16 rounds of
hybridization and imaging are
performed.

Each round uses a unique,
fluorescently labeled probe whose
sequence is complementary to the
readout sequence for that round.

22



VIERFISH Probe Hybridization and Fluorescence Readout

Encoding probes Encoding probes

Readout Readout Readout Readout
sequence 1 sequence 4
Primer Targeting sequence Primer Primer Targeting sequence Primer
.............. X50-100/ ™. x50-100
............. - — : - <
.§ 2 NSNS NSNS ALNS NSNS ,,\ML To identify the readout sequences
g 3 oy N e NN TR N AN N AN 5 NN N AN contained on the encoding probes
< 4 E";‘;‘gng N PN F RN IR Rﬁagﬂm _\/ \ PNER T Rgagozm N Ko T bound to each RNA, 16 rounds of
=3 . . . . hybridization and imaging are
' : performed.
: : Readout Each round uses a unique
Modified H . ’
Stanced coda. hyb 3 fluorescently labeled probe whose
1107 eee N\ AN\ N\ /‘\ J N4 A /,_,'\\ / NN NSNS sequence is complementary to the

0000 eee
0110 see 0 ¢— N\ JNJ \ANS

Decode
1000 eee O NSNS NN
0010 eee \_/"_\__/ L/.,,.\___/.
16-bit code

Codebook Design Schema

o o 2 X LN AN T e \_/ L/ NN U readout sequence for that round.

t—voed— N JNTNgA T — NINT NI\

Readout Readout
hyb N W Z NN NS Tyl NN NN S

N 2 NA N AN 7 NN/ N\ 4N/

Moffitt, J. R., & Zhuang, X. (2016). RNA Imaging with Multiplexed Error-Robust Fluorescence In 23
Situ Hybridization (MERFISH). Methods in Enzymology, 572, 1-49.



C Hybridization round

1 2345678 910111213141516
ir1 OO0 0T O O0O0O0O00DO0 O 810 O
=20 001001 0010710000
€3f00001010000100 0 1
Z4AF0 00 0100000100110
ES'CUOC'OGUUO1UOI [§)
wero 00O 00T 1TO0O O 0T 0O 810 O
70 0000000000000 1 0

DYNCTH)
EGFR
FLNA
TLN1
TLN1
LRP]

Unidentified

error robustness

Modified Hamming
Distance 4 code

] 0] LA R J
0000 eee

0 0 eee O
1000 eee O

0010 eee

Probes designed with Hamming Distance of 4 to make robust to errors.
Errors can then also be corrected to “call” the correct probe

Constant Hamming weight is used to ensure probes have same number
of 1’s and O’s (since rate of reading 1 as 0 is > than reading 0 as 1)

16-bit MHD4 codebook allows for error correction

Moffitt, J. R., & Zhuang, X. (2016). RNA Imaging with Multiplexed Error-Robust FIuoresceane In
Situ Hybridization (MERFISH). Methods in Enzymology, 572, 1-49.



Platform # of genes profiled Spatial Resolution Imaging Area

Time Required

10X Xenium 400 50 nm 12 mm x 24 mm

2 days

Sample Probe hybridization, Staining

preparation ligation & amplification (Optional- for cell segmentation)

FF or FFPE Fixatlon & permeabilization (FF) or

tssuosections _ deparafiinization & decrossimking ¢ppy PTiMary probe hybridization + RCA

PON

Probe hybridization Rolling circle amplification
product
—_— AV 7 —
.J’QS::;z.‘\.

Ligation &
primer hybridization for amplification

Data visualization

Rounds of hybridization of secondary fluorescent probes

ONBOARD ANALYSIS
Xenium Explorer

O
. o O ,_\(./3 O;Oﬁ Cell-feature matrix
o2 . e o OSaq0
o » : w0 @ 0% f—  UMAP, PCA
Imaging Decoding Segmentation  Cell assignment Clustering HOEpholagysinages

Unsupervised clustering

Xenium launched 2022

FFPE: 5um thickness
FF: 10um thickness



5 min break

Resume for next part on STx data analysis



STx Data Analysis



Seurat 5.0 package

Developers: Rahul Satija lab at NYU

Seurat - Install Get started Vignettes ~ Extensions FAQ News Reference Archive

SEURAT @2 R toolkit for single cell genomics

Seurat v5

We are excited to release Seurat v5! To install, please follow the instructions in our install page. This update brings the following
new features and functionality:

¢ Integrative multimodal analysis: The cellular transcriptome is just one aspect of cellular identity, and recent technologies
enable routine profiling of chromatin accessibility, histone modifications, and protein levels from single cells. In Seurat v5, we
introduce ‘bridge integration) a statistical method to integrate experiments measuring different modalities (i.e. separate
scRNA-seq and scATAC-seq datasets), using a separate multiomic dataset as a molecular ‘bridge’. For example, we
demonstrate how to map scATAC-seq datasets onto scRNA-seq datasets, to assist users in interpreting and annotating data
from new modalities.

