
 

 

1.3. Terminology 

The terms in this document that refer to components of a netCDF file are defined 
in the NetCDF User’s Guide (NUG) [NUG] NUG. Some of those definitions are 
repeated below for convenience. 

aggregated	data	

The	data	of	an	aggregation	variable,	after	it	has	been	created	in	memory	by	an	application	
program.	

aggregated	dimension	

One	of	an	aggregated	variable’s	A	dimensions,	spanning	the	full	range	of	the	dimension	in	
the	contributing	fragments	of	the	aggregated	data	of	an	aggregation	variable.	

aggregation	variable	

A	variable	containing	no	data	but	enabling	formation	of	a	data	array	from	the	arrays	whose	
data	is	defined	as	by	the	contributing		an	aggregation	of	fragments,	rather	than	containing	
its	own	data.	

ancestor	group	

A	group	from	which	the	referring	group	is	descended	via	direct	parent-child	relationships	

auxiliary	coordinate	variable	

Any	netCDF	variable	that	contains	coordinate	data,	but	is	not	a	coordinate	variable	(in	the	
sense	of	that	term	defined	by	the	NUG	and	used	by	this	standard	-	see	below).	Unlike	
coordinate	variables,	there	is	no	relationship	between	the	name	of	an	auxiliary	coordinate	
variable	and	the	name(s)	of	its	dimension(s).	

boundary	variable	

A	boundary	variable	is	associated	with	a	variable	that	contains	coordinate	data.	When	a	
data	value	provides	information	about	conditions	in	a	cell	occupying	a	region	of	space/time	
or	some	other	dimension,	the	boundary	variable	provides	a	description	of	cell	extent.	

CDL	syntax	

The	ascii	format	used	to	describe	the	contents	of	a	netCDF	file	is	called	CDL	(network	
Common	Data	form	Language).	This	format	represents	arrays	using	the	indexing	



 

 

conventions	of	the	C	programming	language,	i.e.,	index	values	start	at	0,	and	in	
multidimensional	arrays,	when	indexing	over	the	elements	of	the	array,	it	is	the	last	
declared	dimension	that	is	the	fastest	varying	in	terms	of	file	storage	order.	The	netCDF	
utilities	ncdump	and	ncgen	use	this	format	(see	NUG	section	on	CDL	syntax).	All	examples	
in	this	document	use	CDL	syntax.	

cell	

A	region	in	one	or	more	dimensions	whose	boundary	can	be	described	by	a	set	of	vertices.	
The	term	interval	is	sometimes	used	for	one-dimensional	cells.	

coordinate	variable	

We	use	this	term	precisely	as	it	is	defined	in	the	NUG	section	on	coordinate	variables.	It	is	a	
one-dimensional	variable	with	the	same	name	as	its	dimension	[e.g.,	time(time)],	and	it	is	
defined	as	a	numeric	data	type	with	values	in	strict	monotonic	order	(all	values	are	
different,	and	they	are	arranged	in	either	consistently	increasing	or	consistently	decreasing	
order).	Missing	values	are	not	allowed	in	coordinate	variables.	Note	that	an	aggregation	
coordinate	variable	is	stored	as	a	scalar	and	has	the	same	name	as	its	aggregated	
dimension	(see	Section	2.8,	"Aggregation	Variables").	

fragment	

The	data	A	constituent	part,	found	in	an	external	dataset	included	in	the	array	defined	by	,	
of	the	aggregated	data	of	an	aggregation	variable.	

grid	mapping	variable	

A	variable	used	as	a	container	for	attributes	that	define	a	specific	grid	mapping.	The	type	of	
the	variable	is	arbitrary	since	it	contains	no	data.	

interpolation	variable	

A	variable	used	as	a	container	for	attributes	that	define	a	specific	interpolation	method	for	
uncompressing	tie	point	variables.	The	type	of	the	variable	is	arbitrary	since	it	contains	no	
data.	

latitude	dimension	

A	dimension	of	a	netCDF	variable	that	has	an	associated	latitude	coordinate	variable.	

local	apex	group	

The	nearest	(to	a	referring	group)	ancestor	group	in	which	a	dimension	of	an	out-of-group	
coordinate	is	defined.	The	word	"apex"	refers	to	position	of	this	group	at	the	vertex	of	the	



 

 

tree	of	groups	formed	by	it,	the	referring	group,	and	the	group	where	a	coordinate	is	
located.	

longitude	dimension	

A	dimension	of	a	netCDF	variable	that	has	an	associated	longitude	coordinate	variable.	

multidimensional	coordinate	variable	

An	auxiliary	coordinate	variable	that	is	multidimensional.	

nearest	item	

The	item	(variable	or	group)	that	can	be	reached	via	the	shortest	traversal	of	the	file	from	
the	referring	group	following	the	rules	set	forth	in	the	Section	2.7,	"Groups".	

out-of-group	reference	

A	reference	to	a	variable	or	dimension	that	is	not	contained	in	the	referring	group.	

path	

Paths	must	follow	the	UNIX	style	path	convention	and	may	begin	with	either	a	'/',	'..',	or	a	
word.	

recommendation	

Recommendations	in	this	convention	are	meant	to	provide	advice	that	may	be	helpful	for	
reducing	common	mistakes.	In	some	cases	we	have	recommended	rather	than	required	
particular	attributes	in	order	to	maintain	backwards	compatibility	with	COARDS.	An	
application	must	not	depend	on	a	dataset’s	adherence	to	recommendations.	

referring	group	

The	group	in	which	a	reference	to	a	variable	or	dimension	occurs.	

scalar	coordinate	variable	

A	scalar	variable	(i.e.	one	with	no	dimensions)	that	contains	coordinate	data.	Depending	on	
context,	it	may	be	functionally	equivalent	either	to	a	size-one	coordinate	variable	(Section	
5.7,	"Scalar	Coordinate	Variables")	or	to	a	size-one	auxiliary	coordinate	variable	(Section	
6.1,	"Labels"	and	Section	9.2,	"Collections,	instances,	and	elements").	

sibling	group	



 

 

Any	group	with	the	same	parent	group	as	the	referring	group	

spatiotemporal	dimension	

A	dimension	of	a	netCDF	variable	that	is	used	to	identify	a	location	in	time	and/or	space.	

tie	point	variable	

A	netCDF	variable	that	contains	coordinates	that	have	been	compressed	by	sampling.	There	
is	no	relationship	between	the	name	of	a	tie	point	variable	and	the	name(s)	of	its	
dimension(s).	

time	dimension	

A	dimension	of	a	netCDF	variable	that	has	an	associated	time	coordinate	variable.	

vertical	dimension	

A	dimension	of	a	netCDF	variable	that	has	an	associated	vertical	coordinate	variable.	

