
DRAFT

OpenSHMEM
Application Programming Interface

http://www.openshmem.org/

Version 1.6

11th October 2024

Development by

• For a current list of contributors and collaborators please see
http://www.openshmem.org/site/Contributors/

• For a current list of OpenSHMEM implementations and tools, please see
http://openshmem.org/site/Links#impl/

http://www.openshmem.org/
http://www.openshmem.org/site/Contributors/
http://openshmem.org/site/Links#impl/

DRAFT

1.6 — DRAFT —

Sponsored by

• U.S. Department of Defense (DoD)
http://www.defense.gov/

• Oak Ridge National Laboratory (ORNL)
http://www.ornl.gov/

• Los Alamos National Laboratory (LANL)
http://www.lanl.gov/

Authors and Collaborators

This document is a collaborative effort consisting of several releases of OpenSHMEM versions 1.0 through 1.6. This
section lists the authors and contributors in reverse chronological order, starting with OpenSHMEM 1.6.

OpenSHMEM 1.6

• Ferrol Aderholdt, NVIDIA

• Muhammad Awad, Advanced Micro Devices
(AMD)

• Matthew Baker, ORNL

• Swen Boehm, ORNL

• Aurelien Bouteiller, University of Tennessee at
Knoxville (UTK)

• Mark Brown, Intel

• Bob Cernohous, Hewlett Packard Enterprise (HPE)

• Matthew Davis, Georgia Tech

• James Dinan1, NVIDIA

• Megan Grodowitz, Arm Inc.

• Max Grossman, Georgia Tech

• Yanfei Guo, Argonne National Laboratory (ANL)

• Khaled Hamidouche, NVIDIA

• Jeff Hammond, NVIDIA

• Akihiro Hayashi, Georgia Tech

• Oscar Hernandez, ORNL

• Kieran Holland, Intel

• Robert Kierski, HPE

• Bryant Lam, DoD

• Akhil Langer, NVIDIA

• Jens Manser, DoD

• Tiffany M. Mintz, ORNL

• Bryan Morgan, Intel

• William Okuno2, HPE

• David Ozog5, Intel

• Nicholas Park, DoD

• Wendy Poole, LANL

• Steve Poole6, Open Source Software Solutions
(OSSS)

• Swaroop Pophale, ORNL

• Sreeram Potluri, NVIDIA

• Brandon Potter4, AMD

• Howard Pritchard, LANL

• Md. Wasi-ur- Rahman11, Intel

• Naveen Ravichandrasekaran9, HPE

• Michael Raymond, HPE

• Elliot Ronaghan8, HPE

• James Ross, Army Research Laboratory (ARL)

• Pavel Shamis, NVIDIA

• Sameer Shende, University of Oregon (UO)

• Danielle Sikich, HPE

• Brian Smith, Cornelis Networks

• Lawrence Stewart7, Intel

• Zach Tiffany, NVIDIA

• Manjunath Gorentla Venkata10, NVIDIA

• Kevin Waters3, DoD

• Aaron Welch, ORNL

• Nathan Wichmann, HPE

• Jeffrey Young, Georgia Tech

ii

http://www.defense.gov/
http://www.ornl.gov/
http://www.lanl.gov/

DRAFT

1.6 — DRAFT —

OpenSHMEM 1.5

• Matthew Baker, ORNL

• Swen Boehm, ORNL

• Aurelien Bouteiller, UTK

• Barbara Chapman, Stonybrook University (SBU)

• Bob Cernohous, HPE

• James Culhane, LANL

• Tony Curtis, SBU

• James Dinan1 2, NVIDIA

• Mike Dubman, Mellanox

• Anshuman Goswami, NVIDIA

• Megan Grodowitz, Arm Inc.

• Max Grossman, Georgia Tech

• Khaled Hamidouche, AMD

• Jeff Hammond, Intel

• Yossi Itigin, Mellanox

• Bryant Lam3, DoD

• Akhil Langer, NVIDIA

• John Linford4, Arm Inc.

• Jens Manser, DoD

• Tiffany M. Mintz, ORNL

• David Ozog, Intel

• Nicholas Park5, DoD

• Steve Poole6, OSSS

• Wendy Poole, LANL

• Swaroop Pophale, ORNL

• Sreeram Potluri, NVIDIA

• Howard Pritchard, LANL

• Md. Wasi-ur- Rahman4, Intel

• Naveen Ravichandrasekaran7, HPE

• Michael Raymond8, HPE

• James Ross, ARL

• Pavel Shamis9, Arm Inc.

• Sameer Shende, UO

• Min Si, ANL

• Manjunath Gorentla Venkata10 11, Mellanox

OpenSHMEM 1.4

OpenSHMEM 1.4 is dedicated to the memory of David Charles Knaak. David was a highly involved colleague and
contributor to the entire OpenSHMEM project. He will be missed.

• Matthew Baker, ORNL

• Swen Boehm, ORNL

• Aurelien Bouteiller, UTK

• Barbara Chapman, SBU

• Bob Cernohous, Cray Inc.

• James Culhane, LANL

• Tony Curtis, SBU

• James Dinan, Intel

• Mike Dubman, Mellanox

• Manjunath Gorentla Venkata, ORNL

• Max Grossman, Rice University

• Khaled Hamidouche, AMD

• Jeff Hammond, Intel

• Yossi Itigin, Mellanox

• Bryant Lam, DoD

• David Knaak, Cray Inc.
1OpenSHMEM Document Editor
2Teams and Contexts Committee Chair
3Back Matter Committee Chair
4Profiling Committee Co-chair
5Collectives Committee Chair
6OpenSHMEM Specification Committee Chair
7Synchronization, Ordering, and Locking Committee Chair
8Front Matter Committee Chair
9RMA, AMO, and Signals Committee Chair

10OpenSHMEM Specification Committee Secretary
11Library Setup, Threads, and Memory Committee Chair

iii

DRAFT

1.6 — DRAFT —

• Jeff Kuehn, LANL

• Jens Manser, DoD

• Tiffany M. Mintz, ORNL

• David Ozog, Intel

• Nicholas Park, DoD

• Steve Poole, OSSS

• Wendy Poole, OSSS

• Swaroop Pophale, ORNL

• Sreeram Potluri, NVIDIA

• Howard Pritchard, LANL

• Naveen Ravichandrasekaran, Cray Inc.

• Michael Raymond, HPE

• James Ross, ARL

• Pavel Shamis, ARM Inc.

• Sameer Shende, UO

OpenSHMEM 1.3

• Monika ten Bruggencate, Cray Inc.

• Matthew Baker, ORNL

• Barbara Chapman, University of Houston (UH)

• Tony Curtis, UH

• Eduardo D’Azevedo, ORNL

• James Dinan, Intel

• Karl Feind, Silicon Graphics International (SGI)

• Manjunath Gorentla Venkata, ORNL

• Jeff Hammond, Intel

• Oscar Hernandez, ORNL

• David Knaak, Cray Inc.

• Gregory Koenig, ORNL

• Jeff Kuehn, LANL

• Graham Lopez, ORNL

• Jens Manser, DoD

• Tiffany M. Mintz, ORNL

• Nicholas Park, DoD

• Steve Poole, OSSS

• Wendy Poole, OSSS

• Swaroop Pophale, ORNL

• Michael Raymond, SGI

• Pavel Shamis, ORNL

• Sameer Shende, UO

• Aaron Welch, ORNL

OpenSHMEM 1.2

• Monika ten Bruggencate, Cray Inc.

• Barbara Chapman, UH

• Tony Curtis, UH

• Eduardo D’Azevedo, ORNL

• James Dinan, Intel

• Karl Feind, SGI

• Manjunath Gorentla Venkata, ORNL

• Jeff Hammond, Intel

• Oscar Hernandez, ORNL

• David Knaak, Cray Inc.

• Gregory Koenig, ORNL

• Jeff Kuehn, LANL

• Graham Lopez, ORNL

• Jens Manser, DoD

• Nick Park, DoD

• Steve Poole, OSSS

• Swaroop Pophale, Mellanox

• Michael Raymond, SGI

• Pavel Shamis, ORNL

• Sameer Shende, UO

OpenSHMEM 1.1

• Monika ten Bruggencate, Cray Inc.

• Barbara Chapman, UH

• Tony Curtis, UH

• Eduardo D’Azevedo, ORNL

iv

DRAFT

1.6 — DRAFT —

• Karl Feind, SGI

• Manjunath Gorentla Venkata, ORNL

• Oscar Hernandez, ORNL

• Gregory Koenig, ORNL

• Jeff Kuehn, LANL

• Jens Manser, DoD

• Nick Park, DoD

• Stephen Poole, ORNL

• Swaroop Pophale, UH

• Michael Raymond, SGI

• Pavel Shamis, ORNL

OpenSHMEM 1.0

• Amrita Banerjee, UH

• Barbara Chapman, UH

• Tony Curtis, UH

• Karl Feind, SGI

• Jeff Kuehn, ORNL

• Ricardo Mauricio, UH

• Ram Nanjegowda, UH

• Stephen Poole, ORNL

• Swaroop Pophale, UH

• Lauren Smith, DoD

Acknowledgments

The OpenSHMEM specification belongs to Open Source Software Solutions, Inc. (OSSS), a nonprofit organization,
under an agreement with HPE. Permission to copy without fee all or part of this material is granted, provided the OSSS
notice and the title of this document appear, and notice is given that copying is by permission of OSSS. For a current
list of Contributors and Collaborators, please see http://www.openshmem.org/site/Contributors/. We
gratefully acknowledge support from Oak Ridge National Laboratory’s Extreme Scale Systems Center and the contin-
uing support of the Department of Defense.

We would also like to acknowledge the contribution of the members of the OpenSHMEM mailing list for their ideas,
discussions, suggestions, and constructive criticism which has helped us improve this document.

v

http://www.openshmem.org/site/Contributors/

DRAFT
Contents

1 The OpenSHMEM Effort . 1
2 Programming Model Overview . 1
3 Memory Model . 3

3.1 Pointers to Symmetric Objects . 4
3.2 Atomicity Guarantees . 5

4 Execution Model . 7
4.1 Progress of OpenSHMEM Operations . 8
4.2 Invoking OpenSHMEM Operations . 8

5 Language Bindings and Conformance . 8
6 Library Constants . 9
7 Library Handles . 14
8 Environment Variables . 15
9 OpenSHMEM Library API . 17

9.1 Library Setup, Exit, and Query Routines . 17
9.1.1 SHMEM_INIT . 17
9.1.2 SHMEM_MY_PE . 18
9.1.3 SHMEM_N_PES . 19
9.1.4 SHMEM_FINALIZE . 19
9.1.5 SHMEM_QUERY_INITIALIZED . 21
9.1.6 SHMEM_GLOBAL_EXIT . 21
9.1.7 SHMEM_PE_ACCESSIBLE . 22
9.1.8 SHMEM_ADDR_ACCESSIBLE . 23
9.1.9 SHMEM_PTR . 24
9.1.10 SHMEM_TEAM_PTR . 25
9.1.11 SHMEM_INFO_GET_VERSION . 25
9.1.12 SHMEM_INFO_GET_NAME . 26
9.1.13 START_PES . 27

9.2 Thread Support . 27
9.2.1 SHMEM_INIT_THREAD . 28
9.2.2 SHMEM_QUERY_THREAD . 29

9.3 Memory Management Routines . 30
9.3.1 SHMEM_MALLOC . 30
9.3.2 SHMEM_FREE . 31
9.3.3 SHMEM_REALLOC . 31
9.3.4 SHMEM_ALIGN . 32
9.3.5 SHMEM_MALLOC_WITH_HINTS . 33
9.3.6 SHMEM_CALLOC . 34

9.4 Team Management Routines . 35
9.4.1 SHMEM_TEAM_MY_PE . 36
9.4.2 SHMEM_TEAM_N_PES . 36
9.4.3 SHMEM_TEAM_CONFIG_T . 37
9.4.4 SHMEM_TEAM_GET_CONFIG . 38
9.4.5 SHMEM_TEAM_TRANSLATE_PE . 38

vi

DRAFT

1.6 — DRAFT —

9.4.6 SHMEM_TEAM_SPLIT_STRIDED . 40
9.4.7 SHMEM_TEAM_SPLIT_2D . 42
9.4.8 SHMEM_TEAM_DESTROY . 45

9.5 Communication Management Routines . 46
9.5.1 SHMEM_CTX_CREATE . 47
9.5.2 SHMEM_TEAM_CREATE_CTX . 48
9.5.3 SHMEM_CTX_DESTROY . 50
9.5.4 SHMEM_CTX_GET_TEAM . 54

9.6 Remote Memory Access Routines . 54
9.6.1 Blocking Remote Memory Access Routines . 55

9.6.1.1 SHMEM_PUT . 55
9.6.1.2 SHMEM_P . 57
9.6.1.3 SHMEM_IPUT . 58
9.6.1.4 SHMEM_IBPUT . 59
9.6.1.5 SHMEM_GET . 60
9.6.1.6 SHMEM_G . 61
9.6.1.7 SHMEM_IGET . 62
9.6.1.8 SHMEM_IBGET . 63

9.6.2 Nonblocking Remote Memory Access Routines 64
9.6.2.1 SHMEM_PUT_NBI . 64
9.6.2.2 SHMEM_GET_NBI . 65

9.7 Atomic Memory Operations . 67
9.7.1 Blocking Atomic Memory Operations . 67

9.7.1.1 SHMEM_ATOMIC_FETCH . 67
9.7.1.2 SHMEM_ATOMIC_SET . 69
9.7.1.3 SHMEM_ATOMIC_COMPARE_SWAP 70
9.7.1.4 SHMEM_ATOMIC_SWAP . 71
9.7.1.5 SHMEM_ATOMIC_FETCH_INC 73
9.7.1.6 SHMEM_ATOMIC_INC . 74
9.7.1.7 SHMEM_ATOMIC_FETCH_ADD 75
9.7.1.8 SHMEM_ATOMIC_ADD . 77
9.7.1.9 SHMEM_ATOMIC_FETCH_AND 78
9.7.1.10 SHMEM_ATOMIC_AND . 79
9.7.1.11 SHMEM_ATOMIC_FETCH_OR . 79
9.7.1.12 SHMEM_ATOMIC_OR . 80
9.7.1.13 SHMEM_ATOMIC_FETCH_XOR 81
9.7.1.14 SHMEM_ATOMIC_XOR . 81

9.7.2 Nonblocking Atomic Memory Operations . 82
9.7.2.1 SHMEM_ATOMIC_FETCH_NBI 82
9.7.2.2 SHMEM_ATOMIC_COMPARE_SWAP_NBI 83
9.7.2.3 SHMEM_ATOMIC_SWAP_NBI . 84
9.7.2.4 SHMEM_ATOMIC_FETCH_INC_NBI 85
9.7.2.5 SHMEM_ATOMIC_FETCH_ADD_NBI 86
9.7.2.6 SHMEM_ATOMIC_FETCH_AND_NBI 86
9.7.2.7 SHMEM_ATOMIC_FETCH_OR_NBI 87
9.7.2.8 SHMEM_ATOMIC_FETCH_XOR_NBI 88

9.8 Signaling Operations . 89
9.8.1 Atomicity Guarantees for Signaling Operations 89
9.8.2 Available Signal Operators . 90
9.8.3 SHMEM_PUT_SIGNAL . 90
9.8.4 SHMEM_PUT_SIGNAL_NBI . 92
9.8.5 SHMEM_SIGNAL_ADD . 93
9.8.6 SHMEM_SIGNAL_FETCH . 94
9.8.7 SHMEM_SIGNAL_SET . 95

vii

DRAFT

1.6 — DRAFT —

9.9 Session Routines . 95
9.9.1 SHMEM_CTX_SESSION_CONFIG_T . 96
9.9.2 SHMEM_CTX_SESSION_START . 97
9.9.3 SHMEM_CTX_SESSION_STOP . 98

9.10 Collective Routines . 100
9.10.1 SHMEM_BARRIER_ALL . 102
9.10.2 SHMEM_BARRIER . 103
9.10.3 SHMEM_SYNC . 104
9.10.4 SHMEM_SYNC_ALL . 107
9.10.5 SHMEM_ALLTOALL . 108
9.10.6 SHMEM_ALLTOALLS . 110
9.10.7 SHMEM_BROADCAST . 113
9.10.8 SHMEM_COLLECT, SHMEM_FCOLLECT 115
9.10.9 SHMEM_REDUCTIONS . 118

9.10.9.1 AND . 118
9.10.9.2 OR . 119
9.10.9.3 XOR . 120
9.10.9.4 MAX . 120
9.10.9.5 MIN . 121
9.10.9.6 SUM . 121
9.10.9.7 PROD . 122

9.10.10 SHMEM_SCAN . 125
9.11 Point-To-Point Synchronization Routines . 127

9.11.1 SHMEM_WAIT_UNTIL . 127
9.11.2 SHMEM_WAIT_UNTIL_ALL . 129
9.11.3 SHMEM_WAIT_UNTIL_ANY . 130
9.11.4 SHMEM_WAIT_UNTIL_SOME . 132
9.11.5 SHMEM_WAIT_UNTIL_ALL_VECTOR . 134
9.11.6 SHMEM_WAIT_UNTIL_ANY_VECTOR . 135
9.11.7 SHMEM_WAIT_UNTIL_SOME_VECTOR 137
9.11.8 SHMEM_TEST . 138
9.11.9 SHMEM_TEST_ALL . 139
9.11.10 SHMEM_TEST_ANY . 141
9.11.11 SHMEM_TEST_SOME . 142
9.11.12 SHMEM_TEST_ALL_VECTOR . 144
9.11.13 SHMEM_TEST_ANY_VECTOR . 145
9.11.14 SHMEM_TEST_SOME_VECTOR . 146
9.11.15 SHMEM_SIGNAL_WAIT_UNTIL . 148

9.12 Memory Ordering Routines . 148
9.12.1 SHMEM_FENCE . 149
9.12.2 SHMEM_QUIET . 150
9.12.3 SHMEM_PE_QUIET . 152
9.12.4 Synchronization and Communication Ordering in OpenSHMEM 152

9.13 Distributed Locking Routines . 156
9.13.1 SHMEM_LOCK . 156

10 OpenSHMEM Profiling Interface . 157
10.1 Control of Profiling . 158

10.1.1 SHMEM_PCONTROL . 158
10.2 Example Implementations . 159

10.2.1 Profiler . 159
10.2.2 OpenSHMEM Library . 159

10.3 Limitations . 160
10.3.1 Multiple Counting . 160
10.3.2 Separate Build and Link . 160

viii

DRAFT

1.6 — DRAFT —

10.3.3 C11 Type-Generic Interfaces . 161

A Writing OpenSHMEM Programs 162

B Compiling and Running Programs 164
B.1 Compilation . 164
B.2 Running Programs . 164

C Undefined Behavior in OpenSHMEM 165

D Interoperability with Other Programming Models 167
D.1 MPI Interoperability . 167

D.1.1 Initialization . 167
D.1.2 Dynamic Process Creation . 168
D.1.3 Thread Safety . 168
D.1.4 Mapping Process Identification Numbers . 168
D.1.5 RMA Programming Models . 170
D.1.6 Communication Progress . 170

E History of OpenSHMEM 171

F Deprecated API 172
F.1 Overview . 172
F.2 Deprecation Rationale . 173

F.2.1 Header Directory: mpp . 173
F.2.2 C/C++: start_pes . 174
F.2.3 Implicit Finalization . 174
F.2.4 C/C++: _my_pe, _num_pes, shmalloc, shfree, shrealloc, shmemalign 174
F.2.5 Fortran: START_PES, MY_PE, NUM_PES . 174
F.2.6 Fortran: SHMEM_PUT . 174
F.2.7 SHMEM_CACHE . 174
F.2.8 _SHMEM_* Library Constants . 174
F.2.9 SMA_* Environment Variables . 175
F.2.10 C/C++: shmem_wait . 175
F.2.11 C/C++: shmem_wait_until . 175
F.2.12 C11 and C/C++: shmem_fetch, shmem_set, shmem_cswap, shmem_swap, shmem_finc, shmem_inc,

shmem_fadd, shmem_add . 175
F.2.13 Fortran API . 175
F.2.14 Active-set-based library constants and collectives . 176
F.2.15 C/C++: shmem_barrier . 176
F.2.16 C11 and C/C++: short and unsigned short variants of shmem_wait_until and shmem_test . . 176
F.2.17 Table 12: point-to-point synchronization types . 177

G Changes to this Document 178
G.1 Version 1.6 . 178
G.2 Version 1.5 . 179
G.3 Version 1.4 . 181
G.4 Version 1.3 . 183
G.5 Version 1.2 . 184
G.6 Version 1.1 . 185

H Errata 187
H.1 Version 1.5 . 187

Glossary 188

ix

DRAFT

1.6 — DRAFT —

Index 189

x

DRAFT

CONTENTS 1

1 The OpenSHMEM Effort

OpenSHMEM is a Partitioned Global Address Space (PGAS) library interface specification. OpenSHMEM aims to
provide a standard Application Programming Interface (API) for SHMEM libraries to aid portability and facilitate
uniform predictable results of OpenSHMEM programs by explicitly stating the behavior and semantics of the Open-
SHMEM library calls. Through the different versions, OpenSHMEM will continue to address the requirements of the
PGAS community. As of this specification, many existing vendors support OpenSHMEM-compliant implementations
and new vendors are developing OpenSHMEM library implementations to help the users write portable OpenSHMEM
code. This ensures that programs can run on multiple platforms without having to deal with subtle vendor-specific
implementation differences. For more details on the history of OpenSHMEM please refer to the History of Open-
SHMEM section.
The OpenSHMEM1 effort is driven by the DoD with continuous input from the OpenSHMEM community. To see all of
the contributors and participants for the OpenSHMEM API, please see: http://www.openshmem.org/site/
Contributors. In addition to the specification, the effort includes a reference OpenSHMEM implementation,
validation and verification suites, tools, a mailing list and website infrastructure to support specification activities. For
more information please refer to: http://www.openshmem.org/.

2 Programming Model Overview

OpenSHMEM implements PGAS by defining remotely accessible data objects as mechanisms to share information
among OpenSHMEM processes, or Processing Elements (PEs), and private data objects that are accessible by only the
PE itself. The API allows communication and synchronization operations on both private (local to the PE initiating
the operation) and remotely accessible data objects. A remote PE is defined as any PE whose remotely accessible data
objects are accessible to the PE initiating an operation and may include the initiating PE. The key feature of Open-
SHMEM is that data transfer operations are one-sided in nature. This means that a local PE executing a data transfer
routine does not require the participation of the remote PE to complete the routine. This allows for overlap between
communication and computation to hide data transfer latencies, which makes OpenSHMEM ideal for unstructured,
small-to-medium-sized data communication patterns. The OpenSHMEM library has the potential to provide a low-
latency, high-bandwidth communication API for use in highly parallelized scalable programs.
OpenSHMEM’s interfaces can be used to implement Single Program Multiple Data (SPMD) style programs. It pro-
vides interfaces to start the OpenSHMEM PEs in parallel and communication and synchronization interfaces to access
remotely accessible data objects across PEs. These interfaces can be leveraged to divide a problem into multiple
sub-problems that can be solved independently or with coordination using the communication and synchronization
interfaces. The OpenSHMEM specification defines library calls, constants, variables, and language bindings for C.
The C++ interface is currently the same as that for C. Unlike Unified Parallel C, Fortran 2008, Titanium, X10, and
Chapel, which are all PGAS languages, OpenSHMEM relies on the user to use the library calls to implement the
correct semantics of its programming model.
An overview of the OpenSHMEM routines is described below:

1. Library Setup and Query

(a) Initialization: The OpenSHMEM library environment is initialized, where the PEs are either single or
multithreaded.

(b) Query: The local PE may get the number of PEs running the same program and its unique integer identifier.
(c) Accessibility: The local PE can find out if a remote PE is executing the same binary, or if a particular

symmetric data object can be accessed by a remote PE, or may obtain a pointer to a symmetric data object
on the specified remote PE on shared memory systems.

2. Symmetric Data Object Management

(a) Allocation: All executing PEs must collectively participate in the allocation of a symmetric data object with
identical arguments.

1The OpenSHMEM specification is owned by Open Source Software Solutions Inc., a nonprofit organization, under an agreement with HPE.

http://www.openshmem.org/site/Contributors
http://www.openshmem.org/site/Contributors
http://www.openshmem.org/

DRAFT

CONTENTS 2

(b) Deallocation: All executing PEs must collectively participate in the deallocation of the same symmetric
data object with identical arguments.

(c) Reallocation: All executing PEs must collectively participate in the reallocation of the same symmetric
data object with identical arguments.

3. Communication Management

(a) Contexts: Contexts are containers for communication operations. Each context provides an environment
where the operations performed on that context are ordered and completed independently of other opera-
tions performed by the application.

4. Team Management

(a) Teams: Teams are PE subsets created by grouping a set of PEs. Teams are involved in both collective and
point-to-point communication operations. Collective communication operations are performed on all PEs
in a valid team and point-to-point communication operations are performed between a local and remote PE
with team-based PE numbering through team-based contexts.

5. Remote Memory Access (RMA)

(a) Put: The local PE specifies the source data object, private or symmetric, that is copied to the symmetric
data object on the remote PE.

(b) Get: The local PE specifies the symmetric data object on the remote PE that is copied to a data object,
private or symmetric, on the local PE.

6. Atomic Memory Operations (AMOs)

(a) Fetch: The PE initiating the fetch returns the value of the symmetric data object on the remote PE.

(b) Set: The PE initiating the set copies a new value to the symmetric data object on the remote PE.

(c) Swap: The PE initiating the swap copies a new value to the symmetric data object on the remote PE and
returns the old value.

(d) Increment: The PE initiating the increment adds 1 to the symmetric data object on the remote PE.

(e) Add: The PE initiating the add specifies the value to be added to the symmetric data object on the remote
PE.

(f) Bitwise Operations: The PE initiating the bitwise operation specifies the operand value to the bitwise
operation to be performed on the symmetric data object on the remote PE.

(g) Compare and Swap: The PE initiating the compare and swap conditionally copies a new value to the
symmetric data object on the remote PE and returns the old value.

(h) Fetch and Increment: The PE initiating the increment adds 1 to the symmetric data object on the remote
PE and returns the old value.

(i) Fetch and Add: The PE initiating the add specifies the value to be added to the symmetric data object on
the remote PE and returns the old value.

(j) Fetch and Bitwise Operations: The PE initiating the bitwise operation specifies the operand value to the
bitwise operation to be performed on the symmetric data object on the remote PE and returns the old value.

7. Signaling Operations

(a) Put Signal: The local PE specifies the source data object to be copied to the symmetric data object on
the remote PE and another symmetric data object on the remote PE is subsequently updated to signal
completion.

(b) Signal Add: The local PE specifies a value to be added to the symmetric data object on the remote PE.

(c) Signal Set: The local PE specifies a value to be copied to the symmetric data object on the remote PE.

(d) Signal Fetch: The local PE returns the value of a local data object.

DRAFT

CONTENTS 3

8. Session Management

(a) Sessions: Sessions are a mechanism for the application to inform the implementation about an upcoming
sequence of operations that exhibit a pattern that may be suitable for runtime optimization.

9. Synchronization and Ordering

(a) Fence: The PE calling fence ensures ordering of Put, AMO, and memory store operations to symmetric
data objects with respect to a specific destination PE.

(b) Quiet: The PE calling quiet ensures remote completion of remote access operations and stores to symmetric
data objects.

(c) Barrier: All or some PEs collectively synchronize and ensure completion of all remote and local updates
prior to any PE returning from the call.

(d) Wait and Test: A PE calling a point-to-point synchronization routine ensures the value of a local symmetric
object meets a specified condition. Wait operations block until the specified condition is met, whereas test
operations return immediately and indicate whether or not the specified condition is met.

10. Collective Communication

(a) Broadcast: The root PE specifies a symmetric data object to be copied to a symmetric data object on one
or more remote PEs.

(b) Collection: All PEs participating in the routine get the result of concatenated symmetric objects contributed
by each of the PEs in another symmetric data object.

(c) Reduction: All PEs participating in the routine get the result of an associative binary routine over elements
of the specified symmetric data object on another symmetric data object.

(d) All-to-All: All PEs participating in the routine exchange a fixed amount of contiguous or strided data with
all other participating PEs.

(e) Scan: All PEs participating in the routine perform an inclusive or exclusive prefix sum over elements of the
specified symmetric data object.

11. Mutual Exclusion

(a) Set Lock: The PE acquires exclusive access to the region bounded by the symmetric lock variable.

(b) Test Lock: The PE tests the symmetric lock variable for availability.

(c) Clear Lock: The PE which has previously acquired the lock releases it.

3 Memory Model

An OpenSHMEM program consists of data objects that are private to each PE and data objects that are remotely acces-
sible by all PEs. Private data objects are stored in the local memory of each PE and can only be accessed by the PE itself;
these data objects cannot be accessed by other PEs via OpenSHMEM routines. Private data objects follow the mem-
ory model of C. Remotely accessible objects, however, can be accessed by remote PEs using OpenSHMEM routines.
Remotely accessible data objects are called Symmetric Data Objects. Each symmetric data object has a corresponding
object with the same name, type, and size on all PEs where that object is accessible via the OpenSHMEM API2. (For
the definition of what is accessible, see the descriptions for shmem_pe_accessible and shmem_addr_accessible in
Sections 9.1.7 and 9.1.8.) In OpenSHMEM the following kinds of data objects are symmetric:

• Global and static C and C++ variables. These data objects must not be defined in a dynamic shared object
(DSO).

• C and C++ data allocated by OpenSHMEM memory management routines (Section 9.3)

2For efficiency reasons, the same offset (from an arbitrary memory address) for symmetric data objects might be used on all PEs. Further
discussion about symmetric heap layout and implementation efficiency can be found in Section 9.3

DRAFT

CONTENTS 4

PE N-1

Global and Static
Variables

Symmetric Heap

Local Variables

PE 0

Global and Static
Variables

Symmetric Heap

Local Variables

PE 1

Global and Static
Variables

Symmetric Heap

Local Variables

Re
m

ot
el

y A
cc

es
sib

le
 S

ym
m

et
ric

Da

ta
 O

bj
ec

ts

Variable: X Variable: X Variable: X
X = shmem_malloc(sizeof(long))

Pr
iva

te
 D

at
a

O
bj

ec
ts

Figure 1: OpenSHMEM Memory Model

OpenSHMEM dynamic memory allocation routines (e.g., shmem_malloc) allow collective allocation of Symmetric
Data Objects on a special memory region called the Symmetric Heap. The Symmetric Heap is created during the
execution of a program at a memory location determined by the implementation. The Symmetric Heap may reside in
different memory regions on different PEs. Figure 1 shows an example OpenSHMEM memory layout, illustrating the
location of remotely accessible symmetric objects and private data objects. As shown, symmetric data objects can be
located either in the symmetric heap or in the global/static memory section of each PE.

3.1 Pointers to Symmetric Objects

Symmetric data objects are referenced in OpenSHMEM operations through the local pointer to the desired remotely
accessible object. The address contained in this pointer is referred to as a symmetric address. Every symmetric
address is also a local address that is valid for direct memory access; however, not all local addresses are symmetric.
Manipulation of symmetric addresses passed to OpenSHMEM routines—including pointer arithmetic, array indexing,
and access of structure or union members—are permitted as long as the resulting local pointer remains within the same
symmetric allocation or object. Symmetric addresses are only valid at the PE where they were generated; using a
symmetric address generated by a different PE for direct memory access or as an argument to an OpenSHMEM routine
results in undefined behavior.
Symmetric addresses provided to typed and type-generic OpenSHMEM interfaces must be naturally aligned based
on their type and any requirements of the underlying architecture. Symmetric addresses provided to fixed-size Open-
SHMEM interfaces (e.g., shmem_put32) must also be aligned to the given size. Symmetric objects provided to fixed-
size OpenSHMEM interfaces must have storage size equal to the bit-width of the given operation3. Because C/C++
structures may contain implementation-defined padding, the fixed-size interfaces should not be used with C/C++
structures. The “mem” interfaces (e.g., shmem_putmem) have no alignment requirements.
The shmem_ptr and shmem_team_ptr routines allow the application to query a local address to a remotely accessible
data object at a specified PE. The resulting pointer is valid for direct memory access; however, providing this address

3The bit-width of a byte is implementation-defined in C. The CHAR_BIT constant in limits.h can be used to portably calculate the bit-width of a
C object.

DRAFT

CONTENTS 5

as an argument of an OpenSHMEM routine that requires a symmetric address results in undefined behavior.

3.2 Atomicity Guarantees

OpenSHMEM contains a number of routines that perform atomic operations on symmetric data objects, which are
defined in Section 9.7. The atomic routines guarantee that concurrent accesses by any of these routines to the same
location, using the same datatype (specified in Tables 6 and 7), and using communication contexts (see Section 9.5) in
the same atomicity domain will be exclusive. Exclusivity is also guaranteed when the target PE performs a wait or test
operation on the same location and with the same datatype as one or more atomic operations.
An OpenSHMEM atomicity domain is a set of communication contexts whose associated teams (see Section 9.4) are all
split by (possibly recursive) calls to a shmem_team_split_* routine from a common predefined team. OpenSHMEM
defines two such predefined teams, SHMEM_TEAM_WORLD and SHMEM_TEAM_SHARED (see Section 7).4

OpenSHMEM atomic operations do not guarantee exclusivity in the following scenarios, all of which result in unde-
fined behavior.

1. When concurrent accesses to the same location are performed using OpenSHMEM atomic operations using
communication contexts in different atomicity domains.

2. When concurrent accesses to the same location are performed using OpenSHMEM atomic operations using
different datatypes.

3. When atomic and non-atomic OpenSHMEM operations are used to access the same location concurrently.

4. When OpenSHMEM atomic operations and non-OpenSHMEM operations (e.g., load and store operations) are
used to access the same location concurrently.

4Although all PEs in SHMEM_TEAM_SHARED are also in SHMEM_TEAM_WORLD, and a PE’s number can be translated from its
SHMEM_TEAM_SHARED to SHMEM_TEAM_WORLD, the SHMEM_TEAM_SHARED team is defined as not having been created by a call
to a shmem_team_split_* routine on SHMEM_TEAM_WORLD. Therefore, the two teams are distinct predefined teams forming separate atomicity
domains.

DRAFT

CONTENTS 6

Example 1. The following C/C++ example illustrates scenario 1. In this example, different atomicity domains are
used to access the same location, resulting in undefined behavior. The undefined behavior can be resolved by using
communication contexts in the same atomicity domain in all concurrent operations.

#include <stdint.h>
#include <shmem.h>

int main(void) {
static uint64_t x = 0;

shmem_init();

int target = 0;
shmem_ctx_t ctx;

if (shmem_my_pe() > 0) {
shmem_team_create_ctx(SHMEM_TEAM_WORLD, 0, &ctx);

}
else {

shmem_team_create_ctx(SHMEM_TEAM_SHARED, 0, &ctx);
target = shmem_team_translate_pe(SHMEM_TEAM_WORLD, 0, SHMEM_TEAM_SHARED);

}

// Undefined behavior: The following AMO may access the same
// location concurrently using different atomicity domains.
if (target >= 0)

shmem_ctx_uint64_atomic_inc(ctx, &x, target);

shmem_ctx_destroy(ctx);
shmem_finalize();
return 0;

}

Example 2. The following C/C++ example illustrates scenario 2. In this example, different datatypes are used to
access the same location concurrently, resulting in undefined behavior. The undefined behavior can be resolved by
using the same datatype in all concurrent operations. For example, the 32-bit value can be left-shifted and a 64-bit
atomic OR operation can be used.

#include <stdint.h>
#include <shmem.h>

int main(void) {
static uint64_t x = 0;

shmem_init();
/* Undefined behavior: The following AMOs access the same location

* concurrently using different types. */
if (shmem_my_pe() > 0)

shmem_uint32_atomic_or((uint32_t *)&x, shmem_my_pe() + 1, 0);
else

shmem_uint64_atomic_or(&x, shmem_my_pe() + 1, 0);

shmem_finalize();
return 0;

}

DRAFT

CONTENTS 7

Example 3. The following C/C++ example illustrates scenario 3. In this example, atomic increment operations are
concurrent with a non-atomic reduction operation, resulting in undefined behavior. The undefined behavior can be
resolved by inserting a barrier operation before the reduction. The barrier ensures that all local and remote AMOs have
completed before the reduction operation accesses x.