We recognize that while the goal of matching shared cell types across datasets may be important for many problems, users
may also be concerned about which method to use, or that integration could result in a loss of biological resolution. In Seurat
v5, we also introduce flexible and streamlined workflows for the integration of multiple scRNA-seq datasets. This makes it
easier to explore the results of different integration methods, and to compare these results to a workflow that excludes
integration steps.

o Paper: Dictionary learning for integrative, multimodal, and scalable single-cell analysis
o Vignette: Streamlined integration of scRNA-seq data

Links

View on CRAN
Browse source code
Report a bug
License

Full license

MIT +file LICENSE
Community

Code of conduct
Citation
Citing Seurat
Developers

Rahul Satija

Author, maintainer

Satija Lab and Collaborators
Funder

More about authors...

We will focus on using the Seurat package next session!

»

Seurat object

Spots/Cells

Genes

Raw matrix
(UMI counts)

+ associated info:
Metadata such as
images,

Normalized counts,
Dimension reduction
Embeddings,

Spatial coordinates
etc.

Analysis of spatial datasets (Sequencing-based)

Analysis of spatial datasets (Imaging-based)



https://satijalab.org/seurat/articles/seurat5_spatial_vignette.html
https://satijalab.org/seurat/articles/seurat5_spatial_vignette_2

Image-based spatial transcriptomics: cell segmentation

Segmentation mask with
transcript locations

Coordinates and
counts of transcript

Cell count matrix and cell coordinates

X y Count Cell
genel -10 3 15 1 m,, genes X y
gene2 -15 4 2 1 L 15 2 -12 3
| genel 2 =) 5 2 8§ 5 10 3 2
7= <G Ny % - E m— gene2 4 2 10 2 - ) 3 1 139
4 T o0 4 .: . E E genel -12 10 3 3
% . ‘4 ) . : E gene2 -14 8 1 3
o, °e S, o
E, .... ... :.. °E

_______________________

Cell Segmentation is handled by MERSCOPE and Xenium
(2095), bitos /a0t ora/10.1008/541576-073.00586 00 software, but other methods can also be run post-hoc



https://doi.org/10.1038/s41576-023-00586-w

Nuclei: DAPI
Boundary/Membrane: anti-ATPase Ab
Interior RNA: anti-18S rRNA Ab

Boundary
stain

Multinuclear
stail

Inferred membrane
P h \ (dotted line)

Interior
stain with
nuclear
expansion

Inferred membrane
(dotted line)

Nuclear
expansion

rﬁ

Without
K--pnudeav stain
‘®

Multimodal Cell Segmentation

Example from Xenium

Stains and Cell Segmentation Types

Nuclear expansion (dotted line)
i o= g PN
2 4 Boundary stain

/ (with nuclear stain)

/
'@
| .u
L_—
/

\
N

>—d_ . Boundary stain
/ ~ (without nuclear stain)
I =4 "
¢ . Boundary stain

(multinuclear stain)

Interior stain with
nuclear expansion
(dotted line)

@ Nuclear stain @® Boundary stain
Interior stain - = = Inferred cell segmentation

Figure 1. multimodal cell segmentation approach. After nucleus segmentation with DAPI,

the algorithm segments each cell with one of three methods applied in a stepwise fashion:

boundary segmentation, expansion from the nucleus to the cell interior stain edge, and
nuclear expansion. Unlike conventional single-step methods, this multimodal approach
effectively addresses certain cell types that cannot provide complete or even partial
boundary information due to lack of clear membrane markers.

Since Xenium’s boundary segmentation model does not require the presence of a
nucleus, they were able to correctly segment multinucleate and occasionally

anucleate cells.