2.8. Aggregation Variables 

An aggregation variable is a variable which has been formed by combining (i.e. 
aggregating) multiple fragments that are generally stored in fragment datasets 
that are external to the file containing the aggregation variable, i.e. the 
aggregation file. A fragment is an array of data with sufficient metadata for it to 
be correctly interpreted in the context of the aggregation, as described by Section 
2.8.2 "Fragment Interpretation". The aggregation variable does not contain any 
actual data, instead it contains instructions on how to create its aggregated data 
in memory as an aggregation of the data from each fragment. 

Aggregation provides the utility of being able to view, as a single entity, a dataset 
that has been partitioned across multiple other datasets, whilst taking up very 
little extra space on disk (since the aggregation file contains no copies of the data 
in the fragments). Fragment datasets may be CF-compliant or have any other 
format, thereby allowing an aggregation variable to act as a CF-compliant view of 
non-CF datasets. Aggregations may also facilitateUse cases for storing 
aggregations include, but are not limited to]: data analysis, as itby avoidings the 
computational expense of deriving the aggregation at the time of analysis; 
archive curation, as the aggregation canby acting  as a metadata-rich archive 
index; and the post-processing of model simulation outputs, for by spanning 
combining output data that have been multiple files written at run time but 



 

 

together constituting a more cohesive and useful simulation product. written to 
disk as multiple datasets decomposed in time and space. 

An aggregation variable must be a scalar (i.e. it has no dimensions). It acts as a 
container for all of the usual attributes that describe the dataa variable, with the 
addition of two special attributes: one that defines the its aggregated 
dimensionsshape, (i.e. the its dimensional size after aggregation)s of the 
aggregated data; and one that provides the instructions on how the aggregated 
data is to be created. The data type of the aggregation variable must be the same 
data type of as each of the aggregated datafragments it includes, but the value of 
the aggregation variable’s single element is immaterialcan be assigned any value. 

Aggregation variables may be used as any kind of variable (data variable, 
coordinate variable, cell measures variable, etc.), but it is recommended that 
container variables whose data are immaterial (such as grid mapping variables) 
are not be encoded as aggregation variables. 

Any text applying to a variable in the CF conventions applies in exactly the same 
way to an aggregation variable in the same role; and any reference to the 
dimensions or data of a variable applies to the aggregated dimensions or 
aggregated data, respectively, of an aggregation variable. For instance: 

• The	dimension	of	a	coordinate	variable	of	an	aggregation	data	variable	must	be	included	as	
one	of	the	aggregated	dimensions	of	the	aggregation	data	variable.	

• The	name	of	an	aggregation	coordinate	variable	(which	is	a	scalar)	must	be	the	same	as	the	
name	of	its	single	aggregated	dimension	(identified	by	its	aggregated_dimensions	
attribute),	just	as	the	name	of	a	coordinate	variable	(which	is	one-dimensional)	must	be	the	
same	as	the	name	of	its	single	dimension.	

The details of how to encode and decode aggregation variables are given in this 
section, with examples provided in Appendix L, Aggregation Variable Examples. 

2.8.1. Aggregated Dimensions and Data 

The presence of an aggregated_dimensions attribute indicates that the variable it 
is attached to is an aggregation variable.  This attribute records the names of the 
aggregated dimensions are stored with the aggregation variable’s 
aggregated_dimensions attribute, and it is the presence of this attribute that 
identifies the variable as an aggregation variable. The value of the 

Commented [KT1]: Is this true?  Or can each of the 
fragments be of different data types and the aggregation be 
something different from them? 

Commented [KT2]: Can it be left unassigned?  

Commented [KT3]: Not sure what you mean by this.  Do 
you mean any of the rules imposed by CF? 



 

 

aggregated_dimensions attribute is  as a blank-separated list. of the aggregated 
dimension names given in tThe order of the listed names must which matches the 
order of the dimensions of the aggregated data. If the aggregated data is scalar 
then there are no aggregated dimensions and the aggregated_dimensions attribute 
must be an empty string. The aggregated dimensions must exist as dimensions in 
the aggregation file. 

The relative positions of fragments contributing to the aggregated data can be 
specified in a fragment array.   The fragment array is two dimensional and of size 
ixj, where i is the number of aggregated dimensions and j is the maximum 
number of fragments needed to account for all the aggregated data along any of 
its dimensions.  Each element in the fragment array indicates the position of the 
fragment relative to other fragments in forming the aggregated data.  

 

The fragments which provide the aggregated data are conceptually organised 
into a fragment arrays that has have the same number of dimensions as the 
aggregated data. Each dimension of the a fragment array is called a fragment 
array dimension, and which, by virtue of its position, corresponds to the is 
associated with one of the aggregated dimensions, but possibly of smaller size. 
with the same position in the aggregated data. The size of a fragment array 
dimension is equal to the number of fragments that are needed to span its 
corresponding aggregated dimension. See the Schematic representation of a 
fragment array for aggregated data. 

The aggregated data are created by concatenating the canonical forms of the 
fragments' data (see Section 2.8.2 "Fragment Interpretation") along each fragment 
array dimension, and in the order in which they appear in the fragment array. 

Example 2.2. Schematic representation of a fragment array for aggregated data 

Fragment array position [0, 0, 0] 

Fragment location: file_A.nc 
Fragment data shape: (17, 91, 180) 
17 vertical levels  

Fragment array position [0, 0, 1] 

Fragment location: file_B.nc 
Fragment data shape: (17, 91, 180) 
17 vertical levels 

Commented [KT4]: Does the order also have to be 
consistent across each of the fragments?  

Commented [KT5]: Why is it considered an aggregation, if 
there is a single value, presumably obtained from a single 
fragment.  Is this feature included so that you can transform 
a non-CF-compliant file into a compliant file? 

Commented [KT6]: The rest if this section will need to be 
rewritten if we adopt my suggested alternative approach 
linking the fragment arrays to their respective places in the 
aggregated array. 