#include <shmem.h>

int main(void) {
static int x = 0, y = 0;

shmem_init();
shmem_int_atomic_inc(&x, (shmem_my_pe() + 1) % shmem_n_pes());
/* Undefined behavior: The following reduction operation performs accesses to

* symmetric variable ’x’ that are concurrent with previously issued atomic

* increment operations on the same variable. */
shmem_int_sum_reduce(SHMEM_TEAM_WORLD, &y, &x, 1);

shmem_finalize();
return 0;

}

Example 4. The following C/C++ example illustrates scenario 4. In this example, an OpenSHMEM atomic increment
operation is concurrent with a local increment operation, resulting in undefined behavior. The undefined behavior can
be resolved by replacing the local increment operation with an OpenSHMEM atomic increment.

#include <shmem.h>

int main(void) {
static int x = 0;

shmem_init();
/* Undefined behavior: OpenSHMEM atomic increment operations are concurrent

* with the local increment of symmetric variable ’x’. */
if (shmem_my_pe() > 0)

shmem_int_atomic_inc(&x, 0);
else

x++;

shmem_finalize();
return 0;

}

4 Execution Model

An OpenSHMEM program consists of a set of OpenSHMEM processes called PEs. While not required by Open-
SHMEM, in typical usage, PEs are executed using a single program, multiple data (SPMD) model. SPMD requires
each PE to use the same executable; however, PEs are able to follow divergent control paths. PEs are often implemented
using operating system (OS) processes and PEs are permitted to create additional threads, when supported by the Open-
SHMEM library.
PE execution is loosely coupled, relying on OpenSHMEM operations to communicate and synchronize among execut-
ing PEs. The OpenSHMEM phase in a program begins with the first call to the initialization routine shmem_init or
shmem_init_thread, which must be performed before using any of the other OpenSHMEM library routines. An Open-
SHMEM program concludes its use of the OpenSHMEM library when all PEs make their final call to shmem_finalize
or any PE calls shmem_global_exit. During the last call to shmem_finalize, the OpenSHMEM library synchronizes all
PEs, completes all pending communication and releases all the resources associated to the library.

DRAFT

CONTENTS 8

The PEs of the OpenSHMEM program are identified by unique integers. The identifiers are integers assigned in a
monotonically increasing manner from zero to one less than the total number of PEs. PE identifiers are used for Open-
SHMEM calls (e.g., to specify put or get routines on symmetric data objects, collective synchronization calls) or to
dictate a control flow for PEs using constructs of C. The identifiers are fixed for the duration of the OpenSHMEM
phase of a program.

4.1 Progress of OpenSHMEM Operations

The OpenSHMEM model assumes that computation and communication are naturally overlapped. OpenSHMEM
programs are expected to exhibit progression of communication both with and without OpenSHMEM calls. Consider
a PE that is engaged in a computation with no OpenSHMEM calls. Other PEs should be able to communicate (e.g., put,
get, atomic, etc.) and complete communication operations with that computationally-bound PE without that PE issuing
any explicit OpenSHMEM calls. One-sided OpenSHMEM communication calls involving that PE should progress
regardless of when that PE next engages in an OpenSHMEM call.

Note to Implementers
An OpenSHMEM implementation for hardware that does not provide asynchronous communication capabilities
may require a software progress thread in order to process remotely-issued communication requests without
explicit program calls to the OpenSHMEM library.

High performance implementations of OpenSHMEM are expected to leverage hardware offload capabilities and
provide asynchronous one-sided communication without software assistance.

Implementations should avoid deferring the execution of one-sided operations until a synchronization point
where data is known to be available. High-quality implementations should attempt asynchronous delivery when-
ever possible, for performance reasons. Additionally, the OpenSHMEM community discourages releasing Open-
SHMEM implementations that do not provide asynchronous one-sided operations, as these have very limited
performance value for OpenSHMEM programs.

4.2 Invoking OpenSHMEM Operations

Pointer arguments to OpenSHMEM routines that point to non-const data must not overlap in memory with other argu-
ments to the same OpenSHMEM operation, with the exception of in-place reductions as described in Section 9.10.9.
Otherwise, the behavior is undefined. Two arguments overlap in memory if any of their data elements are contained
in the same physical memory locations. For example, consider an address a returned by the shmem_ptr operation for
symmetric object A on PE i. Providing the local address a and the symmetric address of object A to an OpenSHMEM
operation targeting PE i results in undefined behavior.
Buffers provided to OpenSHMEM routines are in-use until the corresponding OpenSHMEM operation has completed
at the calling PE. Updates to a buffer that is in-use, including updates performed through locally and remotely issued
OpenSHMEM operations, result in undefined behavior. Similarly, reads from a buffer that is in-use are allowed only
when the buffer was provided as a const-qualified argument to the OpenSHMEM routine for which it is in-use. Other-
wise, the behavior is undefined. Exceptions are made for buffers that are in-use by AMOs, as described in Section 3.2.
For information regarding the completion of OpenSHMEM operations, see Section 9.12.
OpenSHMEM routines with multiple symmetric object arguments do not require these symmetric objects to be located
within the same symmetric memory segment. For example, objects located in the symmetric data segment and objects
located in the symmetric heap can be provided as arguments to the same OpenSHMEM operation.

5 Language Bindings and Conformance

OpenSHMEM provides ISO C language bindings. Any implementation that provides C bindings can claim confor-
mance to the specification. The OpenSHMEM header file shmem.h for C must contain only the interfaces and constant
names defined in this specification.

DRAFT

CONTENTS 9

OpenSHMEM APIs can be implemented as functions, inline functions, or macros. However, implementing the inter-
faces using inline functions or macros could limit the use of external profiling tools and high-level compiler optimiza-
tions. An OpenSHMEM program should avoid defining routine names, variables, or other identifiers with the prefix
“shmem” using any combination of uppercase letters, lowercase letters, and underscores.
All extensions to the OpenSHMEM API that are not part of this specification must be defined in the shmemx.h header
file, with the following exceptions.

1. Extensions to the OpenSHMEM interfaces that add support for additional datatypes.

2. Implementation-specific constants, types, and macros that use a consistent, implementation-defined prefix.

3. Extensions to the type-generic interfaces.

The shmemx.h header file must exist, even if no extensions are provided. Any extensions shall use the shmemx_ prefix
for all routine, variable, and constant names.

6 Library Constants

The OpenSHMEM library provides a set of compile-time constants that may be used to specify options to API routines,
provide implementation-specific parameters, or return information about the implementation. All constants that start
with _SHMEM_* are deprecated, but provided for backwards compatibility.

Constant Description

C/C++:
SHMEM_THREAD_SINGLE

The OpenSHMEM thread support level which specifies that
the program must not be multithreaded. See Section 9.2 for
more detail about its use.

C/C++:
SHMEM_THREAD_FUNNELED

The OpenSHMEM thread support level which specifies that
the program may be multithreaded but must ensure that
only the main thread invokes the OpenSHMEM interfaces.
See Section 9.2 for more detail about its use.

C/C++:
SHMEM_THREAD_SERIALIZED

The OpenSHMEM thread support level which specifies that
the program may be multithreaded but must ensure that the
OpenSHMEM interfaces are not invoked concurrently by
multiple threads. See Section 9.2 for more detail about its
use.

C/C++:
SHMEM_THREAD_MULTIPLE

The OpenSHMEM thread support level which specifies that
the program may be multithreaded and any thread may in-
voke the OpenSHMEM interfaces. See Section 9.2 for
more detail about its use.

C/C++:
SHMEM_TEAM_NUM_CONTEXTS

The bitwise flag which specifies that a team creation rou-
tine should use the num_contexts member of the provided
shmem_team_config_t configuration parameter as a re-
quest. See Sections 9.4.3 and 9.4.6 for more detail about
its use.

C/C++:
SHMEM_TEAM_INVALID

A value corresponding to an invalid team. This value can
be used to initialize or update team handles to indicate that
they do not reference a valid team. When managed in this
way, applications can use an equality comparison to test
whether a given team handle references a valid team. See
Section 9.4 for more detail about its use.

DRAFT

CONTENTS 10

Constant Description

C/C++:
SHMEM_CTX_INVALID

A value corresponding to an invalid communication con-
text. This value can be used to initialize or update context
handles to indicate that they do not reference a valid con-
text. When managed in this way, applications can use an
equality comparison to test whether a given context handle
references a valid context. See Section 9.5 for more detail
about its use.

C/C++:
SHMEM_CTX_SERIALIZED

The context creation option which specifies that the given
context is shareable but will not be used by multiple threads
concurrently. See Section 9.5.1 for more detail about its
use.

C/C++:
SHMEM_CTX_PRIVATE

The context creation option which specifies that the given
context will be used only by the thread that created it. See
Section 9.5.1 for more detail about its use.

C/C++:
SHMEM_CTX_NOSTORE

The context creation option which specifies that quiet and
fence operations performed on the given context are not re-
quired to enforce completion and ordering of memory store
operations. See Section 9.5.1 for more detail about its use.

C/C++:
SHMEM_CTX_SESSION_TOTAL_OPS

The bitwise flag which specifies that a session start rou-
tine should use the total_ops member of the provided
shmem_ctx_session_config_t configuration parameter as a
hint. See 9.9.1 for more detail about its use.

C/C++:
SHMEM_CTX_SESSION_BATCH

The session start option which specifies that operations in
the given session are latency tolerant and may be candidates
for batching. See 9.9.2 for more detail about its use.

C/C++:
SHMEM_SIGNAL_SET

An integer constant expression corresponding to the signal
update set operation. See Section 9.8.3 and Section 9.8.4
for more detail about its use.

C/C++:
SHMEM_SIGNAL_ADD

An integer constant expression corresponding to the signal
update add operation. See Section 9.8.3 and Section 9.8.4
for more detail about its use.

C/C++:
SHMEM_MALLOC_ATOMICS_REMOTE

The hint to the memory allocation routine which specifies
that the allocated memory will be used for atomic variables.
See Section 9.3.5 for more detail about its use.

C/C++:
SHMEM_MALLOC_SIGNAL_REMOTE

The hint to the memory allocation routine which specifies
that the allocated memory will be used for signal variables.
See Section 9.3.5 for more detail about its use.

deprecation start

C/C++:
SHMEM_SYNC_VALUE

C/C++:
_SHMEM_SYNC_VALUE

deprecation end

The value used to initialize the elements of pSync arrays.
The value of this constant is implementation specific. See
Section 9.10 for more detail about its use.

DRAFT

CONTENTS 11

Constant Description

deprecation start

C/C++:
SHMEM_SYNC_SIZE

deprecation end

Length of a work array that can be used with any Open-
SHMEM collective communication operation. Work arrays
sized for specific operations may consume less memory.
The value of this constant is implementation specific. See
Section 9.10 for more detail about its use.

deprecation start

C/C++:
SHMEM_BCAST_SYNC_SIZE

C/C++:
_SHMEM_BCAST_SYNC_SIZE

deprecation end

Length of the pSync arrays needed for broadcast routines.
The value of this constant is implementation specific. See
Section 9.10.7 for more detail about its use.

deprecation start

C/C++:
SHMEM_REDUCE_SYNC_SIZE

C/C++:
_SHMEM_REDUCE_SYNC_SIZE

deprecation end

Length of the work arrays needed for reduction routines.
The value of this constant is implementation specific. See
Section 9.10.9 for more detail about its use.

deprecation start

C/C++:
SHMEM_BARRIER_SYNC_SIZE

C/C++:
_SHMEM_BARRIER_SYNC_SIZE

deprecation end

Length of the work array needed for barrier routines. The
value of this constant is implementation specific. See Sec-
tion 9.10.2 for more detail about its use.

deprecation start

C/C++:
SHMEM_COLLECT_SYNC_SIZE

C/C++:
_SHMEM_COLLECT_SYNC_SIZE

deprecation end

Length of the work array needed for collect routines. The
value of this constant is implementation specific. See Sec-
tion 9.10.8 for more detail about its use.

DRAFT

CONTENTS 12

Constant Description

deprecation start

C/C++:
SHMEM_ALLTOALL_SYNC_SIZE

deprecation end

Length of the work array needed for shmem_alltoall rou-
tines. The value of this constant is implementation specific.
See Section 9.10.5 for more detail about its use.

deprecation start

C/C++:
SHMEM_ALLTOALLS_SYNC_SIZE

deprecation end

Length of the work array needed for shmem_alltoalls rou-
tines. The value of this constant is implementation specific.
See Section 9.10.6 for more detail about its use.

deprecation start

C/C++:
SHMEM_REDUCE_MIN_WRKDATA_SIZE

C/C++:
_SHMEM_REDUCE_MIN_WRKDATA_SIZE

deprecation end

Minimum length of work arrays used in various collective
routines.

C/C++:
SHMEM_MAJOR_VERSION

deprecation start

C/C++:
_SHMEM_MAJOR_VERSION

deprecation end

Integer representing the major version of OpenSHMEM
Specification in use.

C/C++:
SHMEM_MINOR_VERSION

deprecation start

C/C++:
_SHMEM_MINOR_VERSION

deprecation end

Integer representing the minor version of OpenSHMEM
Specification in use.

DRAFT

CONTENTS 13

Constant Description

C/C++:
SHMEM_MAX_NAME_LEN

deprecation start

C/C++:
_SHMEM_MAX_NAME_LEN

deprecation end

Integer representing the maximum length of
SHMEM_VENDOR_STRING.

C/C++:
SHMEM_VENDOR_STRING

deprecation start

C/C++:
_SHMEM_VENDOR_STRING

deprecation end

String representing vendor defined information of size at
most SHMEM_MAX_NAME_LEN. In C/C++, the string
is terminated by a null character.

C/C++:
SHMEM_CMP_EQ

deprecation start

C/C++:
_SHMEM_CMP_EQ

deprecation end

An integer constant expression corresponding to the “equal
to” comparison operation. See Section 9.11 for more detail
about its use.

C/C++:
SHMEM_CMP_NE

deprecation start

C/C++:
_SHMEM_CMP_NE

deprecation end

An integer constant expression corresponding to the “not
equal to” comparison operation. See Section 9.11 for more
detail about its use.

C/C++:
SHMEM_CMP_LT

deprecation start

C/C++:
_SHMEM_CMP_LT

deprecation end

An integer constant expression corresponding to the “less
than” comparison operation. See Section 9.11 for more de-
tail about its use.

DRAFT

CONTENTS 14

Constant Description

C/C++:
SHMEM_CMP_LE

deprecation start

C/C++:
_SHMEM_CMP_LE

deprecation end

An integer constant expression corresponding to the “less
than or equal to” comparison operation. See Section 9.11
for more detail about its use.

C/C++:
SHMEM_CMP_GT

deprecation start

C/C++:
_SHMEM_CMP_GT

deprecation end

An integer constant expression corresponding to the
“greater than” comparison operation. See Section 9.11 for
more detail about its use.

C/C++:
SHMEM_CMP_GE

deprecation start

C/C++:
_SHMEM_CMP_GE

deprecation end

An integer constant expression corresponding to the
“greater than or equal to” comparison operation. See Sec-
tion 9.11 for more detail about its use.

7 Library Handles

The OpenSHMEM library provides a set of predefined named constant handles. All named constants can be used in
initialization expressions or assignments, but not necessarily in array declarations or as labels in C switch statements.
This implies named constants to be link-time but not necessarily compile-time constants.

Handle Description

C/C++:
SHMEM_TEAM_WORLD

Handle of type shmem_team_t that corresponds to the
world team that contains all PEs in the OpenSHMEM pro-
gram. All point-to-point communication operations and
collective synchronizations that do not specify a team are
performed on the world team. See Section 9.4 for more
detail about its use.

DRAFT

CONTENTS 15

Handle Description

C/C++:
SHMEM_TEAM_SHARED

Handle of type shmem_team_t that corresponds
to a team of PEs that share a memory domain.
SHMEM_TEAM_SHARED refers to the team of all
PEs that would mutually return a non-null address from a
call to shmem_ptr or shmem_team_ptr for all symmetric
heap objects. That is, shmem_ptr and shmem_team_ptr
must return a non-null pointer to the local PE for all
symmetric heap objects on all target PEs in the team.
This means that symmetric heap objects on each PE are
directly load/store accessible by all PEs in the team. See
Section 9.4 for more detail about its use.

C/C++:
SHMEM_CTX_DEFAULT

Handle of type shmem_ctx_t that corresponds to the default
communication context. All point-to-point communication
operations and synchronizations that do not specify a con-
text are performed on the default context. See Section 9.5
for more detail about its use.

8 Environment Variables

The OpenSHMEM specification provides a set of environment variables that allows users to configure the Open-
SHMEM implementation and receive information about the implementation. The implementations of the specification
are free to define additional variables. Currently, the specification defines four environment variables. All environment
variables that start with SMA_* are deprecated, but currently supported for backwards compatibility. If both SHMEM_-
and SMA_-prefixed environment variables are set, then the value in the SHMEM_-prefixed environment variable estab-
lishes the controlling value. Refer to the SMA_* environment variables deprecation rationale, Annex F.2.9, for more
details.

Variable Value Description
SHMEM_VERSION Any Print the library version at start-up
SHMEM_INFO Any Print helpful text about all these environment variables

DRAFT

CONTENTS 16

SHMEM_SYMMETRIC_SIZE Non-negative in-
teger or floating
point value with
an optional char-
acter suffix

Specifies the size (in bytes) of the symmetric heap memory
per PE. The resulting size is implementation-defined and
must be at least as large as the integer ceiling of the product
of the numeric prefix and the scaling factor. The allowed
character suffixes for the scaling factor are as follows:

• k or K multiplies by 210 (kibibytes)

• m or M multiplies by 220 (mebibytes)

• g or G multiplies by 230 (gibibytes)

• t or T multiplies by 240 (tebibytes)

For example, string “20m” is equivalent to the integer value
20971520, or 20 mebibytes. Similarly the string “3.1M” is
equivalent to the integer value 3250586. Only one multi-
plier is recognized and any characters following the mul-
tiplier are ignored, so “20kk” will not produce the same
result as “20m”. Usage of string “.5m” will yield the same
result as the string “0.5m”.
An invalid value for SHMEM_SYMMETRIC_SIZE is an er-
ror, which the OpenSHMEM library shall report by either
returning a nonzero value from shmem_init_thread or caus-
ing program termination.

SHMEM_DEBUG Any Enable debugging messages

DR
AF
T

CONTENTS 17

9 OpenSHMEM Library API

9.1 Library Setup, Exit, and Query Routines

This section specifies the library setup, exit, and query interfaces that initialize, finalize, and monitor the parallel
environment of the PEs, respectively.

9.1.1 SHMEM_INIT

A collective operation that allocates and initializes the resources used by the OpenSHMEM library.

SYNOPSIS

C/C++:
void shmem_init(void);

DESCRIPTION

Arguments
None.

API Description
shmem_init allocates and initializes resources used by the OpenSHMEM library. It is a collec-
tive operation that all PEs must call before any other OpenSHMEM routine may be called, except
shmem_query_initialized which checks the current initialized state of the library. In the OpenSHMEM
program which it initialized, each call to shmem_init must be matched with a corresponding call to
shmem_finalize.
The shmem_init and shmem_init_thread initialization routines may be called multiple times within an
OpenSHMEM program. A corresponding call to shmem_finalize must be made for each call to an Open-
SHMEM initialization routine. The OpenSHMEM library must not be finalized until after the last call to
shmem_finalize and may be re-initialized with a subsequent call to an initialization routine.

Return Values
None.

deprecation start

Notes
As of OpenSHMEM 1.2, the use of start_pes has been deprecated and calls to it should be replaced with
calls to shmem_init. While support for start_pes is still required in OpenSHMEM libraries, users are
encouraged to use shmem_init. An important difference between shmem_init and start_pes is that every
call to shmem_init within a program must be matched with a call to shmem_finalize.

deprecation end
EXAMPLES

Example 5. The following shmem_init example is for C11 programs:

DRAFT

CONTENTS 18

#include <shmem.h>
#include <stdio.h>

int main(void) {
static int targ = 0;

shmem_init();
int mype = shmem_my_pe();
int receiver = 1 % shmem_n_pes();

if (mype == 0) {
int src = 33;
shmem_put(&targ, &src, 1, receiver);

}

shmem_barrier_all(); /* Synchronizes sender and receiver */

if (mype == receiver)
printf("PE %d targ=%d (expect 33)\n", mype, targ);

shmem_finalize();
return 0;

}

9.1.2 SHMEM_MY_PE

Returns the number of the calling PE.

SYNOPSIS

C/C++:
int shmem_my_pe(void);

DESCRIPTION

Arguments
None.

API Description
This routine returns the PE number of the calling PE. It accepts no arguments. The result is an integer
between 0 and npes - 1, where npes is the total number of PEs executing the current program.

Return Values
Integer - Between 0 and npes - 1

Notes
Each PE has a unique number or identifier. As of OpenSHMEM 1.2 the use of _my_pe has been
deprecated. Although OpenSHMEM libraries are required to support the call, users are encouraged to
use shmem_my_pe instead. The behavior and signature of the routine shmem_my_pe remains unchanged
from the deprecated _my_pe version.

DRAFT

CONTENTS 19

9.1.3 SHMEM_N_PES

Returns the number of PEs running in a program.

SYNOPSIS

C/C++:
int shmem_n_pes(void);

DESCRIPTION

Arguments
None.

API Description
The routine returns the number of PEs running in the program.

Return Values
Integer - Number of PEs running in the OpenSHMEM program.

Notes
As of OpenSHMEM 1.2 the use of _num_pes has been deprecated. Although OpenSHMEM libraries
are required to support the call, users are encouraged to use shmem_n_pes instead. The behavior and
signature of the routine shmem_n_pes remains unchanged from the deprecated _num_pes version.

EXAMPLES

Example 6. The following shmem_my_pe and shmem_n_pes example is for C/C++ programs:

#include <shmem.h>
#include <stdio.h>

int main(void) {
shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();
printf("I am #%d of %d PEs executing this program\n", mype, npes);
shmem_finalize();
return 0;

}

9.1.4 SHMEM_FINALIZE

A collective operation that releases all resources used by the OpenSHMEM library. This only terminates the Open-
SHMEM portion of a program, not the entire program.

SYNOPSIS

C/C++:
void shmem_finalize(void);

DESCRIPTION

DRAFT

CONTENTS 20

Arguments
None.

API Description
shmem_finalize ends the OpenSHMEM portion of a program previously initialized by shmem_init or
shmem_init_thread. This is a collective operation that requires all PEs to participate in the call.
An OpenSHMEM program may perform a series of matching initialization and finalization calls. The last
call to shmem_finalize in this series releases all resources used by the OpenSHMEM library. This call
destroys all teams created by the OpenSHMEM program. As a result, all shareable contexts are destroyed.
The user is responsible for destroying all contexts with the SHMEM_CTX_PRIVATE option enabled prior
to this call; otherwise, the behavior is undefined.
The last call to shmem_finalize performs an implicit global barrier to ensure that pending communications
are completed and that no resources are released until all PEs have entered shmem_finalize. All other calls
to shmem_finalize perform an operation semantically equivalent to shmem_barrier_all and return without
freeing any OpenSHMEM resources.
The last call to shmem_finalize causes the OpenSHMEM library to enter an uninitialized state. No further
OpenSHMEM calls may be made until an OpenSHMEM initialization routine is called. All processes that
represent the PEs will still exist after the call to shmem_finalize returns, but they will no longer have access
to OpenSHMEM library resources that have been released.

Return Values
None.

Notes
The last call to shmem_finalize releases all resources used by the OpenSHMEM library including the
symmetric memory heap and pointers initiated by shmem_ptr. This collective operation requires all PEs
to participate in the call, not just a subset of the PEs. The non-OpenSHMEM portion of a program may
continue after a call to shmem_finalize by all PEs.
Calls to shmem_finalize that are not the last in a series of initialization and finalization calls do not free any
OpenSHMEM resources. Thus, teams, contexts, or symmetric memory allocations may be leaked until the
final call to shmem_finalize. Applications that perform multiple initialization and finalization calls should
free resources prior to calling shmem_finalize to avoid such leaks.

EXAMPLES

Example 7. The following finalize example is for C11 programs:

#include <shmem.h>
#include <stdio.h>

int main(void) {
static long x = 10101;
long y = -1;

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

if (mype == 0)
y = shmem_g(&x, npes - 1);

printf("%d: y = %ld\n", mype, y);

shmem_finalize();
return 0;

}

DRAFT

CONTENTS 21

9.1.5 SHMEM_QUERY_INITIALIZED

Returns the initialized status of the OpenSHMEM library.

SYNOPSIS

C/C++:
void shmem_query_initialized(int *initialized);

DESCRIPTION

Arguments
OUT initialized Nonzero if the OpenSHMEM library is in the initialized state. Zero

otherwise.

API Description
The shmem_query_initialized call returns the initialization status of the OpenSHMEM library. If the ap-
plication has called an OpenSHMEM initialization routine and has not yet made the corresponding call to
shmem_finalize, this routine returns nonzero. Otherwise, it returns zero.
This function may be called at any time, regardless of the thread safety level or the current initialized state
of the OpenSHMEM library.

Return Values
None.

9.1.6 SHMEM_GLOBAL_EXIT

A routine that allows any PE to force termination of an entire program.

SYNOPSIS

C11:
_Noreturn void shmem_global_exit(int status);

C/C++:
void shmem_global_exit(int status);

DESCRIPTION

Arguments
IN status The exit status from the main program.

API Description
shmem_global_exit is a non-collective routine that allows any one PE to force termination of an Open-
SHMEM program for all PEs, passing an exit status to the execution environment. This routine terminates
the entire program, not just the OpenSHMEM portion. When any PE calls shmem_global_exit, it results in
the immediate notification to all PEs to terminate. shmem_global_exit flushes I/O and releases resources in
accordance with C/C++ language requirements for normal program termination. If more than one PE calls
shmem_global_exit, then the exit status returned to the environment shall be one of the values passed to
shmem_global_exit as the status argument. There is no return to the caller of shmem_global_exit; control
is returned from the OpenSHMEM program to the execution environment for all PEs.

DRAFT

CONTENTS 22

Return Values
None.

Notes
shmem_global_exit may be used in situations where one or more PEs have determined that the program
has completed and/or should terminate early. Accordingly, the integer status argument can be used to
pass any information about the nature of the exit; e.g., that the program encountered an error or found
a solution. Since shmem_global_exit is a non-collective routine, there is no implied synchronization,
and all PEs must terminate regardless of their current execution state. While I/O must be flushed for
standard language I/O calls from C/C++, it is implementation dependent as to how I/O done by other
means (e.g., third party I/O libraries) are handled. Similarly, resources are released according to C/C++
standard language requirements, but this may not include all resources allocated for the OpenSHMEM pro-
gram. However, a quality implementation will make a best effort to flush all I/O and clean up all resources.

EXAMPLES

Example 8.

#include <shmem.h>
#include <stdio.h>
#include <stdlib.h>

int main(void) {
shmem_init();
int mype = shmem_my_pe();
if (mype == 0) {

FILE *fp = fopen("input.txt", "r");
if (fp == NULL) { /* Input file required by program is not available */
shmem_global_exit(EXIT_FAILURE);

}
/* do something with the file */
fclose(fp);

}
shmem_finalize();
return 0;

}

9.1.7 SHMEM_PE_ACCESSIBLE

Determines whether a PE is accessible via OpenSHMEM’s data transfer routines.

SYNOPSIS

C/C++:
int shmem_pe_accessible(int pe);

DESCRIPTION

Arguments
IN pe Specific PE to be checked for accessibility from the local PE.

API Description
shmem_pe_accessible is a query routine that indicates whether a specified PE is accessible via Open-
SHMEM from the local PE. The shmem_pe_accessible routine returns a value indicating whether the
remote PE is a process running from the same executable file as the local PE, thereby indicating whether

DRAFT

CONTENTS 23

full support for symmetric data objects, which may reside in either static memory or the symmetric heap,
is available.

Return Values
The return value is 1 if the specified PE is a valid remote PE for OpenSHMEM routines; otherwise, it is 0.

Notes
This routine may be particularly useful for hybrid programming with other communication libraries (such
as Message Passing Interface (MPI)) or parallel languages. For example, when an MPI job uses Multiple
Program Multiple Data (MPMD) mode, multiple executable MPI programs are executed as part of the
same MPI job. In such cases, OpenSHMEM support may only be available between processes running
from the same executable file. In addition, some environments may allow a hybrid job to span multiple
network partitions. In such scenarios, OpenSHMEM support may only be available between PEs within
the same partition.

9.1.8 SHMEM_ADDR_ACCESSIBLE

Determines whether an address is accessible via OpenSHMEM data transfer routines from the specified remote PE.

SYNOPSIS

C/C++:
int shmem_addr_accessible(const void *addr, int pe);

DESCRIPTION

Arguments
IN addr Local address of data object to query.
IN pe Integer id of a remote PE.

API Description
shmem_addr_accessible is a query routine that indicates whether the address addr can be used to access
the given data object on the specified PE via OpenSHMEM routines.
This routine verifies that the data object is symmetric and accessible with respect to a remote PE via Open-
SHMEM data transfer routines. The specified address addr is the local address of the data object on the
local PE.

Return Values
The return value is 1 if the local address addr is also a symmetric address and the given data object is
accessible via OpenSHMEM routines on the specified remote PE; otherwise, it is 0.

Notes
This routine may be particularly useful for hybrid programming with other communication libraries (such
as MPI) or parallel languages. For example, when an MPI job uses MPMD mode, multiple executable
MPI programs may use OpenSHMEM routines. In such cases, static memory, such as a C global variable,
is symmetric between processes running from the same executable file, but is not symmetric between
processes running from different executable files. Data allocated from the symmetric heap (e.g., using
shmem_malloc) is symmetric across the same or different executable files.

DR
AF
T

CONTENTS 24

9.1.9 SHMEM_PTR

Returns a local pointer to a symmetric data object on the specified PE in the world team.

SYNOPSIS

C/C++:
void *shmem_ptr(const void *dest, int pe);

DESCRIPTION

Arguments
IN dest The symmetric address of the remotely accessible data object to be ref-

erenced.
IN pe An integer that indicates the PE number on which dest is to be accessed.

API Description
shmem_ptr returns an address that may be used to directly reference dest on the specified PE in the world
team. This address can be assigned to a pointer. After that, ordinary loads and stores to dest may be
performed. The address returned by shmem_ptr is a local address to a remotely accessible data object.
Providing this address to an argument of an OpenSHMEM routine that requires a symmetric address results
in undefined behavior.
The shmem_ptr routine can provide efficient means to accomplish communication, for example when a
sequence of reads and writes to a data object on a remote PE does not match the access pattern provided in
an OpenSHMEM data transfer routine like shmem_put or shmem_iget.

Return Values
A local pointer to the remotely accessible dest data object is returned when it can be accessed using
memory loads and stores. Otherwise, a null pointer is returned.

Notes
When calling shmem_ptr, dest is the address of the referenced symmetric data object on the calling PE.

EXAMPLES

Example 9. In the following C11 example, PE 0 uses the shmem_ptr routine to query a pointer and directly
access the dest array on PE 1:

#include <shmem.h>
#include <stdio.h>

int main(void) {
static int dest[4];
shmem_init();
int mype = shmem_my_pe();
if (mype == 0) { /* initialize PE 1’s dest array */

int *ptr = shmem_ptr(dest, 1);
if (ptr == NULL)
printf("can’t use pointer to directly access PE 1’s dest array\n");

else
for (int i = 0; i < 4; i++)

*ptr++ = i + 1;
}
shmem_barrier_all();
if (mype == 1)

DRAFT

CONTENTS 25

printf("PE 1 dest: %d, %d, %d, %d\n", dest[0], dest[1], dest[2], dest[3]);
shmem_finalize();
return 0;

}

9.1.10 SHMEM_TEAM_PTR

Returns a local pointer to a symmetric data object on the specified PE in the specified team.

SYNOPSIS

C/C++:
void *shmem_team_ptr(shmem_team_t team, const void *dest, int pe);

DESCRIPTION

Arguments
IN team A handle to the specified team.
IN dest The symmetric address of the remotely accessible data object to be ref-

erenced.
IN pe An integer that indicates the PE number in the provided team on which

dest is to be accessed.

API Description
shmem_team_ptr returns an address that may be used to directly reference dest on the specified PE in the
specified team. This address can be assigned to a pointer. After that, ordinary loads and stores to dest
may be performed. The address returned by shmem_team_ptr is a local address to a remotely accessible
data object. Providing this address to an argument of an OpenSHMEM routine that requires a symmetric
address results in undefined behavior.
The shmem_team_ptr routine can provide efficient means to accomplish communication, for example
when a sequence of reads and writes to a data object on a remote PE does not match the access pattern
provided in an OpenSHMEM data transfer routine like shmem_put or shmem_iget.

Return Values
A local pointer to the remotely accessible dest data object is returned when it can be accessed using memory
loads and stores. Otherwise, a null pointer is returned.
If team compares equal to SHMEM_TEAM_WORLD, then the behavior is identical to that of shmem_ptr
with same dest and pe arguments. If team compares equal to SHMEM_TEAM_INVALID, then a null
pointer is returned. If team is otherwise invalid, the behavior is undefined.

Notes
When calling shmem_team_ptr, dest is the address of the referenced symmetric data object on the calling
PE.

9.1.11 SHMEM_INFO_GET_VERSION

Returns the major and minor version of the library implementation.

SYNOPSIS

C/C++:

DRAFT

CONTENTS 26

void shmem_info_get_version(int *major, int *minor);

DESCRIPTION

Arguments
OUT major The major version of the OpenSHMEM Specification in use.
OUT minor The minor version of the OpenSHMEM Specification in use.

API Description
This routine returns the major and minor version of the OpenSHMEM Specification in use. For a given
library implementation, the major and minor version returned by these calls are consistent with the library
constants SHMEM_MAJOR_VERSION and SHMEM_MINOR_VERSION.

Return Values
None.

9.1.12 SHMEM_INFO_GET_NAME

This routine returns the vendor defined name string that is consistent with the library constant SHMEM_VENDOR_STRING.

SYNOPSIS

C/C++:
void shmem_info_get_name(char *name);

DESCRIPTION

Arguments
OUT name The vendor defined string.

API Description
This routine returns the vendor defined name string of size defined by the library constant
SHMEM_MAX_NAME_LEN. The program calling this function provides the name memory buffer of at
least size SHMEM_MAX_NAME_LEN. The implementation copies the vendor defined string of size at
most SHMEM_MAX_NAME_LEN to name. In C/C++, the string is terminated by a null character. If
the name memory buffer is provided with size less than SHMEM_MAX_NAME_LEN, behavior is unde-
fined. For a given library implementation, the vendor string returned is consistent with the library constant
SHMEM_VENDOR_STRING.

Return Values
None.

DRAFT

CONTENTS 27

9.1.13 START_PES

Called at the beginning of an OpenSHMEM program to initialize the execution environment. This routine is deprecated
and is provided for backwards compatibility. Implementations must include it, and the routine should function properly
and may notify the user about deprecation of its use.

SYNOPSIS

deprecation start

C/C++:
void start_pes(int npes);

deprecation end

DESCRIPTION

Arguments
npes Unused Should be set to 0.

API Description
The start_pes routine initializes the OpenSHMEM execution environment. An OpenSHMEM program
must call start_pes, shmem_init, or shmem_init_thread before calling any other OpenSHMEM routine.
Unlike shmem_init and shmem_init_thread, start_pes does not require a call to shmem_finalize. Instead,
the OpenSHMEM library is implicitly finalized when the program exits. Implicit finalization is collec-
tive and includes a global synchronization to ensure that all pending communication is completed before
resources are released.

Return Values
None.

Notes
If any other OpenSHMEM call occurs before start_pes, the behavior is undefined. Although it is recom-
mended to set npes to 0 for start_pes, this is not mandated. The value is ignored. Calling start_pes more
than once has no subsequent effect.
As of OpenSHMEM 1.2 the use of start_pes has been deprecated. Although OpenSHMEM libraries are
required to support the call, users are encouraged to use shmem_init or shmem_init_thread instead.