Source: https://www.10xgenomics.com/library/ac7cd9 (AGBT 2024 Cell Segmentation Poster from 10X Genomics )
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Array-based spatial transcriptomics: deconvolution

Tissue slice on barcode regions Count matrix and coordinates
of barcode regions

Top Deconvolution Methods

m__ genes X .
_ aw 9 4 e Cell2location
4 7 _amB e s 2 s SR * SpatialDWLS (Giotto)

| m .

i N — F 10 0 0 . 5 7 e RCTD (supported in Seurat)

~ : = Reference: Li et al. Nat Methods 2022 Benchmarking
| 15 0 0 = 3 spatial methods for cell type deconvolution
: https://www.nature.com/articles/s41592-022-01480-9
—— .o o !

5 Deconvolution Cell count matrix and cell coordinates
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i o mraw genes X ) 4
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Heumos, L., Schaar, A.C., Lance, C. et al. Nat Rev
Genet (2023). https://doi.org/10.1038/s41576-023- 31

00586-w


https://doi.org/10.1038/s41576-023-00586-w
https://doi.org/10.1038/s41576-023-00586-w
https://giottosuite.readthedocs.io/en/master/
https://satijalab.org/seurat/articles/visiumhd_analysis_vignette
https://www.10xgenomics.com/analysis-guides/benchmarking-methods-to-integrate-spatial-and-single-cell-transcriptomics-data
https://www.nature.com/articles/s41592-022-01480-9

Summary: Assigning Genes to Cells and their spatial coordinates

Imaging-based STx needs cell segmentation

Genes

X y X y
Spatial coordinates Count  Cell Genes Spatial coordinates
L)
Cell Segmentation :'3
Matrix of UMI counts Output:
Sequencing Array-based STx needs deconvolution Gene-Cell Matrix
X Yy X y . .
Spatial coordinates Genes Genes Spatial coordinates Location Matrix

7]
)]
o c i)
8 Deconvolution > >
o &)
m

. Matrix of UMI counts
Data Pre-Processing



Cells

Count Data Preprocessing

X y

Genes Spatial coordinates o Dimension Reduction +
Normalization .
Embedding
: : UMAP
Scaling Transformation PCA t-SNE

Matrix of UMI counts

Gene-Cell Matrix
Location Matrix
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Count Normalization

Rationale: Gene expression data is often highly overdispersed (greater variance than expected)
Normalization makes samples more directly comparable and reduces high variance seen in highly expressed genes

Many statistical tests and models require homoskedasticity (constant variance)
Variance stabilization reduces the distortion on plots caused by highly variable genes

1) Log transformation
Without normalization, the analysis would be 2) Square root transformation
dominated by highly expressed genes

Vij = f(xi)

Generalized linear model:

3) Pearson residual transformation (used by Seurat’s sctransform)
True biological differences yi,j — W] * xi’j where Wl'=1/\/,ui

Observed expression

Instead of transforming each measurement individually, Pearson
residuals apply a weight w; to all measurements of a given gene
based on observed mean y;

Technical noise

Log transformation, square root transform vs pearson transform (scTransform) https://www.youtube.com/watch?v=huxkc2GH4lk&ab_channel=FlorianWagner
Rafa lrizarry’s 2024 lecture on Statistical Methods for Single-Cell RNA-Seq Analysis and Spatial Transcriptomics https://biocinformatics.ccr.cancer.gov/btep/classes/rafael-igizarry

scTransform v2 paper https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02584-9



https://www.youtube.com/watch?v=huxkc2GH4lk&ab_channel=FlorianWagner
https://bioinformatics.ccr.cancer.gov/btep/classes/rafael-irizarry
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02584-9

Dimension Reduction

Rationale: Reducing the dimensions on high dimension data will speed up computation for downstream analysis such
as clustering and avoid overfitting (reduces dataset noise from random variation)
See: Curse of dimensionality

N
4
Dimensionality

h 4
reduction
ndll | ENN

X z

v

v

Data reduction is performed by generating a smaller set of predictors that capture a majority of information in the
original variables (select most highly variable genes). This has the effect of reducing the correlation of different predictors

to one another.

Normalization is required beforehand so that larger scaled variables don’t dominate the analysis
For most data reduction techniques, the new predictors are functions of the original predictors.
This class of methods is often called signal extraction or feature extraction techniques.