Formatted: Font: Italic

Commented [KT7]: Don’t they actually have to be arrays 
with the same number of dimensions as the aggregated data?  
Why does it say “conceptually” here? 

Commented [KT8]: Or “treated as”?  It seems like there is 
no reorganization done in the usual case.  Right? 

Commented [KT9R8]: Or perhaps the sentence could read 
“The aggregated data obtains its data from *fragment arrays* 
that have the same number of dimensions as the aggregated 
data.” 

Commented [KT10]: Doesn’t this have to be 90 if the 
fragments must be non-overlapping and contiguous (and are 
assumed to really cover the latitude ranges indicated.  



 

 

[90, 0] degrees north  
[0, 180) degrees east 

[90, 0] degrees north 
[180, 360) degrees east 

Fragment array position [0, 1, 0] 

Fragment location: file_C.nc 
Fragment data shape: (17, 45, 180) 
17 vertical levels 
(0, -45] degrees north 
[0, 180) degrees east 

Fragment array position [0, 1, 1] 

Fragment location: file_D.nc 
Fragment data shape: (17, 45, 180) 
17 vertical levels 
(0, -45] degrees north 
[180, 360) degrees east 

Fragment array position [0, 2, 0] 

Fragment location: file_E.nc 
Fragment data shape: (17, 45, 180) 
17 vertical levels 
(-45, -90] degrees north 
[0, 180) degrees east 

Fragment array position [0, 2, 1] 

Fragment location: file_F.nc 
Fragment data shape: (17, 45, 180) 
17 vertical levels 
(-45, -90] degrees north 
[180, 360) degrees east 

The fragments, stored in six fragment datasets, are arranged in a three-
dimensional fragment array with shape (1, 3, 2). Each fragment spans the entirety 
of the Z dimension, but only a part of the Y-X plane, which has 1 degree 
resolution. The fragments combine to create three-dimensional aggregated data 
that have global Z-Y-X coverage, with shape (17, 181, 360). The Z aggregated 
dimension is spanned by one fragment, the Y aggregated dimension is spanned 
by three fragments, and the X aggregated dimension is spanned by two 
fragments. Note that, since this example is a schematic representation, the C or 
Fortran order of the dimensions is of no consequence. See Aggregation variable 
example 4 for a CDL representation of this fragment array. 

The fragment array must be defined by an aggregation variable’s aggregated_data 
attribute. This attribute takes a string value comprising blank-separated elements 
of the form "feature: variable", where feature is a case-sensitive keyword that 
identifies a feature of the fragment array, and variable is a fragment array 
variable which provides values for that feature. The features and their values 

Commented [KT11]: For 1 deg grid, this should be 180. 



 

 

unambiguously define the fragment array. The order of elements in the 
aggregated_data attribute is not significant. 

The features must comprise either all three of the shape, location, and address 
keywords; or else it must specify both of the shape and value keywords only. No 
other combinations of keywords are allowed. These features are defined as 
follows: 

shape 

The integer-valued shape fragment array variable defines the shape of each 
fragment’s data in its canonical form (see Section 2.8.2 "Fragment 
Interpretation"). In general, the shape fragment array variable is two-
dimensional, with the size of the slower-varying dimension (i.e. the first 
dimension in CDL order, representing rows) being the number of fragment array 
dimensions, and the size of the more rapidly-varying dimension (i.e. the second 
dimension in CDL order, representing columns) being the size of the largest 
fragment array dimension. The rows correspond to the fragment array 
dimensions in the same order, and each row provides the sizes of the fragments 
along its corresponding dimension of the fragment array, padded with missing 
values if there are fewer fragments than the number of columns. The sum of non-
missing values in a row must therefore equal the size of the corresponding 
aggregated dimension. See Aggregation variable example 4, which shows the 
shape fragment array variable for the fragment array described by the Schematic 
representation of a fragment array for aggregated data. If the aggregated data is 
scalar then the shape fragment array variable must be a scalar and contain the 
value 1. See Aggregation variable example 8. 

location 

The string-valued location fragment array variable defines the locations of 
fragment datasets. The array is a vector with length equal to the number of 
fragments.  In general its dimensions correspond to, and have the same sizes as, 
the fragment array dimensions in the same order as they appear in the 
conceptual fragment array. A fragment dataset is located with a Uniform 
Resource Identifier (URI) [URI] that must be either an absolute URI (a URI that 
begins with a scheme component followed by a : character, such as 
file://data/file.nc, https://remote.host/data/file.nc, s3://remote.host/data/file.nc, or 
locally_meaningful_protocol://UID), or else a relative-path URI reference (a URI that is 

Commented [KT12]: I couldn’t figure out how to interpret 
the information recorded by the variable pointed to by 
“shape”.  I proposed an alternative approach, which I find 
much simpler to explain.  In any case, after we decide which 
approach to use, I’ll help to rewrite this (assuming I can 
understand the approach we adopt. 



 

 

not an absolute URI and which does not begin with a / or # character, such as 
file.nc, ../file.nc, or data/file.nc). A relative-path URI reference is taken as being 
relative to the location of the aggregation file. If the aggregation file is moved to 
another location, then a fragment dataset identified by an absolute URI will still 
be accessible, whereas a fragment dataset identified by a relative-path URI 
reference will also need be moved to preserve the relative reference. Not all 
fragment dataset locations need be of the same URI type. See Aggregation 
variable example 1 and Aggregation variable example 2. 

The location fragment array variable may have an extra trailing dimension that 
allows multiple versions of fragments to be specified. Each version must contain 
equivalent information, so that any version that exists may be selected for use in 
the aggregated data. This could be useful when it is known that a fragment could 
be stored in a number of locations, but it is not known which of them might exist 
at any given time. For instance, when remotely stored and locally cached versions 
of the same fragment have been defined, an application program could choose to 
only retrieve the remote version if the local version does not exist. Every 
fragment must have at least one version, but not all fragments need to have the 
same number of versions. Where fragments have fewer versions than others, the 
trailing dimension must be padded with missing values. See Aggregation variable 
example 2. 