9.2 Thread Support

This section specifies the interaction between the OpenSHMEM interfaces and user threads. It also describes the
routines that can be used for initializing and querying the thread environment. There are four levels of threading
defined by the OpenSHMEM specification.

SHMEM_THREAD_SINGLE
The OpenSHMEM program must not be multithreaded.

SHMEM_THREAD_FUNNELED
The OpenSHMEM program may be multithreaded. However, the program must ensure that only the main
thread invokes the OpenSHMEM interfaces. The main thread is the thread that invokes either shmem_init or
shmem_init_thread.

DRAFT

CONTENTS 28

SHMEM_THREAD_SERIALIZED
The OpenSHMEM program may be multithreaded. However, the program must ensure that the OpenSHMEM
interfaces are not invoked concurrently by multiple threads.

SHMEM_THREAD_MULTIPLE
The OpenSHMEM program may be multithreaded and any thread may invoke the OpenSHMEM interfaces.

The thread level constants must have increasing integer values; i.e., SHMEM_THREAD_SINGLE <
SHMEM_THREAD_FUNNELED < SHMEM_THREAD_SERIALIZED < SHMEM_THREAD_MULTIPLE. The fol-
lowing semantics apply to the usage of these models:

1. In the SHMEM_THREAD_FUNNELED, SHMEM_THREAD_SERIALIZED, and
SHMEM_THREAD_MULTIPLE thread levels, the shmem_finalize call must be invoked by the same
thread that called shmem_init_thread.

2. Any OpenSHMEM operation initiated by a thread is considered an action of the PE as a whole. The symmetric
heap and symmetric variables scope are not impacted by multiple threads invoking the OpenSHMEM interfaces.
Each PE has a single symmetric data segment and symmetric heap that is shared by all threads within that PE.
For example, a thread invoking a memory allocation routine such as shmem_malloc allocates memory that is
accessible by all threads of the PE. The requirement that the same symmetric heap operations must be executed
by all PEs in the same order also applies in a threaded environment. Similarly, the completion of collective
operations is not impacted by multiple threads. For example, shmem_barrier_all is completed when all PEs
enter and exit the shmem_barrier_all call, even though only one thread in the PE is participating in the collective
call.

3. Blocking OpenSHMEM calls will only block the calling thread, allowing other threads, if available, to continue
executing. The calling thread will be blocked until the event on which it is waiting occurs. Once the blocking
call is completed, the thread is ready to continue execution. A blocked thread will not prevent progress of other
threads on the same PE and will not prevent them from executing other OpenSHMEM calls when the thread
level permits. In addition, a blocked thread will not prevent the progress of OpenSHMEM calls performed on
other PEs.

4. In the SHMEM_THREAD_MULTIPLE thread level, all OpenSHMEM calls are thread-safe. That is, any two
concurrently running threads may make OpenSHMEM calls.

5. In the SHMEM_THREAD_SERIALIZED and SHMEM_THREAD_MULTIPLE thread levels, if multiple threads
call collective routines, including the symmetric heap management routines, it is the programmer’s responsibility
to ensure the correct ordering of collective calls.

9.2.1 SHMEM_INIT_THREAD

Initializes the OpenSHMEM library, similar to shmem_init, and performs any initialization required for supporting the
provided thread level.

SYNOPSIS

C/C++:
int shmem_init_thread(int requested, int *provided);

DESCRIPTION

Arguments
IN requested The thread level support requested by the user.
OUT provided The thread level support provided by the OpenSHMEM implementa-

tion.

DRAFT

CONTENTS 29

API Description
shmem_init_thread initializes the OpenSHMEM library in the same way as shmem_init. In addition,
shmem_init_thread also performs the initialization required for supporting the provided thread level.
The argument requested is used to specify the desired level of thread support. The argument provided
returns the support level provided by the library. The allowed values for provided and requested are
SHMEM_THREAD_SINGLE, SHMEM_THREAD_FUNNELED, SHMEM_THREAD_SERIALIZED, and
SHMEM_THREAD_MULTIPLE.
The shmem_init and shmem_init_thread initialization routines may be called multiple times within an
OpenSHMEM program. A corresponding call to shmem_finalize must be made for each call to an Open-
SHMEM initialization routine. The OpenSHMEM library must not be finalized until after the last call to
shmem_finalize and may be re-initialized with a subsequent call to an initialization routine.
If the call to shmem_init_thread is unsuccessful in allocating and initializing resources for the Open-
SHMEM library, then the behavior of any subsequent call to the OpenSHMEM library is undefined.

Return Values
shmem_init_thread returns 0 upon success; otherwise, it returns a nonzero value.

Notes
The OpenSHMEM library can be initialized either by shmem_init or shmem_init_thread. If the Open-
SHMEM library is initialized by shmem_init, the library implementation can choose to support any one of
the defined thread levels.
The OpenSHMEM library may not be able to change the level of threading support provided after the first
initialization call has been made.

9.2.2 SHMEM_QUERY_THREAD

Returns the level of thread support provided by the library.

SYNOPSIS

C/C++:
void shmem_query_thread(int *provided);

DESCRIPTION

Arguments
OUT provided The thread level support provided by the OpenSHMEM implementa-

tion.

API Description
The shmem_query_thread call returns the level of thread support currently being provided. The value
returned will be same as was returned in provided by a call to shmem_init_thread, if the OpenSHMEM
library was initialized by shmem_init_thread. If the library was initialized by shmem_init, the implemen-
tation can choose to provide any one of the defined thread levels, and shmem_query_thread returns this
thread level.
This function may be called at any time, regardless of the thread safety level of the OpenSHMEM library.

Return Values
None.

DRAFT

CONTENTS 30

9.3 Memory Management Routines

OpenSHMEM provides a set of APIs for managing the symmetric heap. The APIs allow one to dynamically allocate,
deallocate, reallocate, and align symmetric data objects in the symmetric heap.
The symmetric memory allocation routines differ from the private heap allocation routines in that they must be called
by all PEs in the world team. When specified, each of these routines includes at least one call to a procedure that is
semantically equivalent to shmem_barrier_all. This ensures that all PEs participate in the memory management, and
that the memory on other PEs can be used as soon as the local PE returns. The implicit barriers performed by these
routines quiet the default context. It is the user’s responsibility to ensure that no communication operations involving
the given memory block are pending on other contexts prior to calling the shmem_free and shmem_realloc routines.
The total size of the symmetric heap is determined at job startup. One can specify the size of the heap using the
SHMEM_SYMMETRIC_SIZE environment variable (where available).

deprecation start
As of OpenSHMEM 1.2 the use of shmalloc, shmemalign, shfree, and shrealloc has been deprecated. Although
OpenSHMEM libraries are required to support the calls, users are encouraged to use shmem_malloc, shmem_align,
shmem_free, and shmem_realloc instead. The behavior and signature of the routines remains unchanged from the
deprecated versions.

deprecation end

Note to Implementers
The symmetric heap allocation routines always return the symmetric addresses of corresponding symmetric ob-
jects across all PEs. The OpenSHMEM specification does not require that the virtual addresses are equal across
all PEs. Nevertheless, the implementation must avoid costly address translation operations in the communica-
tion path, including O(N) memory translation tables, where N is the number of PEs. In order to avoid address
translations, the implementation may re-map the allocated block of memory based on agreed virtual address.
Additionally, some operating systems provide an option to disable virtual address randomization, which enables
predictable allocation of virtual memory addresses.

9.3.1 SHMEM_MALLOC

Collectively allocate symmetric memory.

SYNOPSIS

C/C++:
void *shmem_malloc(size_t size);

DESCRIPTION

Arguments
IN size The size, in bytes, of a block to be allocated from the symmetric heap.

API Description
The shmem_malloc routine is a collective operation on the world team and returns the symmetric address
of a block of at least size bytes, which shall be suitably aligned so that it may be assigned to a pointer to
any type of object. This space is allocated from the symmetric heap (in contrast to malloc, which allocates
from the private heap). When size is zero, the shmem_malloc routine performs no action and returns a null
pointer; otherwise, shmem_malloc calls a procedure that is semantically equivalent to shmem_barrier_all
on exit. This ensures that all PEs participate in the memory allocation, and that the memory on other PEs
can be used as soon as the local PE returns. The value of the size argument must be identical on all PEs;
otherwise, the behavior is undefined.

DRAFT

CONTENTS 31

Return Values
The shmem_malloc routine returns the symmetric address of the allocated space; otherwise, it returns a
null pointer.

9.3.2 SHMEM_FREE

Collectively deallocate symmetric memory.

SYNOPSIS

C/C++:
void shmem_free(void *ptr);

DESCRIPTION

Arguments
IN ptr Symmetric address of an object in the symmetric heap.

API Description
The shmem_free routine is a collective operation on the world team that causes the block to which ptr
points to be deallocated, that is, made available for further allocation. If ptr is a null pointer, no action is
performed; otherwise, shmem_free calls a barrier on entry. It is the user’s responsibility to ensure that no
communication operations involving the given memory block are pending on other communication contexts
prior to calling shmem_free.
The value of the ptr argument must be identical on all PEs; otherwise, the behavior is undefined.

Return Values
None.

9.3.3 SHMEM_REALLOC

Collectively resize an allocation of symmetric memory.

SYNOPSIS

C/C++:
void *shmem_realloc(void *ptr, size_t size);

DESCRIPTION

Arguments
IN ptr Symmetric address of an object in the symmetric heap.
IN size The size, in bytes, of a block to be allocated from the symmetric heap.

DRAFT

CONTENTS 32

API Description
The shmem_realloc routine is a collective operation on the world team that changes the size of the block
to which ptr points to the size (in bytes) specified by size. The contents of the block are unchanged up to
the lesser of the new and old sizes.
The shmem_realloc routine preserves allocation hints (e.g., if ptr was allocated by
shmem_malloc_with_hints). If the new size is larger, the newly allocated portion of the block is
uninitialized. If ptr is a null pointer, the shmem_realloc routine behaves like the shmem_malloc routine
for the specified size. If size is 0 and ptr is not a null pointer, the block to which it points is freed as if with
shmem_free. If the space cannot be allocated or if hints cannot be preserved, the block to which ptr points
is unchanged and a null pointer is returned.
shmem_realloc may call barriers on both entry and exit, depending on whether an existing allocation is
modified and whether new memory is allocated, respectively. It is the user’s responsibility to ensure that no
communication operations involving the given memory block are pending on other communication contexts
prior to calling shmem_realloc.
The value of the ptr and size arguments must be identical on all PEs; otherwise, the behavior is undefined.

Return Values
The shmem_realloc routine returns the symmetric address of the allocated space (which may have moved);
otherwise, all PEs return a null pointer.

Notes
When the ptr argument in a call to shmem_realloc corresponds to a buffer allocated using shmem_align,
the buffer returned by shmem_realloc is not guaranteed to maintain the alignment requested in the original
call to shmem_align.

9.3.4 SHMEM_ALIGN

Collectively allocate symmetric memory with a specified alignment.

SYNOPSIS

C/C++:
void *shmem_align(size_t alignment, size_t size);

DESCRIPTION

Arguments
IN alignment Byte alignment of the block allocated from the symmetric heap.
IN size The size, in bytes, of a block to be allocated from the symmetric heap.

API Description
The shmem_align routine is a collective operation on the world team that allocates a block in the symmetric
heap that has a byte alignment specified by the alignment argument. The value of alignment shall be a
multiple of sizeof(void *) that is also a power of two; otherwise, the behavior is undefined. When size is
zero, the shmem_align routine performs no action and returns a null pointer; otherwise, shmem_align calls
a barrier on exit.
The value of the alignment and size arguments must be identical on all PEs; otherwise, the behavior is
undefined.

DRAFT

CONTENTS 33

Return Values
The shmem_align routine returns an aligned symmetric address whose value is a multiple of alignment;
otherwise, it returns a null pointer.

9.3.5 SHMEM_MALLOC_WITH_HINTS

Collective memory allocation routine with support for providing hints.

SYNOPSIS

C/C++:
void *shmem_malloc_with_hints(size_t size, long hints);

DESCRIPTION

Arguments
IN size The size, in bytes, of a block to be allocated from the symmetric heap.

This argument is of type size_t
IN hints A bit array of hints provided by the user to the implementation

API Description

The shmem_malloc_with_hints routine, like shmem_malloc, is a collective operation on the world team
that returns a pointer to a block of at least size bytes, which shall be suitably aligned so that it may be
assigned to a pointer to any type of object. This space is allocated from the symmetric heap (similar to
shmem_malloc). When the size is zero, the shmem_malloc_with_hints routine performs no action and
returns a null pointer.
In addition to the size argument, the hints argument is provided by the user. The hints describes the expected
manner in which the OpenSHMEM program may use the allocated memory. The valid usage of hints are
described in Table 4. Multiple hints may be requested by combining them with a bitwise OR operation. A
zero option can be given if no options are requested.
The information provided by the hints is used to optimize for performance by the implementation. If the
implementation cannot optimize, the behavior is same as shmem_malloc. If more than one hint is provided,
the implementation will make the best effort to use one or more hints to optimize performance.
The shmem_malloc_with_hints routine is provided so that multiple PEs in a program can allocate sym-
metric, remotely accessible memory blocks. When no action is performed, these routines return with-
out performing a barrier. Otherwise, the routine will call a procedure that is semantically equivalent to
shmem_barrier_all on exit, similar to the behavior of shmem_malloc. The user is responsible for calling
this routine with identical argument(s) on all PEs; if differing size, or hints arguments are used, the behavior
of the call is undefined.

Return Values
The shmem_malloc_with_hints routine returns a pointer to the allocated space; otherwise, it returns a null
pointer.

Hints Usage hint
0 Behavior same as shmem_malloc

DRAFT

CONTENTS 34

Hints Usage hint

C/C++:
SHMEM_MALLOC_ATOMICS_REMOTE

Memory used for atomic operations

C/C++:
SHMEM_MALLOC_SIGNAL_REMOTE

Memory used for signal operations

Table 4: Memory usage hints

Notes
OpenSHMEM programs should allocate memory with SHMEM_MALLOC_ATOMICS_REMOTE when
the majority of operations performed on this memory are atomic operations, and origin and target PEs of
the atomic operations do not share a memory domain. That is, symmetric objects on the target PE are not
accessible using load/store operations from the origin PE or vice versa.

9.3.6 SHMEM_CALLOC

Collectively allocate a zeroed block of symmetric memory.

SYNOPSIS

C/C++:
void *shmem_calloc(size_t count, size_t size);

DESCRIPTION

Arguments
IN count The number of elements to allocate.
IN size The size in bytes of each element to allocate.

API Description
The shmem_calloc routine is a collective operation on the world team that allocates a region of remotely-
accessible memory for an array of count objects of size bytes each and returns a pointer to the lowest byte
address of the allocated symmetric memory. The space is initialized to all bits zero.
If the allocation succeeds, the pointer returned shall be suitably aligned so that it may be assigned to a
pointer to any type of object. If the allocation does not succeed, or either count or size is 0, the return value
is a null pointer.
The values for count and size shall each be equal across all PEs calling shmem_calloc; otherwise, the
behavior is undefined.
When count or size is 0, the shmem_calloc routine returns without performing a barrier. Otherwise, this
routine calls a procedure that is semantically equivalent to shmem_barrier_all on exit.

Return Values
The shmem_calloc routine returns a pointer to the lowest byte address of the allocated space; otherwise, it
returns a null pointer.

DRAFT

CONTENTS 35

9.4 Team Management Routines

The PEs in an OpenSHMEM program communicate using either point-to-point routines—such as RMA and AMO
routines—that specify the PE number of the target PE, or collective routines that operate over a set of PEs. Open-
SHMEM teams allow programs to group a set of PEs for communication. Team-based collective operations include all
PEs in a valid team. Point-to-point communication can make use of team-relative PE numbering through team-based
contexts (see Section 9.5) or PE number translation.

Predefined and Application-Defined Teams

An OpenSHMEM team may be predefined (i.e., provided by the OpenSHMEM library) or defined by the OpenSHMEM
application. An application-defined team is created by “splitting” a parent team into one or more new teams—each
with some subset of PEs of the parent team—via one of the shmem_team_split_* routines.
All predefined teams are valid for the duration of the OpenSHMEM portion of an application. Any team successfully
created by a shmem_team_split_* routine is valid until it is destroyed. All valid teams have at least one member.

Team Handles

A team handle is an opaque object with type shmem_team_t that is used to reference a team. Team handles are not
remotely accessible objects. The predefined teams may be accessed via the team handles listed in Section 7.
OpenSHMEM communication routines that do not accept a team handle argument operate on the world team, which
may be accessed through the SHMEM_TEAM_WORLD handle. The world team encompasses the set of all PEs in the
OpenSHMEM program, and a given PE’s number in the world team is equal to the value returned by shmem_my_pe.
A team handle may be initialized to or assigned the value SHMEM_TEAM_INVALID to indicate that handle does not
reference a valid team. When managed in this way, applications can use an equality comparison to test whether a given
team handle references a valid team.

Thread Safety

When it is allowed by the threading model provided by the OpenSHMEM library, a team may be used concurrently
in non-collective operations (e.g., shmem_team_my_pe) by multiple threads within the PE where it was created. A
team may not be used concurrently by multiple threads in the same PE for collective operations. However, multiple
collective operations on different teams may be performed in parallel.

Collective Ordering

In OpenSHMEM, a team object encapsulates resources used to communicate between PEs in collective operations.
When calling multiple subsequent collective operations on a team, the collective operations—along with any relevant
team based resources—are matched across the PEs in the team based on ordering of collective routine calls. It is the
responsibility of the user to ensure that team-based collectives occur in the same program order across all PEs in a
team.
For a full discussion of collective semantics, see Section 9.10.

Team Creation

Team creation is a collective operation on the parent team object. New teams result from a shmem_team_split_*
routine, which takes a parent team and other arguments and produces new teams that contain a subset of the PEs that are
members of the parent team. All PEs in a parent team must participate in a split operation to create new teams. If a PE
from the parent team is not a member of any resulting new teams, it will receive a value of SHMEM_TEAM_INVALID
as the value for the new team handle.

DRAFT

CONTENTS 36

Teams that are created by a shmem_team_split_* routine may be provided a configuration argument that specifies
attributes of each new team. This configuration argument is of type shmem_team_config_t, which is detailed further
in Section 9.4.3.
PEs in a newly created team are consecutively numbered starting with PE number 0. PEs are ordered by their PE
number in the parent team. Team-relative PE numbers can be used for point-to-point operations through team-based
contexts (see Section 9.5) or using the translation routine shmem_team_translate_pe.
Split operations are collective and are subject to the constraints on team-based collectives specified in Section 9.10. In
particular, in multithreaded executions, threads at a given PE must not perform simultaneous split operations on the
same parent team. Team creation operations are matched across participating PEs based on the order in which they are
performed. Thus, team creation events must also occur in the same order on all PEs in the parent team.
Upon completion of a team creation operation, the parent and any resulting child teams will be immediately usable for
any team-based operations, including creating new child teams, without any intervening synchronization.

9.4.1 SHMEM_TEAM_MY_PE

Returns the number of the calling PE within a specified team.

SYNOPSIS

C/C++:
int shmem_team_my_pe(shmem_team_t team);

DESCRIPTION

Arguments
IN team An OpenSHMEM team handle.

API Description
When team specifies a valid team, the shmem_team_my_pe routine returns the number of the calling PE
within the specified team. The number is an integer between 0 and N − 1 for a team containing N PEs.
Each member of the team has a unique number.
If team compares equal to SHMEM_TEAM_INVALID, then the value -1 is returned. If team is otherwise
invalid, the behavior is undefined.

Return Values
The number of the calling PE within the specified team, or the value -1 if the team handle compares equal
to SHMEM_TEAM_INVALID.

Notes
For the world team, this routine will return the same value as shmem_my_pe.

9.4.2 SHMEM_TEAM_N_PES

Returns the number of PEs in a specified team.

SYNOPSIS

C/C++:
int shmem_team_n_pes(shmem_team_t team);

DRAFT

CONTENTS 37

DESCRIPTION

Arguments
IN team An OpenSHMEM team handle.

API Description
When team specifies a valid team, the shmem_team_n_pes routine returns the number of PEs in the team.
This will always be a value between 1 and N, where N is the total number of PEs running in the Open-
SHMEM program.
If team compares equal to SHMEM_TEAM_INVALID, then the value -1 is returned. If team is otherwise
invalid, the behavior is undefined.

Return Values
The number of PEs in the specified team, or the value -1 if the team handle compares equal to
SHMEM_TEAM_INVALID.

Notes
For the world team, this routine will return the same value as shmem_n_pes.

9.4.3 SHMEM_TEAM_CONFIG_T

A structure type representing team configuration arguments

SYNOPSIS

C/C++:
typedef struct {
int num_contexts;

} shmem_team_config_t;

DESCRIPTION

Arguments
None.

API Description
A team configuration object is provided as an argument to shmem_team_split_* routines. It specifies the
requested capabilities of the team to be created.
The num_contexts member specifies the total number of simultaneously existing contexts that the program
requests to create from this team. These contexts may be created in any number of threads. Successful
creation of a team configured with num_contexts of N means that the implementation will make a best
effort to reserve enough resources to support N contexts created from the team in existence at any given
time. It is not a guarantee that N calls to shmem_team_create_ctx will succeed. See Section 9.5 for more
on communication contexts and Section 9.5.2 for team-based context creation.
When passing a configuration structure to a team creation routine, the mask parameter specifies which
fields the application requests to associate with the new team. Any configuration parameter value that is
not indicated in the mask will be ignored, and the default value will be used instead. Therefore, a program
must set only the fields for which it does not want the default value.

DRAFT

CONTENTS 38

A configuration mask is created through a bitwise OR operation of the following library constants. A
configuration mask value of 0 indicates that the team should be created with the default values for all
configuration parameters.

SHMEM_TEAM_NUM_CONTEXTS The team should be created using the value of the num_contexts
member of the configuration parameter config as a requirement.

The default values for configuration parameters are:
num_contexts = 0 By default, no contexts can be created on a new team

9.4.4 SHMEM_TEAM_GET_CONFIG

Return the configuration parameters of a given team

SYNOPSIS

C/C++:
int shmem_team_get_config(shmem_team_t team, long config_mask, shmem_team_config_t *config);

DESCRIPTION

Arguments
IN team An OpenSHMEM team handle.
IN config_mask The bitwise mask representing the set of configuration parameters to

fetch from the given team.
OUT config A pointer to the configuration parameters for the given team.

API Description
shmem_team_get_config returns through the config argument the configuration parameters as described
by the mask, which were assigned according to input configuration parameters when the team was cre-
ated. The output config argument indicates the OpenSHMEM library’s parameter values at the time
shmem_team_get_config is called. These values may differ from the parameter values that were assigned
at the time of the team’s creation.
If team compares equal to SHMEM_TEAM_INVALID, then no operation is performed. If team is otherwise
invalid, the behavior is undefined. If config_mask is 0, then shmem_team_get_config performs no action
and config may or may not be a null pointer. If config is a null pointer, then config_mask must be 0,
otherwise the behavior is undefined.

Return Values
If team does not compare equal to SHMEM_TEAM_INVALID, then shmem_team_get_config returns 0;
otherwise, it returns nonzero.

9.4.5 SHMEM_TEAM_TRANSLATE_PE

Translate a given PE number from one team to the corresponding PE number in another team.

SYNOPSIS

C/C++:
int shmem_team_translate_pe(shmem_team_t src_team, int src_pe,

shmem_team_t dest_team);

DRAFT

CONTENTS 39

DESCRIPTION

Arguments
IN src_team An OpenSHMEM team handle.
IN src_pe A PE number in src_team.
IN dest_team An OpenSHMEM team handle.

API Description
The shmem_team_translate_pe routine will translate a given PE number in one team into the correspond-
ing PE number in another team. Specifically, given the src_pe in src_team, this routine returns that PE’s
number in dest_team. If src_pe is not a member of both src_team and dest_team, a value of -1 is returned.
If at least one of src_team and dest_team compares equal to SHMEM_TEAM_INVALID, then -1 is re-
turned. If either of the src_team or dest_team handles are otherwise invalid, the behavior is undefined.

Return Values
The specified PE’s number in the dest_team, or a value of -1 if any team handle arguments are invalid or
the src_pe is not in both the source and destination teams.

Notes
If SHMEM_TEAM_WORLD is provided as the dest_team parameter, this routine acts as a global PE
number translator and will return the corresponding SHMEM_TEAM_WORLD number.

EXAMPLES

Example 10. The following example demonstrates the use of the team PE number translation routine. The
program makes a new team of all of the even number PEs in the world team. Then, all PEs in the new team
acquire their PE number in the new team and translate it to the PE number in the world team.

#include <shmem.h>
#include <stddef.h>

int main(void) {
shmem_init();
shmem_team_config_t *config = NULL;
int mype = shmem_my_pe();
int npes = shmem_n_pes();

shmem_team_t new_team;
shmem_team_split_strided(SHMEM_TEAM_WORLD, 0, 2, (npes + 1) / 2, config, 0,

&new_team);

if (new_team != SHMEM_TEAM_INVALID) {
int team_mype = shmem_team_my_pe(new_team);
int global_mype = shmem_team_translate_pe(new_team, team_mype, SHMEM_TEAM_WORLD);

if (global_mype != mype) {
shmem_global_exit(1);

}
}

shmem_finalize();
return 0;

}

DRAFT

CONTENTS 40

9.4.6 SHMEM_TEAM_SPLIT_STRIDED

Create a new OpenSHMEM team from a subset of the existing parent team PEs, where the subset is defined by the PE
triplet (start, stride, and size) supplied to the routine.

SYNOPSIS

C/C++:
int shmem_team_split_strided(shmem_team_t parent_team, int start, int stride, int size,

const shmem_team_config_t *config, long config_mask, shmem_team_t *new_team);

DESCRIPTION

Arguments
IN parent_team An OpenSHMEM team.

IN start The first PE number of the subset of PEs from the parent team that will
form the new team. If the stride is less than zero, the first PE number
is the highest PE of the parent team; if it is greater than zero, it is the
lowest; if the stride is zero, it is the starting PE.

IN stride The stride between team PE numbers in the parent team that comprise
the subset of PEs that will form the new team.

IN size The number of PEs from the parent team in the subset of PEs that will
form the new team. size must be a positive integer.

IN config A pointer to the configuration parameters for the new team.

IN config_mask The bitwise mask representing the set of configuration parameters to
use from config.

OUT new_team An OpenSHMEM team handle. Upon successful creation, it references
an OpenSHMEM team that contains the subset of all PEs in the parent
team specified by the PE triplet provided.

API Description
The shmem_team_split_strided routine is a collective routine. It creates a new OpenSHMEM team from
an existing parent team, where the PE subset of the resulting team is defined by the triplet of arguments
(start, stride, size). A valid triplet is one such that:

start + stride · i ∈ ZN−1 ∀ i ∈ Zsize−1

where Z is the set of natural numbers (0,1, . . .), N is the number of PEs in the parent team, size is a positive
number indicating the number of PEs in the new team, and stride is an integer. The index i specifies
the number of the given PE in the new team. When stride is greater than zero, PEs in the new team
remain in the same relative order as in the parent team. When stride is less than zero, PEs in the new
team are in reverse relative order with respect to the parent team. If a stride value equal to 0 is passed
to shmem_team_split_strided, then the size argument passed must be 1, or the behavior is undefined. If
the triplet provided to shmem_team_split_strided implies a wrap-around sequence, the input is considered
invalid and the behavior is undefined. In other words, when stride is nonzero, a newly created team must
only include PEs whose subsequent parent PE values are either all increasing (for positive stride) or all
decreasing (for negative stride). That is, wrap-around with respect to the parent team’s PE values is not
permitted. For example, given a parent team with a size of 8 PEs, a call to shmem_team_split_strided with
the following arguments would be invalid: start equal to 3, stride equal to 3, and size equal to 3.
This routine must be called by all PEs in the parent team. All PEs must provide the same values for the PE
triplet. On successful creation of the new team:

DRAFT

CONTENTS 41

• The new_team handle will reference a valid team for the subset of PEs in the parent team that are
members of the new team.

• Those PEs in the parent team that are not members of the new team will have new_team assigned to
SHMEM_TEAM_INVALID.

• shmem_team_split_strided will return zero to all PEs in the parent team.

If the new team cannot be created or an invalid PE triplet is provided, then new_team will be assigned the
value SHMEM_TEAM_INVALID and shmem_team_split_strided will return a nonzero value on all PEs in
the parent team.
The config argument specifies team configuration parameters, which are described in Section 9.4.3.
The config_mask argument is a bitwise mask representing the set of configuration parameters to use from
config. A config_mask value of 0 indicates that the team should be created with the default values for all
configuration parameters. See Section 9.4.3 for field mask names and default configuration parameters.
If parent_team compares equal to SHMEM_TEAM_INVALID, then no new team will be created, new_team
will be assigned the value SHMEM_TEAM_INVALID, and shmem_team_split_strided will return a
nonzero value. If parent_team is otherwise invalid, the behavior is undefined.

Return Values
Zero on successful creation of new_team; otherwise, nonzero.

Notes
The shmem_team_split_strided operation can take any integer value stride argument.
See the description of team handles and predefined teams in Section 9.4 for more information about team
handle semantics and usage.

EXAMPLES

Example 11. The following example demonstrates the use of strided split in a C11 program. The program
creates a new team of all even number PEs from the world team, then retrieves the PE number and team
size on all PEs that are members of the new team.

#include <shmem.h>
#include <stdio.h>

int main(void) {
shmem_team_t new_team;
shmem_team_config_t *config;

shmem_init();
config = NULL;
int mype = shmem_my_pe();
int npes = shmem_n_pes();

shmem_team_split_strided(SHMEM_TEAM_WORLD, 0, 2, npes / 2, config, 0, &new_team);

if (new_team != SHMEM_TEAM_INVALID) {
int team_npes = shmem_team_n_pes(new_team);
int team_mype = shmem_team_my_pe(new_team);

if ((mype % 2 != 0) || (mype / 2 != team_mype) || (npes / 2 != team_npes)) {
shmem_global_exit(1);

}
}

shmem_finalize();
return 0;

}

DRAFT

CONTENTS 42

9.4.7 SHMEM_TEAM_SPLIT_2D

Create two new teams by splitting an existing parent team into two subsets based on a 2D Cartesian space defined by
the xrange argument and a y dimension that is derived from xrange and the parent team size.

SYNOPSIS

C/C++:
int shmem_team_split_2d(shmem_team_t parent_team, int xrange,

const shmem_team_config_t *xaxis_config, long xaxis_mask, shmem_team_t *xaxis_team,
const shmem_team_config_t *yaxis_config, long yaxis_mask, shmem_team_t *yaxis_team);

DESCRIPTION

Arguments
IN parent_team A valid OpenSHMEM team. Any predefined teams, such as

SHMEM_TEAM_WORLD, may be used, or any team created by the
user.

IN xrange A positive integer representing the number of elements in the first di-
mension.

IN xaxis_config A pointer to the configuration parameters for the new x-axis team.

IN xaxis_mask The bitwise mask representing the set of configuration parameters to
use from xaxis_config.

OUT xaxis_team A new PE team handle representing a PE subset consisting of all the
PEs that have the same coordinate along the y-axis as the calling PE.

IN yaxis_config A pointer to the configuration parameters for the new y-axis team.

IN yaxis_mask The bitwise mask representing the set of configuration parameters to
use from yaxis_config.

OUT yaxis_team A new PE team handle representing a PE subset consisting of all the
PEs that have the same coordinate along the x-axis as the calling PE.

API Description
The shmem_team_split_2d routine is a collective operation. It returns two new teams to the calling PE by
splitting an existing parent team into subsets based on a 2D Cartesian space. The user provides the size of
the x dimension, which is then used to derive the size of the y dimension based on the size of the parent
team. The size of the y dimension will be equal to ⌈N ÷xrange⌉, where N is the size of the parent team. In
other words, xrange×yrange ≥ N, so that every PE in the parent team has a unique (x,y) location in the 2D
Cartesian space. The resulting xaxis_team and yaxis_team correspond to the calling PE’s row and column,
respectively, in the 2D Cartesian space.
The mapping of PE number to coordinates is (x,y) = (pe mod xrange,⌊pe÷xrange⌋), where pe is the PE
number in the parent team. For example, if xrange = 3, then the first 3 PEs in the parent team will form the
first xteam, the second three PEs in the parent team form the second xteam, and so on.
Thus, after the split operation, each of the new xteams will contain all PEs that have the same coordinate
along the y-axis as the calling PE. Each of the new yteams will contain all PEs with the same coordinate
along the x-axis as the calling PE.
The PEs are numbered in the new teams based on the coordinate of the PE along the given axis. As a
result, the value returned by shmem_team_my_pe(xteam) is the x-coordinate and the value returned by
shmem_team_my_pe(yteam) is the y-coordinate of the calling PE.

DR
AF
T

CONTENTS 43

Any valid OpenSHMEM team can be used as the parent team. This routine must be called by all PEs in
the parent team. The value of xrange must be positive and all PEs in the parent team must pass the same
value for xrange. When xrange is greater than the size of the parent team, shmem_team_split_2d behaves
as though xrange were equal to the size of the parent team.
The xaxis_config and yaxis_config arguments specify team configuration parameters for the x- and y-axis
teams, respectively. These parameters are described in Section 9.4.3. All PEs that will be in the same
resultant team must specify the same configuration parameters. The PEs in the parent team do not have to
all provide the same parameters for new teams.
The xaxis_mask and yaxis_mask arguments are a bitwise masks representing the set of configuration pa-
rameters to use from xaxis_config and yaxis_config, respectively. A mask value of 0 indicates that the team
should be created with the default values for all configuration parameters. See Section 9.4.3 for field mask
names and default configuration parameters.
If parent_team compares equal to SHMEM_TEAM_INVALID, then no new teams will be cre-
ated, both xaxis_team and yaxis_team will be assigned the value SHMEM_TEAM_INVALID, and
shmem_team_split_2d will return a nonzero value. If parent_team is otherwise invalid, the behavior is
undefined.
If any xaxis_team or yaxis_team on any PE in parent_team cannot be created, then both team handles on
all PEs in parent_team will be assigned the value SHMEM_TEAM_INVALID and shmem_team_split_2d
will return a nonzero value.

Return Values
Zero on successful creation of all xaxis_teams and yaxis_teams; otherwise, nonzero.

Notes
Since the split may result in a 2D space with more points than there are members of the parent team, there
may be a final, incomplete row of the 2D mapping of the parent team. This means that the resultant yteams
may vary in size by up to 1 PE, and that there may be one resultant xteam of smaller size than all of the
other xteams.
The following grid shows the 12 teams that would result from splitting a parent team of size 10 with xrange
of 3. The numbers in the grid cells are the PE numbers in the parent team. The rows are the xteams. The
columns are the yteams.

yteam yteam yteam
x=0 x=1 x=2

xteam, y=0 0 1 2
xteam, y=1 3 4 5
xteam, y=2 6 7 8
xteam, y=3 9

It would be legal, for example, if PEs 0, 3, 6, 9 specified a different value for yaxis_config than all of the
other PEs, as long as the configuration parameters match for all PEs in each of the new teams.
See the description of team handles and predefined teams in Section 9.4 for more information about team
handle semantics and usage.

EXAMPLES

Example 12. The following example demonstrates the use of 2D Cartesian split in a C/C++ program. This
example shows how multiple 2D splits can be used to generate a 3D Cartesian split.