Heumos, L., Schaar, A.C, Lance, C. et al. Best practices for single-cell analysis across modalities. Nat Rev Genet (2023). https://doi.org/10.1038/s41576-023-00586-w 35
Adapted from Kuhn and Johnson. Applied Predictive Modeling 2013


https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://doi.org/10.1038/s41576-023-00586-w

PC_2

Principal Components Analysis + Clustering

PCA is a commonly used dimension/data reduction technique and seeks to find linear combinations of the predictors,
known as principal components (PCs), which capture the most possible variance.

The first PC is defined as the linear combination of the predictors that captures the most variability of all possible linear
combinations. Then, subsequent PCs are derived such that these linear combinations capture the most remaining
variability while also being uncorrelated with all previous PCs. Mathematically, the jth PC can be written as:

501 - PC; = (aj1 x Predictor 1) + (aj2 x Predictor 2) + - - - + (a;p x Predictor P).
o 0
3 o (1) 1 P is the number of predictors. The coefficients a;1, aj2,. .., a;p are called com-
o 2 2 ponent weights and help us understand which predictors are most important
. ® e = to each PC.
® 4 4
® 5 5
g 6 Because the distance between points from performing PCA are
B ® 3 i interpretable, the results can be directly used for clustering
® 9
® 10 4
11 10 . Seurat’s FindNeighbors computes nearest neighbors
. 15 1; j graph for a given dataset (k-nearest neighbors, k-NN and
14 3 R shared nearest neighbors, SNN) using PCA space
5 ol 14 P Seurat’s FindClusters performs cluster detection using
-50 1 2> : ) )
25 B8 B Be ‘ ' Louvain (default) or other methods such as Leiden

- . . 36
http://mlwiki.org/index.php/SNN_Clustering  Adapted from Kuhn and Johnson. Applied Predictive Modeling 2013



Embedding and Visualization

Following PCA, we can perform embedding and visualization of the clusters

Embedding is the practice of mapping high dimensional data into a lower dimensional space, while preserving the
structure and relationships.

ident While Principal Component Analysis (PCA) assumes the data is linear
' Uniform Manifold Approximation and Projection (UMAP) and
t-Stochastic Neighbor Embedding (t-SNE) do not assume linearity

The distance between points from performing PCA are
_ interpretable, so they can be used for clustering, whereas those in
K UMAP and t-SNE embedding are not

0 00000OCGOGOGES
0N A WN = O

@
—_
-

More info:

o Statquest PCA https://www.youtube.com/watch?v=FgakZw6K1QQ
- - Statquest UMAP https://www.youtube.com/watch?v=eNOwFzBA4Sc
05 0 5 10 Statquest t-SNE https://www.youtube.com/watch?v=NEaUSP4YerM
t-SNE subtleties https://distill. pub/2016/misread-tsne/

-10 4
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https://www.youtube.com/watch?v=FgakZw6K1QQ&ab_channel=StatQuestwithJoshStarmer
https://www.youtube.com/watch?v=eN0wFzBA4Sc&ab_channel=StatQuestwithJoshStarmer
https://www.youtube.com/watch?v=NEaUSP4YerM
https://distill.pub/2016/misread-tsne

Annotation: Integration with scRNA-seq data

a
Spatial transcriptomics
P ° Robust cell-type decomposition (RCTD)
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Expression dimension 1

Cable, DM et al. (2022). Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotech, 40(4), 517-526.

Spatial map of cell types

Irizarry Lab

Li, B et al. (2022). Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat Methods, 19(6), 662—670.
Li, Y et al. (2021). Benchmarking computational integration methods for spatial transcriptomics data. bioRxiv https://doi.org/10.1101/2021.08.27.457741
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Spatially Variable Genes

In contrast to highly variable genes (genes that differ significantly between cells), spatially variable genes show
a distinct spatial pattern

Highly variable gene Spatially variable gene

Acta2 Mbp
800

600

spatial2

400

spatial2

200

spatial1 spatial1

Heumos, L., Schaar, A.C., Lance, C. et al. Best practices for single-cell analysis across modalities. Nat Rev Genet (2023). https://doi.org/lo.1038/541576-023—618586—w



https://doi.org/10.1038/s41576-023-00586-w

Different scenarios of spatially variable genes

The simplest approach is to look for
spatially contiguous regions of cells with
maximally similar gene expression

(Fig. 2a). This is analogous to the typical
clustering analysis in scRNA-seq analysis
pipelines, but conscious of spatial
position.