A fragment dataset location may be defined with any number of string 
substitutions, each of which is provided by the location fragment array variable’s 
substitutions attribute. The substitutions attribute takes a string value comprising 
blank-separated elements of the form "substitution: replacement", where 
substitution is a case-sensitive keyword that defines part of a location fragment 
array variable value which is to be replaced by replacement in order to find the 
actual fragment dataset location. A location fragment array variable value may 
include any subset of zero or more of the substitution keywords. After 
replacements have been made, the fragment dataset location must be an absolute 
URI or a relative-path URI reference. The substitution keyword must have the 
form ${*}, where * represents any number of any characters. For instance, the 
fragment dataset location https://remote.host/data/file.nc could be stored as 
${path}file.nc, in conjunction with substitutions="${path}: https://remote.host/data/". 
The order of elements in the substitutions attribute is not significant, and the 
substitutions for a given fragment must be such that applying them in any order 
will result in the same fragment dataset location. The use of substitutions can 
save space in the aggregation file; and in the event that the fragment locations 



 

 

need to be updated after the aggregation file has been created, it may be possible 
to achieve this by modifying the substitutions attribute rather than by changing 
the actual location fragment array variable values. See Aggregation variable 
example 3. 

address 

The address key word is followed by the name of a string array or string scalar 
variable, which in the case of fragment data in netCDF files, will identify which 
variable should be extracted from each of the fragment files and be included in 
the aggregated dataset.   addressMore generally, the named array or scalar can be 
of  fragment array variable, that may have any data type used to identify 
variables in the fragment files., defines how to find each fragment within its 
fragment dataset, i.e. the address of the fragment.  When the variable being 
aggregated goes by different names in different files, an array variable name is 
specified, but if all the names are the same, then a scalar variable name is 
adequate.  In general it has the same dimensions in the same order as the location 
fragment array variable, and must contain a non-missing value corresponding to 
each fragment version. However, if the address fragment array variable is a 
scalar, then its single value applies to all versions of all fragments. For a netCDF 
fragment dataset, the address must be the string-valued netCDF variable name of 
the fragment. Addresses for other fragment dataset formats are allowed, on the 
understanding that an application program may choose to ignore any values that 
it does not understand. See Aggregation variable example 1 and Aggregation 
variable example 6. 

value 

When the data values within a fragment are all the same, for each fragment, the 
value fragment array variable allows each fragment to be represented explicitly 
by its unique data value, rather than by reference to a fragment dataset. The value 
fragment array variable dimensions correspond to, and have the same sizes as, 
the fragment array dimensions in the same order as they appear in the 
conceptual fragment array. The value fragment array variable may have any data 
type, and contains each fragment’s unique value. A fragment that contains wholly 
missing data is specified by any missing value indicated by the value fragment 
array variable. See Aggregation variable example 7, which uses an aggregation 
ancillary variable to make fragment dataset global attributes available to an 
aggregation data variable. 

Commented [KT13]: I think “identifier” is a better generic 
term for the label used to find the variable off interest in the 
fragment file. 

Commented [KT14]: In general it would be nice to get rid 
of the distinction of a “conceptual array” and an “array”.  I’m 
afraid this just obscures our guidance. 



 

 

2.8.2. Fragment Interpretation 

The data of a fragment must be converted to its canonical form prior to being 
inserted into the aggregated data. The canonical form of a fragment’s data is such 
that: 

• The	fragment’s	data,	in	its	entirety,	provide	the	values	for	a	unique	(non-overlapping)	and	
contiguous	part	of	the	aggregated	data.		Each	fragment	can	be	visualized	as	a	
hyperrectangular	block	with	the	same	dimensions	as	the	aggregated	data	but	with	one	or	
more	dimensions	being	smaller.		Together	the	fragment	blocks	are	all	combined	to	form	the	
aggregated	data	array,	leaving	no	holes.			

• The	fragment’s	data	dimensions	correspond	to	the	aggregated	dimensions	in	the	same	
order.	

• The	fragment’s	data	have	the	same	units	as	the	aggregation	variable.	

• The	fragment’s	data	can	have	missing	values	as	indicated	by	the	aggregation	variable.	

• The	fragment’s	data	are	not	packed	(i.e.	not	stored	using	a	smaller	data	type	than	the	
original	data).	

• The	fragment’s	data	have	the	same	data	type	as	the	aggregation	variable.	

The conversion of the fragment’s data to its canonical form is carried out by the 
application program which is creating the aggregated data in memory. For 
fragment datasets, the application program may ignore any fragment metadata 
that are not needed for the conversion to the canonical form, as well as any other 
variables that might exist in the fragment dataset. A combination of some of the 
following operations may be required to convert the a fragment’s data to its 
canonical form: 

• If,	and	only	if,	the		a	fragment’s	data	has	been	explicitly	defined	by	its	a	unique	scalar	value	
(as	opposed	to	being	defined	by	a	fragment	dataset),	that	value	must	be	broadcasting	that	
value	across	the	shape	of	the	canonical	form	of	the	fragment’s	data.	

• When	a	fragment	is	missing	a	dimension,	a	Inserting	missing		an	appropriate	size	1	
dimensions	must	be	inserted	to	account	for	it		into	the	fragment’s	data	(e.g.	as	required	
when	aggregating	two-dimensional	fragments	into	three-dimensional	aggregated	data).	

• If	a	Transforming	the	fragment’s	data	to	have	the	sameis	of	a		data	type	as	different	from	
the	aggregated	data,	it	must	be	transformed.	Note	that	some	transformations	may	result	in	

Commented [KT15]: Check this. 

Commented [KT16]: Not sure I understand. I thought the 
fragment’s data was identical to the “original data”. 

Commented [KT17R16]: Why is this condition imposed? 

Commented [KT18]: What defines the “canonical form”?  
When you say “fragment’s data”, does this include both the 
data array and all of its attributes? 

Commented [KT19]: Is there only one?   

Commented [KT20]: I think it’s easier reading if you make 
the bulleted points into sentences. 



 

 

a	loss	of	information,	such	as	could	be	the	case	when	casting	floating	point	numbers	to	
integers.	

• Any	Transforming	missing	values	in	the	fragment’s	data	may	need	to	be	transformed	to	a	
different	missing	value,	indicated	as	missing	as	defined	by	the	aggregation	variable.	Note	
that	it	is	the	responsibility	of	the	creator	of	the	aggregation	file	to	ensure	that	all	valid	non-
missing	fragment	data	values	do	not	coincide	withare	different	from	any	of	the	missing	
values	indicated	defined	by	the	aggregation	variable.	

