\sim

~

Installation
 Quickstart
 Guides
 Methods
 DEVELOPMENT
 Modules

Library-free DIA search using the GUI

This tutorial was created using alphaDIA 1.8.1 - please be aware that there might be changes in your version

1. Prerequisites

Make sure that you have a machine with at least 64 gigabytes of memory. Please download the test data for this tutorial here. will be using replicates of label-free bulk DIA data of HeLa digests acquired on the Orbitrap Astral. Also make sure you have a valid alphaDIA installation including the GUI. The easiest option is the one-click installer, and a summary of all installation optic can be found here. Also ensure the right execution engine has been selected and your version is up to date.

2. Project Structure

We will be performing two DIA searches: a first search for library generation and a second search for joined quantification. To accommodate this, we prepare the project directory to have a first_pass and a second_pass folder.

3. First search

To set up the first search, select all raw files and add them to the file list. Also add the FASTA file which will be used for library prediction.

		alphaDIA						
✓ PeptideCentric.v1		▶ Bund	ledExe	cutionEngin	CPU: 14	CPU: 14.47% RAM: 96.84 GB / 128.00 GB (75.		
ŧ	Home	Spectral	Library	0			SELECT FILI	
Method S	Setup	Fasta Fil	e(s) ⑦		2024_01_12_human.fasta 🛞		SELECT FILE	
	Input Files							
	Method Settings	Input File	es 🕜			.d	.raw .wi	
8	Output Files	T REI	MOVE	FILTERS	🕁 EXPORT			
			Index	Туре	Folder	File Name		
			0	raw	/Users/georgwallmann/Documents/data/alphadia	20231024_0A3_TiHe_ADIAMA	_HeLa_200ng_Evo0	
			1	raw	/Users/georgwallmann/Documents/data/alphadia	20231024_0A3_TiHe_ADIAMA	_HeLa_200ng_Evo0	
			2	raw	/Users/georgwallmann/Documents/data/alphadia	20231024_0A3_TiHe_ADIAMA	_HeLa_200ng_Evo0	
			3	raw	/Users/georgwallmann/Documents/data/alphadia	20231023_0A3_TiHe_ADIAMA	HeLa_200ng_Evo0	
			4	raw	/Users/georgwallmann/Documents/data/alphadia	20231023_0A3_TiHe_ADIAMA	_HeLa_200ng_Evo0	
			5	raw	/Users/georgwallmann/Documents/data/alphadia	20231023_0A3_TiHe_ADIAMA	_HeLa_200ng_Evo0	
2	Console Output							
»	Run Workflow							
~	Abort				R	Rows per page: 100 👻 1-	-6 of 6 <	

For this search, most parameters can be left at their default values. To speed up processing, set thread_count to the number logical cores you have available in your system. Also enable library prediction from FASTA and set the precursor_mz range to t range of the dataset 380 - 980 to predict only the relevant subset of precursors. By default, this search will have Carbamidomethyl@C as a fixed modification and up to two variable modifications of <code>Oxidation@M</code> and <code>Acetyl@Protein_N-term</code>.

For the search, we will use known target_ms1_tolerance of 4ppm and target_ms2_tolerance of 7ppm. These values are optim for Orbitrap Astral data and can be reused. For lower resolution instruments, 10ppm or 15ppm might be optimal. If the optimal mass tolerance is not known, it can be set to 0 to activate automatic optimization. We recommend noting down the optimized value across multiple runs and reusing it for the same instrument/resolution combination. The target_rt_tolerance will also b to 0 for automatic optimization. Lastly, we increase the number of peak groups target_num_candidates to use for deep-learnin based scoring to 3.

Start the first search by clicking the "Run Workflow" button. This will take between one and two hours depending on your syst

4. Second search

For the second search, we will use the library generated in the first search to quantify precursors across samples. Load all raw files as previously but remove the FASTA file. Instead, select the speclib.mbr.hdf as the spectral library.

•••					alphaDIA	
▼ Pept	tideCentric.v1	▶ Bun	dledEx	ecutionEngi	ne	CPU: 18.65% RAM: 50.82 GB / 128.00 GB (39
A	Home	Spectra	al Library	0	speclib.mbr.hdf 💿	SELECT FIL
Method	Setup	Fasta F	ile(s))		SELECT FIL
	Input Files					
Ø	Method Settings	Input F	ïles			.d .raw .w
•	Output Files	T R	EMOVE		L EXPORT	
			Index	Туре	Folder	File Name
			0	raw	/Users/georgwallmann/Documents/data/alphadia_tutorials,	/libfr 20231024_0A3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F-4
			1	raw	/Users/georgwallmann/Documents/data/alphadia_tutorials,	/libfr 20231024_0A3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F-4
			2	raw	/Users/georgwallmann/Documents/data/alphadia_tutorials,	/libfr 20231024_0A3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F-4
			3	raw	/Users/georgwallmann/Documents/data/alphadia_tutorials,	/libfr 20231023_0A3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F-4
			4	raw	/Users/georgwallmann/Documents/data/alphadia_tutorials,	/libfr 20231023_0A3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F-4
			5	raw	/Users/georgwallmann/Documents/data/alphadia_tutorials	/libfr 20231023_0A3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F-4
	Console Outout					
ت	console output					
»	Run Workflow					Rows par page: 100 - 1-6 of 6
~	Abort					nows per page. Too + T=0010