Most currently methods optimize for
situations like this, but as methods
develop they may have to deal with
situations that are more like “salt and
pepper” or which have subdomain
architecture or take into account specific
patterns of cell-cell interactions (CCl)
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Walker, B. L., Cang, Z., Ren, H., Bourgain-Chang, E., & Nie, Q. (2022). Deciphering tissue structure and function using spatial transcriptomics. Communications Biology, 5(1), 220.


https://www.nature.com/articles/s42003-022-03175-5

Spatial Autocorrelation

One simple way to look at spatial relationships is by measuring spatial autocorrelation (i.e. for each gene)

Positive spatial No spatial Negative spatial
autocorrelation autocorrelation autocorrelation

More info: Moran's |: https://www.youtube.com/watch?v=0JU8GNW9qgrc From Rad”; S. M. (2011)- UniverSity of lllinois at Urbana-CI"\zampaign



https://www.youtube.com/watch?v=OJU8GNW9grc&ab_channel=ritvikmath

Moran’s |

Moran’s | is a spatial autocorrelation metric similar to the Pearson correlation coefficient. Range is -1 to 1.

N 252 Wilx —X)(x —X)

E]JWJ Ej{.'l[;_—ij'z

Moran's [ =

, where N is the total number of spatial location units indexed by (i, j), and W is a weight matrix to be discussed below. Recall that the Pearson
correlation coefficient is

2 (6 =X - )
r =
VE L & =02 /3L 0 -5

W, ; is a weight matrix that can be either contiguity based (first order, second order, etc) or distance-based

Rook. First order Queen. First order Rook. Second order Queen. Second order

+

+ Ll

Intuitive explanation for understanding and deriving Moran's I:
https://www.youtube.com/watch?v=0JU8GNWO 9arc&ab_channel=ritvikmath

First and second order nearest
neighbors graphic from here
Moran’s | definition from here



https://www.youtube.com/watch?v=OJU8GNW9grc&ab_channel=ritvikmath
https://www.paulamoraga.com/book-spatial/spatial-neighborhood-matrices.html
https://yu-tong-wang.github.io/talk/sc_st_data_analysis_R.html

Methods to identify cell-cell interactions from STx data

a Cell-cell interactions

1: Sender cell 2: Receiver cell
produces ligand binds to ligand

® @
'0
4

>
3: Downstream
processes

Interaction
With Without

Expression

0

Gene

. ) Expression

¢ Probabilistic Modeling Methods

Identify SVGs explicitly modeling CCl as
one source of variance in gene

expression
Inter-cell component
! represents explanation of
N . variation in expression due
P to interactions between cells
1 Large inter-cell component

identifies cell-cell
communication

b Pairwise Co-expression Methods

Identify co-expression of L-R pairs in
spatially nearby cells

Inputs:

Cell spatial network
+ expression data
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!

LT L2]|L3
Source | BEi Identify cell pairs
Target ol co-expressing L+R
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Walker, B. L., Cang, Z., Ren, H., Bourgain-Chang, E., & Nie, Q. (2022). Deciphering tissue structure and function using spatial transcriptomics. Communications Biology, 5(1), 2264



Ongoing challenges in the spatial transcriptomics field

* Experimental technologies still being improve (cost, applicability to all
kinds of samples such as FF or FFPE, sensitivity, field of view, depth, etc)

* Methods for data analyses still being developed
* Truly “spatially variable” genes that are not just marker genes
e Spatial DE (example: C-SIDE method using covariate matrix)

* Spatial datasets as 3D maps rather than just 2D coordinates

e Spatial image registration across replicates and samples

* Effective integration with other datasets (scRNA-seq, ATAC-seq,
proteomics)


https://pubmed.ncbi.nlm.nih.gov/36050488/

Example Applications 1: Spatial Transcriptomics reveals pathogenesis of viral
myocarditis (reovirus on ileum and heart with Visium and scRNA-seq)
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-- Identified gene module score (230 genes) sig upregulated in reovirus infection
-- Chronology leading to reovirus-induced myocarditis incl. gut infection, then secondary tissue heart infection

-- Identify role for the basal type-I interferon (innate immune response) in endothelial cells lining cardiac vasculature,
which secrete chemokines to recruit cytotoxic T cells, then undergo cell death

Mantri et al. Nature Cardiovascular Research 2022 (Vlaminck Lab)

https://doi.org/10.1038/544161-%2-001 38-1
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Example Applications 2: Spatial transcriptomics reveal
neuron-astrocyte synergy in long term memory