• When	a	Transforming	the	fragment’s	data	is	expressed	in	units	different	from	but	
compaitible	with	to	have	the	aggregation	variable’s	units,	the	data	values	must	be	
transformed		(e.g.	as	required	when	aggregating	time	fragments	whose	units	have	different	
reference	date/times).	

• If	a	Unpacking	the	fragment’s	data	is	packed,	it	must	be	unpacked.	Note	that	if	the	
aggregation	variable	indicates	that	the	aggregated	data	values	are	packed	(as	determined	
by	the	attributes	defined	in	Section	8.1,	"Packed	Data"),	then	the	canonical	fragment	data	
values	will	represent	packed	values	in	the	aggregated	data,	and	so	will	be	subject	to	the	
aggregation	variable’s	unpacking.	

Suppose the following aggregated 2D array (lat x lon) comprises the 6 fragments shown.  The 
boxes outline individual grid cells and the colored sections define the fragments that are pieced 
together.   

A             B    
     13 X 3          
                 
C     D  8 X 1        
     E        4 X 10  
                 
       8 X 6        
 5 X 9              
                 
                 
     F    12 X 2      
                 

Commented [KT21]: Replace with “will be repacked”?? 



 

 

Under your mapping scheme, what would the fragment_shape be?  (please 
replace x’s with correct values) 

fragment_shape= x, x, x, 
           x, x, x ; 

 
Wouldn’t it be easier to decode if you specified the indices in the aggregation array where the 
first element of a fragment would be saved?  Then, for the above you would have (in index 
space):  
 

fragment_starts_at:  0, 0, 
   13, 0, 
   0, 3, 
   5, 3, 
   5, 4, 
   5, 10 ; 
 
The “shape” keyword would then point to fragment_starts_at, which is dimensioned (# of 
fragments) x (# of dimensions) = 6 x 2.  The code aggregating the fragments would simply insert 
the entire fragment in the correct location.  The ordering of the fragments would be immaterial 
(although humans might like the ordering I chose above). 
 
Note that for a 3-d fields (lev, lat, lon) with all 3 levels stored in the same file, but broken into 
the above fragments, you would still have 6 fragments, but there start locations would be:  
 
 fragment_starts_at:  0, 0, 0, 
  0, 13, 0, 
  0, 0, 3, 
  0, 5, 3, 
  0, 5, 4, 
  0, 5, 10 ; 
 
If we were to adopt the above approach, then in the following examples “i” would be 
eliminated as a dimension and replaced with “nfragments”, which would be set to the number 
of fragments contributing to the aggregated variable.  We might rename “j” with the more 
descriptive “ndims”.  The dimensions of fragment_starts would then be: 

int  fragment_starts(nfragments,ndims)  
 

Also “fragment_location” would then be declared: 
 string fragment_location(nfragments) 
  
 

 

Commented [KT22]: Or we might name this 
“fragment_position” ??? 

Formatted: Highlight



 

 

Appendix L: Aggregation Variable Examples 
This appendix contains examples of aggregation variables. Details of how to 
encode and decode aggregation variables are found in Section 2.8, "Aggregation 
Variables". 

Example L.1 Aggregation variable example 1 
dimensions: 
  time = 12 ; 
  level = 1 ; 
  latitude = 73 ; 
  longitude = 144 ; 
  // Fragment array dimensions 
  f_time = 2 ; 
  f_level = 1 ; 
  f_latitude = 1 ; 
  f_longitude = 1 ; 
  // Fragment shape dimensions 
  j = 4 ;         // Equal to the number of aggregated dimensions 
  i = 2 ;         // Equal to the size of the largest fragment array dimension 
 
variables: 
  // Aggregation data variable 
  double temperature ; 
    temperature:standard_name = "air_temperature" ; 
    temperature:units = "K" ; 
    temperature:cell_methods = "time: mean" ; 
    temperature:aggregated_dimensions = "time level latitude longitude" ; 
    temperature:aggregated_data = "location: fragment_location 
                                   address: fragment_address 
                                   shape: fragment_shape" ; 
  // Coordinate variables 
  double time(time) ; 
    time:standard_name = "time" ; 
    time:units = "days since 2001-01-01" ; 
  double level(level) ; 
    level:standard_name = "height_above_mean_sea_level" ; 
    level:units = "m" ; 
  double latitude(latitude) ; 



 

 

    latitude:standard_name = "latitude" ; 
    latitude:units = "degrees_north" ; 
  double longitude(longitude) ; 
    longitude:standard_name = "longitude" ; 
    longitude:units = "degrees_east" ; 
  // Fragment array variables 
  string fragment_location(f_time, f_level, f_latitude, f_longitude) ; 
  string fragment_address ; 
  int fragment_shape(j, i) ; 
 
data: 
  temperature = _ ; 
  time = 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 ; 
  level = ... ; 
  latitude = ... ; 
  longitude = ... ; 
  fragment_location = "January-March.nc", "April-December.nc" ; 
  fragment_address = "temperature" ; 
  fragment_shape = 3, 9, 
                   1, _, 
                   73, _, 
                   144, _ ; 

In this example, the temperature data variable is an aggregation variable. Its four-
dimensional aggregated data with shape (12, 1, 73, 144) is constructed from two 
non-overlapping fragments, with data shapes (3, 1, 73, 144) and (9, 1, 73, 144), 
which span the first 3 and last 9 elements respectively of the time aggregated 
dimension. The fragment dataset locations are relative-path URI references, and 
so in this case are assumed to be in the same location as the aggregation file. 

The data for the level, latitude and longitude variables are omitted for clarity. 