#include <shmem.h>
#include <stdio.h>
#include <math.h>

DRAFT

CONTENTS 44

/* Find x and y such that x * y == npes and abs(x - y) is minimized. */
static void find_xy_dims(int npes, int *x, int *y) {
for(int divider = ceil(sqrt(npes)); divider >= 1; divider--)

if (npes % divider == 0) {

*x = divider;

*y = npes / divider;
return;

}
}

/* Find x, y, and z such that x * y * z == npes and

* abs(x - y) + abs(x - z) + abs(y - z) is minimized. */
static void find_xyz_dims(int npes, int *x, int *y, int *z) {

*x = *y = *z = 1;
for(int divider = ceil(cbrt(npes)); divider >= 1; divider--)

if (npes % divider == 0) {

*x = divider;
find_xy_dims(npes / divider, y, z);
return;

}
}

int main(void) {
int xdim, ydim, zdim;

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

find_xyz_dims(npes, &xdim, &ydim, &zdim);

if (shmem_my_pe() == 0) printf("xdim = %d, ydim = %d, zdim = %d\n", xdim, ydim, zdim);

shmem_team_t xteam, yzteam, yteam, zteam;

shmem_team_split_2d(SHMEM_TEAM_WORLD, xdim, NULL, 0, &xteam, NULL, 0, &yzteam);
// yzteam is immediately ready to be used in collectives
shmem_team_split_2d(yzteam, ydim, NULL, 0, &yteam, NULL, 0, &zteam);

// We don’t need the yzteam anymore
shmem_team_destroy(yzteam);

int my_x = shmem_team_my_pe(xteam);
int my_y = shmem_team_my_pe(yteam);
int my_z = shmem_team_my_pe(zteam);

for (int zdx = 0; zdx < zdim; zdx++) {
for (int ydx = 0; ydx < ydim; ydx++) {
for (int xdx = 0; xdx < xdim; xdx++) {

if ((my_x == xdx) && (my_y == ydx) && (my_z == zdx)) {
printf("(%d, %d, %d) is mype = %d\n", my_x, my_y, my_z, mype);

}
shmem_team_sync(SHMEM_TEAM_WORLD);

}
}

}

shmem_finalize();
return 0;

}

The example above splits SHMEM_TEAM_WORLD into a 3D team with dimensions xdim, ydim, and zdim,
where each dimension is calculated using the functions, find_xy_dims and find_xyz_dims. When running
with 12 PEs, the dimensions are 3x2x2, respectively, and the first split of SHMEM_TEAM_WORLD results
in 4 xteams and 3 yzteams:

DRAFT

CONTENTS 45

yzteam
x = 0 x = 1 x = 2

xteam

yz = 0 0 1 2
yz = 1 3 4 5
yz = 2 6 7 8
yz = 3 9 10 11

The second split of yzteam for x = 0, ydim = 2 results in 2 yteams and 2 zteams:

zteam
y = 0 y = 1

yteam
z = 0 0 3
z = 1 6 9

The second split of yzteam for x = 1, ydim = 2 results in 2 yteams and 2 zteams:

zteam
y = 0 y = 1

yteam
z = 0 1 4
z = 1 7 10

The second split of yzteam for x = 2, ydim = 2 results in 2 yteams and 2 zteams:

zteam
y = 0 y = 1

yteam
z = 0 2 5
z = 1 8 11

The final number of teams for each dimension are:

• 4 xteams: these are teams where (z,y) is fixed and x varies.
• 6 yteams: these are teams where (x,z) is fixed and y varies.
• 6 zteams: these are teams where (x,y) is fixed and z varies.

The expected output with 12 PEs is:
xdim = 3, ydim = 2, zdim = 2

(0, 0, 0) is mype = 0

(1, 0, 0) is mype = 1

(2, 0, 0) is mype = 2

(0, 1, 0) is mype = 3

(1, 1, 0) is mype = 4

(2, 1, 0) is mype = 5

(0, 0, 1) is mype = 6

(1, 0, 1) is mype = 7

(2, 0, 1) is mype = 8

(0, 1, 1) is mype = 9

(1, 1, 1) is mype = 10

(2, 1, 1) is mype = 11

9.4.8 SHMEM_TEAM_DESTROY

Destroy an existing team.

SYNOPSIS

C/C++:
void shmem_team_destroy(shmem_team_t team);

DRAFT

CONTENTS 46

DESCRIPTION

Arguments
IN team An OpenSHMEM team handle.

API Description

The shmem_team_destroy routine is a collective operation that destroys the team referenced by the team
handle argument team. Upon return, the referenced team is invalid.
This routine destroys all shareable contexts created from the referenced team. The user is responsible for
destroying all contexts created from this team with the SHMEM_CTX_PRIVATE option enabled prior to
calling this routine; otherwise, the behavior is undefined.
If team compares equal to SHMEM_TEAM_WORLD or any other predefined team, the behavior is unde-
fined.
If team compares equal to SHMEM_TEAM_INVALID, then no operation is performed. If team is otherwise
invalid, the behavior is undefined.

Return Values
None.

9.5 Communication Management Routines

All OpenSHMEM RMA, AMO, and memory ordering routines must be performed on a valid communication context.
The communication context defines an independent ordering and completion environment, allowing users to manage
the overlap of communication with computation and also to manage communication operations performed by separate
threads within a multithreaded PE. For example, in single-threaded environments, contexts may be used to pipeline
communication and computation. In multithreaded environments, contexts may additionally provide thread isolation,
eliminating overheads resulting from thread interference.
A specific communication context is referenced through a context handle, which is passed as an argument in the
shmem_ctx_* and type-generic API routines. API routines that do not accept a context handle argument operate on
the default context. The default context can be used explicitly through the SHMEM_CTX_DEFAULT handle. Context
handles are of type shmem_ctx_t and may be used for language-level assignment and equality comparison.
The default context is valid for the duration of the OpenSHMEM portion of an application. Contexts created by a
successful call to shmem_ctx_create remain valid until they are destroyed. A handle value that does not correspond
to a valid context is considered to be invalid, and its use in RMA and AMO routines results in undefined behavior. A
context handle may be initialized to or assigned the value SHMEM_CTX_INVALID to indicate that handle does not
reference a valid communication context. When managed in this way, applications can use an equality comparison to
test whether a given context handle references a valid context.
Every communication context is associated with a team. This association is established at context creation. Com-
munication contexts created by shmem_ctx_create are associated with the world team, while contexts created by
shmem_team_create_ctx are associated with and created from a team specified at context creation. The default con-
text is associated with the world team. A context’s associated team specifies the set of PEs over which PE-specific
routines that operate on a communication context, explicitly or implicitly, are performed. All point-to-point routines
that operate on this context will do so with respect to the team-relative PE numbering of the associated team. If the
PE number passed to such a routine is invalid, being negative or greater than or equal to the size of the OpenSHMEM
team, then the behavior is undefined.
By default, contexts are shareable and, when it is allowed by the threading model provided by the OpenSHMEM
library, they can be used concurrently by multiple threads within the PE where they were created. The following
options can be supplied during context creation to restrict this usage model and enable performance optimizations.

DRAFT

CONTENTS 47

When using a given context, the application must comply with the requirements of all options set on that context;
otherwise, the behavior is undefined. No options are enabled on the default context.

SHMEM_CTX_SERIALIZED The given context is shareable; however, it will not
be used by multiple threads concurrently. When the
SHMEM_CTX_SERIALIZED option is set, the user must ensure
that operations involving the given context are serialized by the
application.

SHMEM_CTX_PRIVATE The given context will be used only by the thread that created it.

SHMEM_CTX_NOSTORE Quiet and fence operations performed on the given context are
not required to enforce completion and ordering of memory
store operations performed by the application. When order-
ing of store operations is needed, the application must per-
form a synchronization operation on a context without the
SHMEM_CTX_NOSTORE option enabled.

9.5.1 SHMEM_CTX_CREATE

Create a communication context.

SYNOPSIS

C/C++:
int shmem_ctx_create(long options, shmem_ctx_t *ctx);

DESCRIPTION

Arguments
IN options The set of options requested for the given context. Multiple options

may be requested by combining them with a bitwise OR operation; oth-
erwise, 0 can be given if no options are requested.

OUT ctx A handle to the newly created context.

API Description
The shmem_ctx_create routine creates a new communication context and returns its handle through the
ctx argument. This context is created from the world team; however, the context creation operation is
not collective. If the context was created successfully, a value of zero is returned and the context han-
dle pointed to by ctx specifies a valid context; otherwise, a nonzero value is returned and ctx is set to
SHMEM_CTX_INVALID. An unsuccessful context creation call is not treated as an error and the Open-
SHMEM library remains in a correct state. The creation call can be reattempted with different options or
after additional resources become available.
All OpenSHMEM routines that operate on this context will do so with respect to the associated PE team.
That is, all point-to-point routines operating on this context will use team-relative PE numbering.

Return Values
Zero on success and nonzero otherwise.

DR
AF
T

CONTENTS 48

9.5.2 SHMEM_TEAM_CREATE_CTX

Create a communication context from a team.

SYNOPSIS

C/C++:
int shmem_team_create_ctx(shmem_team_t team, long options, shmem_ctx_t *ctx);

DESCRIPTION

Arguments
IN team A handle to the specified PE team.
IN options The set of options requested for the given context. Multiple options

may be requested by combining them with a bitwise OR operation; oth-
erwise, 0 can be given if no options are requested.

OUT ctx A handle to the newly created context.

API Description
The shmem_team_create_ctx routine creates a new communication context and returns its handle through
the ctx argument. This context is created from the team specified by the team argument; however, the
context creation operation is not collective.
In addition to the team, the shmem_team_create_ctx routine accepts the same arguments and provides all
the same return conditions as the shmem_ctx_create routine.
The shmem_team_create_ctx routine may be called any number of times to create multiple simultaneously
existing contexts for the team. Programs should request the total number of simultaneous contexts to be
created from the team during team creation. See Section 9.4.3 for more information on how to request
contexts during team creation.
A call to shmem_team_create_ctx on a team may fail, regardless of the configuration request for contexts,
if the implementation is unable to create a context at the time when shmem_team_create_ctx is called.
All explicitly created resources associated with a team must be destroyed before the shmem_team_destroy
routine is called. If a context returned from shmem_team_create_ctx is not explicitly destroyed before the
team is destroyed, behavior is undefined.
All OpenSHMEM routines that operate on this context will do so with respect to the associated PE team.
That is, all point-to-point routines operating on this context will use team-relative PE numbering.
If team compares equal to SHMEM_TEAM_INVALID, then a nonzero value is returned and ctx is set to
SHMEM_CTX_INVALID. If team is otherwise invalid, the behavior is undefined.

Return Values
Zero on success and nonzero otherwise.

EXAMPLES

Example 13. The following example demonstrates the use of contexts for multiple teams in a C/C++
program. This example shows contexts being used to communicate within a team using team PE numbers,
and across teams using translated PE numbers.

#include <shmem.h>
#include <stdio.h>

int main(void)

DR
AF
T

CONTENTS 49

{
static int sum = 0, val_2, val_3;
shmem_team_t team_2, team_3;
shmem_ctx_t ctx_2, ctx_3;
shmem_team_config_t conf;

shmem_init();

int npes = shmem_n_pes();
int mype = shmem_my_pe();
conf.num_contexts = 1;
long cmask = SHMEM_TEAM_NUM_CONTEXTS;

/* Create team_2 with PEs numbered 0, 2, 4, ... */
int ret = shmem_team_split_strided(SHMEM_TEAM_WORLD, 0, 2, (npes + 1) / 2, &conf,

cmask, &team_2);

if (ret != 0) {
printf("%d: Error creating team team_2 (%d)\n", mype, ret);
shmem_global_exit(ret);

}

/* Create team_3 with PEs numbered 0, 3, 6, ... */
ret = shmem_team_split_strided(SHMEM_TEAM_WORLD, 0, 3, (npes + 2) / 3, &conf, cmask,

&team_3);

if (ret != 0) {
printf("%d: Error creating team team_3 (%d)\n", mype, ret);
shmem_global_exit(ret);

}

/* Create a context on team_2. */
ret = shmem_team_create_ctx(team_2, 0, &ctx_2);

if (ret != 0 && team_2 != SHMEM_TEAM_INVALID) {
printf("%d: Error creating context ctx_2 (%d)\n", mype, ret);
shmem_global_exit(ret);

}

/* Create a context on team_3. */
ret = shmem_team_create_ctx(team_3, 0, &ctx_3);

if (ret != 0 && team_3 != SHMEM_TEAM_INVALID) {
printf("%d: Error creating context ctx_3 (%d)\n", mype, ret);
shmem_global_exit(ret);

}

/* Within each team, put my PE number to my neighbor in a ring-based manner. */
if (ctx_2 != SHMEM_CTX_INVALID) {

int pe = shmem_team_my_pe(team_2);
shmem_ctx_int_put(ctx_2, &val_2, &pe, 1, (pe + 1) % shmem_team_n_pes(team_2));

}

if (ctx_3 != SHMEM_CTX_INVALID) {
int pe = shmem_team_my_pe(team_3);
shmem_ctx_int_put(ctx_3, &val_3, &pe, 1, (pe + 1) % shmem_team_n_pes(team_3));

}

/* Quiet both contexts and synchronize all PEs to complete the data transfers. */
shmem_ctx_quiet(ctx_2);
shmem_ctx_quiet(ctx_3);
shmem_team_sync(SHMEM_TEAM_WORLD);

/* Sum the values among PEs that are in both team_2 and team_3 on PE 0 with ctx_2. */
if (team_3 != SHMEM_TEAM_INVALID && team_2 != SHMEM_TEAM_INVALID)

shmem_ctx_int_atomic_add(ctx_2, &sum, val_2 + val_3, 0);

/* Quiet the context and synchronize PEs to complete the operation. */

DRAFT

CONTENTS 50

shmem_ctx_quiet(ctx_2);
shmem_team_sync(SHMEM_TEAM_WORLD);

/* Validate the result. */
if (mype == 0) {

int vsum = 0;
for (int i = 0; i < npes; i ++) {

if (i % 2 == 0 && i % 3 == 0) {
vsum += ((i - 2) < 0) ? shmem_team_n_pes(team_2) - 1 :

shmem_team_translate_pe(SHMEM_TEAM_WORLD, i - 2, team_2);
vsum += ((i - 3) < 0) ? shmem_team_n_pes(team_3) - 1 :

shmem_team_translate_pe(SHMEM_TEAM_WORLD, i - 3, team_3);
}

}
if (sum != vsum) {

fprintf(stderr, "Unexpected result, npes = %d, vsum = %d, sum = %d\n",
shmem_n_pes(), vsum, sum);

shmem_global_exit(1);
}

}

/* Destroy contexts before teams. */
shmem_ctx_destroy(ctx_2);
shmem_team_destroy(team_2);

shmem_ctx_destroy(ctx_3);
shmem_team_destroy(team_3);

shmem_finalize();
return 0;

}

9.5.3 SHMEM_CTX_DESTROY

Destroy a communication context.

SYNOPSIS

C/C++:
void shmem_ctx_destroy(shmem_ctx_t ctx);

DESCRIPTION

Arguments
IN ctx Handle to the context that will be destroyed.

API Description
shmem_ctx_destroy destroys a context that was created by a call to shmem_ctx_create or
shmem_team_create_ctx. It is the user’s responsibility to ensure that the context is not used after it
has been destroyed, for example when the destroyed context is used by multiple threads. This func-
tion performs an implicit quiet operation on the given context before it is freed. If ctx has the value
SHMEM_CTX_INVALID, no operation is performed.

Return Values
None.

DRAFT

CONTENTS 51

Notes
Destroying a context makes it impossible for the user to complete communication operations that are pend-
ing on that context. This includes nonblocking communication operations, whose local buffers are only
returned to the user after the operations have been completed. An implicit quiet is performed when freeing
a context to avoid this ambiguity.
A context with the SHMEM_CTX_PRIVATE option enabled must be destroyed by the thread that created
it.

EXAMPLES

Example 14. The following example demonstrates the use of contexts in a multithreaded C11 program that
uses OpenMP for threading. This example shows the shared counter load balancing method and illustrates
the use of contexts for thread isolation.

#include <shmem.h>
#include <stdio.h>

long task_cntr = 0; /* Next task counter */
long tasks_done = 0; /* Tasks done by this PE */
long total_done = 0; /* Total tasks done by all PEs */

int main(void) {
int tl, i;
long ntasks = 1024; /* Total tasks per PE */

shmem_init_thread(SHMEM_THREAD_MULTIPLE, &tl);
if (tl != SHMEM_THREAD_MULTIPLE)

shmem_global_exit(1);

int mype = shmem_my_pe();
int npes = shmem_n_pes();

#pragma omp parallel reduction(+ : tasks_done)
{

shmem_ctx_t ctx;
int task_pe = mype, pes_done = 0;
int ret = shmem_ctx_create(SHMEM_CTX_PRIVATE, &ctx);

if (ret != 0) {
printf("%d: Error creating context (%d)\n", mype, ret);
shmem_global_exit(2);

}

/* Process tasks on all PEs, starting with the local PE. After

* all tasks on a PE are completed, help the next PE. */
while (pes_done < npes) {
long task = shmem_atomic_fetch_inc(ctx, &task_cntr, task_pe);
while (task < ntasks) {

/* Perform task (task_pe, task) */
tasks_done++;
task = shmem_atomic_fetch_inc(ctx, &task_cntr, task_pe);

}
pes_done++;
task_pe = (task_pe + 1) % npes;

}

shmem_ctx_destroy(ctx);
}

shmem_long_sum_reduce(SHMEM_TEAM_WORLD, &total_done, &tasks_done, 1);

int result = (total_done != ntasks * npes);
shmem_finalize();
return result;

}

DRAFT

CONTENTS 52

Example 15. The following example demonstrates the use of contexts in a single-threaded C11 program
that performs a summation reduction where the data contained in the in_buf arrays on all PEs is reduced
into the out_buf arrays on all PEs. The buffers are divided into segments and processing of the segments is
pipelined. Contexts are used to overlap an all-to-all exchange of data for segment p with the local reduction
of segment p-1.

#include <shmem.h>
#include <stdio.h>
#include <stdlib.h>

#define LEN 8192 /* Full buffer length */
#define PLEN 512 /* Length of each pipeline stage */

int in_buf[LEN], out_buf[LEN];

int main(void) {
int i, j, *pbuf[2];
shmem_ctx_t ctx[2];

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

pbuf[0] = shmem_malloc(PLEN * npes * sizeof(int));
pbuf[1] = shmem_malloc(PLEN * npes * sizeof(int));

int ret_0 = shmem_ctx_create(0, &ctx[0]);
int ret_1 = shmem_ctx_create(0, &ctx[1]);
if (ret_0 || ret_1)

shmem_global_exit(1);

for (i = 0; i < LEN; i++) {
in_buf[i] = mype;
out_buf[i] = 0;

}

int p_idx = 0, p = 0; /* Index of ctx and pbuf (p_idx) for cur. pipeline stage (p) */
for (i = 1; i <= npes; i++)

shmem_put_nbi(ctx[p_idx], &pbuf[p_idx][PLEN * mype], &in_buf[PLEN * p], PLEN,
(mype + i) % npes);

/* Issue puts for pipeline stage p, then accumulate results for stage p-1 */
for (p = 1; p < LEN / PLEN; p++) {

p_idx ^= 1;
for (i = 1; i <= npes; i++)
shmem_put_nbi(ctx[p_idx], &pbuf[p_idx][PLEN * mype], &in_buf[PLEN * p], PLEN,

(mype + i) % npes);

shmem_ctx_quiet(ctx[p_idx ^ 1]);
shmem_sync_all();
for (i = 0; i < npes; i++)
for (j = 0; j < PLEN; j++)

out_buf[PLEN * (p - 1) + j] += pbuf[p_idx ^ 1][PLEN * i + j];
}

shmem_ctx_quiet(ctx[p_idx]);
shmem_sync_all();
for (i = 0; i < npes; i++)

for (j = 0; j < PLEN; j++)
out_buf[PLEN * (p - 1) + j] += pbuf[p_idx][PLEN * i + j];

shmem_finalize();
return 0;

}

DR
AF
T

CONTENTS 53

Example 16. The following example demonstrates the use of SHMEM_CTX_INVALID in a C11 program
that uses thread-local storage to provide each thread an implicit context handle via a “library” put routine
without explicit management of the context handle from “user” code.

#include <omp.h>
#include <shmem.h>
#include <stddef.h>

_Thread_local shmem_ctx_t thread_ctx = SHMEM_CTX_INVALID;

void lib_thread_register(void) {
if (thread_ctx == SHMEM_CTX_INVALID)

if (shmem_ctx_create(SHMEM_CTX_PRIVATE, &thread_ctx) && shmem_ctx_create(0,
&thread_ctx))

thread_ctx = SHMEM_CTX_DEFAULT;
}

void lib_thread_unregister(void) {
if (thread_ctx != SHMEM_CTX_DEFAULT) {

shmem_ctx_destroy(thread_ctx);
thread_ctx = SHMEM_CTX_INVALID;

}
}

void lib_thread_putmem(void *dst, const void *src, size_t nbytes, int pe) {
shmem_ctx_putmem(thread_ctx, dst, src, nbytes, pe);

}

int main() {
int provided;
if (shmem_init_thread(SHMEM_THREAD_MULTIPLE, &provided))

return 1;
if (provided != SHMEM_THREAD_MULTIPLE)

shmem_global_exit(2);

const int mype = shmem_my_pe();
const int npes = shmem_n_pes();
const int count = 1 << 15;

int *src_bufs[npes];
int *dst_bufs[npes];
for (int i = 0; i < npes; i++) {

src_bufs[i] = shmem_calloc(count, sizeof(*src_bufs[i]));
if (src_bufs[i] == NULL)
shmem_global_exit(3);

dst_bufs[i] = shmem_calloc(count, sizeof(*dst_bufs[i]));
if (dst_bufs[i] == NULL)
shmem_global_exit(4);

}

#pragma omp parallel
{

int my_thrd = omp_get_thread_num();
#pragma omp for

for (int i = 0; i < npes; i++)
for (int j = 0; j < count; j++)

src_bufs[i][j] = (mype << 10) + my_thrd;

lib_thread_register();

#pragma omp for
for (int i = 0; i < npes; i++)
lib_thread_putmem(dst_bufs[mype], src_bufs[i], count * sizeof(*src_bufs[i]), i);

lib_thread_unregister();
}

shmem_finalize();

DRAFT

CONTENTS 54

return 0;
}

9.5.4 SHMEM_CTX_GET_TEAM

Retrieve the team associated with the communication context.

SYNOPSIS

C/C++:
int shmem_ctx_get_team(shmem_ctx_t ctx, shmem_team_t *team);

DESCRIPTION

Arguments
IN ctx A handle to a communication context.
OUT team A pointer to a handle to the associated PE team.

API Description
The shmem_ctx_get_team routine returns a handle to the team associated with the specified communication
context ctx. The team handle is returned through the pointer argument team.
If ctx is the default context or one created by a call to shmem_ctx_create, team is assigned the handle value
SHMEM_TEAM_WORLD.
If ctx compares equal to SHMEM_CTX_INVALID, then team is assigned the value
SHMEM_TEAM_INVALID and a nonzero value is returned. If ctx is otherwise invalid, the behav-
ior is undefined.
If team is a null pointer, the behavior is undefined.

Return Values
Zero on success; otherwise, nonzero.

9.6 Remote Memory Access Routines

The RMA routines described in this section can be used to perform reads from and writes to symmetric data objects.
These operations are one-sided, meaning that the PE invoking an operation provides all communication parameters
and the targeted PE is passive. A characteristic of one-sided communication is that it decouples communication from
synchronization. One-sided communication mechanisms transfer data; however, they do not synchronize the sender of
the data with the receiver of the data.
OpenSHMEM RMA routines are performed on symmetric data objects. The initiator PE of a call is designated as the
origin PE and the PE targeted by an operation is designated as the destination PE. The source and dest designators
refer to the data objects that an operation reads from and writes to. In the case of the remote update routine, Put, the
origin PE provides the source data object and the destination PE provides the dest data object. In the case of the remote
read routine, Get, the origin PE provides the dest data object and the destination PE provides the source data object.
The destination PE is specified as an integer representing the PE number. This PE number is relative to the team
associated with the communication context being used for the operation. If no context argument is passed to the
routine, then the routine operates on the default context, which implies that the PE number is relative to the world
team. If the PE number passed to the routine is invalid, being negative or greater than or equal to the size of the
OpenSHMEM team, then the behavior is undefined.

DRAFT

CONTENTS 55

OpenSHMEM RMA routines specified in this section have two variants. In one of the variants, the context handle, ctx,
is explicitly passed as an argument. In this variant, the operation is performed on the specified context. If the context
handle ctx does not correspond to a valid context, the behavior is undefined. In the other variant, the context handle is
not explicitly passed and thus, the operations are performed on the default context.
Where appropriate compiler support is available, OpenSHMEM provides type-generic one-sided communication inter-
faces via C11 generic selection (C11 §6.5.1.15) for block, scalar, and block-strided put and get communication. Such
type-generic routines are supported for the “standard RMA types” listed in Table 5.
The standard RMA types include the exact-width integer types defined in stdint.h by C996 §7.18.1.1 and C11 §7.20.1.1.
When the C translation environment does not provide exact-width integer types with stdint.h, an OpenSHMEM imple-
mentation is not required to provide support for these types.

TYPE TYPENAME
float float
double double
long double longdouble
char char
signed char schar
short short
int int
long long
long long longlong
unsigned char uchar
unsigned short ushort
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int8_t int8
int16_t int16
int32_t int32
int64_t int64
uint8_t uint8
uint16_t uint16
uint32_t uint32
uint64_t uint64
size_t size
ptrdiff_t ptrdiff

Table 5: Standard RMA Types and Names

9.6.1 Blocking Remote Memory Access Routines

9.6.1.1 SHMEM_PUT
The put routines provide a method for copying data from a contiguous local data object to a data object on a specified
PE.

SYNOPSIS

C11:
5Formally, the C11 specification is ISO/IEC 9899:2011(E).
6Formally, the C99 specification is ISO/IEC 9899:1999(E).

DR
AF
T

CONTENTS 56

void shmem_put(TYPE *dest, const TYPE *source, size_t nelems, int pe);
void shmem_put(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:
void shmem_TYPENAME_put(TYPE *dest, const TYPE *source, size_t nelems, int pe);
void shmem_ctx_TYPENAME_put(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems,

int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

void shmem_putSIZE(void *dest, const void *source, size_t nelems, int pe);
void shmem_ctx_putSIZE(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems, int

pe);

where SIZE is one of 8, 16, 32, 64, 128.

void shmem_putmem(void *dest, const void *source, size_t nelems, int pe);
void shmem_ctx_putmem(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems, int

pe);

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN source Local address of the data object containing the data to be copied. The
type of source should match that implied in the SYNOPSIS section.

IN nelems Number of elements in the dest and source arrays. For shmem_putmem
and shmem_ctx_putmem, elements are bytes.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The routines return after the data has been copied out of the source array on the local PE. The delivery of
data words into the data object on the destination PE may occur in any order. Furthermore, two successive
put routines may deliver data out of order unless a call to shmem_fence is introduced between the two
calls.

Return Values
None.

EXAMPLES

Example 17. The following shmem_put example is for C11 programs:

#include <shmem.h>
#include <stdio.h>

int main(void) {
long source[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
static long dest[10];
shmem_init();
int mype = shmem_my_pe();

DR
AF
T

CONTENTS 57

if (mype == 0) /* put 10 words into dest on PE 1 */
shmem_put(dest, source, 10, 1);

shmem_barrier_all(); /* sync sender and receiver */
printf("dest[0] on PE %d is %ld\n", mype, dest[0]);
shmem_finalize();
return 0;

}

9.6.1.2 SHMEM_P
Copies one data item to a remote PE.

SYNOPSIS

C11:
void shmem_p(TYPE *dest, TYPE value, int pe);
void shmem_p(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:
void shmem_TYPENAME_p(TYPE *dest, TYPE value, int pe);
void shmem_ctx_TYPENAME_p(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The value to be transferred to dest. The type of value should match that
implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
These routines provide a very low latency put capability for single elements of most basic types.
As with shmem_put, these routines start the remote transfer and may return before the data is delivered to
the remote PE. Use shmem_quiet to force completion of all remote Put transfers.

Return Values
None.

EXAMPLES

Example 18. The following example uses shmem_p in a C11 program.

#include <math.h>
#include <shmem.h>
#include <stdio.h>

int main(void) {

DRAFT

CONTENTS 58

const double e = 2.71828182;
const double epsilon = 0.00000001;
static double f = 3.1415927;
shmem_init();
int mype = shmem_my_pe();
if (mype == 0)

shmem_p(&f, e, 1);
shmem_barrier_all();
if (mype == 1)

printf("%s\n", (fabs(f - e) < epsilon) ? "OK" : "FAIL");
shmem_finalize();
return 0;

}

9.6.1.3 SHMEM_IPUT
Copies strided data to a specified PE.

SYNOPSIS

C11:
void shmem_iput(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst, size_t nelems,

int pe);
void shmem_iput(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t

sst, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:
void shmem_TYPENAME_iput(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst,

size_t nelems, int pe);
void shmem_ctx_TYPENAME_iput(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t dst,

ptrdiff_t sst, size_t nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

void shmem_iputSIZE(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t
nelems, int pe);

void shmem_ctx_iputSIZE(shmem_ctx_t ctx, void *dest, const void *source, ptrdiff_t dst,
ptrdiff_t sst, size_t nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination array data object. The type of dest
should match that implied in the SYNOPSIS section.

IN source Local address of the array containing the data to be copied. The type of
source should match that implied in the SYNOPSIS section.

IN dst The stride between consecutive elements of the dest array. The stride
must be greater than or equal to 1 and is scaled by the element size of
the dest array. A value of 1 indicates contiguous data.

IN sst The stride between consecutive elements of the source array. The stride
must be greater than or equal to 1 and is scaled by the element size of
the source array. A value of 1 indicates contiguous data.

DRAFT

CONTENTS 59

IN nelems Number of elements in the dest and source arrays.
IN pe PE number of the remote PE relative to the team associated with the

given ctx when provided, or the default context otherwise.

API Description
The shmem_iput routines provide a method for copying strided data elements (specified by sst) of an array
from a source array on the local PE to locations specified by stride dst on a dest array on specified remote
PE. The routines return when the data has been copied out of the source array on the local PE but not
necessarily before the data has been delivered to the remote data object.

Return Values
None.

EXAMPLES

Example 19. Consider the following shmem_iput example for C11 programs.

#include <shmem.h>
#include <stdio.h>

int main(void) {
short source[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
static short dest[10];
shmem_init();
int mype = shmem_my_pe();
if (mype == 0) /* put 5 elements into dest on PE 1 */

shmem_iput(dest, source, 1, 2, 5, 1);
shmem_barrier_all(); /* sync sender and receiver */
if (mype == 1) {

printf("dest on PE %d is %hd %hd %hd %hd %hd\n", mype, dest[0], dest[1], dest[2],
dest[3], dest[4]);

}
shmem_finalize();
return 0;

}

9.6.1.4 SHMEM_IBPUT
Copies strided data blocks to a specified PE.

SYNOPSIS

C11:
void shmem_ibput(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst, size_t bsize,

size_t nblocks, int pe);
void shmem_ibput(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t

sst, size_t bsize, size_t nblocks, int pe);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:
void shmem_TYPENAME_ibput(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst,

size_t bsize, size_t nblocks, int pe);
void shmem_ctx_TYPENAME_ibput(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t

dst, ptrdiff_t sst, size_t bsize, size_t nblocks, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

DR
AF
T

CONTENTS 60

void shmem_ibputSIZE(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t
bsize, size_t nblocks, int pe);

void shmem_ctx_ibputSIZE(shmem_ctx_t ctx, void *dest, const void *source, ptrdiff_t dst,
ptrdiff_t sst, size_t bsize, size_t nblocks, int pe);

where SIZE is one of 8, 16, 32, 64, 128.

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination array data object. The type of dest
should match that implied in the SYNOPSIS section.

IN source Local address of the array containing the data to be copied. The type of
source should match that implied in the SYNOPSIS section.

IN dst The stride between consecutive blocks of the dest array. The stride must
be greater than or equal to bsize and is scaled by the element size of the
dest array. A value of bsize indicates contiguous data.

IN sst The stride between consecutive blocks of the source array. The stride
must be greater than or equal to bsize and is scaled by the element size
of the source array. A value of bsize indicates contiguous data.

IN bsize Number of elements per block in the dest and source arrays.
IN nblocks Number of blocks to be copied from the source array to the dest array.
IN pe PE number of the remote PE relative to the team associated with the

given ctx when provided, or the default context otherwise.

API Description
The shmem_ibput routines provide a method for copying strided data blocks (of size bsize) with stride
(specified by sst) of an array from a source array on the local PE to locations specified by stride dst on a
dest array on specified remote PE. The routines return when the data has been copied out of the source
array on the local PE but not necessarily before the data has been delivered to the remote data object.

Return Values
None.

Notes
The shmem_ibput API provides a more general purpose interleaved transfer API than shmem_iput. Calling
shmem_ibput with a block size of 1 is equivalent to the shmem_iput API.

9.6.1.5 SHMEM_GET
Copies data from a specified PE.

SYNOPSIS

C11:
void shmem_get(TYPE *dest, const TYPE *source, size_t nelems, int pe);
void shmem_get(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:

DRAFT

CONTENTS 61

void shmem_TYPENAME_get(TYPE *dest, const TYPE *source, size_t nelems, int pe);
void shmem_ctx_TYPENAME_get(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems,

int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

void shmem_getSIZE(void *dest, const void *source, size_t nelems, int pe);
void shmem_ctx_getSIZE(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems, int

pe);

where SIZE is one of 8, 16, 32, 64, 128.

void shmem_getmem(void *dest, const void *source, size_t nelems, int pe);
void shmem_ctx_getmem(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems, int

pe);

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Local address of the data object to be updated. The type of dest should
match that implied in the SYNOPSIS section.

IN source Symmetric address of the source data object. The type of source should
match that implied in the SYNOPSIS section.

IN nelems Number of elements in the dest and source arrays. For shmem_getmem
and shmem_ctx_getmem, elements are bytes.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The get routines provide a method for copying a contiguous symmetric data object from a remote PE to
a contiguous data object on the local PE. The routines return after the data has been delivered to the dest
array on the local PE.

Return Values
None.

Notes
See Section 3 for a definition of the term remotely accessible.

9.6.1.6 SHMEM_G
Copies one data item from a remote PE

SYNOPSIS

C11:
TYPE shmem_g(const TYPE *source, int pe);
TYPE shmem_g(shmem_ctx_t ctx, const TYPE *source, int pe);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:

DR
AF
T

CONTENTS 62

TYPE shmem_TYPENAME_g(const TYPE *source, int pe);
TYPE shmem_ctx_TYPENAME_g(shmem_ctx_t ctx, const TYPE *source, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

IN source Symmetric address of the source data object. The type of source should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE on which source resides relative to the
team associated with the given ctx when provided, or the default context
otherwise.

API Description
These routines provide a very low latency get capability for single elements of most basic types.

Return Values
Returns a single element of type specified in the synopsis.

EXAMPLES

Example 20. The following shmem_g example is for C11 programs:

#include <shmem.h>
#include <stdio.h>

int main(void) {
long y = -1;
static long x = 10101;
shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();
if (mype == 0)

y = shmem_g(&x, npes - 1);
printf("%d: y = %ld\n", mype, y);
shmem_finalize();
return 0;

}

9.6.1.7 SHMEM_IGET
Copies strided data from a specified PE.

SYNOPSIS

C11:
void shmem_iget(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst, size_t nelems,

int pe);
void shmem_iget(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t

sst, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:

DR
AF
T

CONTENTS 63

void shmem_TYPENAME_iget(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst,
size_t nelems, int pe);

void shmem_ctx_TYPENAME_iget(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t dst,
ptrdiff_t sst, size_t nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.
void shmem_igetSIZE(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t

nelems, int pe);
void shmem_ctx_igetSIZE(shmem_ctx_t ctx, void *dest, const void *source, ptrdiff_t dst,

ptrdiff_t sst, size_t nelems, int pe);

where SIZE is one of 8, 16, 32, 64, 128.

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Local address of the array to be updated. The type of dest should match
that implied in the SYNOPSIS section.

IN source Symmetric address of the source array data object. The type of source
should match that implied in the SYNOPSIS section.

IN dst The stride between consecutive elements of the dest array. The stride
must be greater than or equal to 1 and is scaled by the element size of
the dest array. A value of 1 indicates contiguous data.

IN sst The stride between consecutive elements of the source array. The stride
must be greater than or equal to 1 and is scaled by the element size of
the source array. A value of 1 indicates contiguous data.