For the second search, configure the thread_count, target_ms1_tolerance, and target_ms2_tolerance as before. Do not activ library prediction and instead set the inference_strategy to library to reuse the protein grouping from the first search. In the second search, it can be beneficial to increase the number of peak groups target_num_candidates to 5. Values larger than 5 most likely not have an effect, and we expect that future versions of alphaDIA will have an improved peak group selection mak this step unnecessary.

			alphaDIA					
▼ Pept	tideCentric.v1	BundledExecutionEngine		CPU	: 18.74% RAM: 50.	.41 GB / 128.0	0 GB (39.38	
f	Home	► General		► Library prediction				
Method	Setup	Number of Threads	12	Predict Library				
	Input Files	Reuse Ion Quantities		Enzyme		trypsin	~	
-	mpartnes	Use GPU	\checkmark	Fixed modifications		Carbamidomethyl@C		
	Method Settings	Log Level	INFO	 Variable modifications 		Oxidation@	M;Acetyl@F	
8	Output Files			Maximum variable modi	fications	2		
	oupurneo	Search		Missed cleavages		1		
		MS1 Tolerance	4	Precursor length		7	35	
		MS2 Tolerance	7	Precursor charge		2	4	
		Mobility Tolerance	0	Precursor mz		380	980	
		RT Tolerance	0	Fragment mz		200	2000	
		Channel Filter		Fragment types		b;y		
		Exclude Shared Ions		Maximum fragment cha	rge	2		
		Compete for Fragments		Normalized collision ene	ergy	25		
		Number of Candidates	5	Instrument		Lumos	-	
		Quant window	3	PeptDeep Model Path		SELEC	T FOLDER	
		Use all MS2 observations		PeptDeep Model Type		generic	*	
		► False Discovery Rate Correction		✓ Initial Search Setting	js			
		FDR	0,01					
>_	Console Output	Inference Level	proteins					
	Rup Workflow	Inference Strategy	library	•				
	Null Workhow	Channel wise FDR		 Search output 				
×	Abort	Keep Decoys						

Finally, start the search as before. This search will take only around 2 minutes per file.

5. Results

In the end, both folders should contain a full search output. Use the precursor-level file precursors.tsv or the protein matrix in pg.matrix.tsv for any downstream analysis.

v 🛅 raw_data	Today, 15:01		Folder
20231023_0A3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F-40_i0_after_01.raw	October 23, 2023, 16:33	2,96 GB	AdobeRa
20231023_0A3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F-40_i0_after_02.raw	October 23, 2023, 16:57	2,88 GB	AdobeRa
20231023_0A3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F-40_i0_after_03.raw	October 23, 2023, 17:21	2,86 GB	AdobeRa
20231024_OA3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F-40_iO_before_01.raw	October 24, 2023, 11:24	3 GB	AdobeRa
20231024_OA3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F-40_iO_before_02.raw	October 24, 2023, 11:48	3,03 GB	AdobeRa
20231024_OA3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F-40_iO_before_03.raw	October 24, 2023, 12:12	3 GB	AdobeRa
c 2024_01_12_human.fasta	Today, 15:01	13,7 MB	Visualocu
✓ ■ first_pass	Today, 17:14		Folder
👔 config.yaml	Today, 15:58	3 KB	YAML
> 🛅 .progress	Today, 17:04		Folder
speclib.hdf	Today, 17:13	1,95 GB	Document
🔄 stat.tsv	Today, 17:14	967 bytes	TSV Docur
🔄 internal.tsv	Today, 17:14	548 bytes	TSV Docum
📗 pg.matrix.tsv	Today, 17:14	901 KB	TSV Docum
precursors.tsv	Today, 17:14	524,7 MB	TSV Docum
🛐 log.txt	Today, 17:14	234 KB	Plain Text
speclib.mbr.hdf	Today, 17:18	69,5 MB	Document
✓ ■ second_pass	Today, 17:30		Folder
👔 config.yaml	Today, 17:18	3 KB	YAML
> 🛅 .progress	Today, 17:27		Folder
speclib.hdf	Today, 17:29	69,5 MB	Document
🔄 stat.tsv	Today, 17:29	972 bytes	TSV Docur
📑 internal.tsv	Today, 17:29	547 bytes	TSV Docur
📗 pg.matrix.tsv	Today, 17:30	905 KB	TSV Docum
i precursors.tsv	Today, 17:30	624,4 MB	TSV Docum
speclib.mbr.hdf	Today, 17:30	69,4 MB	Document
log.txt	Today, 17:30	256 KB	Plain Text

You can get a quick overview from the contents of the stat.tsv file. This two-step search strategy resulted in more than 115,(precursors and 9,300 protein groups across the six files.

run	channel	precursors	proteins	ms1_accuracy	fv
20231024_OA3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F- 40_iO_before_03	0	118286	9356	0.597696	2.
20231024_OA3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F- 40_iO_before_02	0	120276	9362	0.594870	2.
20231024_OA3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F- 40_iO_before_01	0	119902	9355	0.596190	2.
20231023_0A3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F- 40_i0_after_03	0	118977	9352	0.589555	2.
20231023_0A3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F- 40_i0_after_02	0	116552	9359	0.590638	2.
20231023_0A3_TiHe_ADIAMA_HeLa_200ng_Evo01_21min_F- 40_i0_after_01	0	120054	9355	0.583652	2.

Copyright © 2024, Mann Labs

Made with Sphinx and @pradyunsg's Furo