Example L.2 Aggregation variable example 2 
dimensions: 
  time = 12 ; 
  level = 1 ; 
  latitude = 73 ; 
  longitude = 144 ; 
  // Fragment array dimensions 
  f_time = 2 ; 



 

 

  f_level = 1 ; 
  f_latitude = 1 ; 
  f_longitude = 1 ; 
  // Fragment shape dimensions 
  j = 4 ;         // Equal to the number of aggregated dimensions 
  i = 2 ;         // Equal to the size of the largest fragment array dimension 
  // Fragment versions dimension 
  versions = 2 ;  // The maximum number of versions for a fragment 
 
variables: 
  // Aggregation data variable 
  double temperature ; 
    temperature:standard_name = "air_temperature" ; 
    temperature:units = "K" ; 
    temperature:cell_methods = "time: mean" ; 
    temperature:aggregated_dimensions = "time level latitude longitude" ; 
    temperature:aggregated_data = "location: fragment_location 
                                   address: fragment_address 
                                   shape: fragment_shape" ; 
  // Coordinate variables 
  double time ; 
    time:standard_name = "time" ; 
    time:units = "days since 2001-01-01" ; 
  double level(level) ; 
    level:standard_name = "height_above_mean_sea_level" ; 
    level:units = "m" ; 
  double latitude(latitude) ; 
    latitude:standard_name = "latitude" ; 
    latitude:units = "degrees_north" ; 
  double longitude(longitude) ; 
    longitude:standard_name = "longitude" ; 
    longitude:units = "degrees_east" ; 
  // Fragment array variables 
  string fragment_location(f_time, f_level, f_latitude, f_longitude, versions) ; 
  string fragment_address ; 
  int fragment_shape(j, i) ; 
 
data: 
  temperature = _ ; 
  time = 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 ; 



 

 

  level = ... ; 
  latitude = ... ; 
  longitude = ... ; 
  fragment_location = "file://data/January-March.nc", 
                      _, 
                      "file://data/April-December.nc", 
                      "https://remote.host/data/April-December.nc" ; 
  fragment_address = "temperature" ; 
  fragment_address_time = "time" ; 
  fragment_shape = 3, 9, 
                   1, _, 
                   73, _, 
                   144, _ ; 

This example is similar to Aggregation variable example 1, but now the fragment 
dataset locations are absolute URIs, and two versions of the second fragment 
have been provided. The fragment_location variable has the extra trailing 
dimension versions to accommodate the extra fragment version. There is only one 
version of the first fragment, so its trailing dimension is padded with missing 
data. 

The data for the level, latitude and longitude variables are omitted for clarity. 

Example L.3 Aggregation variable example 3 
dimensions: 
  time = 12 ; 
  level = 1 ; 
  latitude = 73 ; 
  longitude = 144 ; 
  // Fragment array dimensions 
  f_time = 2 ; 
  f_level = 1 ; 
  f_latitude = 1 ; 
  f_longitude = 1 ; 
  // Fragment shape dimensions 
  j = 4 ;         // Equal to the number of aggregated dimensions 
  j_time = 1 ;    // Equal to the number of aggregated dimensions for time 
  i = 2 ;         // Equal to the size of the largest fragment array dimension 
  // Fragment versions dimension 
  versions = 2 ;  // The maximum number of versions for a fragment 

Commented [KT23]: Check this.  Isn’t this in conflict with 
the declaration below of an aggregation coordinate variable 
named “time”, which is a scalar.? 



 

 

 
variables: 
  // Aggregation data variable 
  double temperature ; 
    temperature:standard_name = "air_temperature" ; 
    temperature:units = "K" ; 
    temperature:cell_methods = "time: mean" ; 
    temperature:aggregated_dimensions = "time level latitude longitude" ; 
    temperature:aggregated_data = "location: fragment_location 
                                   address: fragment_address 
                                   shape: fragment_shape" ; 
  // Aggregation coordinate variable 
  double time ; 
    time:standard_name = "time" ; 
    time:units = "days since 2001-01-01" ; 
    time:aggregated_dimensions = "time" ; 
    time:aggregated_data = "location: fragment_location 
                            address: fragment_address_time 
                            shape: fragment_shape_time" ; 
  // Coordinate variables 
  double level(level) ; 
    level:standard_name = "height_above_mean_sea_level" ; 
    level:units = "m" ; 
  double latitude(latitude) ; 
    latitude:standard_name = "latitude" ; 
    latitude:units = "degrees_north" ; 
  double longitude(longitude) ; 
    longitude:standard_name = "longitude" ; 
    longitude:units = "degrees_east" ; 
  // Fragment array variables 
  string fragment_location(f_time, f_level, f_latitude, f_longitude, versions) ; 
    fragment_location:substitutions = "${local}: file://data/ 
                                       ${remote}: https://remote.host/data/" ; 
  string fragment_location_time(f_time, versions) ; 
    fragment_location:substitutions = "${local}: file://data/ 
                                       ${remote}: https://remote.host/data/" ; 
  string fragment_address ; 
  string fragment_address_time ; 
  int fragment_shape(j, i) ; 
  int fragment_shape_time(j_time, i) ; Commented [KT24]: Isn’t this supposed to be dimensioned 

time(time)? 



 

 

 
data: 
  temperature = _ ; 
  time = _ ; 
  level = ... ; 
  latitude = ... ; 
  longitude = ... ; 
  fragment_location = "${local}January-March.nc", _, 
                      "${local}April-December.nc", "${remote}April-December.nc" ; 
  fragment_location_time = "${local}January-March.nc", _, 
                           "${local}April-December.nc", "${remote}April-December.nc" ; 
  fragment_address = "temperature" ; 
  fragment_address_time = "time" ; 
  fragment_shape = 3, 9, 
                   1, _, 
                   73, _, 
                   144, _ ; 
  fragment_shape_time = 3, 9 ; 

This example is similar to Aggregation variable example 2, but now the fragment 
dataset locations have been defined using the string substitutions given by the 
substitutions attribute of the fragment_location variable. In addition, time is now an 
aggregation coordinate variable, with its aggregated data being derived from the 
same fragment datasets as temperature. 

The data for the level, latitude and longitude variables are omitted for clarity. 

Example L.4 Aggregation variable example 4 
dimensions: 
  level = 17 ; 
  latitude = 181 ; 
  longitude = 360 ; 
  // Fragment array dimensions 
  f_level = 1 ; 
  f_latitude = 3 ; 
  f_longitude = 2 ; 
  // Fragment shape dimensions 
  j = 3 ;         // Equal to the number of aggregated dimensions 
  i = 3 ;         // Equal to the size of the largest fragment array dimension 
 

Commented [KT25]: A scalar. 

Commented [KT26]: I this should be 180. 