IN nelems Number of elements in the dest and source arrays.
IN pe PE number of the remote PE relative to the team associated with the

given ctx when provided, or the default context otherwise.

API Description
The shmem_iget routines provide a method for copying strided data elements from a symmetric array from
a specified remote PE to strided locations on a local array. The routines return when the data has been
copied into the local dest array.

Return Values
None.

9.6.1.8 SHMEM_IBGET
Copies blocks of strided data from a specified PE.

SYNOPSIS

C11:
void shmem_ibget(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst, size_t bsize,

size_t nblocks, int pe);
void shmem_ibget(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t

sst, size_t bsize, size_t nblocks, int pe);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:

DRAFT

CONTENTS 64

void shmem_TYPENAME_ibget(TYPE *dest, const TYPE *source, ptrdiff_t dst, ptrdiff_t sst,
size_t bsize, size_t nblocks, int pe);

void shmem_ctx_TYPENAME_ibget(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, ptrdiff_t
dst, ptrdiff_t sst, size_t bsize, size_t nblocks, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

void shmem_ibgetSIZE(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t
bsize, size_t nblocks, int pe);

void shmem_ctx_ibgetSIZE(shmem_ctx_t ctx, void *dest, const void *source, ptrdiff_t dst,
ptrdiff_t sst, size_t bsize, size_t nblocks, int pe);

where SIZE is one of 8, 16, 32, 64, 128.

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Local address of the array to be updated. The type of dest should match
that implied in the SYNOPSIS section.

IN source Symmetric address of the source array data object. The type of source
should match that implied in the SYNOPSIS section.

IN dst The stride between consecutive blocks of the dest array. The stride must
be greater than or equal to bsize and is scaled by the element size of the
dest array. A value of bsize indicates contiguous data.

IN sst The stride between consecutive blocks of the source array. The stride
must be greater than or equal to bsize and is scaled by the element size
of the source array. A value of bsize indicates contiguous data.

IN bsize Number of elements per block in the dest and source arrays.
IN nblocks Number of blocks to be copied from the source array to the dest array.
IN pe PE number of the remote PE relative to the team associated with the

given ctx when provided, or the default context otherwise.

API Description
The shmem_ibget routines provide a method for copying strided data blocks from a symmetric array from
a specified remote PE to strided locations on a local array. The routines return when the data has been
copied into the local dest array.

Return Values
None.

Notes
The shmem_ibget API provides a more general purpose interleaved transfer API than shmem_iget. Calling
shmem_ibget with a block size of 1 is equivalent to the shmem_iget API.

9.6.2 Nonblocking Remote Memory Access Routines

9.6.2.1 SHMEM_PUT_NBI
The nonblocking put routines provide a method for copying data from a contiguous local data object to a data object
on a specified PE.

DR
AF
T

CONTENTS 65

SYNOPSIS

C11:
void shmem_put_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);
void shmem_put_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:
void shmem_TYPENAME_put_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);
void shmem_ctx_TYPENAME_put_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t

nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

void shmem_putSIZE_nbi(void *dest, const void *source, size_t nelems, int pe);
void shmem_ctx_putSIZE_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

int pe);

where SIZE is one of 8, 16, 32, 64, 128.

void shmem_putmem_nbi(void *dest, const void *source, size_t nelems, int pe);
void shmem_ctx_putmem_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

int pe);

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN source Local address of the object containing the data to be copied. The type
of source should match that implied in the SYNOPSIS section.

IN nelems Number of elements in the dest and source arrays. For
shmem_putmem_nbi and shmem_ctx_putmem_nbi, elements are bytes.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The routines return after initiating the operation. The operation is considered complete after a subsequent
call to shmem_quiet. At the completion of shmem_quiet, the data has been copied into the dest array on
the destination PE. The delivery of data words into the data object on the destination PE may occur in any
order. Furthermore, two successive put routines may deliver data out of order unless a call to shmem_fence
is introduced between the two calls.

Return Values
None.

9.6.2.2 SHMEM_GET_NBI
The nonblocking get routines provide a method for copying data from a contiguous remote data object on the specified
PE to the local data object.

DRAFT

CONTENTS 66

SYNOPSIS

C11:
void shmem_get_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);
void shmem_get_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems, int pe);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:
void shmem_TYPENAME_get_nbi(TYPE *dest, const TYPE *source, size_t nelems, int pe);
void shmem_ctx_TYPENAME_get_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t

nelems, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

void shmem_getSIZE_nbi(void *dest, const void *source, size_t nelems, int pe);
void shmem_ctx_getSIZE_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

int pe);

where SIZE is one of 8, 16, 32, 64, 128.

void shmem_getmem_nbi(void *dest, const void *source, size_t nelems, int pe);
void shmem_ctx_getmem_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

int pe);

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Local address of the data object to be updated. The type of dest should
match that implied in the SYNOPSIS section.

IN source Symmetric address of the source data object. The type of source should
match that implied in the SYNOPSIS section.

IN nelems Number of elements in the dest and source arrays. For
shmem_getmem_nbi and shmem_ctx_getmem_nbi, elements are bytes.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The get routines provide a method for copying a contiguous symmetric data object from a remote PE to a
contiguous data object on the local PE. The routines return after initiating the operation. The operation is
considered complete after a subsequent call to shmem_quiet. At the completion of shmem_quiet, the data
has been delivered to the dest array on the local PE.

Return Values
None.

Notes
See Section 3 for a definition of the term remotely accessible.

DRAFT

CONTENTS 67

9.7 Atomic Memory Operations

An AMO is a one-sided communication mechanism that combines memory read, update, or write operations with
atomicity guarantees described in Section 3.2. Similar to the RMA routines, described in Section 9.6, the AMOs are
performed only on symmetric objects. OpenSHMEM defines two types of AMO routines:

• The fetching routines return the original value of, and optionally update, the remote data object in a single atomic
operation. The routines return after the data has been fetched from the target PE and delivered to the calling PE.
The data type of the returned value is the same as the type of the remote data object.

The fetching routines include: shmem_atomic_{fetch, compare_swap, swap}[_nbi] and
shmem_atomic_fetch_{inc, add, and, or, xor}[_nbi].

• The non-fetching routines update the remote data object in a single atomic operation. A call to a non-fetching
atomic routine issues the atomic operation and may return before the operation executes on the target PE. The
shmem_quiet, shmem_barrier, or shmem_barrier_all routines can be used to force completion for these non-
fetching atomic routines.

The non-fetching routines include: shmem_atomic_{set, inc, add, and, or, xor}[_nbi].

deprecation start

Starting in OpenSHMEM 1.4, all AMO functions added "_atomic_" to the function name and deprecated the
equivalent functions without "_atomic_" in the name.

deprecation end

OpenSHMEM AMO routines specified in this section have two variants. In one of the variants, the context handle, ctx,
is explicitly passed as an argument. In this variant, the operation is performed on the specified context. If the context
handle ctx does not correspond to a valid context, the behavior is undefined. In the other variant, the context handle is
not explicitly passed and thus, the operations are performed on the default context.
Where appropriate compiler support is available, OpenSHMEM provides type-generic AMO interfaces via C11 generic
selection. The type-generic support for the AMO routines is as follows:

• shmem_atomic_{compare_swap, fetch_inc, inc, fetch_add, add}[_nbi] support the “standard AMO types”
listed in Table 6,

• shmem_atomic_{fetch, set, swap} support the “extended AMO types” listed in Table 7, and

• shmem_atomic_{fetch_and, and, fetch_or, or, fetch_xor, xor}[_nbi] support the “bitwise AMO types” listed in
Table 8.

The standard, extended, and bitwise AMO types include some of the exact-width integer types defined in stdint.h by
C99 §7.18.1.1 and C11 §7.20.1.1. When the C translation environment does not provide exact-width integer types with
stdint.h, an OpenSHMEM implementation is not required to provide support for these types.

9.7.1 Blocking Atomic Memory Operations

9.7.1.1 SHMEM_ATOMIC_FETCH
Atomically fetches the value of a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch(const TYPE *source, int pe);
TYPE shmem_atomic_fetch(shmem_ctx_t ctx, const TYPE *source, int pe);

where TYPE is one of the extended AMO types specified by Table 7.

C/C++:

DRAFT

CONTENTS 68

TYPE TYPENAME
int int
long long
long long longlong
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int32_t int32
int64_t int64
uint32_t uint32
uint64_t uint64
size_t size
ptrdiff_t ptrdiff

Table 6: Standard AMO Types and Names

TYPE TYPENAME
float float
double double
int int
long long
long long longlong
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int32_t int32
int64_t int64
uint32_t uint32
uint64_t uint64
size_t size
ptrdiff_t ptrdiff

Table 7: Extended AMO Types and Names

TYPE shmem_TYPENAME_atomic_fetch(const TYPE *source, int pe);
TYPE shmem_ctx_TYPENAME_atomic_fetch(shmem_ctx_t ctx, const TYPE *source, int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 7.

deprecation start

C11:
TYPE shmem_fetch(const TYPE *source, int pe);

where TYPE is one of {float, double, int, long, long long}.

C/C++:
TYPE shmem_TYPENAME_fetch(const TYPE *source, int pe);

where TYPE is one of {float, double, int, long, long long} and has a corresponding TYPENAME specified by
Table 7.

deprecation end

DRAFT

CONTENTS 69

TYPE TYPENAME
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int32_t int32
int64_t int64
uint32_t uint32
uint64_t uint64

Table 8: Bitwise AMO Types and Names

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

IN source Symmetric address of the source data object. The type of source should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE on which source resides relative to the
team associated with the given ctx when provided, or the default context
otherwise.

API Description
shmem_atomic_fetch performs an atomic fetch operation. It returns the contents of the source as an atomic
operation.

Return Values
The contents at the source address on the remote PE. The data type of the return value is the same as the
type of the remote data object.

9.7.1.2 SHMEM_ATOMIC_SET
Atomically sets the value of a remote data object.

SYNOPSIS

C11:
void shmem_atomic_set(TYPE *dest, TYPE value, int pe);
void shmem_atomic_set(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types specified by Table 7.

C/C++:
void shmem_TYPENAME_atomic_set(TYPE *dest, TYPE value, int pe);
void shmem_ctx_TYPENAME_atomic_set(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 7.

deprecation start

C11:
void shmem_set(TYPE *dest, TYPE value, int pe);

DRAFT

CONTENTS 70

where TYPE is one of {float, double, int, long, long long}.

C/C++:
void shmem_TYPENAME_set(TYPE *dest, TYPE value, int pe);

where TYPE is one of {float, double, int, long, long long} and has a corresponding TYPENAME specified by
Table 7.

deprecation end

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the atomic set operation. The type of value should match
that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
shmem_atomic_set performs an atomic set operation. It writes the value into dest on pe as an atomic
operation.

Return Values
None.

9.7.1.3 SHMEM_ATOMIC_COMPARE_SWAP
Performs an atomic conditional swap on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_compare_swap(TYPE *dest, TYPE cond, TYPE value, int pe);
TYPE shmem_atomic_compare_swap(shmem_ctx_t ctx, TYPE *dest, TYPE cond, TYPE value, int pe);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
TYPE shmem_TYPENAME_atomic_compare_swap(TYPE *dest, TYPE cond, TYPE value, int pe);
TYPE shmem_ctx_TYPENAME_atomic_compare_swap(shmem_ctx_t ctx, TYPE *dest, TYPE cond, TYPE

value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

deprecation start

C11:
TYPE shmem_cswap(TYPE *dest, TYPE cond, TYPE value, int pe);

where TYPE is one of {int, long, long long}.

C/C++:

DR
AF
T

CONTENTS 71

TYPE shmem_TYPENAME_cswap(TYPE *dest, TYPE cond, TYPE value, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 6.

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN cond cond is compared to the remote dest value. If cond and the remote dest
are equal, then value is swapped into the remote dest; otherwise, the
remote dest is unchanged. In either case, the old value of the remote
dest is returned as the routine return value. cond must be of the same
data type as dest.

IN value The value to be atomically written to the remote PE. The type of value
should match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The conditional swap routines conditionally update a dest data object on the specified PE and return the
prior contents of the data object in one atomic operation.

Return Values
The contents that had been in the dest data object on the remote PE prior to the conditional swap. Data
type is the same as the dest data type.

EXAMPLES

Example 21. The following call ensures that the first PE to execute the conditional swap will successfully
write its PE number to race_winner on PE 0.

#include <shmem.h>
#include <stdio.h>

int main(void) {
static int race_winner = -1;
shmem_init();
int mype = shmem_my_pe();
int oldval = shmem_atomic_compare_swap(&race_winner, -1, mype, 0);
if (oldval == -1)

printf("PE %d was first\n", mype);
shmem_finalize();
return 0;

}

9.7.1.4 SHMEM_ATOMIC_SWAP
Performs an atomic swap to a remote data object.

DR
AF
T

CONTENTS 72

SYNOPSIS

C11:
TYPE shmem_atomic_swap(TYPE *dest, TYPE value, int pe);
TYPE shmem_atomic_swap(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types specified by Table 7.

C/C++:
TYPE shmem_TYPENAME_atomic_swap(TYPE *dest, TYPE value, int pe);
TYPE shmem_ctx_TYPENAME_atomic_swap(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 7.

deprecation start

C11:
TYPE shmem_swap(TYPE *dest, TYPE value, int pe);

where TYPE is one of {float, double, int, long, long long}.

C/C++:
TYPE shmem_TYPENAME_swap(TYPE *dest, TYPE value, int pe);

where TYPE is one of {float, double, int, long, long long} and has a corresponding TYPENAME specified by
Table 7.

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The value to be atomically written to the remote PE. The type of value
should match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
shmem_atomic_swap performs an atomic swap operation. It writes value into dest on PE and returns the
previous contents of dest as an atomic operation.

Return Values
The content that had been at the dest address on the remote PE prior to the swap is returned.

EXAMPLES

Example 22. The example below swaps values between odd numbered PEs and their right (modulo) neigh-
bor and outputs the result of swap.

DRAFT

CONTENTS 73

#include <shmem.h>
#include <stdio.h>

int main(void) {
static long dest;
shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();
dest = mype;
shmem_barrier_all();
long new_val = mype;
if (mype & 1) {

long swapped_val = shmem_atomic_swap(&dest, new_val, (mype + 1) % npes);
printf("%d: dest = %ld, swapped = %ld\n", mype, dest, swapped_val);

}
shmem_finalize();
return 0;

}

9.7.1.5 SHMEM_ATOMIC_FETCH_INC
Performs an atomic fetch-and-increment operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_inc(TYPE *dest, int pe);
TYPE shmem_atomic_fetch_inc(shmem_ctx_t ctx, TYPE *dest, int pe);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
TYPE shmem_TYPENAME_atomic_fetch_inc(TYPE *dest, int pe);
TYPE shmem_ctx_TYPENAME_atomic_fetch_inc(shmem_ctx_t ctx, TYPE *dest, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

deprecation start

C11:
TYPE shmem_finc(TYPE *dest, int pe);

where TYPE is one of {int, long, long long}.

C/C++:
TYPE shmem_TYPENAME_finc(TYPE *dest, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 6.

deprecation end

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

DRAFT

CONTENTS 74

API Description
These routines perform a fetch-and-increment operation. The dest on PE pe is increased by one and the
routine returns the previous contents of dest as an atomic operation.

Return Values
The contents that had been at the dest address on the remote PE prior to the increment. The data type of
the return value is the same as the dest.

EXAMPLES

Example 23. The following shmem_atomic_fetch_inc example is for C11 programs:

#include <shmem.h>
#include <stdio.h>

int main(void) {
int old = -1;
static int dst = 22;
shmem_init();
int mype = shmem_my_pe();
if (mype == 0)

old = shmem_atomic_fetch_inc(&dst, 1);
shmem_barrier_all();
printf("%d: old = %d, dst = %d\n", mype, old, dst);
shmem_finalize();
return 0;

}

9.7.1.6 SHMEM_ATOMIC_INC
Performs an atomic increment operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_inc(TYPE *dest, int pe);
void shmem_atomic_inc(shmem_ctx_t ctx, TYPE *dest, int pe);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
void shmem_TYPENAME_atomic_inc(TYPE *dest, int pe);
void shmem_ctx_TYPENAME_atomic_inc(shmem_ctx_t ctx, TYPE *dest, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

deprecation start

C11:
void shmem_inc(TYPE *dest, int pe);

where TYPE is one of {int, long, long long}.

C/C++:
void shmem_TYPENAME_inc(TYPE *dest, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 6.

deprecation end

DRAFT

CONTENTS 75

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
These routines perform an atomic increment operation on the dest data object on PE.

Return Values
None.

EXAMPLES

Example 24. The following shmem_atomic_inc example is for C11 programs:

#include <shmem.h>
#include <stdio.h>

int main(void) {
static int dst = 74;
shmem_init();
int mype = shmem_my_pe();
if (mype == 0)

shmem_atomic_inc(&dst, 1);
shmem_barrier_all();
printf("%d: dst = %d\n", mype, dst);
shmem_finalize();
return 0;

}

9.7.1.7 SHMEM_ATOMIC_FETCH_ADD
Performs an atomic fetch-and-add operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_add(TYPE *dest, TYPE value, int pe);
TYPE shmem_atomic_fetch_add(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
TYPE shmem_TYPENAME_atomic_fetch_add(TYPE *dest, TYPE value, int pe);
TYPE shmem_ctx_TYPENAME_atomic_fetch_add(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

deprecation start

C11:

DRAFT

CONTENTS 76

TYPE shmem_fadd(TYPE *dest, TYPE value, int pe);

where TYPE is one of {int, long, long long}.

C/C++:
TYPE shmem_TYPENAME_fadd(TYPE *dest, TYPE value, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 6.

deprecation end

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the atomic fetch-and-add operation. The type of value
should match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
shmem_atomic_fetch_add routines perform an atomic fetch-and-add operation. An atomic fetch-and-add
operation fetches the old dest and adds value to dest without the possibility of another atomic operation on
the dest between the time of the fetch and the update. These routines add value to dest on pe and return the
previous contents of dest as an atomic operation.

Return Values
The contents that had been at the dest address on the remote PE prior to the atomic addition operation. The
data type of the return value is the same as the dest.

EXAMPLES

Example 25. The following shmem_atomic_fetch_add example is for C11 programs:

#include <shmem.h>
#include <stdio.h>

int main(void) {
int old = -1;
static int dst = 22;
shmem_init();
int mype = shmem_my_pe();
if (mype == 1)

old = shmem_atomic_fetch_add(&dst, 44, 0);
shmem_barrier_all();
printf("%d: old = %d, dst = %d\n", mype, old, dst);
shmem_finalize();
return 0;

}

DR
AF
T

CONTENTS 77

9.7.1.8 SHMEM_ATOMIC_ADD
Performs an atomic add operation on a remote symmetric data object.

SYNOPSIS

C11:
void shmem_atomic_add(TYPE *dest, TYPE value, int pe);
void shmem_atomic_add(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
void shmem_TYPENAME_atomic_add(TYPE *dest, TYPE value, int pe);
void shmem_ctx_TYPENAME_atomic_add(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

deprecation start

C11:
void shmem_add(TYPE *dest, TYPE value, int pe);

where TYPE is one of {int, long, long long}.

C/C++:
void shmem_TYPENAME_add(TYPE *dest, TYPE value, int pe);

where TYPE is one of {int, long, long long} and has a corresponding TYPENAME specified by Table 6.

deprecation end

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the atomic add operation. The type of value should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The shmem_atomic_add routine performs an atomic add operation. It adds value to dest on PE pe and
atomically updates the dest without returning the value.

Return Values
None.

EXAMPLES

Example 26.

DRAFT

CONTENTS 78

#include <shmem.h>
#include <stdio.h>

int main(void) {
static int dst = 22;
shmem_init();
int mype = shmem_my_pe();
if (mype == 1)

shmem_atomic_add(&dst, 44, 0);
shmem_barrier_all();
printf("%d: dst = %d\n", mype, dst);
shmem_finalize();
return 0;

}

9.7.1.9 SHMEM_ATOMIC_FETCH_AND
Atomically perform a fetching bitwise AND operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_and(TYPE *dest, TYPE value, int pe);
TYPE shmem_atomic_fetch_and(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 8.

C/C++:
TYPE shmem_TYPENAME_atomic_fetch_and(TYPE *dest, TYPE value, int pe);
TYPE shmem_ctx_TYPENAME_atomic_fetch_and(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 8.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the bitwise AND operation. The type of value should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
shmem_atomic_fetch_and atomically performs a fetching bitwise AND on the remotely accessible data
object pointed to by dest at PE pe with the operand value.

Return Values
The value pointed to by dest on PE pe immediately before the operation is performed.

DRAFT

CONTENTS 79

9.7.1.10 SHMEM_ATOMIC_AND
Atomically perform a non-fetching bitwise AND operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_and(TYPE *dest, TYPE value, int pe);
void shmem_atomic_and(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 8.

C/C++:
void shmem_TYPENAME_atomic_and(TYPE *dest, TYPE value, int pe);
void shmem_ctx_TYPENAME_atomic_and(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 8.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the bitwise AND operation. The type of value should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
shmem_atomic_and atomically performs a non-fetching bitwise AND on the remotely accessible data
object pointed to by dest at PE pe with the operand value.

Return Values
None.

9.7.1.11 SHMEM_ATOMIC_FETCH_OR
Atomically perform a fetching bitwise OR operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_or(TYPE *dest, TYPE value, int pe);
TYPE shmem_atomic_fetch_or(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 8.

C/C++:
TYPE shmem_TYPENAME_atomic_fetch_or(TYPE *dest, TYPE value, int pe);
TYPE shmem_ctx_TYPENAME_atomic_fetch_or(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

DRAFT

CONTENTS 80

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 8.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the bitwise OR operation. The type of value should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
shmem_atomic_fetch_or atomically performs a fetching bitwise OR on the remotely accessible data object
pointed to by dest at PE pe with the operand value.

Return Values
The value pointed to by dest on PE pe immediately before the operation is performed.

9.7.1.12 SHMEM_ATOMIC_OR
Atomically perform a non-fetching bitwise OR operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_or(TYPE *dest, TYPE value, int pe);
void shmem_atomic_or(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 8.

C/C++:
void shmem_TYPENAME_atomic_or(TYPE *dest, TYPE value, int pe);
void shmem_ctx_TYPENAME_atomic_or(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 8.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the bitwise OR operation. The type of value should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

DRAFT

CONTENTS 81

API Description
shmem_atomic_or atomically performs a non-fetching bitwise OR on the remotely accessible data object
pointed to by dest at PE pe with the operand value.

Return Values
None.

9.7.1.13 SHMEM_ATOMIC_FETCH_XOR
Atomically perform a fetching bitwise exclusive OR (XOR) operation on a remote data object.

SYNOPSIS

C11:
TYPE shmem_atomic_fetch_xor(TYPE *dest, TYPE value, int pe);
TYPE shmem_atomic_fetch_xor(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 8.

C/C++:
TYPE shmem_TYPENAME_atomic_fetch_xor(TYPE *dest, TYPE value, int pe);
TYPE shmem_ctx_TYPENAME_atomic_fetch_xor(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 8.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the bitwise XOR operation. The type of value should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
shmem_atomic_fetch_xor atomically performs a fetching bitwise XOR on the remotely accessible data
object pointed to by dest at PE pe with the operand value.

Return Values
The value pointed to by dest on PE pe immediately before the operation is performed.

9.7.1.14 SHMEM_ATOMIC_XOR
Atomically perform a non-fetching bitwise exclusive OR (XOR) operation on a remote data object.

SYNOPSIS

C11:

DRAFT

CONTENTS 82

void shmem_atomic_xor(TYPE *dest, TYPE value, int pe);
void shmem_atomic_xor(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 8.

C/C++:
void shmem_TYPENAME_atomic_xor(TYPE *dest, TYPE value, int pe);
void shmem_ctx_TYPENAME_atomic_xor(shmem_ctx_t ctx, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 8.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the bitwise XOR operation. The type of value should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
shmem_atomic_xor atomically performs a non-fetching bitwise XOR on the remotely accessible data ob-
ject pointed to by dest at PE pe with the operand value.

Return Values
None.

9.7.2 Nonblocking Atomic Memory Operations

9.7.2.1 SHMEM_ATOMIC_FETCH_NBI
The nonblocking atomic fetch routine provides a method for atomically fetching the value of a remote data object.

SYNOPSIS

C11:
void shmem_atomic_fetch_nbi(TYPE *fetch, const TYPE *source, int pe);
void shmem_atomic_fetch_nbi(shmem_ctx_t ctx, TYPE *fetch, const TYPE *source, int pe);

where TYPE is one of the extended AMO types specified by Table 7.

C/C++:
void shmem_TYPENAME_atomic_fetch_nbi(TYPE *fetch, const TYPE *source, int pe);
void shmem_ctx_TYPENAME_atomic_fetch_nbi(shmem_ctx_t ctx, TYPE *fetch, const TYPE *source,

int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 7.

DESCRIPTION

DRAFT

CONTENTS 83

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT fetch Local address of data object to be updated. The type of fetch should
match that implied in the SYNOPSIS section.

OUT source Symmetric address of the source data object. The type of source should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The nonblocking atomic fetch routines perform a nonblocking fetch of a value atomically from a remote
data object. This routine returns after initiating the operation. The operation is considered complete after
a subsequent call to shmem_quiet. At the completion of shmem_quiet, contents of the source data object
from PE has been fetched into fetch local data object.

Return Values
None.

9.7.2.2 SHMEM_ATOMIC_COMPARE_SWAP_NBI
The nonblocking atomic routine provides a method for performing an atomic conditional swap on a remote data ob-
ject.

SYNOPSIS

C11:
void shmem_atomic_compare_swap_nbi(TYPE *fetch, TYPE *dest, TYPE cond, TYPE value, int pe);
void shmem_atomic_compare_swap_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, TYPE cond, TYPE

value, int pe);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
void shmem_TYPENAME_atomic_compare_swap_nbi(TYPE *fetch, TYPE *dest, TYPE cond, TYPE value,

int pe);
void shmem_ctx_TYPENAME_atomic_compare_swap_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest,

TYPE cond, TYPE value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT fetch Local address of data object to be updated. The type of fetch should
match that implied in the SYNOPSIS section.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

DRAFT

CONTENTS 84

IN cond cond is compared to the remote dest value. If cond and the remote dest
are equal, then value is swapped into the remote dest; otherwise, the
remote dest is unchanged. The type of cond should match that implied
in the SYNOPSIS section.

IN value The value to be atomically written to the remote PE. The type of value
should match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The nonblocking conditional swap routines conditionally update a dest data object on the specified PE as
an atomic operation and fetches the prior contents of the dest data object into the fetch local data object.
This routine returns after initiating the operation. The operation is considered complete after a subsequent
call to shmem_quiet. At the completion of shmem_quiet, prior contents of the dest data object have been
fetched into fetch local data object and the contents of value have been conditionally updated into dest on
the remote PE.

Return Values
None.

9.7.2.3 SHMEM_ATOMIC_SWAP_NBI
This nonblocking atomic operation performs an atomic swap to a remote data object.

SYNOPSIS

C11:
void shmem_atomic_swap_nbi(TYPE *fetch, TYPE *dest, TYPE value, int pe);
void shmem_atomic_swap_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, TYPE value, int pe);

where TYPE is one of the extended AMO types specified by Table 7.

C/C++:
void shmem_TYPENAME_atomic_swap_nbi(TYPE *fetch, TYPE *dest, TYPE value, int pe);
void shmem_ctx_TYPENAME_atomic_swap_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, TYPE

value, int pe);

where TYPE is one of the extended AMO types and has a corresponding TYPENAME specified by Table 7.

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT fetch Local address of data object to be updated. The type of fetch should
match that implied in the SYNOPSIS section.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The value to be atomically written to the remote PE. The type of value
should match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

DRAFT

CONTENTS 85

API Description
The nonblocking shmem_atomic_swap_nbi routines perform an atomic swap operation. This routine
returns after initiating the operation. The operation is considered complete after a subsequent call to
shmem_quiet. At the completion of shmem_quiet, it has written value into dest on PE and fetched the
prior contents of dest into fetch local data object.

Return Values
None.

9.7.2.4 SHMEM_ATOMIC_FETCH_INC_NBI
This nonblocking atomic routine performs an atomic fetch-and-increment operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_fetch_inc_nbi(TYPE *fetch, TYPE *dest, int pe);
void shmem_atomic_fetch_inc_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, int pe);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
void shmem_TYPENAME_atomic_fetch_inc_nbi(TYPE *fetch, TYPE *dest, int pe);
void shmem_ctx_TYPENAME_atomic_fetch_inc_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, int

pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT fetch Local address of data object to be updated. The type of fetch should
match that implied in the SYNOPSIS section.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The nonblocking shmem_atomic_fetch_inc_nbi routines perform an atomic fetch-and-increment opera-
tion. This routine returns after initiating the operation. The operation is considered complete after a subse-
quent call to shmem_quiet. At the completion of shmem_quiet, dest on PE pe has been increased by one
and the previous contents of dest fetched into the fetch local data object.

Return Values
None.

DRAFT

CONTENTS 86

9.7.2.5 SHMEM_ATOMIC_FETCH_ADD_NBI
The nonblocking atomic routine performs an atomic fetch-and-add operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_fetch_add_nbi(TYPE *fetch, TYPE *dest, TYPE value, int pe);
void shmem_atomic_fetch_add_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, TYPE value, int

pe);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
void shmem_TYPENAME_atomic_fetch_add_nbi(TYPE *fetch, TYPE *dest, TYPE value, int pe);
void shmem_ctx_TYPENAME_atomic_fetch_add_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, TYPE

value, int pe);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT fetch Local address of data object to be updated. The type of fetch should
match that implied in the SYNOPSIS section.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the atomic fetch-and-add operation. The type of value
should match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The nonblocking shmem_atomic_fetch_add_nbi routines perform an atomic fetch-and-add operation. An
atomic fetch-and-add operation fetches the old dest and adds value to dest without the possibility of another
atomic operation on the dest between the time of the fetch and the update. This routine returns after
initiating the operation. The operation is considered complete after a subsequent call to shmem_quiet. At
the completion of shmem_quiet, value has been added to dest on pe and the prior contents of dest fetched
into the fetch local data object.

Return Values
None.

9.7.2.6 SHMEM_ATOMIC_FETCH_AND_NBI
This nonblocking atomic operation performs an atomic fetching bitwise AND operation on a remote data object.

SYNOPSIS

C11:

DRAFT

CONTENTS 87

void shmem_atomic_fetch_and_nbi(TYPE *fetch, TYPE *dest, TYPE value, int pe);
void shmem_atomic_fetch_and_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, TYPE value, int

pe);

where TYPE is one of the bitwise AMO types specified by Table 8.

C/C++:
void shmem_TYPENAME_atomic_fetch_and_nbi(TYPE *fetch, TYPE *dest, TYPE value, int pe);
void shmem_ctx_TYPENAME_atomic_fetch_and_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, TYPE

value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 8.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT fetch Local address of data object to be updated. The type of fetch should
match that implied in the SYNOPSIS section.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the bitwise AND operation. The type of value should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The nonblocking shmem_atomic_fetch_and_nbi routines perform an atomic fetching bitwise AND on the
remotely accessible data object pointed by dest at PE pe with the operand value. This routine returns after
initiating the operation. The operation is considered complete after a subsequent call to shmem_quiet. At
the completion of shmem_quiet, these routines have performed a fetching bitwise AND on dest at PE pe
with the operand value and fetched the prior contents of dest into the fetch local data object.

Return Values
None.

9.7.2.7 SHMEM_ATOMIC_FETCH_OR_NBI
This nonblocking atomic operation performs an atomic fetching bitwise OR operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_fetch_or_nbi(TYPE *fetch, TYPE *dest, TYPE value, int pe);
void shmem_atomic_fetch_or_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, TYPE value, int pe);

where TYPE is one of the bitwise AMO types specified by Table 8.

C/C++:
void shmem_TYPENAME_atomic_fetch_or_nbi(TYPE *fetch, TYPE *dest, TYPE value, int pe);
void shmem_ctx_TYPENAME_atomic_fetch_or_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, TYPE

value, int pe);

DRAFT

CONTENTS 88

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 8.

DESCRIPTION

Arguments

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT fetch Local address of data object to be updated. The type of fetch should
match that implied in the SYNOPSIS section.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the bitwise OR operation. The type of value should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The nonblocking shmem_atomic_fetch_or_nbi routines perform an atomic fetching bitwise OR on the
remotely accessible data object pointed by dest at PE pe with the operand value. This routine returns after
initiating the operation. The operation is considered complete after a subsequent call to shmem_quiet. At
the completion of shmem_quiet, these routines have performed a fetching bitwise OR on dest at PE pe with
the operand value and fetched the prior contents of dest into the fetch local data object.

Return Values
None.

9.7.2.8 SHMEM_ATOMIC_FETCH_XOR_NBI
This nonblocking atomic operation performs an atomic fetching bitwise XOR operation on a remote data object.

SYNOPSIS

C11:
void shmem_atomic_fetch_xor_nbi(TYPE *fetch, TYPE *dest, TYPE value, int pe);
void shmem_atomic_fetch_xor_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, TYPE value, int

pe);

where TYPE is one of the bitwise AMO types specified by Table 8.

C/C++:
void shmem_TYPENAME_atomic_fetch_xor_nbi(TYPE *fetch, TYPE *dest, TYPE value, int pe);
void shmem_ctx_TYPENAME_atomic_fetch_xor_nbi(shmem_ctx_t ctx, TYPE *fetch, TYPE *dest, TYPE

value, int pe);

where TYPE is one of the bitwise AMO types and has a corresponding TYPENAME specified by Table 8.

DESCRIPTION

Arguments

DRAFT

CONTENTS 89

IN ctx A context handle specifying the context on which to perform the oper-
ation. When this argument is not provided, the operation is performed
on the default context.

OUT fetch Local address of data object to be updated. The type of fetch should
match that implied in the SYNOPSIS section.

OUT dest Symmetric address of the destination data object. The type of dest
should match that implied in the SYNOPSIS section.

IN value The operand to the bitwise XOR operation. The type of value should
match that implied in the SYNOPSIS section.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The nonblocking shmem_atomic_fetch_xor_nbi routines perform an atomic fetching bitwise XOR on the
remotely accessible data object pointed by dest at PE pe with the operand value. This routine returns after
initiating the operation. The operation is considered complete after a subsequent call to shmem_quiet. At
the completion of shmem_quiet, these routines have performed a fetching bitwise XOR on dest at PE pe
with the operand value and fetched the prior contents of dest into the fetch local data object.

Return Values
None.

9.8 Signaling Operations

This section specifies the OpenSHMEM support for put-with-signal, nonblocking put-with-signal, and signal-{add,
fetch, set} routines. The put-with-signal routines provide a method for copying data from a contiguous local data
object to a data object on a specified PE and subsequently updating a remote flag to signal completion. The signal-
add and signal-set routines provide methods for updating the signal object without the associated data transfer of a
put-with-signal operation. The signal-fetch routine provides support for reading a local signal value.
OpenSHMEM put-with-signal and signal-{add, set} routines specified in this section have two variants. In one of the
variants, the context handle, ctx, is explicitly passed as an argument. In this variant, the operation is performed on the
specified context. If the context handle ctx does not correspond to a valid context, the behavior is undefined. In the
other variant, the context handle is not explicitly passed and thus, the operations are performed on the default context.

9.8.1 Atomicity Guarantees for Signaling Operations

All signaling operations put-with-signal, nonblocking put-with-signal, and signal-{add, fetch, set} are performed on a
signal data object, a remotely accessible symmetric object of type uint64_t. A signal operator in the put-with-signal
routine is an OpenSHMEM library constant that determines the type of update to be performed as a signal on the signal
data object.
All signaling operations on the signal data object complete as if performed atomically with respect to the following:

• other blocking or nonblocking variant of the put-with-signal routine that updates the signal data object using the
same signal update operator;

• signal-add routine when the put-with-signal routine uses the SHMEM_SIGNAL_ADD signal operator;

• signal-set routine when the put-with-signal routine uses the SHMEM_SIGNAL_SET signal operator;

• signal-fetch routine that fetches the signal data object; and

• any point-to-point synchronization routine that accesses the signal data object.