-- Spatially resolved ensemble of engram neurons and locally associated astrocyte subtype using MERFISH
-- Evidence supporting idea of perineuronal nets to contribute to memory stabilization in the BLA

c NF FR «tdTomato* neurons FR = fear training and recall
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Example Applications 3:
Long read Spatial VD)
reveals B and T cell clonal
dynamics in both lymphoid
and cancer tissue

Visium of tonsils or breast cancer

1) Longread / PacBio Spatial VDJ sequencing of
spatially barcoded libraries of full length IG and TR
antigen receptor transcripts

2) Short read Spatial VDJ sequencing of TR sequences
only of CDR3 regions

Hybridization-capture enrichment of TR and I1G

constant regions to enrich for antigen receptor

transcripts

-- Able to detect B cell clonal dynamics in germinal
centers of tonsil tissue and somatic hypermutation
-- Visualize B cell clonality in breast cancer tissue
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Engblom et al., Science 2023 (Lundeberg, Frisen labs)
https://doi.org/10.1126/science’adf8486



Spatial Transcriptomics Resources at NIH

» Spatial Biology Interest Group Listserv / Email List
* https://oir.nih.gov/sigs/spatial-biology-interest-group

* Specialized Instrumentation at NIH:
* NCI CCR
e 10X Xenium https://ostr.ccr.cancer.gov/emerging-technologies/spatial-biology/xenium/

e 10X Visium https://ostr.ccr.cancer.gov/emerging-technologies/spatial-biology/visium/ (FFPE samples can
be processed with CytAssist instrument)

« SCAF https://ostr.ccr.cancer.gov/resources/provider details/nci-ccr-single-cell-analysis-facility-scaf
e CosMX and GeoMX at Spatial Imaging Technology Resource (SpITR) https://spitr.ccr.cancer.gov/
* Vizgen said that NIA (Baltimore) and NEI both each have a MERSCOPE instrument
e Xenium and Visium CytAssist are also at NIAMS, NINDS. NIAID VRC also acquiring both this year
* NIAID RTB (Research Technologies Branch): https://rtb.nih.gov/section/STR have Visium and GeoMX DSP
e Software on Biowulf:
* GeoMX NGS Pipeline: https://hpc.nih.gov/apps/geomx_ngs_pipeline.html

» Xenium Ranger: https://hpc.nih.gov/apps/xeniumranger.html|
* Space Ranger (for Visium): https://hpc.nih.gov/apps/spaceranger.html

* Looking for bioinformatic and genomics analysis expertise? Contact us at bioinformatics@niaid.nih.gov
49
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Prepare for Part 2 next week!

Please make sure you install and can run R and St u d |O either locally or on Biowulf

1) Either download and install Rstudio locally:
https://posit.co/download/rstudio-desktop/

Or use these instructions for running R/R Studio Server on Biowulf using tunneling:
https://hpc.nih.gov/apps/rstudio-server.html

2) Download Quarto Markdown document .gmd (contains R code we’ll run) from Github
https://github.com/margaretc-ho/BCBB_STx workshop 2024

3) Inside Quarto document in red is code for setup (please run before Part 2 of workshop):
Install packages (Seurat, Seurat-data which includes Visium dataset etc) and check that you can load the libraries
Download Allen cortex scRNA-seq data

Followup questions and inquiries are welcome!
margaret.ho@nih.gov 50


https://hpc.nih.gov/apps/rstudio-server.html
https://posit.co/download/rstudio-desktop/
https://github.com/margaretc-ho/BCBB_STx_workshop_2024

Further Reading / Resources
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Spatial Differential Gene Expression analyses

C-SIDE as part of spacexr Package (Irizarry Lab)

Spatial transcriptomics
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Spatial Differential Gene Expression analyses

C-SIDE as part of spacexr Package (Irizarry Lab) will perform DE across a covariate (e.g. proximity to pathology or discrete regions)

Discrete regions

For example, Figs. 2 and 3

Cell-to-cell interaction

Proximity
to O cell type

%@

For example, Fig. 5

Example covariate(s)
Continuous distance

]

Position

For example, Fig. 4
Proximity to pathology

]

Proximity
to % pathology

For example, Fig. 4

Smooth spatial pattern

]

Fitted
expression

For example, Fig. 5
Cellular microenvironment

Micro-
environment

For example, Fig. 4
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