 

 

variables: 
  // Aggregation data variable 
  double temperature ; 
    temperature:standard_name = "air_temperature" ; 
    temperature:units = "K" ; 
    temperature:cell_methods = "time: mean" ; 
    temperature:aggregated_dimensions = "level latitude longitude" ; 
    temperature:aggregated_data = "location: fragment_location 
                                   address: fragment_address 
                                   shape: fragment_shape" ; 
  // Coordinate variables 
  double level(level) ; 
    level:standard_name = "air_pressure" ; 
    level:units = "hPa" ; 
  double latitude(latitude) ; 
    latitude:standard_name = "latitude" ; 
    latitude:units = "degrees_north" ; 
  double longitude(longitude) ; 
    longitude:standard_name = "longitude" ; 
    longitude:units = "degrees_east" ; 
  // Fragment array variables 
  string fragment_location(f_level, f_latitude, f_longitude) ; 
  string fragment_address ; 
  int fragment_shape(j, i) ; 
 
data: 
  temperature = _ ; 
  level = ... ; 
  latitude = ... ; 
  longitude = ... ; 
  fragment_location = "file_A.nc", "file_B.nc", 
                      "file_C.nc", "file_D.nc", 
                      "file_E.nc", "file_F.nc" ; 
  fragment_address = "temperature" ; 
  fragment_shape = 17, _, _, 
                   91, 45, 45, 
                   180, 180, _ ; 

 
Fragment schematic for the above aggregation. 



 

 

A:  [90,0], [0,180] B:  [90-0], [180,360] 

C:  [0,-45], [0,180] D:  [0,-45], [180, 360] 

E:  [-45,-90], [0,180] F:  [-45,-90], [180,360] 

Note that if my alternative “mapping” approach, described above were adopted, 
then for this case with 1x1 deg resolution, the start indices would be:   

 fragment_starts_at:  0, 0, 0, 
  0, 0, 180, 
  0, 90, 0, 
  0, 90, 180, 
  0, 135, 0, 
  0, 135, 180  
 

This example is an encoding for the conceptual fragment array described in 
Schematic representation of a fragment array for aggregated data. The 
temperature data variable is an aggregation of six fragments. The distribution of 
missing values in the fragment_shape variable indicates that the level aggregated 
dimension is spanned by one fragment, the latitude aggregated dimension is 
spanned by three fragments, and the longitude aggregated dimension is spanned 
by two fragments; and that the shape of the implied fragment array is (1, 3, 2). The 
row sums of the fragment_shape variable are 17, 181, and 360, which equal the 
sizes of the level, latitude, and longitude aggregated dimensions, respectively. 

The data for the level, latitude and longitude variables are omitted for clarity. 

 

Example L.5 Aggregation variable example 5 
dimensions: 
  time = 12 ; 
  level = 1 ; 
  latitude = 73 ; 
  longitude = 144 ; 



 

 

  // Fragment array dimensions 
  f_time = 12 ; 
  f_level = 1 ; 
  f_latitude = 2 ; 
  f_longitude = 4 ; 
  // Fragment shape dimensions 
  j = 4 ;         // Equal to the number of aggregated dimensions 
  i = 12 ;        // Equal to the size of the largest fragment array dimension 
 
variables: 
  // Aggregation data variable 
  double temperature ; 
    temperature:standard_name = "air_temperature" ; 
    temperature:units = "K" ; 
    temperature:cell_methods = "time: mean" ; 
    temperature:aggregated_dimensions = "time level latitude longitude" ; 
    temperature:aggregated_data = "location: fragment_location 
                                   address: fragment_address 
                                   shape: fragment_shape" ; 
  double pressure(time, level, latitude, longitude) ; 
    temperature:standard_name = "air_pressure" ; 
    temperature:units = "hPa" ; 
    temperature:cell_methods = "time: mean" ; 
 
  // Coordinate variables 
  double time(time) ; 
    time:standard_name = "time" ; 
    time:units = "days since 2001-01-01" ; 
  double level(level) ; 
    level:standard_name = "height_above_mean_sea_level" ; 
    level:units = "m" ; 
  double latitude(latitude) ; 
    latitude:standard_name = "latitude" ; 
    latitude:units = "degrees_north" ; 
  double longitude(longitude) ; 
    longitude:standard_name = "longitude" ; 
    longitude:units = "degrees_east" ; 
  // Fragment array variables 
  string fragment_location(f_time, f_level, f_latitude, f_longitude) ; 
  string fragment_address ; 



 

 

  int fragment_shape(j, i) ; 
 
data: 
  temperature = _ ; 
  pressure = ...  ; 
  time = 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 ; 
  level = ... ; 
  latitude = ... ; 
  longitude = ... ; 
  fragment_location = ... ; 
  fragment_address = "temperature" ; 
  fragment_shape = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
                   1, _, _, _, _, _, _, _, _, _, _, _, 
                   37, 36, _, _, _, _, _, _, _, _, _, _, 
                   36, 36, 36, 36, _, _, _, _, _, _, _, _ ; 

In this example, the temperature data variable is an aggregation of 96 fragments. 
The implied fragment array shape is (12, 1, 2, 4), indicating that three of the four 
aggregated dimensions are spanned by multiple fragments. The pressure data 
variable is not an aggregation variable. 

The data for the pressure, level, latitude and longitude variables, and the 
fragment_location variable, are omitted for clarity. 

Example L.6 Aggregation variable example 6 
dimensions: 
  station = 3 ; 
  obs = 15000 ; 
  // Fragment array dimensions 
  f_station = 3 ; 
  // Fragment shape dimensions 
  j = 1 ;         // Equal to the number of aggregated dimensions 
  i = 3 ;         // Equal to the size of the largest fragment array dimension 
 
variables: 
  // Aggregation data variable 
  float tas(obs) ; 
    tas:standard_name = "air_temperature" ; 
    tas:units = "K" ; 
    tas:coordinates = "time lat lon alt station_name" ; 



 

 

    tas:aggregated_dimensions = "obs" ; 
    tas:aggregated_data = "location: fragment_location 
                           address: fragment_address 
                           shape: fragment_shape" ; 
  // DSG count variable 
  int row_size(station) ; 
    row_size:long_name = "number of observations per station" ; 
    row_size:sample_dimension = "obs" ; 
 