DRAFT

CONTENTS 90

9.8.2 Available Signal Operators

With the atomicity guarantees as described in Section 9.8.1, the following options can be used as a signal operator.
SHMEM_SIGNAL_SET An update to signal data object is an atomic set operation. It

writes an unsigned 64-bit value as a signal into the signal data
object on a remote PE as an atomic operation.

SHMEM_SIGNAL_ADD An update to signal data object is an atomic add operation. It
adds an unsigned 64-bit value as a signal into the signal data
object on a remote PE as an atomic operation.

9.8.3 SHMEM_PUT_SIGNAL

The put-with-signal routines provide a method for copying data from a contiguous local data object to a data object on
a specified PE and subsequently updating a remote flag to signal completion.

SYNOPSIS

C11:
void shmem_put_signal(TYPE *dest, const TYPE *source, size_t nelems, uint64_t *sig_addr,

uint64_t signal, int sig_op, int pe);
void shmem_put_signal(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems,

uint64_t *sig_addr, uint64_t signal, int sig_op, int pe);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:
void shmem_TYPENAME_put_signal(TYPE *dest, const TYPE *source, size_t nelems, uint64_t

*sig_addr, uint64_t signal, int sig_op, int pe);
void shmem_ctx_TYPENAME_put_signal(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t

nelems, uint64_t *sig_addr, uint64_t signal, int sig_op, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.
void shmem_putSIZE_signal(void *dest, const void *source, size_t nelems, uint64_t *sig_addr,

uint64_t signal, int sig_op, int pe);
void shmem_ctx_putSIZE_signal(shmem_ctx_t ctx, void *dest, const void *source, size_t

nelems, uint64_t *sig_addr, uint64_t signal, int sig_op, int pe);

where SIZE is one of 8, 16, 32, 64, 128.
void shmem_putmem_signal(void *dest, const void *source, size_t nelems, uint64_t *sig_addr,

uint64_t signal, int sig_op, int pe);
void shmem_ctx_putmem_signal(shmem_ctx_t ctx, void *dest, const void *source, size_t nelems,

uint64_t *sig_addr, uint64_t signal, int sig_op, int pe);

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the data object to be updated on the remote PE.
The type of dest should match that implied in the SYNOPSIS section.

IN source Local address of data object containing the data to be copied. The type
of source should match that implied in the SYNOPSIS section.

IN nelems Number of elements in the dest and source arrays. For
shmem_putmem_signal and shmem_ctx_putmem_signal, elements are
bytes.

DR
AF
T

CONTENTS 91

OUT sig_addr Symmetric address of the signal data object to be updated on the remote
PE as a signal.

IN signal Unsigned 64-bit value that is used for updating the remote sig_addr
signal data object.

IN sig_op Signal operator that represents the type of update to be performed on
the remote sig_addr signal data object.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The put-with-signal routines provide a method for copying data from a contiguous local data object to a
data object on a specified PE and subsequently updating a remote flag to signal completion. The routines
return after the data has been copied out of the source array on the local PE.
The sig_op signal operator determines the type of update to be performed on the remote sig_addr signal
data object. The completion of signal update based on the sig_op signal operator using the signal flag on
the remote PE indicates the delivery of its corresponding dest data words into the data object on the remote
PE.
An update to the sig_addr signal data object through a put-with-signal routine completes as if performed
atomically as described in Section 9.8.1. The various options as described in Section 9.8.2 can be used as
the sig_op signal operator.

Return Values
None.

Notes
The dest and sig_addr data objects must both be remotely accessible. The sig_addr and dest could be of
different kinds, for example, one could be a global/static C variable and the other could be allocated on the
symmetric heap.
sig_addr and dest may not be overlapping in memory.
The completion of signal update using the signal flag on the remote PE indicates only the delivery of
its corresponding dest data words into the data object on the remote PE. Without a memory-ordering
operation, there is no implied ordering between the signal update of a put-with-signal routine and another
data transfer. For example, the completion of the signal update in a sequence consisting of a put routine
followed by a put-with-signal routine does not imply delivery of the put routine’s data.

EXAMPLES

Example 27. The following example demonstrates the usage of shmem_put_signal. It shows the imple-
mentation of a broadcast operation from PE 0 to itself and all other PEs in the job as a simple ring-based
algorithm using shmem_put_signal:

#include <shmem.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void) {
int i, err_count = 0;

shmem_init();

size_t size = 2048;
int mype = shmem_my_pe();
int npes = shmem_n_pes();
int pe = (mype + 1) % npes;
uint64_t *message = malloc(size * sizeof(uint64_t));

DRAFT

CONTENTS 92

static uint64_t sig_addr = 0;

for (i = 0; i < size; i++) {
message[i] = mype;

}

uint64_t *data = shmem_calloc(size, sizeof(uint64_t));

if (mype == 0) {
shmem_put_signal(data, message, size, &sig_addr, 1, SHMEM_SIGNAL_SET, pe);

}
else {

shmem_wait_until(&sig_addr, SHMEM_CMP_EQ, 1);
shmem_put_signal(data, data, size, &sig_addr, 1, SHMEM_SIGNAL_SET, pe);

}

free(message);
shmem_free(data);

shmem_finalize();
return 0;

}

9.8.4 SHMEM_PUT_SIGNAL_NBI

The nonblocking put-with-signal routines provide a method for copying data from a contiguous local data object to a
data object on a specified PE and subsequently updating a remote flag to signal completion.

SYNOPSIS

C11:
void shmem_put_signal_nbi(TYPE *dest, const TYPE *source, size_t nelems, uint64_t *sig_addr,

uint64_t signal, int sig_op, int pe);
void shmem_put_signal_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source, size_t nelems,

uint64_t *sig_addr, uint64_t signal, int sig_op, int pe);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:
void shmem_TYPENAME_put_signal_nbi(TYPE *dest, const TYPE *source, size_t nelems, uint64_t

*sig_addr, uint64_t signal, int sig_op, int pe);
void shmem_ctx_TYPENAME_put_signal_nbi(shmem_ctx_t ctx, TYPE *dest, const TYPE *source,

size_t nelems, uint64_t *sig_addr, uint64_t signal, int sig_op, int pe);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

void shmem_putSIZE_signal_nbi(void *dest, const void *source, size_t nelems, uint64_t

*sig_addr, uint64_t signal, int sig_op, int pe);
void shmem_ctx_putSIZE_signal_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t

nelems, uint64_t *sig_addr, uint64_t signal, int sig_op, int pe);

where SIZE is one of 8, 16, 32, 64, 128.

void shmem_putmem_signal_nbi(void *dest, const void *source, size_t nelems, uint64_t

*sig_addr, uint64_t signal, int sig_op, int pe);
void shmem_ctx_putmem_signal_nbi(shmem_ctx_t ctx, void *dest, const void *source, size_t

nelems, uint64_t *sig_addr, uint64_t signal, int sig_op, int pe);

DESCRIPTION

DRAFT

CONTENTS 93

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT dest Symmetric address of the data object to be updated on the remote PE.
The type of dest should match that implied in the SYNOPSIS section.

IN source Local address of data object containing the data to be copied. The type
of source should match that implied in the SYNOPSIS section.

IN nelems Number of elements in the dest and source arrays. For
shmem_putmem_signal_nbi and shmem_ctx_putmem_signal_nbi, el-
ements are bytes.

OUT sig_addr Symmetric address of the signal data object to be updated on the remote
PE as a signal.

IN signal Unsigned 64-bit value that is used for updating the remote sig_addr
signal data object.

IN sig_op Signal operator that represents the type of update to be performed on
the remote sig_addr signal data object.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
The nonblocking put-with-signal routines provide a method for copying data from a contiguous local data
object to a data object on a specified PE and subsequently updating a remote flag to signal completion.
The routines return after initiating the operation. The operation is considered complete after a subsequent
call to shmem_quiet. At the completion of shmem_quiet, the data has been copied out of the source array
on the local PE and delivered into the dest array on the destination PE.
The delivery of signal flag on the remote PE indicates only the delivery of its corresponding dest data words
into the data object on the remote PE. Furthermore, two successive nonblocking put-with-signal routines,
or a nonblocking put-with-signal routine with another data transfer may deliver data out of order unless a
call to shmem_fence is introduced between the two calls.
The sig_op signal operator determines the type of update to be performed on the remote sig_addr signal
data object.
An update to the sig_addr signal data object through a nonblocking put-with-signal routine completes as if
performed atomically as described in Section 9.8.1. The various options as described in Section 9.8.2 can
be used as the sig_op signal operator.

Return Values
None.

Notes
The dest and sig_addr data objects must both be remotely accessible. The sig_addr and dest could be of
different kinds, for example, one could be a global/static C variable and the other could be allocated on the
symmetric heap.
sig_addr and dest may not be overlapping in memory.

9.8.5 SHMEM_SIGNAL_ADD

Adds to a signal value of a remote data object.

SYNOPSIS

C11:

DRAFT

CONTENTS 94

void shmem_signal_add(shmem_ctx_t ctx, uint64_t *sig_addr, uint64_t signal, int pe);

C/C++:
void shmem_signal_add(uint64_t *sig_addr, uint64_t signal, int pe);
void shmem_ctx_signal_add(shmem_ctx_t ctx, uint64_t *sig_addr, uint64_t signal, int pe);

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT sig_addr Symmetric address of the signal data object to be updated on the remote
PE.

IN signal Unsigned 64-bit value that is used for updating the remote sig_addr
signal data object.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
shmem_signal_add adds value to the signal data object pointed to by sig_addr on PE pe. The update to
the sig_addr signal object at the calling PE is expected to satisfy the atomicity guarantees as described in
Section 9.8.1.

Return Values
None.

9.8.6 SHMEM_SIGNAL_FETCH

Fetches the signal update on a local data object.

SYNOPSIS

C/C++:
uint64_t shmem_signal_fetch(const uint64_t *sig_addr);

DESCRIPTION

Arguments
IN sig_addr Local address of the remotely accessible signal variable.

API Description
shmem_signal_fetch performs a fetch operation and returns the contents of the sig_addr signal data ob-
ject. Access to sig_addr signal object at the calling PE is expected to satisfy the atomicity guarantees as
described in Section 9.8.1.

Return Values
Returns the contents of the signal data object, sig_addr, at the calling PE.

DRAFT

CONTENTS 95

9.8.7 SHMEM_SIGNAL_SET

Sets the signal value of a remote data object.

SYNOPSIS

C11:
void shmem_signal_set(shmem_ctx_t ctx, uint64_t *sig_addr, uint64_t signal, int pe);

C/C++:
void shmem_signal_set(uint64_t *sig_addr, uint64_t signal, int pe);
void shmem_ctx_signal_set(shmem_ctx_t ctx, uint64_t *sig_addr, uint64_t signal, int pe);

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

OUT sig_addr Symmetric address of the signal data object to be updated on the remote
PE.

IN signal Unsigned 64-bit value that is used for updating the remote sig_addr
signal data object.

IN pe PE number of the remote PE relative to the team associated with the
given ctx when provided, or the default context otherwise.

API Description
shmem_signal_set writes value into the signal data object pointed to by sig_addr on PE pe. The update to
the sig_addr signal object at the calling PE is expected to satisfy the atomicity guarantees as described in
Section 9.8.1.

Return Values
None.

9.9 Session Routines

OpenSHMEM sessions provide a mechanism for applications to inform the OpenSHMEM library of an upcoming
sequence of communication routines that exhibit suitable patterns for runtime optimizations. A session is associated
with a specific OpenSHMEM communication context (Section 9.5), and it indicates the beginning and ending of
communication phases on that context. The shmem_ctx_session_start routine indicates the beginning of a session,
and the shmem_ctx_session_stop routine indicates the end of a session. The SHMEM_CTX_SESSION_* options
(Table 9) indicate which patterns of OpenSHMEM RMA and AMO routines will occur within a session. These options
serve only as hints to the library; it is up to the implementation whether or not to apply any optimizations within a
session. A session may be provided a configuration argument that specifies attributes associated with the session. This
configuration argument is of type shmem_ctx_session_config_t, which is detailed further in Section 9.4.3.
Usage of the OpenSHMEM session APIs on a particular context must comply with the requirements of all options set
on that context. Starting and stopping OpenSHMEM sessions should not affect the completion or ordering semantics
of any OpenSHMEM routines in the program. For these reasons, multi-threaded OpenSHMEM programs may require
additional thread synchronization to ensure sessions hints are correctly applied to shareable contexts. Because sessions
are associated with an OpenSHMEM communication context, routines not performed on a communication context
(like collective routines) are ineligible for session hints.
The shmem_ctx_session_config_t object requires the SIZE_MAX macro defined in stdint.h by C99 §7.18.3 and
C11 §7.20.3.

DRAFT

CONTENTS 96

9.9.1 SHMEM_CTX_SESSION_CONFIG_T

A structure type representing communication session configuration arguments

SYNOPSIS

C/C++:
typedef struct {
size_t total_ops;

} shmem_ctx_session_config_t;

DESCRIPTION

Arguments
None.

API Description
A communication session configuration object is provided as an argument to the shmem_ctx_session_start
routine. The shmem_ctx_session_config_t object contains optional parameters that are associated with the
options of a communication session. These parameters serve only as hints to the library; it is up to the
implementation whether or not to use the parameter values within a session.
The total_ops member indicates the expected maximum number of all calls to OpenSHMEM RMA rou-
tines within the session (i.e., after a call to shmem_ctx_session_start and before a corresponding call to
shmem_ctx_session_stop). If total_ops differs from the actual number of calls to OpenSHMEM RMA
routines within the session, then application performance might be suboptimal; however, the result of any
data transfers, completions, or memory ordering operations are unaffected by the value of total_ops.
When passing a configuration structure to shmem_ctx_session_start, the mask parameter specifies which
fields the application requests to associate with the session. Any configuration parameter value that is not
indicated in the mask will be ignored, and the default value will be used instead. Therefore, a program
must set only the fields for which it does not want the default value.
A configuration mask is created through a bitwise OR operation of the following library constants. A
configuration mask value of 0 indicates that the session should be started with the default values for all
configuration parameters.

SHMEM_CTX_SESSION_TOTAL_OPS The value of the total_ops member of the config structure
is unmasked within the session and applied as a hint.

The default values for configuration parameters are:
total_ops = SIZE_MAX By default, the expected maximum number of calls to

OpenSHMEM RMA routines in the session is set to the
maximum value of a size_t variable, SIZE_MAX. This
default setting indicates that the OpenSHMEM applica-
tion chooses not to specify a value for total_ops.

Notes
Users are discouraged from calling shmem_fence, shmem_ctx_fence, shmem_quiet, or shmem_ctx_quiet
routines within a session whenever possible, because the library must impose strict completions to
comply with ordering semantics. However, hints provided by shmem_ctx_session_config_t do not
imply the occurrence of any completion or memory ordering operations. The requirements on buffers
provided to OpenSHMEM routines that are in-use (as described in Section 4.2) apply regardless of any
shmem_ctx_session_config_t hints.

DRAFT

CONTENTS 97

9.9.2 SHMEM_CTX_SESSION_START

Start a communication session.

SYNOPSIS

C/C++:
void shmem_ctx_session_start(shmem_ctx_t ctx, long options, const shmem_ctx_session_config_t

*config, long config_mask);

DESCRIPTION

Arguments
IN ctx A context handle specifying the context associated with this session.
IN options The set of requested options from Table 9 for this session. Multiple op-

tions may be requested by combining them with a bitwise OR operation;
otherwise, 0 can be given if no options are requested.

IN config A pointer to the configuration parameters for the session.
IN config_mask The bitwise mask representing the set of configuration parameters to

use from config.

API Description
shmem_ctx_session_start is a non-collective routine that begins a session on communication context ctx
with hints requested via options. Sessions on a communication context must be stopped with a call to
shmem_ctx_session_stop on the same context. If a session is already started on a given context, another
call to shmem_ctx_session_start on that same context combines new options via a bitwise OR operation.
In such a case, unmasked member values in the config argument replace any existing configuration values
that are already applied to the session.
If ctx compares equal to SHMEM_CTX_INVALID then shmem_ctx_session_start performs no action and
returns immediately.
No combination of options passed to shmem_ctx_session_start results in undefined behavior, but some
combinations may be detrimental for performance; for example, when selecting an option that is not appli-
cable to the session. It is the user’s responsibility to determine which combination of options benefits the
performance of the session.
The config argument specifies session configuration parameters, which are described in Section 9.9.1.
The config_mask argument is a bitwise mask representing the set of configuration parameters to use from
config. A config_mask value of 0 indicates that the session should be started with the default values for all
configuration parameters. See Section 9.9.1 for field mask names and default configuration parameters.

Return Values
None.

Notes
The shmem_ctx_session_start routine provides hints for improving performance, and OpenSHMEM im-
plementations are not required to apply any optimization. shmem_ctx_session_start is non-collective, so
there is no implied synchronization. Blocking puts must be sufficiently small to benefit from batching, and
the exact threshold for this benefit depends on the OpenSHMEM implementation and/or the application.

DRAFT

CONTENTS 98

Option Usage hint
SHMEM_CTX_SESSION_BATCH A batch is a series of calls to OpenSHMEM routines that occur within a session on

a communication context (i.e., after a call to shmem_ctx_session_start and before a
corresponding call to shmem_ctx_session_stop), that might tolerate an increase in in-
dividual call latencies. Designating a batch may provide an opportunity to decrease
the overall overhead typically involved with the OpenSHMEM library implement-
ing the series as individual RMA operations. In other words, the performance of
OpenSHMEM programs that issue many consecutive and small-sized RMA routines
might be improved by informing the library implementation ahead of time that it is
free to delay transferring data in order to buffer, combine, and/or coalesce the issued
OpenSHMEM routines. The specific mechanisms for improving performance using
batching optimizations depend on the OpenSHMEM library implementation.
The SHMEM_CTX_SESSION_BATCH hint indicates that a communication context
will be used to issue a batch. An example of a batch is an iterative loop of non-blocking
RMA and/or AMO routines. A batch may include a memory ordering or collective
operation, but such routines might require completions and/or synchronization that
could degrade performance.
Because sessions do not affect the completion or ordering semantics of any Open-
SHMEM routines in the program, routines such as non-blocking RMAs, non-blocking
AMOs, non-blocking put-with-signals, blocking scalar puts, small blocking puts, and
blocking non-fetching AMOs are viable candidates for batching. Other routines, such
as large blocking puts, all blocking gets, blocking fetching AMOs, and the memory
ordering routines might require the library to enforce completions, reducing the po-
tential benefit of batching.
The total_ops field of config indicates the expected maximum number of calls to
OpenSHMEM RMA routines within the session. See Section 9.9.1 for details about
shmem_ctx_session_config_t parameters.

Table 9: Session options

9.9.3 SHMEM_CTX_SESSION_STOP

Stop a communication session.

SYNOPSIS

C/C++:
void shmem_ctx_session_stop(shmem_ctx_t ctx);

DESCRIPTION

Arguments
IN ctx A context handle specifying the context associated with this session.

API Description
The shmem_ctx_session_stop routine ends a session on context ctx. If a session is already stopped on a
given communication context, another call to shmem_ctx_session_stop on that context has no effect.

Return Values
None.

DRAFT

CONTENTS 99

Notes
Users are discouraged from including non-OpenSHMEM code, such as a long computation loop, within a
session without first calling shmem_ctx_session_stop.

EXAMPLES

Example 28. The following C/C++ program demonstrates the usage of shmem_ctx_session_start and
shmem_ctx_session_stop with a loop of random atomic non-fetching XOR updates to a distributed table,
similar to the HPC Challenge RandomAccess GUPS (Giga-updates per second) benchmark 7.

#include <shmem.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>

#define N_UPDATES (1lu << 18)
#define N_INDICES (1lu << 10)
#define N_VALUES (1lu << 31)

int main(void) {

shmem_init();

uint64_t *table = shmem_calloc(N_INDICES, sizeof(uint64_t));

int mype = shmem_my_pe();
int npes = shmem_n_pes();
srand(mype);

shmem_ctx_t ctx;
int ret = shmem_ctx_create(0, &ctx);
if (ret != 0) {

printf("%d: Error creating context (%d)\n", mype, ret);
shmem_global_exit(1);

}

shmem_ctx_session_config_t config;
long config_mask;
config.total_ops = N_UPDATES;
config_mask = SHMEM_CTX_SESSION_TOTAL_OPS;

shmem_ctx_session_start(ctx, SHMEM_CTX_SESSION_BATCH, &config, config_mask);

for (size_t i = 0; i < N_UPDATES; i++) {
int random_pe = rand() % npes;
size_t random_idx = rand() % N_INDICES;
uint64_t random_val = rand() % N_VALUES;
shmem_ctx_uint64_atomic_xor(ctx, &table[random_idx], random_val, random_pe);

}

shmem_ctx_session_stop(ctx);
shmem_ctx_quiet(ctx); /* shmem_ctx_session_stop() does not quiet the context. */
shmem_sync_all(); /* shmem_ctx_session_stop() does not synchronize. */

/* At this point, it is safe to check and/or validate the table result... */

shmem_ctx_destroy(ctx);
shmem_free(table);
shmem_finalize();
return 0;

}

7http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/

DRAFT

CONTENTS 100

9.10 Collective Routines

Collective routines are defined as coordinated communication or synchronization operations performed by a group of
PEs.
OpenSHMEM provides four types of collective routines:

1. Collective routines that operate on teams use a team handle parameter to determine which PEs will participate in
the routine, and use resources encapsulated by the team object to perform operations. See Section 9.4 for details
on team management.

deprecation start

2. Collective routines that operate on active sets use a set of parameters to determine which PEs will participate and
what resources are used to perform operations.

3. Collective routines that do not accept active set parameters and, as required, the default context.

deprecation end

4. Collective routines that do not accept team parameters, which implicitly operate on the world team and, as
required, the default context.

Concurrent accesses to symmetric memory by an OpenSHMEM collective routine and any other means of access—
where at least one PE updates the symmetric memory—results in undefined behavior. Since PEs can enter and exit
collectives at different times, accessing such memory remotely may require additional synchronization.

Team-based collectives

The team-based collective routines are performed with respect to a valid OpenSHMEM team, which is specified by a
team handle argument. Team-based collective operations require all PEs in the team to call the routine in order for the
operation to complete. If an invalid team handle or SHMEM_TEAM_INVALID is passed to a team-based collective
routine, the behavior is undefined.
All OpenSHMEM teams-based collective operations are blocking routines. On return from a team-based collective
call, the PE may immediately call another collective operation on that same team. Team-based collectives must occur
in the same program order across all PEs in a team.
While OpenSHMEM routines provide thread support according to the thread-support level provided at initialization
(see Section 9.2), team-based collective routines may not be called simultaneously by multiple threads on a given team.
The team-based collective routines defined in the OpenSHMEM Specification are:

• shmem_team_sync

• shmem_[TYPENAME_]alltoall[mem]

• shmem_[TYPENAME_]alltoalls[mem]

• shmem_[TYPENAME_]broadcast[mem]

• shmem_[TYPENAME_]collect[mem]

• shmem_[TYPENAME_]fcollect[mem]

• shmem_[TYPENAME_]{and, or, xor, max, min, sum, prod}_reduce

• shmem_[TYPENAME_]sum_{in, ex}scan

In addition, all team creation functions are collective operations. In addition to the ordering and thread safety require-
ments described here, there are additional synchronization requirements on team creation operations. See Section 9.4
for more details.

deprecation start

DRAFT

CONTENTS 101

Active-set-based collectives

The active-set-based collective routines require all PEs in the active set to simultaneously call the routine. A PE that is
not in the active set calling the collective routine results in undefined behavior.
The active set is defined by the arguments PE_start, logPE_stride, and PE_size. PE_start specifies the starting
PE number and is the lowest numbered PE in the active set. The stride between successive PEs in the active set is
2logPE_stride and logPE_stride must be greater than or equal to zero. PE_size specifies the number of PEs in the active
set and must be greater than zero. The active set must satisfy the requirement that its last member corresponds to a
valid PE number, that is 0 ≤ PE_start +(PE_size−1)∗2logPE_stride < npes.
All PEs participating in the active-set-based collective routine must provide the same values for these arguments. If
any of these requirements are not met, the behavior is undefined.
Another argument important to active-set-based collective routines is pSync, which is a symmetric work array. All PEs
participating in an active-set-based collective must pass the same pSync array. Every element of the pSync array must
be initialized to SHMEM_SYNC_VALUE before it is used as an argument to any active-set-based collective routine. On
completion of such a collective call, the pSync is restored to its original contents. The user is permitted to reuse a pSync
array if all previous collective routines using the pSync array have completed on all participating PEs. One can use a
synchronization collective routine such as shmem_barrier to ensure completion of previous active-set-based collective
routines. The shmem_barrier and shmem_sync routines allow the same pSync array to be used on consecutive calls as
long as the PEs in the active set do not change.
All collective routines defined in the Specification are blocking. The collective routines return on completion. The
active-set-based collective routines defined in the OpenSHMEM Specification are:

• shmem_barrier

• shmem_sync

• shmem_alltoall{32, 64}

• shmem_alltoalls{32, 64}

• shmem_broadcast{32, 64}

• shmem_collect{32, 64}

• shmem_fcollect{32, 64}

• shmem_TYPENAME_{and, or, xor, max, min, sum, prod}_to_all

deprecation end

Team-implicit collectives

Some OpenSHMEM collective routines implicitly operate on the world team. These routines include:

• shmem_sync_all, which synchronizes all PEs in the computation through the world team. This routine is equiv-
alent to a call to shmem_team_sync on the world team.

• shmem_barrier_all, which synchronizes all PEs in the world team and ensures completion of all local and
remote memory updates issued via the default context. This routine is equivalent to a call to shmem_ctx_quiet
on the default context followed by a call to shmem_team_sync on the world team.

• OpenSHMEM memory-management routines, which imply one or more calls to a routine equivalent to
shmem_barrier_all.

DR
AF
T

CONTENTS 102

Error codes returned from team-based collectives

Collective operations involving multiple PEs may return values indicating success while other PEs are still executing
the collective operation. Return values indicating success or failure of a collective routine on one PE may not indicate
that all PEs involved in the collective operation will return the same value. Some operations, such as team creation,
must return identical return codes across multiple PEs.

9.10.1 SHMEM_BARRIER_ALL

Registers the arrival of a PE at a barrier and blocks the PE until all other PEs arrive at the barrier and all local updates
and remote memory updates on the default context are completed.

SYNOPSIS

C/C++:
void shmem_barrier_all(void);

DESCRIPTION

Arguments

None.

API Description
The shmem_barrier_all routine is a mechanism for synchronizing all PEs in the world team at once. This
routine blocks the calling PE until all PEs have called shmem_barrier_all. In a multithreaded Open-
SHMEM program, only the calling thread is blocked, however, it may not be called concurrently by multi-
ple threads in the same PE.
Prior to synchronizing with other PEs, shmem_barrier_all ensures completion of all previously issued
memory stores and remote memory updates issued on the default context via OpenSHMEM AMOs and
RMA routine calls such as shmem_int_add, shmem_put32, shmem_put_nbi, and shmem_get_nbi.

Return Values
None.

Notes
The shmem_barrier_all routine is equivalent to calling shmem_ctx_quiet on the default context followed
by calling shmem_team_sync on the world team.
The shmem_barrier_all routine can be used to portably ensure that memory access operations observe
remote updates in the order enforced by initiator PEs.
Calls to shmem_ctx_quiet can be performed prior to calling the barrier routine to ensure completion of
operations issued on additional contexts.

EXAMPLES

Example 29. The following shmem_barrier_all example is for C11 programs:

DRAFT

CONTENTS 103

#include <shmem.h>
#include <stdio.h>

int main(void) {
static int x = 1010;

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

/* put to next PE in a circular fashion */
shmem_p(&x, 4, (mype + 1) % npes);

/* synchronize all PEs */
shmem_barrier_all();
printf("%d: x = %d\n", mype, x);
shmem_finalize();
return 0;

}

9.10.2 SHMEM_BARRIER

deprecation start
Performs all operations described in the shmem_barrier_all interface but with respect to a subset of PEs defined by
the active set.

SYNOPSIS

C/C++:
void shmem_barrier(int PE_start, int logPE_stride, int PE_size, long *pSync);

DESCRIPTION

Arguments

IN PE_start The lowest PE number of the active set of PEs.
IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the

active set.
IN PE_size The number of PEs in the active set.
IN pSync Symmetric address of a work array of size at least

SHMEM_BARRIER_SYNC_SIZE.

API Description
shmem_barrier is a collective synchronization routine over an active set. Control returns from
shmem_barrier after all PEs in the active set (specified by PE_start, logPE_stride, and PE_size) have
called shmem_barrier.
As with all OpenSHMEM collective routines, each of these routines assumes that only PEs in the active
set call the routine. If a PE not in the active set calls an OpenSHMEM collective routine, the behavior is
undefined.
The values of arguments PE_start, logPE_stride, and PE_size must be the same value on all PEs in the
active set. The same work array must be passed in pSync to all PEs in the active set.
shmem_barrier ensures that all previously issued stores and remote memory updates, including AMOs
and RMA operations, done by any of the PEs in the active set on the default context are complete before
returning.

DRAFT

CONTENTS 104

The same pSync array may be reused on consecutive calls to shmem_barrier if the same active set is used.

Return Values
None.

Notes
As of OpenSHMEM 1.5, shmem_barrier has been deprecated. No team-based barrier is provided by
OpenSHMEM, as a team may have any number of communication contexts associated with the team.
Applications seeking such an idiom should call shmem_ctx_quiet on the desired communication context,
followed by a call to shmem_team_sync on the desired team.
The shmem_barrier routine can be used to portably ensure that memory access operations observe remote
updates in the order enforced by initiator PEs.
Calls to shmem_ctx_quiet can be performed prior to calling the barrier routine to ensure completion of
operations issued on additional contexts.

EXAMPLES

Example 30. The following barrier example is for C11 programs:

#include <shmem.h>
#include <stdio.h>

int main(void) {
static int x = 10101;
static long pSync[SHMEM_BARRIER_SYNC_SIZE];
for (int i = 0; i < SHMEM_BARRIER_SYNC_SIZE; i++)

pSync[i] = SHMEM_SYNC_VALUE;

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

if (mype % 2 == 0) {
/* put to next even PE in a circular fashion */
shmem_p(&x, 4, (mype + 2) % npes);
/* synchronize all even pes */
shmem_barrier(0, 1, (npes / 2 + npes % 2), pSync);

}
printf("%d: x = %d\n", mype, x);
shmem_finalize();
return 0;

}

deprecation end

9.10.3 SHMEM_SYNC

Registers the arrival of a PE at a synchronization point. This routine does not return until all other PEs in a given
OpenSHMEM team arrives at this synchronization point.

deprecation start
Registers the arrival of a PE at a synchronization point. This routine does not return until all other PEs in a given
OpenSHMEM active set arrive at this synchronization point.

deprecation end

DRAFT

CONTENTS 105

SYNOPSIS

C11:
int shmem_sync(shmem_team_t team);

C/C++:
int shmem_team_sync(shmem_team_t team);

deprecation start

void shmem_sync(int PE_start, int logPE_stride, int PE_size, long *pSync);

deprecation end

DESCRIPTION

Arguments

IN team The team over which to perform the operation.
deprecation start

IN PE_start The lowest PE number of the active set of PEs.
IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the

active set.
IN PE_size The number of PEs in the active set.
IN pSync Symmetric address of a work array of size at least

SHMEM_SYNC_SIZE.

deprecation end

API Description
shmem_sync is a collective synchronization routine over an existing OpenSHMEM team.
The routine registers the arrival of a PE at a synchronization point in the program. This is a fast mechanism
for synchronizing all PEs that participate in this collective call. The routine blocks the calling PE until all
PEs in the specified team have called shmem_sync. In a multithreaded OpenSHMEM program, only the
calling thread is blocked.
Team-based sync routines operate over all PEs in the provided team argument. All PEs in the provided
team must participate in the sync operation. If team compares equal to SHMEM_TEAM_INVALID or is
otherwise invalid, the behavior is undefined.
In contrast with the shmem_barrier routine, shmem_sync only ensures completion and visibility of previ-
ously issued memory stores and does not ensure completion of remote memory updates issued via Open-
SHMEM routines.

deprecation start
shmem_sync is a collective synchronization routine over an active set.
The routine registers the arrival of a PE at a synchronization point in the program. This is a fast mechanism
for synchronizing all PEs that participate in this collective call. The routine blocks the calling PE until all
PEs in the active set have called shmem_sync. In a multithreaded OpenSHMEM program, only the calling
thread is blocked.
Active-set-based sync routines operate over all PEs in the active set defined by the PE_start, logPE_stride,
PE_size triplet.
As with all active set-based collective routines, each of these routines assumes that only PEs in the active
set call the routine. If a PE not in the active set calls an active set-based collective routine, the behavior is
undefined.

DR
AF
T

CONTENTS 106

The values of arguments PE_start, logPE_stride, and PE_size must be equal on all PEs in the active set.
The same work array must be passed in pSync to all PEs in the active set.
The same pSync array may be reused on consecutive calls to shmem_sync if the same active set is used.

deprecation end

Return Values
Zero on successful local completion. Nonzero otherwise.

Notes
The shmem_sync routine can be used to portably ensure that memory access operations observe remote
updates in the order enforced by the initiator PEs, provided that the initiator PE ensures completion of
remote updates with a call to shmem_quiet prior to the call to the shmem_sync routine.

EXAMPLES

Example 31. The following shmem_sync example is for C11 programs:

#include <shmem.h>
#include <stdio.h>

int main(void) {
static int x = 10101;

shmem_team_t twos_team = SHMEM_TEAM_INVALID;
shmem_team_t threes_team = SHMEM_TEAM_INVALID;
shmem_team_config_t *config = NULL;

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

if (npes > 2)
shmem_team_split_strided(SHMEM_TEAM_WORLD, 2, 2, (npes - 1) / 2, config, 0,

&twos_team);

if (npes > 3)
shmem_team_split_strided(SHMEM_TEAM_WORLD, 3, 3, (npes - 1) / 3, config, 0,

&threes_team);

int mype_twos = shmem_team_my_pe(twos_team);
int mype_threes = shmem_team_my_pe(threes_team);
int npes_twos = shmem_team_n_pes(twos_team);
int npes_threes = shmem_team_n_pes(threes_team);

if (twos_team != SHMEM_TEAM_INVALID) {
/* put the value 2 to the next team member in a circular fashion */
shmem_p(

&x, 2,
shmem_team_translate_pe(twos_team, (mype_twos + 1) % npes_twos,

SHMEM_TEAM_WORLD));
shmem_quiet();
shmem_sync(twos_team);

}

shmem_sync(SHMEM_TEAM_WORLD);

if (threes_team != SHMEM_TEAM_INVALID) {
/* put the value 3 to the next team member in a circular fashion */
shmem_p(&x, 3,

shmem_team_translate_pe(threes_team, (mype_threes + 1) % npes_threes,
SHMEM_TEAM_WORLD));

DRAFT

CONTENTS 107

shmem_quiet();
shmem_sync(threes_team);

}

if (mype && mype % 3 == 0) {
if (x != 3)
shmem_global_exit(3);

}
else if (mype && mype % 2 == 0) {

if (x != 2)
shmem_global_exit(2);

}
else if (x != 10101) {

shmem_global_exit(1);
}

shmem_finalize();
return 0;

}

9.10.4 SHMEM_SYNC_ALL

Registers the arrival of a PE at a synchronization point and suspends execution until all other PEs in the world team
arrive at the synchronization point. For multithreaded programs, execution is suspended as specified by the threading
model (Section 9.2).

SYNOPSIS

C/C++:
void shmem_sync_all(void);

DESCRIPTION

Arguments

None.

API Description

This routine blocks the calling PE until all PEs in the world team have called shmem_sync_all.
In a multithreaded OpenSHMEM program, only the calling thread is blocked.
In contrast with the shmem_barrier_all routine, shmem_sync_all only ensures completion and visibility
of previously issued memory stores and does not ensure completion of remote memory updates issued via
OpenSHMEM routines.

Return Values
None.

Notes
The shmem_sync_all routine is equivalent to calling shmem_team_sync on the world team.