  // Aggregation auxiliary coordinate variables 
  float time ; 
    time:standard_name = "time" ; 
    time:units = "days since 1970-01-01" ; 
    time:aggregated_dimensions = "obs" ; 
    time:aggregated_data = "location: fragment_location 
                            address: fragment_address_time 
                            shape: fragment_shape" ; 
  float lon(station) ; 
    lon:standard_name = "longitude"; 
    lon:long_name = "station longitude"; 
    lon:units = "degrees_east"; 
    lon:aggregated_dimensions = "station" ; 
    lon:aggregated_data = "location: fragment_location 
                           address: fragment_address_lon 
                           shape: fragment_shape_latlon" ; 
  float lat(station) ; 
    lat:standard_name = "latitude"; 
    lat:long_name = "station latitude" ; 
    lat:units = "degrees_north" ; 
    lat:aggregated_dimensions = "station" ; 
    lat:aggregated_data = "location: fragment_location 
                           address: fragment_address_lat 
                           shape: fragment_shape_latlon" ; 
  // Fragment array variables 
  string fragment_location(f_station) ; 
  string fragment_address ; 
  string fragment_address_time(f_station) ; 
  string fragment_address_lat ; 
  string fragment_address_lon ; 
  int fragment_shape(j, i) ; 



 

 

  int fragment_shape_latlon(j, i) ; 
 
// global attributes: 
  :featureType = "timeSeries" ; 
 
data: 
  tas = _ ; 
  row_size = 5000, 4000, 6000 ; 
  time = _ ; 
  lat = _ ; 
  lon = _ ; 
  fragment_location = "Harwell.nc", "Abingdon.nc", "Lambourne.nc" ; 
  fragment_address = "tas" ; 
  fragment_address_time = "t1", "t2", "t3" ; 
  fragment_address_lat = "lat" ; 
  fragment_address_lon = "lon" ; 
  fragment_shape = 5000, 4000, 6000 ; 
  fragment_shape_latlon = 1, 1, 1 ; 

In this example, three fragments are aggregated into a collection of DSG 
timeseries feature types with contiguous ragged array representation. The 
auxiliary coordinate variables time, lon, and lat are also aggregation variables. 
The time variables in the fragment datasets all have different netCDF variables 
names, which differ from the netCDF name of the time aggregation variable. The 
fragments for all aggregation variables come from the same three fragment 
datasets, in this case. 

No data have been omitted from the CDL. 

Example L.7 Aggregation variable example 7 
dimensions: 
  time = 12 ; 
  level = 1 ; 
  latitude = 73 ; 
  longitude = 144 ; 
  // Fragment array dimensions 
  f_time = 2 ; 
  f_level = 1 ; 
  f_latitude = 1 ; 
  f_longitude = 1 ; 

Commented [KT27]: This is a scalar.i 



 

 

  // Fragment shape dimensions 
  j = 4 ;         // Equal to the number of temperature aggregated dimensions 
  i = 2 ;         // Equal to the size of the largest fragment array dimension 
  j_uid = 1 ;     // Equal to the number of uid aggregated dimensions 
 
variables: 
  // Aggregation data variable 
  double temperature ; 
    temperature:standard_name = "air_temperature" ; 
    temperature:units = "K" ; 
    temperature:cell_methods = "time: mean" ; 
    temperature:ancillary_variables = "uid" ; 
    temperature:aggregated_dimensions = "time level latitude longitude" ; 
    temperature:aggregated_data = "location: fragment_location 
                                   address: fragment_address 
                                   shape: fragment_shape" ; 
  // Aggregation ancillary variable 
  string uid ; 
    uid:long_name = "Fragment dataset unique identifiers" ; 
    uid:missing_value = "N/A" ; 
    uid:aggregated_dimensions = "time" ; 
    uid:aggregated_data = "value: fragment_value_uid 
                           shape: fragment_shape_uid"; 
  // Coordinate variables 
  double time(time) ; 
    time:standard_name = "time" ; 
    time:units = "days since 2001-01-01" ; 
  double level(level) ; 
    level:standard_name = "height_above_mean_sea_level" ; 
    level:units = "m" ; 
  double latitude(latitude) ; 
    latitude:standard_name = "latitude" ; 
    latitude:units = "degrees_north" ; 
  double longitude(longitude) ; 
    longitude:standard_name = "longitude" ; 
    longitude:units = "degrees_east" ; 
  // Fragment array variables 
  string fragment_location(f_time, f_level, f_latitude, f_longitude) ; 
  string fragment_address ; 
  int fragment_shape(j, i) ; 



 

 

  string fragment_value_uid(f_time) ; 
  int fragment_shape_uid(j_uid, i) ; 
 
data: 
  temperature = _ ; 
  uid = _ ; 
  time = 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 ; 
  level = ... ; 
  latitude = ... ; 
  longitude = ... ; 
  fragment_location = "January-March.nc", "April-December.nc" ; 
  fragment_address = "temperature" ; 
  fragment_shape = 3, 9, 
                   1, _, 
                   73, _, 
                   144, _ ; 
  fragment_value_uid = "04b9-7eb5-4046-97b-0bf8", "05ee0-a183-43b3-a67-1eca" ; 
  fragment_shape_uid = 3, 9 ; 

This example is similar to Aggregation variable example 1, but now there is the 
aggregation ancillary variable uid which defines its fragments from the constant 
values stored in the fragment_value_uid variable, that are intended to be broadcast 
across the time aggregated dimension. 

The data for the level, latitude and longitude variables are omitted for clarity. 

Example L.8 Aggregation variable example 8 
dimensions: 
 
variables: 
  // Aggregation data variable 
  double temperature ; 
    temperature:standard_name = "air_temperature" ; 
    temperature:units = "K" ; 
    temperature:cell_methods = "time: mean" ; 
    temperature:aggregated_dimensions = "" ; 
    temperature:aggregated_data = "location: fragment_location 
                                   address: fragment_address 
                                   shape: fragment_shape" ; 
  // Scalar coordinate variables 



 

 

  double time ; 
    time:standard_name = "time" ; 
    time:units = "days since 2001-01-01" ; 
  double height ; 
    level:standard_name = "height" ; 
    level:units = "m" ; 
  double latitude ; 
    latitude:standard_name = "latitude" ; 
    latitude:units = "degrees_north" ; 
  double longitude ; 
    longitude:standard_name = "longitude" ; 
    longitude:units = "degrees_east" ; 
  // Fragment array variables 
  string fragment_location ; 
  string fragment_address ; 
  int fragment_shape ; 
 
data: 
  temperature = _ ; 
  time = 0 ; 
  height = 1.5 ; 
  latitude = 18.53 ; 
  longitude = 73.81 ; 
  fragment_location = "file.nc" ; 
  fragment_address = "tas" ; 
  fragment_shape = 1 ; 

An example of an aggregation variable with scalar aggregated data. 

  