DRAFT

CONTENTS 108

9.10.5 SHMEM_ALLTOALL

Exchanges a fixed amount of contiguous data blocks between all pairs of PEs participating in the collective routine.

SYNOPSIS

C11:
int shmem_alltoall(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nelems);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:

int shmem_TYPENAME_alltoall(shmem_team_t team, TYPE *dest, const TYPE *source, size_t
nelems);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

int shmem_alltoallmem(shmem_team_t team, void *dest, const void *source, size_t nelems);

deprecation start

void shmem_alltoall32(void *dest, const void *source, size_t nelems, int PE_start, int
logPE_stride, int PE_size, long *pSync);

void shmem_alltoall64(void *dest, const void *source, size_t nelems, int PE_start, int
logPE_stride, int PE_size, long *pSync);

deprecation end

DESCRIPTION

Arguments

IN team A valid OpenSHMEM team handle to a team.
OUT dest Symmetric address of a data object large enough to receive the com-

bined total of nelems elements from each PE in the participating PEs.
The type of dest should match that implied in the SYNOPSIS section.

IN source Symmetric address of a data object that contains nelems elements of
data for each PE in the participating PEs, ordered according to destina-
tion PE. The type of source should match that implied in the SYNOP-
SIS section.

IN nelems The number of elements to exchange for each PE. For
shmem_alltoallmem, elements are bytes; for shmem_alltoall{32,64},
elements are 4 or 8 bytes, respectively.

deprecation start
IN PE_start The lowest PE number of the active set of PEs.
IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the

active set.
IN PE_size The number of PEs in the active set.
IN pSync Symmetric address of a work array of size at least

SHMEM_ALLTOALL_SYNC_SIZE.

deprecation end

DRAFT

CONTENTS 109

API Description
The shmem_alltoall routines are collective routines. Each PE participating in the operation exchanges
nelems data elements with all other PEs participating in the operation. The size of a data element is:

• 32 bits for shmem_alltoall32
• 64 bits for shmem_alltoall64
• 8 bits for shmem_alltoallmem
• sizeof (TYPE) for alltoall routines taking typed source and dest

The data being sent and received are stored in a contiguous symmetric data object. The total size of each
PE’s source object and dest object is nelems times the size of an element times N, where N equals the
number of PEs participating in the operation. The source object contains N blocks of data (where the size
of each block is defined by nelems) and each block of data is sent to a different PE.
The same dest and source arrays, and same value for nelems must be passed by all PEs that participate in
the collective.
Given a PE i that is the kthPE participating in the operation and a PE j that is the lthPE participating in the
operation, PE i sends the lthblock of its source object to the kthblock of the dest object of PE j.
Team-based collect routines operate over all PEs in the provided team argument. All PEs in the provided
team must participate in the collective. If team compares equal to SHMEM_TEAM_INVALID or is other-
wise invalid, the behavior is undefined.
Before the local PE calls a shmem_alltoall routine, the following conditions must be ensured, otherwise
the behavior is undefined:

• The dest array on all PEs in the team is ready to accept the result of the operation.
• The source array at the local PE is ready to be read by any PE in the team.

The application does not need to synchronize to ensure that the source array is ready across all PEs prior to
calling this routine.
Upon return from a shmem_alltoall routine, the following is true for the local PE:

• Its dest symmetric data object is completely updated and the data has been copied out of the source
data object.

deprecation start
Active-set-based collective routines operate over all PEs in the active set defined by the PE_start,
logPE_stride, PE_size triplet.
As with all active-set-based collective routines, this routine assumes that only PEs in the active set call the
routine. If a PE not in the active set calls an active-set-based collective routine, the behavior is undefined.
The values of arguments PE_start, logPE_stride, and PE_size must be equal on all PEs in the active set.
The same pSync work array must be passed to all PEs in the active set.
Before any PE calls a shmem_alltoall routine, the following conditions must be ensured:

• The dest data object on all PEs in the active set is ready to accept the shmem_alltoall data.
• For active-set-based routines, the pSync array on all PEs in the active set is not still in use from a prior

call to a shmem_alltoall routine.

Otherwise, the behavior is undefined.
Upon return from a shmem_alltoall routine, the following is true for the local PE:

• Its dest symmetric data object is completely updated and the data has been copied out of the source
data object.

• For active-set-based routines, the values in the pSync array are restored to the original values.

deprecation end

Return Values
Zero on successful local completion. Nonzero otherwise.

DR
AF
T

CONTENTS 110

EXAMPLES

Example 32. This C/C++ example shows a shmem_int64_alltoall on two 64-bit integers among all PEs.

#include <inttypes.h>
#include <shmem.h>
#include <stdio.h>

int main(void) {
shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

const int count = 2;
int64_t *dest = (int64_t *)shmem_malloc(count * npes * sizeof(int64_t));
int64_t *source = (int64_t *)shmem_malloc(count * npes * sizeof(int64_t));

/* assign source values */
for (int pe = 0; pe < npes; pe++) {

for (int i = 0; i < count; i++) {
source[(pe * count) + i] = mype + pe;
dest[(pe * count) + i] = 9999;

}
}
/* wait for all PEs to initialize source/dest */
shmem_team_sync(SHMEM_TEAM_WORLD);

/* alltoall on all PES */
shmem_int64_alltoall(SHMEM_TEAM_WORLD, dest, source, count);

/* verify results */
for (int pe = 0; pe < npes; pe++) {

for (int i = 0; i < count; i++) {
if (dest[(pe * count) + i] != pe + mype) {

printf("[%d] ERROR: dest[%d]=%" PRId64 ", should be %d\n", mype, (pe * count) +
i,

dest[(pe * count) + i], pe + mype);
}

}
}

shmem_free(dest);
shmem_free(source);
shmem_finalize();
return 0;

}

9.10.6 SHMEM_ALLTOALLS

Exchanges a fixed amount of strided data blocks between all pairs of PEs participating in the collective routine.

SYNOPSIS

C11:
int shmem_alltoalls(shmem_team_t team, TYPE *dest, const TYPE *source, ptrdiff_t dst,

ptrdiff_t sst, size_t nelems);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:

int shmem_TYPENAME_alltoalls(shmem_team_t team, TYPE *dest, const TYPE *source, ptrdiff_t
dst, ptrdiff_t sst, size_t nelems);

DRAFT

CONTENTS 111

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

int shmem_alltoallsmem(shmem_team_t team, void *dest, const void *source, ptrdiff_t dst,
ptrdiff_t sst, size_t nelems);

deprecation start

void shmem_alltoalls32(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t
nelems, int PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_alltoalls64(void *dest, const void *source, ptrdiff_t dst, ptrdiff_t sst, size_t
nelems, int PE_start, int logPE_stride, int PE_size, long *pSync);

deprecation end

DESCRIPTION

Arguments

IN team A valid OpenSHMEM team handle.
OUT dest Symmetric address of a data object large enough to receive the com-

bined total of nelems elements from each PE in the participating PEs.
The type of dest should match that implied in the SYNOPSIS section.

IN source Symmetric address of a data object that contains nelems elements of
data for each PE in the participating PEs, ordered according to destina-
tion PE. The type of source should match that implied in the SYNOP-
SIS section.

IN dst The stride between consecutive elements of the dest data object. The
stride is scaled by the element size. A value of 1 indicates contiguous
data.

IN sst The stride between consecutive elements of the source data object. The
stride is scaled by the element size. A value of 1 indicates contiguous
data.

IN nelems The number of elements to exchange for each PE. For
shmem_alltoallsmem, elements are bytes; for shmem_alltoalls{32,64},
elements are 4 or 8 bytes, respectively.

deprecation start
IN PE_start The lowest PE number of the active set of PEs.
IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the

active set.
IN PE_size The number of PEs in the active set.
IN pSync Symmetric address of a work array of size at least

SHMEM_ALLTOALLS_SYNC_SIZE.

deprecation end

API Description
The shmem_alltoalls routines are collective routines. These routines are equivalent in functionality to the
corresponding shmem_alltoall routines except that they add explicit stride values for accessing the source
and destination data arrays, whereas the array access in shmem_alltoall is always with a stride of 1.
Each PE participating in the operation exchanges nelems strided data elements with all other PEs partici-
pating in the operation. Both strides, dst and sst, must be greater than or equal to 1.
The same dest and source arrays and same values for values of arguments dst, sst, nelems must be passed
by all PEs that participate in the collective.

DRAFT

CONTENTS 112

Given a PE i that is the kthPE participating in the operation and a PE j that is the lthPE participating in the
operation PE i sends the sst*lthblock of the source data object to the dst*kthblock of the dest data object on
PE j.
See the description of shmem_alltoall in Section 9.10.5 for:

• Data element sizes for the different sized and typed shmem_alltoalls variants.
• Rules for PE participation in the collective routine.
• The pre- and post-conditions for symmetric objects.
• Typing constraints for dest and source data objects.

Return Values
Zero on successful local completion. Nonzero otherwise.

EXAMPLES

Example 33. This C/C++ example shows a shmem_int64_alltoalls on two 64-bit integers among all PEs.

#include <inttypes.h>
#include <shmem.h>
#include <stdio.h>

int main(void) {
shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

const int count = 2;
const ptrdiff_t dst = 2;
const ptrdiff_t sst = 3;
int64_t *dest = (int64_t *)shmem_malloc(count * dst * npes * sizeof(int64_t));
int64_t *source = (int64_t *)shmem_malloc(count * sst * npes * sizeof(int64_t));

/* assign source values */
for (int pe = 0; pe < npes; pe++) {

for (int i = 0; i < count; i++) {
source[sst * ((pe * count) + i)] = mype + pe;
dest[dst * ((pe * count) + i)] = 9999;

}
}
/* wait for all PEs to initialize source/dest */
shmem_team_sync(SHMEM_TEAM_WORLD);

/* alltoalls on all PES */
shmem_int64_alltoalls(SHMEM_TEAM_WORLD, dest, source, dst, sst, count);

/* verify results */
for (int pe = 0; pe < npes; pe++) {

for (int i = 0; i < count; i++) {
int j = dst * ((pe * count) + i);
if (dest[j] != pe + mype) {

printf("[%d] ERROR: dest[%d]=%" PRId64 ", should be %d\n", mype, j, dest[j],
pe + mype);

}
}

}

shmem_free(dest);
shmem_free(source);
shmem_finalize();
return 0;

}

DRAFT

CONTENTS 113

9.10.7 SHMEM_BROADCAST

Broadcasts a block of data from one PE to one or more destination PEs.

SYNOPSIS

C11:
int shmem_broadcast(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nelems, int

PE_root);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:

int shmem_TYPENAME_broadcast(shmem_team_t team, TYPE *dest, const TYPE *source, size_t
nelems, int PE_root);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

int shmem_broadcastmem(shmem_team_t team, void *dest, const void *source, size_t nelems, int
PE_root);

deprecation start

void shmem_broadcast32(void *dest, const void *source, size_t nelems, int PE_root, int
PE_start, int logPE_stride, int PE_size, long *pSync);

void shmem_broadcast64(void *dest, const void *source, size_t nelems, int PE_root, int
PE_start, int logPE_stride, int PE_size, long *pSync);

deprecation end

DESCRIPTION

Arguments

IN team The team over which to perform the operation.
OUT dest Symmetric address of destination data object. The type of dest should

match that implied in the SYNOPSIS section.
IN source Symmetric address of the source data object. The type of source should

match that implied in the SYNOPSIS section.
IN nelems The number of elements in source and dest arrays.

For shmem_broadcastmem, elements are bytes; for
shmem_broadcast{32,64}, elements are 4 or 8 bytes, respectively.

IN PE_root Zero-based ordinal of the PE, with respect to the calling PEs, from
which the data is copied.

deprecation start
IN PE_start The lowest PE number of the active set of PEs.
IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the

active set.
IN PE_size The number of PEs in the active set.
IN pSync Symmetric address of a work array of size at least

SHMEM_BCAST_SYNC_SIZE.

deprecation end

DRAFT

CONTENTS 114

API Description
OpenSHMEM team-based broadcast routines are collective routines over a valid OpenSHMEM team. They
copy the source data object on the PE specified by PE_root to the dest data object on the PEs participating
in the collective operation. The same dest and source data objects and the same value of PE_root must be
passed by all PEs participating in the collective operation.
For team-based broadcasts:

• The dest object is updated on all PEs.
• All PEs in the team argument must participate in the operation.
• Only PEs in the team may call the routine. If a PE not in the team calls a team-based collective routine,

the behavior is undefined.
• If team compares equal to SHMEM_TEAM_INVALID or is otherwise invalid, the behavior is unde-

fined.
• PE numbering is relative to the team. The specified root PE must be a valid PE number for the team,

between 0 and N−1, where N is the size of the team.

Before the local PE calls a broadcast routine, the following conditions must be ensured, otherwise the
behavior is undefined:

• The dest array on all PEs in the team is ready to accept the result of the operation.
• The source array at the local root PE is ready to be read by any PE in the team.

The application does not need to synchronize to ensure that the source array is ready across all PEs prior to
calling this routine.
Upon return from a team-based broadcast routine, the following are true for the local PE:

• The dest data object is updated.
• The source data object may be safely reused.

deprecation start
OpenSHMEM active-set broadcast routines are collective routines over an active set. They copy the source
data object on the PE specified by PE_root to the dest data object on the PEs participating in the collective
operation. The same dest and source data objects and the same value of PE_root must be passed by all PEs
participating in the collective operation.
For active-set-based broadcasts:

• The dest object is updated on all PEs other than the root PE.
• All PEs in the active set defined by the PE_start, logPE_stride, PE_size triplet must participate in the

operation.
• Only PEs in the active set may call the routine. If a PE not in the active set calls an active-set-based

collective routine, the behavior is undefined.
• The values of arguments PE_root, PE_start, logPE_stride, and PE_size must be the same value on

all PEs in the active set.
• The value of PE_root must be between 0 and PE_size − 1.
• The same pSync work array must be passed by all PEs in the active set.

Before any PE calls a active-set-based broadcast routine, the following conditions must be ensured:

• The dest array on all PEs participating in the broadcast is ready to accept the broadcast data.
• The pSync array on all PEs in the active set is not still in use from a prior call to an OpenSHMEM

collective routine.

Otherwise, the behavior is undefined.
Upon return from an active-based broadcast routine, the following are true for the local PE:

• If the current PE is not the root PE, the dest data object is updated.
• The source data object may be safely reused.
• The values in the pSync array are restored to the original values.

DRAFT

CONTENTS 115

deprecation end

Return Values
For team-based broadcasts, zero on successful local completion; otherwise, nonzero.

deprecation start
For active-set-based broadcasts, none.

deprecation end

Notes
Team handle error checking and integer return codes are currently undefined. Implementations may define
these behaviors as needed, but programs should ensure portability by doing their own checks for invalid
team handles and for SHMEM_TEAM_INVALID.

EXAMPLES

Example 34. In the following C11 example, the call to shmem_broadcast copies source on PE 0 to dest
on PEs 0 . . .npes−1.
C/C++ example:

#include <shmem.h>
#include <stdio.h>
#include <stdlib.h>

int main(void) {
static long source[4], dest[4];

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

if (mype == 0)
for (int i = 0; i < 4; i++)
source[i] = i;

shmem_broadcast(SHMEM_TEAM_WORLD, dest, source, 4, 0);

printf("%d: %ld, %ld, %ld, %ld\n", mype, dest[0], dest[1], dest[2], dest[3]);
shmem_finalize();
return 0;

}

9.10.8 SHMEM_COLLECT, SHMEM_FCOLLECT

Concatenates blocks of data from multiple PEs to an array in every PE participating in the collective routine.

SYNOPSIS

C11:
int shmem_collect(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nelems);
int shmem_fcollect(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nelems);

where TYPE is one of the standard RMA types specified by Table 5.

C/C++:

DRAFT

CONTENTS 116

int shmem_TYPENAME_collect(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nelems);
int shmem_TYPENAME_fcollect(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nelems);

where TYPE is one of the standard RMA types and has a corresponding TYPENAME specified by Table 5.

int shmem_collectmem(shmem_team_t team, void *dest, const void *source, size_t nelems);
int shmem_fcollectmem(shmem_team_t team, void *dest, const void *source, size_t nelems);

deprecation start

void shmem_collect32(void *dest, const void *source, size_t nelems, int PE_start, int
logPE_stride, int PE_size, long *pSync);

void shmem_collect64(void *dest, const void *source, size_t nelems, int PE_start, int
logPE_stride, int PE_size, long *pSync);

void shmem_fcollect32(void *dest, const void *source, size_t nelems, int PE_start, int
logPE_stride, int PE_size, long *pSync);

void shmem_fcollect64(void *dest, const void *source, size_t nelems, int PE_start, int
logPE_stride, int PE_size, long *pSync);

deprecation end

DESCRIPTION

Arguments

IN team A valid OpenSHMEM team handle.
OUT dest Symmetric address of an array large enough to accept the concatenation

of the source arrays on all participating PEs. The type of dest should
match that implied in the SYNOPSIS section.

IN source Symmetric address of the source data object. The type of source should
match that implied in the SYNOPSIS section.

IN nelems The number of elements in source array. For shmem_[f]collectmem,
elements are bytes; for shmem_[f]collect{32,64}, elements are 4 or 8
bytes, respectively.

deprecation start
IN PE_start The lowest PE number of the active set of PEs.
IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the

active set.
IN PE_size The number of PEs in the active set.
IN pSync Symmetric address of a work array of size at least

SHMEM_COLLECT_SYNC_SIZE.

deprecation end

API Description
OpenSHMEM collect and fcollect routines perform a collective operation to concatenate nelems data items
from the source array into the dest array, over an OpenSHMEM team in PE number order. The resultant
dest array contains the contribution from PEs as follows:

• For a team, the data from PE number 0 in the team is first, then the contribution from PE 1 in the team,
and so on.

The collected result is written to the dest array for all PEs that participate in the operation. The same dest
and source arrays must be passed by all PEs that participate in the operation.
The fcollect routines require that nelems be the same value in all participating PEs, while the collect routines
allow nelems to vary from PE to PE.

DR
AF
T

CONTENTS 117

Team-based collect routines operate over all PEs in the provided team argument. All PEs in the provided
team must participate in the operation. If team compares equal to SHMEM_TEAM_INVALID or is other-
wise invalid, the behavior is undefined.
Before the local PE calls a collect routine, the following conditions must be ensured, otherwise the behavior
is undefined:

• The dest array on all PEs in the team is ready to accept the result of the operation.
• The source array at the local PE is ready to be read by any PE in the team.

The application does not need to synchronize to ensure that the source array is ready across all PEs prior to
calling this routine.

deprecation start
OpenSHMEM collect and fcollect routines perform a collective operation to concatenate nelems data items
from the source array into the dest array, over an OpenSHMEM active set in PE number order. The resultant
dest array contains the contribution from PEs as follows:

• For an active set, the data from PE PE_start is first, then the contribution from PE PE_start +
PE_stride second, and so on.

The collected result is written to the dest array for all PEs that participate in the operation. The same dest
and source arrays must be passed by all PEs that participate in the operation.
The fcollect routines require that nelems be the same value in all participating PEs, while the collect routines
allow nelems to vary from PE to PE.
Active-set-based collective routines operate over all PEs in the active set defined by the PE_start,
logPE_stride, PE_size triplet. As with all active-set-based collective routines, each of these routines as-
sumes that only PEs in the active set call the routine. If a PE not in the active set and calls this collective
routine, the behavior is undefined.
The values of arguments PE_start, logPE_stride, and PE_size must be the same value on all PEs in the
active set. The same pSync work array must be passed by all PEs in the active set.
Upon return from a collective routine, the following are true for the local PE:

• The dest array is updated and the source array may be safely reused.
• For active-set-based collective routines, the values in the pSync array are restored to the original values.

deprecation end

Return Values
Zero on successful local completion. Nonzero otherwise.

Notes

deprecation start
The collective routines operate on active PE sets that have a non-power-of-two PE_size with some perfor-
mance degradation. They operate with no performance degradation when nelems is a non-power-of-two
value.

deprecation end
The collective routines that operate on teams containing a non-power-of-two of PEs do so with some
performance degradation. They operate with no performance degradation when nelems is a non-power-of-
two value.

EXAMPLES

Example 35. The following shmem_collect example is for C/C++ programs:

DRAFT

CONTENTS 118

#include <shmem.h>
#include <stdio.h>
#include <stdlib.h>

int main(void) {
static long lock = 0;

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();
int my_nelem = mype + 1; /* linearly increasing number of elements with PE */
int total_nelem = (npes * (npes + 1)) / 2;

int *source = (int *)shmem_malloc(npes * sizeof(int)); /* symmetric alloc */
int *dest = (int *)shmem_malloc(total_nelem * sizeof(int));

for (int i = 0; i < my_nelem; i++)
source[i] = (mype * (mype + 1)) / 2 + i;

for (int i = 0; i < total_nelem; i++)
dest[i] = -9999;

/* Wait for all PEs to initialize source/dest: */
shmem_team_sync(SHMEM_TEAM_WORLD);

shmem_int_collect(SHMEM_TEAM_WORLD, dest, source, my_nelem);

shmem_set_lock(&lock); /* Lock prevents interleaving printfs */
printf("%d: %d", mype, dest[0]);
for (int i = 1; i < total_nelem; i++)

printf(", %d", dest[i]);
printf("\n");
shmem_clear_lock(&lock);
shmem_finalize();
return 0;

}

9.10.9 SHMEM_REDUCTIONS

The following functions perform reduction operations across all PEs in a set of PEs.

SYNOPSIS

9.10.9.1 AND
Performs a bitwise AND reduction across a set of PEs.

C11:
int shmem_and_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer types supported for the AND operation as specified by Table 10.

C/C++:

int shmem_TYPENAME_and_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t
nreduce);

where TYPE is one of the integer types supported for the AND operation and has a corresponding TYPENAME
as specified by Table 10.

deprecation start

DRAFT

CONTENTS 119

TYPE TYPENAME Operations Supporting TYPE
char char MAX, MIN SUM, PROD
signed char schar MAX, MIN SUM, PROD
short short MAX, MIN SUM, PROD
int int MAX, MIN SUM, PROD
long long MAX, MIN SUM, PROD
long long longlong MAX, MIN SUM, PROD
ptrdiff_t ptrdiff MAX, MIN SUM, PROD
unsigned char uchar AND, OR, XOR MAX, MIN SUM, PROD
unsigned short ushort AND, OR, XOR MAX, MIN SUM, PROD
unsigned int uint AND, OR, XOR MAX, MIN SUM, PROD
unsigned long ulong AND, OR, XOR MAX, MIN SUM, PROD
unsigned long long ulonglong AND, OR, XOR MAX, MIN SUM, PROD
int8_t int8 AND, OR, XOR MAX, MIN SUM, PROD
int16_t int16 AND, OR, XOR MAX, MIN SUM, PROD
int32_t int32 AND, OR, XOR MAX, MIN SUM, PROD
int64_t int64 AND, OR, XOR MAX, MIN SUM, PROD
uint8_t uint8 AND, OR, XOR MAX, MIN SUM, PROD
uint16_t uint16 AND, OR, XOR MAX, MIN SUM, PROD
uint32_t uint32 AND, OR, XOR MAX, MIN SUM, PROD
uint64_t uint64 AND, OR, XOR MAX, MIN SUM, PROD
size_t size AND, OR, XOR MAX, MIN SUM, PROD
float float MAX, MIN SUM, PROD
double double MAX, MIN SUM, PROD
long double longdouble MAX, MIN SUM, PROD
double _Complex complexd SUM, PROD
float _Complex complexf SUM, PROD

Table 10: Reduction Types, Names, and Supporting Operations for Team-Based Reductions

void shmem_TYPENAME_and_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,
int logPE_stride, int PE_size, TYPE *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer types supported for the AND operation and has a corresponding TYPENAME
as specified by Table 11.

9.10.9.2 OR
Performs a bitwise OR reduction across a set of PEs.

C11:
int shmem_or_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer types supported for the OR operation as specified by Table 10.

C/C++:

int shmem_TYPENAME_or_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t
nreduce);

where TYPE is one of the integer types supported for the OR operation and has a corresponding TYPENAME as
specified by Table 10.

DR
AF
T

CONTENTS 120

TYPE TYPENAME Operations Supporting TYPE
short short AND, OR, XOR MAX, MIN SUM, PROD
int int AND, OR, XOR MAX, MIN SUM, PROD
long long AND, OR, XOR MAX, MIN SUM, PROD
long long longlong AND, OR, XOR MAX, MIN SUM, PROD
float float MAX, MIN SUM, PROD
double double MAX, MIN SUM, PROD
long double longdouble MAX, MIN SUM, PROD
double _Complex complexd SUM, PROD
float _Complex complexf SUM, PROD

Table 11: Reduction Types, Names and Supporting Operations for Active-Set-Based Reductions

deprecation start

void shmem_TYPENAME_or_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start, int
logPE_stride, int PE_size, TYPE *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer types supported for the OR operation and has a corresponding TYPENAME as
specified by Table 11.

9.10.9.3 XOR
Performs a bitwise exclusive OR (XOR) reduction across a set of PEs.

C11:
int shmem_xor_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer types supported for the XOR operation as specified by Table 10.

C/C++:

int shmem_TYPENAME_xor_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t
nreduce);

where TYPE is one of the integer types supported for the XOR operation and has a corresponding TYPENAME
as specified by Table 10.

deprecation start

void shmem_TYPENAME_xor_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,
int logPE_stride, int PE_size, TYPE *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer types supported for the XOR operation and has a corresponding TYPENAME
as specified by Table 11.

9.10.9.4 MAX
Performs a maximum-value reduction across a set of PEs.

C11:
int shmem_max_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

DR
AF
T

CONTENTS 121

where TYPE is one of the integer or real types supported for the MAX operation as specified by Table 10.

C/C++:

int shmem_TYPENAME_max_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t
nreduce);

where TYPE is one of the integer or real types supported for the MAX operation and has a corresponding
TYPENAME as specified by Table 10.

deprecation start

void shmem_TYPENAME_max_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,
int logPE_stride, int PE_size, TYPE *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer or real types supported for the MAX operation and has a corresponding
TYPENAME as specified by Table 11.

9.10.9.5 MIN
Performs a minimum-value reduction across a set of PEs.

C11:
int shmem_min_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer or real types supported for the MIN operation as specified by Table 10.

C/C++:

int shmem_TYPENAME_min_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t
nreduce);

where TYPE is one of the integer or real types supported for the MIN operation and has a corresponding TYPE-
NAME as specified by Table 10.

deprecation start

void shmem_TYPENAME_min_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,
int logPE_stride, int PE_size, TYPE *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer or real types supported for the MIN operation and has a corresponding TYPE-
NAME as specified by Table 11.

9.10.9.6 SUM
Performs a sum reduction across a set of PEs.

C11:
int shmem_sum_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer, real, or complex types supported for the SUM operation as specified by Table
10.

C/C++:

int shmem_TYPENAME_sum_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t
nreduce);

DRAFT

CONTENTS 122

where TYPE is one of the integer, real, or complex types supported for the SUM operation and has a correspond-
ing TYPENAME as specified by Table 10.

deprecation start

void shmem_TYPENAME_sum_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,
int logPE_stride, int PE_size, TYPE *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer, real, or complex types supported for the SUM operation and has a correspond-
ing TYPENAME as specified by Table 11.

9.10.9.7 PROD
Performs a product reduction across a set of PEs.

C11:
int shmem_prod_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nreduce);

where TYPE is one of the integer, real, or complex types supported for the PROD operation as specified by Table
10.

C/C++:

int shmem_TYPENAME_prod_reduce(shmem_team_t team, TYPE *dest, const TYPE *source, size_t
nreduce);

where TYPE is one of the integer, real, or complex types supported for the PROD operation and has a corre-
sponding TYPENAME as specified by Table 10.

deprecation start

void shmem_TYPENAME_prod_to_all(TYPE *dest, const TYPE *source, int nreduce, int PE_start,
int logPE_stride, int PE_size, TYPE *pWrk, long *pSync);

deprecation end

where TYPE is one of the integer, real, or complex types supported for the PROD operation and has a corre-
sponding TYPENAME as specified by Table 11.

DESCRIPTION

Arguments

IN team The team over which to perform the operation.
OUT dest Symmetric address of an array, of length nreduce elements, to receive

the result of the reduction routines. The type of dest should match that
implied in the SYNOPSIS section.

IN source Symmetric address of an array, of length nreduce elements, that con-
tains one element for each separate reduction routine. The type of
source should match that implied in the SYNOPSIS section.

IN nreduce The number of elements in the dest and source arrays. In teams based
API calls, nreduce must be of type size_t.

deprecation start
IN nreduce In active-set based API calls, nreduce must be of type integer.
IN PE_start The lowest PE number of the active set of PEs.

DRAFT

CONTENTS 123

IN logPE_stride The log (base 2) of the stride between consecutive PE numbers in the
active set.

IN PE_size The number of PEs in the active set.
IN pWrk Symmetric address of a work array of size at least max(nreduce/2 + 1,

SHMEM_REDUCE_MIN_WRKDATA_SIZE) elements.
IN pSync Symmetric address of a work array of size at least

SHMEM_REDUCE_SYNC_SIZE.

deprecation end

API Description
OpenSHMEM reduction routines are collective routines over an existing OpenSHMEM team that compute
one or more reductions across symmetric arrays on multiple PEs. A reduction performs an associative
binary routine across a set of values.
The nreduce argument determines the number of separate reductions to perform. The source array on all
PEs participating in the reduction provides one element for each reduction. The results of the reductions
are placed in the dest array on all PEs participating in the reduction.
The same source and dest arrays must be passed by all PEs that participate in the collective. The source
and dest arguments must either be the same symmetric address, or two different symmetric addresses
corresponding to buffers that do not overlap in memory. That is, they must be completely overlapping
(sometimes referred to as an “in place” reduction) or completely disjoint.
Team-based reduction routines operate over all PEs in the provided team argument. All PEs in the pro-
vided team must participate in the reduction. If team compares equal to SHMEM_TEAM_INVALID or is
otherwise invalid, the behavior is undefined.
Before the local PE calls a reduction routine, the following conditions must be ensured, otherwise the
behavior is undefined:

• The dest array on all PEs in the team is ready to accept the results of the operation.
• The source array at the local PE is ready to be read by any PE in the team.

The application does not need to synchronize to ensure that the source array is ready across all PEs prior to
calling this routine.
Upon return from a reduction routine, the following are true for the local PE:

• The dest array is updated and the source array may be safely reused.

deprecation start
OpenSHMEM reduction routines are collective routines over an active set that compute one or more reduc-
tions across symmetric arrays on multiple PEs. A reduction performs an associative binary routine across
a set of values.
The nreduce argument determines the number of separate reductions to perform. The source array on all
PEs participating in the reduction provides one element for each reduction. The results of the reductions
are placed in the dest array on all PEs participating in the reduction.
The same source and dest arrays must be passed by all PEs that participate in the collective. The source
and dest arguments must either be the same symmetric address, or two different symmetric addresses
corresponding to buffers that do not overlap in memory. That is, they must be completely overlapping
(sometimes referred to as an “in place” reduction) or completely disjoint.
Active-set-based sync routines operate over all PEs in the active set defined by the PE_start, logPE_stride,
PE_size triplet.
As with all active set-based collective routines, each of these routines assumes that only PEs in the active
set call the routine. If a PE not in the active set calls an active set-based collective routine, the behavior is
undefined.
The values of arguments nreduce, PE_start, logPE_stride, and PE_size must be equal on all PEs in the
active set. The same pWrk and pSync work arrays must be passed to all PEs in the active set.
Before any PE calls a reduction routine, the following conditions must be ensured:

DR
AF
T

CONTENTS 124

• The dest array on all PEs participating in the reduction is ready to accept the results of the reduction.
• If using active-set-based routines, the pWrk and pSync arrays on all PEs in the active set are not still in

use from a prior call to a collective OpenSHMEM routine.

Otherwise, the behavior is undefined.
Upon return from a reduction routine, the following are true for the local PE:

• The dest array is updated and the source array may be safely reused.
• If using active-set-based routines, the values in the pSync array are restored to the original values.

deprecation end
The complex-typed interfaces are only provided for sum and product reductions. When the C translation
environment does not support complex types 8, an OpenSHMEM implementation is not required to provide
support for these complex-typed interfaces.

Return Values
Zero on successful local completion. Nonzero otherwise.

Notes
The binary operations performed by OpenSHMEM reductions are intended to be associative and commuta-
tive. However, floating point arithmetic is not associative or commutative due to the inherent inaccuracies
of floating-point representations caused by rounding errors and finite precision. This can lead to variations
in the result of OpenSHMEM arithmetic reduction operations on floating-point datatypes, including NaN
values. A future version of the OpenSHMEM specification may clarify the behavior of reductions on
floating point datatypes.

EXAMPLES

Example 36. In the following C11 example, each PE initializes an array of random integers with values
between 0 and npes−1, inclusively. An OR reduction then tracks the array indices where maximal values
occur (maximal values equal npes− 1), and a SUM reduction counts the total number of maximal values
across all PEs.

#include <shmem.h>
#include <stdio.h>
#include <stdlib.h>

#define NELEMS 32

int main(void) {
shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

int *values = shmem_malloc(NELEMS * sizeof(int));

unsigned char *value_is_maximal = shmem_malloc(NELEMS * sizeof(unsigned char));
unsigned char *value_is_maximal_all = shmem_malloc(NELEMS * sizeof(unsigned char));

static int maximal_values_count = 0;
static int maximal_values_total;

srand((unsigned)mype);

for (int i = 0; i < NELEMS; i++) {
values[i] = rand() % npes;

/* Track and count instances of maximal values (i.e., values equal to (npes-1)) */
value_is_maximal[i] = (values[i] == (npes - 1)) ? 1 : 0;

8That is, under C language standards prior to C99 or under C11 when __STDC_NO_COMPLEX__ is defined to 1

DRAFT

CONTENTS 125

maximal_values_count += value_is_maximal[i];
}

/* Wait for all PEs to initialize reductions arrays */
shmem_sync(SHMEM_TEAM_WORLD);

shmem_or_reduce(SHMEM_TEAM_WORLD, value_is_maximal_all, value_is_maximal, NELEMS);
shmem_sum_reduce(SHMEM_TEAM_WORLD, &maximal_values_total, &maximal_values_count, 1);

if (mype == 0) {
printf("Found %d maximal random numbers across all PEs.\n", maximal_values_total);
printf("A maximal number occurred (at least once) at the following indices:\n");
for (int i = 0; i < NELEMS; i++) {
if (value_is_maximal_all[i] == 1) {

printf("%d ", i);
}

}
printf("\n");

}

shmem_finalize();
return 0;

}

9.10.10 SHMEM_SCAN

Performs inclusive or exclusive prefix sum operations

SYNOPSIS

C11:
int shmem_sum_inscan(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nelems);
int shmem_sum_exscan(shmem_team_t team, TYPE *dest, const TYPE *source, size_t nelems);

where TYPE is one of the integer, real, or complex types supported for the SUM operation as specified by Table
10.

C/C++:
int shmem_TYPENAME_sum_inscan(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nelems);
int shmem_TYPENAME_sum_exscan(shmem_team_t team, TYPE *dest, const TYPE *source, size_t

nelems);

where TYPE is one of the integer, real, or complex types supported for the SUM operation and has a correspond-
ing TYPENAME as specified by Table 10.

DESCRIPTION

Arguments
IN team The team over which to perform the operation.
OUT dest Symmetric address of an array, of length nelems elements, to receive the

result of the scan operation. The type of dest should match that implied
in the SYNOPSIS section.

IN source Symmetric address of an array, of length nelems elements, that contains
one element for each separate scan operation. The type of source should
match that implied in the SYNOPSIS section.

IN nelems The number of elements in the dest and source arrays.

DR
AF
T

CONTENTS 126

API Description

The shmem_sum_inscan and shmem_sum_exscan routines are collective routines over an OpenSHMEM
team that compute one or more scan (or prefix sum) operations across symmetric arrays on multiple PEs.
The scan operations are performed with the SUM operator.
The nelems argument determines the number of separate scan operations to perform. The source array on
all PEs participating in the operation provides one element for each scan. The results of the scan operations
are placed in the dest array on all PEs participating in the scan.
The shmem_sum_inscan routine performs an inclusive scan operation, while the shmem_sum_exscan rou-
tine performs an exclusive scan operation.
For shmem_sum_inscan, the value of the j-th element in the dest array on PE i is defined as:

desti, j =
i

∑
k=0

sourcek, j

For shmem_sum_exscan, the value of the j-th element in the dest array on PE i is defined as:

desti, j =

i−1

∑
k=0

sourcek, j, if i ̸= 0

0, if i = 0

The same source and dest arrays must be passed by all PEs that participate in the collective. The source
and dest arguments must either be the same symmetric address, or two different symmetric addresses
corresponding to buffers that do not overlap in memory. That is, they must be completely overlapping
(sometimes referred to as an “in place” reduction) or completely disjoint.
Team-based scan routines operate over all PEs in the provided team argument. All PEs in the provided
team must participate in the scan operation. If team compares equal to SHMEM_TEAM_INVALID or is
otherwise invalid, the behavior is undefined.
Before the local PE calls a scan routine, the following conditions must be ensured, otherwise the behavior
is undefined:

• The dest array on all PEs in the team is ready to accept the result of the operation.
• The source array at the local PE is ready to be read by any PE in the team.

The application does not need to synchronize to ensure that the source array is ready across all PEs prior to
calling this routine.
Upon return from a scan routine, the following are true for the local PE: the dest array is updated, and the
source array may be safely reused.
When the C translation environment does not support complex types, an OpenSHMEM implementation is
not required to provide support for these complex-typed interfaces.

Return Values
Zero on successful local completion. Nonzero otherwise.

EXAMPLES

Example 37. In the following C11 example, the collect_at function gathers a variable amount of data from
each PE and concatenates it, in order, at the target PE who. Note that this routine is behaviorally similar to
shmem_collect, except that this routine only gathers the data to a single PE.

#include <shmem.h>

int collect_at(shmem_team_t team, void *dest, const void *source, size_t nbytes, int
who) {

DRAFT

CONTENTS 127

static size_t sym_nbytes;
sym_nbytes = nbytes;
shmem_team_sync(team);
int rc = shmem_sum_exscan(team, &sym_nbytes, &sym_nbytes, 1);
shmem_putmem((void *)((uintptr_t)dest + sym_nbytes), source, nbytes, who);
shmem_quiet();
shmem_team_sync(team);
return rc;

}

9.11 Point-To-Point Synchronization Routines

The following section discusses OpenSHMEM APIs that provide a mechanism for synchronization between two PEs
based on the value of a symmetric data object. The point-to-point synchronization routines can be used to portably
ensure that memory access operations observe remote updates in the order enforced by the initiator PE using the
put-with-signal, shmem_fence and shmem_quiet routines.
Where appropriate compiler support is available, OpenSHMEM provides type-generic point-to-point synchronization
interfaces via C11 generic selection. Such type-generic routines are supported for the “standard AMO types” identified
in Table 6.
The standard AMO types include some of the exact-width integer types defined in stdint.h by C99 §7.18.1.1 and
C11 §7.20.1.1. When the C translation environment does not provide exact-width integer types with stdint.h,
an OpenSHMEM implementation is not required to provide support for these types. The shmem_test_any and
shmem_wait_until_any routines require the SIZE_MAX macro defined in stdint.h by C99 §7.18.3 and C11 §7.20.3.

deprecation start

TYPE TYPENAME
short short
int int
long long
long long longlong
unsigned short ushort
unsigned int uint
unsigned long ulong
unsigned long long ulonglong
int32_t int32
int64_t int64
uint32_t uint32
uint64_t uint64
size_t size
ptrdiff_t ptrdiff

Table 12: Point-to-Point Synchronization Types and Names

deprecation end

The point-to-point synchronization interface provides named constants whose values are integer constant expressions
that specify the comparison operators used by OpenSHMEM synchronization routines. The constant names and asso-
ciated operations are presented in Table 13.

9.11.1 SHMEM_WAIT_UNTIL

Wait for a variable on the local PE to change.

DRAFT

CONTENTS 128

Constant Name Comparison
SHMEM_CMP_EQ Equal
SHMEM_CMP_NE Not equal
SHMEM_CMP_GT Greater than
SHMEM_CMP_GE Greater than or equal to
SHMEM_CMP_LT Less than
SHMEM_CMP_LE Less than or equal to

Table 13: Point-to-Point Comparison Constants

SYNOPSIS

C11:
void shmem_wait_until(TYPE *ivar, int cmp, TYPE cmp_value);

where TYPE is one of the standard AMO types specified by Table 6,

deprecation start

or TYPE is one of {short, unsigned short}.

deprecation end

C/C++:
void shmem_TYPENAME_wait_until(TYPE *ivar, int cmp, TYPE cmp_value);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6,

deprecation start

or TYPE is one of {short, unsigned short} and has a corresponding TYPENAME specified by Table 12.

deprecation end

deprecation start

void shmem_wait_until(long *ivar, int cmp, long cmp_value);
void shmem_wait(long *ivar, long cmp_value);
void shmem_TYPENAME_wait(TYPE *ivar, TYPE cmp_value);

where TYPE is one of {short, int, long, long long} and has a corresponding TYPENAME specified by Table 12.

deprecation end

DESCRIPTION

Arguments

IN ivar Symmetric address of a remotely accessible data object. The type of
ivar should match that implied in the SYNOPSIS section.

IN cmp The compare operator that compares ivar with cmp_value.
IN cmp_value The value to be compared with ivar. The type of cmp_value should

match that implied in the SYNOPSIS section.

API Description
The shmem_wait and shmem_wait_until operations block until the value contained in the symmetric data
object, ivar, at the calling PE satisfies the wait condition. The ivar object at the calling PE may be updated
by an AMO performed by a thread located within the calling PE or within another PE.

DRAFT

CONTENTS 129

These routines can be used to implement point-to-point synchronization between PEs or between threads
within the same PE. A call to shmem_wait blocks until the value of ivar at the calling PE is not equal to
cmp_value. A call to shmem_wait_until blocks until the value of ivar at the calling PE satisfies the wait
condition specified by the comparison operator, cmp, and comparison value, cmp_value.
Implementations must ensure that shmem_wait and shmem_wait_until do not return before the update of
the memory indicated by ivar is fully complete.

Return Values
None

Notes
As of OpenSHMEM 1.4, the shmem_wait routine is deprecated; however, shmem_wait is equivalent to
shmem_wait_until where cmp is SHMEM_CMP_NE.

Note to Implementers
Some platforms may allow wait operations to efficiently poll or block on an update to ivar. On others,
an atomic read operation may be needed to observe updates to ivar. On platforms where atomic read
operations incur high overhead, implementations may be able to reduce the number of atomic reads
performed by using non-atomic reads of ivar to wait for a change to occur, followed by an atomic read
operation to fetch the updated value until the synchronization condition is satisfied.

9.11.2 SHMEM_WAIT_UNTIL_ALL

Wait on an array of variables on the local PE until all variables meet the specified wait condition.

SYNOPSIS

C11:
void shmem_wait_until_all(TYPE *ivars, size_t nelems, const int *status, int cmp,

TYPE cmp_value);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
void shmem_TYPENAME_wait_until_all(TYPE *ivars, size_t nelems, const int *status, int cmp,

TYPE cmp_value);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ivars Symmetric address of an array of remotely accessible data objects. The
type of ivars should match that implied in the SYNOPSIS section.

IN nelems The number of elements in the ivars array.
IN status Local address of an optional mask array of length nelems that indicates

which elements in ivars are excluded from the wait set.
IN cmp A comparison operator from Table 13 that compares elements of ivars

with cmp_value.
IN cmp_value The value to be compared with the objects pointed to by ivars. The type

of cmp_value should match that implied in the SYNOPSIS section.

DR
AF
T

CONTENTS 130

API Description
The shmem_wait_until_all routine waits until all entries in the wait set specified by ivars and status have
satisfied the wait condition at the calling PE. The ivars objects at the calling PE may be updated by an
AMO performed by a thread located within the calling PE or within another PE. If nelems is 0, the wait
set is empty and this routine returns immediately. This routine compares each element of the ivars array
in the wait set with the value cmp_value according to the comparison operator cmp at the calling PE. This
routine is semantically similar to shmem_wait_until in Section 9.11.1, but adds support for point-to-point
synchronization involving an array of symmetric data objects.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the wait set. Elements of status set to
0 will be included in the wait set, and elements set to a nonzero value will be ignored. If all elements in
status are nonzero or nelems is 0, the wait set is empty and this routine returns immediately. If status is a
null pointer, it is ignored and all elements in ivars are included in the wait set. The ivars and status arrays
must not overlap in memory.
Implementations must ensure that shmem_wait_until_all does not return before the update of the memory
indicated by ivars is fully complete.

Return Values
None.

EXAMPLES

Example 38. The following C11 example demonstrates the use of shmem_wait_until_all to implement a
simple linear barrier synchronization.

#include <shmem.h>

int main(void) {
shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

int *flags = shmem_calloc(npes, sizeof(int));
int *status = NULL;

for (int i = 0; i < npes; i++)
shmem_atomic_set(&flags[mype], 1, i);

shmem_wait_until_all(flags, npes, status, SHMEM_CMP_EQ, 1);

shmem_free(flags);
shmem_finalize();
return 0;

}

9.11.3 SHMEM_WAIT_UNTIL_ANY

Wait on an array of variables on the local PE until any one variable meets the specified wait condition.

SYNOPSIS

C11:
size_t shmem_wait_until_any(TYPE *ivars, size_t nelems, const int *status, int cmp,

TYPE cmp_value);

where TYPE is one of the standard AMO specified by Table 6.

C/C++:

DR
AF
T

CONTENTS 131

size_t shmem_TYPENAME_wait_until_any(TYPE *ivars, size_t nelems, const int *status,
int cmp, TYPE cmp_value);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ivars Symmetric address of an array of remotely accessible data objects. The
type of ivars should match that implied in the SYNOPSIS section.

IN nelems The number of elements in the ivars array.
IN status Local address of an optional mask array of length nelems that indicates

which elements in ivars are excluded from the wait set.
IN cmp A comparison operator from Table 13 that compares elements of ivars

with cmp_value.
IN cmp_value The value to be compared with the objects pointed to by ivars. The type

of cmp_value should match that implied in the SYNOPSIS section.

API Description
The shmem_wait_until_any routine waits until any one entry in the wait set specified by ivars and status
satisfies the wait condition at the calling PE. The ivars objects at the calling PE may be updated by an
AMO performed by a thread located within the calling PE or within another PE. This routine compares
each element of the ivars array in the wait set with the value cmp_value according to the comparison
operator cmp at the calling PE. The order in which these elements are waited upon is unspecified. If an
entry i in ivars within the wait set satisfies the wait condition, a series of calls to shmem_wait_until_any
must eventually return i.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the wait set. Elements of status set to
0 will be included in the wait set, and elements set to a nonzero value will be ignored. If all elements in
status are nonzero or nelems is 0, the wait set is empty and this routine returns SIZE_MAX. If status is a
null pointer, it is ignored and all elements in ivars are included in the wait set. The ivars and status arrays
must not overlap in memory.
Implementations must ensure that shmem_wait_until_any does not return before the update of the memory
indicated by ivars is fully complete.

Return Values
shmem_wait_until_any returns the index of an element in the ivars array that satisfies the wait condition.
If the wait set is empty, this routine returns SIZE_MAX.

EXAMPLES

Example 39. The following C11 example demonstrates the use of shmem_wait_until_any to process a
simple all-to-all transfer of N data elements via a sum reduction.

#include <shmem.h>
#include <stdlib.h>

#define N 100

int main(void) {
int total_sum = 0;

DRAFT

CONTENTS 132

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

int *my_data = malloc(N * sizeof(int));
int *all_data = shmem_malloc(N * npes * sizeof(int));

int *flags = shmem_calloc(npes, sizeof(int));
int *status = calloc(npes, sizeof(int));

for (int i = 0; i < N; i++)
my_data[i] = mype * N + i;

for (int i = 0; i < npes; i++)
shmem_put_nbi(&all_data[mype * N], my_data, N, i);

shmem_fence();

for (int i = 0; i < npes; i++)
shmem_atomic_set(&flags[mype], 1, i);

for (int i = 0; i < npes; i++) {
size_t completed_idx = shmem_wait_until_any(flags, npes, status, SHMEM_CMP_NE, 0);
for (int j = 0; j < N; j++) {
total_sum += all_data[completed_idx * N + j];

}
status[completed_idx] = 1;

}

/* check the result */
int M = N * npes - 1;
if (total_sum != M * (M + 1) / 2) {

shmem_global_exit(1);
}

shmem_finalize();
return 0;

}

9.11.4 SHMEM_WAIT_UNTIL_SOME

Wait on an array of variables on the local PE until at least one variable meets the specified wait condition.

SYNOPSIS

C11:
size_t shmem_wait_until_some(TYPE *ivars, size_t nelems, size_t *indices, const int *status,

int cmp, TYPE cmp_value);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
size_t shmem_TYPENAME_wait_until_some(TYPE *ivars, size_t nelems, size_t *indices,

const int *status, int cmp, TYPE cmp_value);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

DR
AF
T

CONTENTS 133

IN ivars Symmetric address of an array of remotely accessible data objects. The
type of ivars should match that implied in the SYNOPSIS section.

IN nelems The number of elements in the ivars array.
OUT indices Local address of an array of indices of length at least nelems into ivars

that satisfied the wait condition.
IN status Local address of an optional mask array of length nelems that indicates

which elements in ivars are excluded from the wait set.
IN cmp A comparison operator from Table 13 that compares elements of ivars

with cmp_value.
IN cmp_value The value to be compared with the objects pointed to by ivars. The type

of cmp_value should match that implied in the SYNOPSIS section.

API Description
The shmem_wait_until_some routine waits until at least one entry in the wait set specified by ivars and
status satisfies the wait condition at the calling PE. The ivars objects at the calling PE may be updated by
an AMO performed by a thread located within the calling PE or within another PE. This routine compares
each element of the ivars array in the wait set with the value cmp_value according to the comparison
operator cmp at the calling PE. This routine tests all elements of ivars in the wait set at least once, and the
order in which the elements are waited upon is unspecified.
Upon return, the indices array contains the indices of at least one element in the wait set that satisfied the
wait condition during the call to shmem_wait_until_some. The return value of shmem_wait_until_some
is equal to the total number of these satisfied elements. For a given return value N, the first N elements
of the indices array contain those unique indices that satisfied the wait condition. These first N elements
of indices may be unordered with respect to the corresponding indices of ivars. The array pointed to by
indices must be at least nelems long. If an entry i in ivars within the wait set satisfies the wait condition, a
series of calls to shmem_wait_until_some must eventually include i in the indices array.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the wait set. Elements of status set to
0 will be included in the wait set, and elements set to a nonzero value will be ignored. If all elements in
status are nonzero or nelems is 0, the wait set is empty and this routine returns 0. If status is a null pointer,
it is ignored and all elements in ivars are included in the wait set. The ivars, indices, and status arrays must
not overlap in memory.
Implementations must ensure that shmem_wait_until_some does not return before the update of the mem-
ory indicated by ivars is fully complete.

Return Values
shmem_wait_until_some returns the number of indices returned in the indices array. If the wait set is
empty, this routine returns 0.

EXAMPLES

Example 40. The following C11 example demonstrates the use of shmem_wait_until_some to pro-
cess a simple all-to-all transfer of N data elements via a sum reduction. This pattern is similar to the
shmem_wait_until_any example above, but may reduce the number of iterations in the while loop.

#include <shmem.h>
#include <stdlib.h>

#define N 100

int main(void) {
int total_sum = 0;

shmem_init();

DRAFT

CONTENTS 134

int mype = shmem_my_pe();
int npes = shmem_n_pes();

int *my_data = malloc(N * sizeof(int));
int *all_data = shmem_malloc(N * npes * sizeof(int));

int *flags = shmem_calloc(npes, sizeof(int));
size_t *indices = malloc(npes * sizeof(size_t));
int *status = calloc(npes, sizeof(int));

for (int i = 0; i < N; i++)
my_data[i] = mype * N + i;

for (int i = 0; i < npes; i++)
shmem_put_nbi(&all_data[mype * N], my_data, N, i);

shmem_fence();

for (int i = 0; i < npes; i++)
shmem_atomic_set(&flags[mype], 1, i);

size_t ncompleted;
while (

(ncompleted = shmem_wait_until_some(flags, npes, indices, status, SHMEM_CMP_NE,
0))) {

for (size_t i = 0; i < ncompleted; i++) {
for (size_t j = 0; j < N; j++) {

total_sum += all_data[indices[i] * N + j];
}
status[indices[i]] = 1;

}
}

/* check the result */
int M = N * npes - 1;
if (total_sum != M * (M + 1) / 2) {

shmem_global_exit(1);
}

shmem_finalize();
return 0;

}

9.11.5 SHMEM_WAIT_UNTIL_ALL_VECTOR

Wait on an array of variables on the local PE until all variables meet the specified wait conditions.

SYNOPSIS

C11:
void shmem_wait_until_all_vector(TYPE *ivars, size_t nelems, const int *status, int cmp,

const TYPE *cmp_values);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
void shmem_TYPENAME_wait_until_all_vector(TYPE *ivars, size_t nelems, const int *status, int

cmp, const TYPE *cmp_values);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

DRAFT

CONTENTS 135

Arguments

IN ivars Symmetric address of an array of remotely accessible data objects. The
type of ivars should match that implied in the SYNOPSIS section.

IN nelems The number of elements in the ivars array.
IN status Local address of an optional mask array of length nelems that indicates

which elements in ivars are excluded from the wait set.
IN cmp A comparison operator from Table 13 that compares elements of ivars

with elements of cmp_values.
IN cmp_values Local address of an array of length nelems containing values to be com-

pared with the respective objects in ivars. The type of cmp_values
should match that implied in the SYNOPSIS section.

API Description
The shmem_wait_until_all_vector routine waits until all entries in the wait set specified by ivars and status
have satisfied the wait conditions at the calling PE. The ivars objects at the calling PE may be updated by
an AMO performed by a thread located within the calling PE or within another PE. If nelems is 0, the wait
set is empty and this routine returns immediately. This routine compares each element of the ivars array
in the wait set with each respective value in cmp_values according to the comparison operator cmp at the
calling PE.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the wait set. Elements of status set to
0 will be included in the wait set, and elements set to a nonzero value will be ignored. If all elements in
status are nonzero or nelems is 0, the wait set is empty and this routine returns immediately. If status is a
null pointer, it is ignored and all elements in ivars are included in the wait set. The ivars and status arrays
must not overlap in memory.
Implementations must ensure that shmem_wait_until_all_vector does not return before the update of the
memory indicated by ivars is fully complete.

Return Values
None.

9.11.6 SHMEM_WAIT_UNTIL_ANY_VECTOR

Wait on an array of variables on the local PE until any one variable meets its specified wait condition.

SYNOPSIS

C11:
size_t shmem_wait_until_any_vector(TYPE *ivars, size_t nelems, const int *status, int cmp,

const TYPE *cmp_values);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
size_t shmem_TYPENAME_wait_until_any_vector(TYPE *ivars, size_t nelems, const int *status,

int cmp, const TYPE *cmp_values);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

DR
AF
T

CONTENTS 136

Arguments

IN ivars Symmetric address of an array of remotely accessible data objects. The
type of ivars should match that implied in the SYNOPSIS section.

IN nelems The number of elements in the ivars array.
IN status Local address of an optional mask array of length nelems that indicates

which elements in ivars are excluded from the wait set.
IN cmp A comparison operator from Table 13 that compares elements of ivars

with elements of cmp_values.
IN cmp_values Local address of an array of length nelems containing values to be com-

pared with the respective objects in ivars. The type of cmp_values
should match that implied in the SYNOPSIS section.

API Description
The shmem_wait_until_any_vector routine waits until any one entry in the wait set specified by ivars and
status satisfies the wait condition at the calling PE. The ivars objects at the calling PE may be updated
by an AMO performed by a thread located within the calling PE or within another PE. This routine
compares each element of the ivars array in the wait set with each respective value in cmp_values according
to the comparison operator cmp at the calling PE. The order in which these elements are waited upon
is unspecified. If an entry i in ivars within the wait set satisfies the wait condition, a series of calls to
shmem_wait_until_any_vector must eventually return i.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the wait set. Elements of status set to
0 will be included in the wait set, and elements set to a nonzero value will be ignored. If all elements in
status are nonzero or nelems is 0, the wait set is empty and this routine returns SIZE_MAX. If status is a
null pointer, it is ignored and all elements in ivars are included in the wait set. The ivars and status arrays
must not overlap in memory.
Implementations must ensure that shmem_wait_until_any_vector does not return before the update of the
memory indicated by ivars is fully complete.

Return Values
shmem_wait_until_any_vector returns the index of an element in the ivars array that satisfies the wait
condition. If the wait set is empty, this routine returns SIZE_MAX.

EXAMPLES

Example 41. The following C11 example demonstrates the use of shmem_wait_until_any_vector to wait
on values that differ between even PEs and odd PEs.

#include <shmem.h>
#include <stdlib.h>

#define N 100

int main(void) {
int total_sum = 0;

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

int *ivars = shmem_calloc(npes, sizeof(int));
int *status = calloc(npes, sizeof(int));
int *cmp_values = malloc(npes * sizeof(int));

/* All odd PEs put 2 and all even PEs put 1 */

DRAFT

CONTENTS 137

for (int i = 0; i < npes; i++) {
shmem_atomic_set(&ivars[mype], mype % 2 + 1, i);

/* Set cmp_values to the expected values coming from each PE */
cmp_values[i] = i % 2 + 1;

}

for (int i = 0; i < npes; i++) {
size_t completed_idx =

shmem_wait_until_any_vector(ivars, npes, status, SHMEM_CMP_EQ, cmp_values);
status[completed_idx] = 1;
total_sum += ivars[completed_idx];

}

/* check the result */
int correct_result = npes + npes / 2;

if (total_sum != correct_result) {
shmem_global_exit(1);

}

shmem_finalize();
return 0;

}

9.11.7 SHMEM_WAIT_UNTIL_SOME_VECTOR

Wait on an array of variables on the local PE until at least one variable meets the its specified wait condition.

SYNOPSIS

C11:
size_t shmem_wait_until_some_vector(TYPE *ivars, size_t nelems, size_t *indices,

const int *status, int cmp, const TYPE *cmp_values);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
size_t shmem_TYPENAME_wait_until_some_vector(TYPE *ivars, size_t nelems, size_t *indices,

const int *status, int cmp, const TYPE *cmp_values);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ivars Symmetric address of an array of remotely accessible data objects. The
type of ivars should match that implied in the SYNOPSIS section.

IN nelems The number of elements in the ivars array.
OUT indices Local address of an array of indices of length at least nelems into ivars

that satisfied the wait condition.
IN status Local address of an optional mask array of length nelems that indicates

which elements in ivars are excluded from the wait set.
IN cmp A comparison operator from Table 13 that compares elements of ivars

with elements of cmp_values.
IN cmp_values Local address of an array of length nelems containing values to be com-

pared with the respective objects in ivars. The type of cmp_values
should match that implied in the SYNOPSIS section.

DRAFT

CONTENTS 138

API Description
The shmem_wait_until_some_vector routine waits until at least one entry in the wait set specified by
ivars and status satisfies the wait condition at the calling PE. The ivars objects at the calling PE may
be updated by an AMO performed by a thread located within the calling PE or within another PE. This
routine compares each element of the ivars array in the wait set with each respective value in cmp_values
according to the comparison operator cmp at the calling PE. This routine tests all elements of ivars in the
wait set at least once, and the order in which the elements are waited upon is unspecified.
Upon return, the indices array contains the indices of at least one element in the wait set that sat-
isfied the wait condition during the call to shmem_wait_until_some_vector. The return value of
shmem_wait_until_some_vector is equal to the total number of these satisfied elements. For a given
return value N, the first N elements of the indices array contain those unique indices that satisfied the wait
condition. These first N elements of indices may be unordered with respect to the corresponding indices of
ivars. The array pointed to by indices must be at least nelems long. If an entry i in ivars within the wait set
satisfies the wait condition, a series of calls to shmem_wait_until_some_vector must eventually include i
in the indices array.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the wait set. Elements of status set to
0 will be included in the wait set, and elements set to a nonzero value will be ignored. If all elements in
status are nonzero or nelems is 0, the wait set is empty and this routine returns 0. If status is a null pointer,
it is ignored and all elements in ivars are included in the wait set. The ivars, indices, and status arrays must
not overlap in memory.
Implementations must ensure that shmem_wait_until_some_vector does not return before the update of
the memory indicated by ivars is fully complete.

Return Values
shmem_wait_until_some_vector returns the number of indices returned in the indices array. If the wait
set is empty, this routine returns 0.

9.11.8 SHMEM_TEST

Indicate whether a variable on the local PE meets the specified condition.

SYNOPSIS

C11:
int shmem_test(TYPE *ivar, int cmp, TYPE cmp_value);

where TYPE is one of the standard AMO types specified by Table 6,

deprecation start

or TYPE is one of {short, unsigned short}.

deprecation end

C/C++:
int shmem_TYPENAME_test(TYPE *ivar, int cmp, TYPE cmp_value);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6,

deprecation start

or TYPE is one of {short, unsigned short} and has a corresponding TYPENAME specified by Table 12.

deprecation end

DRAFT

CONTENTS 139

DESCRIPTION

Arguments

IN ivar Symmetric address of a remotely accessible data object. The type of
ivar should match that implied in the SYNOPSIS section.

IN cmp The comparison operator that compares ivar with cmp_value.
IN cmp_value The value against which the object pointed to by ivar will be compared.

The type of cmp_value should match that implied in the SYNOPSIS
section.

API Description
shmem_test tests the numeric comparison of the symmetric object pointed to by ivar with the value
cmp_value according to the comparison operator cmp. The ivar object at the calling PE may be updated
by an AMO performed by a thread located within the calling PE or within another PE.
Implementations must ensure that shmem_test does not return 1 before the update of the memory indicated
by ivar is fully complete.

Return Values
shmem_test returns 1 if the comparison of the symmetric object pointed to by ivar with the value
cmp_value according to the comparison operator cmp evaluates to true; otherwise, it returns 0.

EXAMPLES

Example 42. The following example demonstrates the use of shmem_test to wait on an array of symmetric
objects and return the index of an element that satisfies the specified condition.

#include <shmem.h>
#include <stdio.h>

int user_wait_any(long *ivar, int count, int cmp, long value) {
int idx = 0;
while (!shmem_test(&ivar[idx], cmp, value))

idx = (idx + 1) % count;
return idx;

}

int main(void) {
shmem_init();
const int mype = shmem_my_pe();
const int npes = shmem_n_pes();

long *wait_vars = shmem_calloc(npes, sizeof(long));
if (mype == 0) {

int who = user_wait_any(wait_vars, npes, SHMEM_CMP_NE, 0);
printf("PE %d observed first update from PE %d\n", mype, who);

}
else

shmem_atomic_set(&wait_vars[mype], mype, 0);

shmem_free(wait_vars);
shmem_finalize();
return 0;

}

9.11.9 SHMEM_TEST_ALL

Indicate whether all variables within an array of variables on the local PE meet a specified test condition.

DRAFT

CONTENTS 140

SYNOPSIS

C11:
int shmem_test_all(TYPE *ivars, size_t nelems, const int *status, int cmp, TYPE cmp_value);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
int shmem_TYPENAME_test_all(TYPE *ivars, size_t nelems, const int *status, int cmp,

TYPE cmp_value);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ivars Symmetric address of an array of remotely accessible data objects. The
type of ivars should match that implied in the SYNOPSIS section.

IN nelems The number of elements in the ivars array.
IN status Local address of an optional mask array of length nelems that indicates

which elements in ivars are excluded from the test set.
IN cmp A comparison operator from Table 13 that compares elements of ivars

with cmp_value.
IN cmp_value The value to be compared with the objects pointed to by ivars. The type

of cmp_value should match that implied in the SYNOPSIS section.

API Description
The shmem_test_all routine indicates whether all entries in the test set specified by ivars and status have
satisfied the test condition at the calling PE. The ivars objects at the calling PE may be updated by an AMO
performed by a thread located within the calling PE or within another PE. This routine does not block and
returns zero if not all entries in ivars satisfied the test condition. This routine compares each element of the
ivars array in the test set with the value cmp_value according to the comparison operator cmp at the calling
PE.
If nelems is 0, the test set is empty and this routine returns 1.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the test set. Elements of status set to 0
will be included in the test set, and elements set to a nonzero value will be ignored. If all elements in status
are nonzero or nelems is 0, the test set is empty and this routine returns 1. If status is a null pointer, it is
ignored and all elements in ivars are included in the test set. The ivars, indices, and status arrays must not
overlap in memory.
Implementations must ensure that shmem_test_all does not return 1 before the update of the memory
indicated by ivars is fully complete.

Return Values
shmem_test_all returns 1 if all variables in ivars satisfy the test condition or if nelems is 0, otherwise this
routine returns 0.

DRAFT

CONTENTS 141

9.11.10 SHMEM_TEST_ANY

Indicate whether any one variable within an array of variables on the local PE meets a specified test condition.

SYNOPSIS

C11:
size_t shmem_test_any(TYPE *ivars, size_t nelems, const int *status, int cmp,

TYPE cmp_value);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
size_t shmem_TYPENAME_test_any(TYPE *ivars, size_t nelems, const int *status, int cmp,

TYPE cmp_value);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ivars Symmetric address of an array of remotely accessible data objects. The
type of ivars should match that implied in the SYNOPSIS section.

IN nelems The number of elements in the ivars array.
IN status Local address of an optional mask array of length nelems that indicates

which elements in ivars are excluded from the test set.
IN cmp A comparison operator from Table 13 that compares elements of ivars

with cmp_value.
IN cmp_value The value to be compared with the objects pointed to by ivars. The type

of cmp_value should match that implied in the SYNOPSIS section.

API Description
The shmem_test_any routine indicates whether any entry in the test set specified by ivars and status has
satisfied the test condition at the calling PE. The ivars objects at the calling PE may be updated by an AMO
performed by a thread located within the calling PE or within another PE. This routine does not block and
returns SIZE_MAX if no entries in ivars satisfied the test condition. This routine compares each element
of the ivars array in the test set with the value cmp_value according to the comparison operator cmp at the
calling PE. The order in which these elements are tested is unspecified. If an entry i in ivars within the test
set satisfies the test condition, a series of calls to shmem_test_any must eventually return i.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the test set. Elements of status set to
0 will be included in the test set, and elements set to a nonzero value will be ignored. If all elements in
status are nonzero or nelems is 0, the test set is empty and this routine returns SIZE_MAX. If status is a null
pointer, it is ignored and all elements in ivars are included in the test set. The ivars and status arrays must
not overlap in memory.
Implementations must ensure that shmem_test_any does not return an index before the update of the mem-
ory indicated by the corresponding ivars element is fully complete.

Return Values
shmem_test_any returns the index of an element in the ivars array that satisfies the test condition. If the
test set is empty or no conditions in the test set are satisfied, this routine returns SIZE_MAX.

DRAFT

CONTENTS 142

EXAMPLES

Example 43. The following C11 example demonstrates the use of shmem_test_any to implement a simple
linear barrier synchronization while potentially overlapping communication with computation.

#include <shmem.h>
#include <stdlib.h>

int main(void) {
shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

int *flags = shmem_calloc(npes, sizeof(int));
int *status = calloc(npes, sizeof(int));

for (int i = 0; i < npes; i++)
shmem_atomic_set(&flags[mype], 1, i);

int ncompleted = 0;
size_t completed_idx;

while (ncompleted < npes) {
completed_idx = shmem_test_any(flags, npes, status, SHMEM_CMP_EQ, 1);
if (completed_idx != SIZE_MAX) {
ncompleted++;
status[completed_idx] = 1;

}
else {
/* Overlap some computation here */

}
}

free(status);
shmem_free(flags);
shmem_finalize();
return 0;

}

9.11.11 SHMEM_TEST_SOME

Indicate whether at least one variable within an array of variables on the local PE meets a specified test condition.

SYNOPSIS

C11:
size_t shmem_test_some(TYPE *ivars, size_t nelems, size_t *indices, const int *status,

int cmp, TYPE cmp_value);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
size_t shmem_TYPENAME_test_some(TYPE *ivars, size_t nelems, size_t *indices,

const int *status, int cmp, TYPE cmp_value);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

DR
AF
T

CONTENTS 143

Arguments

IN ivars Symmetric address of an array of remotely accessible data objects. The
type of ivars should match that implied in the SYNOPSIS section.

IN nelems The number of elements in the ivars array.
OUT indices Local address of an array of indices of length at least nelems into ivars

that satisfied the test condition.
IN status Local address of an optional mask array of length nelems that indicates

which elements in ivars are excluded from the test set.
IN cmp A comparison operator from Table 13 that compares elements of ivars

with cmp_value.
IN cmp_value The value to be compared with the objects pointed to by ivars. The type

of cmp_value should match that implied in the SYNOPSIS section.

API Description
The shmem_test_some routine indicates whether at least one entry in the test set specified by ivars and
status satisfies the test condition at the calling PE. The ivars objects at the calling PE may be updated by
an AMO performed by a thread located within the calling PE or within another PE. This routine does not
block and returns zero if no entries in ivars satisfied the test condition. This routine compares each element
of the ivars array in the test set with the value cmp_value according to the comparison operator cmp at
the calling PE. This routine tests all elements of ivars in the test set at least once, and the order in which
the elements are tested is unspecified. If an entry i in ivars within the test set satisfies the test condition, a
series of calls to shmem_test_some must eventually return i.
Upon return, the indices array contains the indices of the elements in the test set that satisfied the test
condition during the call to shmem_test_some. The return value of shmem_test_some is equal to the total
number of these satisfied elements. If the return value is N, then the first N elements of the indices array
contain those unique indices that satisfied the test condition. These first N elements of indices may be
unordered with respect to the corresponding indices of ivars. The array pointed to by indices must be at
least nelems long. If an entry i in ivars within the test set satisfies the test condition, a series of calls to
shmem_test_some must eventually include i in the indices array.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the test set. Elements of status set to 0
will be included in the test set, and elements set to a nonzero value will be ignored. If all elements in status
are nonzero or nelems is 0, the test set is empty and this routine returns 0. If status is a null pointer, it is
ignored and all elements in ivars are included in the test set. The ivars, indices, and status arrays must not
overlap in memory.
Implementations must ensure that shmem_test_some does not return indices before the updates of the
memory indicated by the corresponding ivars elements are fully complete.

Return Values
shmem_test_some returns the number of indices returned in the indices array. If the test set is empty, this
routine returns 0.

EXAMPLES

Example 44. The following C11 example demonstrates the use of shmem_test_some to process a simple
all-to-all transfer of N data elements via a sum reduction, while potentially overlapping communication
with computation. This pattern is similar to the shmem_test_any example above, but each while loop
iteration may process more than one data item.

#include <shmem.h>
#include <stdlib.h>

DRAFT

CONTENTS 144

#define N 100

int main(void) {
int total_sum = 0;

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

int *my_data = malloc(N * sizeof(int));
int *all_data = shmem_malloc(N * npes * sizeof(int));

int *flags = shmem_calloc(npes, sizeof(int));
size_t *indices = calloc(npes, sizeof(size_t));
int *status = calloc(npes, sizeof(int));

for (int i = 0; i < N; i++)
my_data[i] = mype * N + i;

for (int i = 0; i < npes; i++)
shmem_put_nbi(&all_data[mype * N], my_data, N, i);

shmem_fence();

for (int i = 0; i < npes; i++)
shmem_atomic_set(&flags[mype], 1, i);

int ncompleted = 0;

while (ncompleted < npes) {
int ntested = shmem_test_some(flags, npes, indices, status, SHMEM_CMP_NE, 0);
if (ntested > 0) {
for (int i = 0; i < ntested; i++) {

for (int j = 0; j < N; j++) {
total_sum += all_data[indices[i] * N + j];

}
status[indices[i]] = 1;

}
ncompleted += ntested;

}
else {
/* Overlap some computation here */

}
}

/* check the result */
int M = N * npes - 1;
if (total_sum != M * (M + 1) / 2) {

shmem_global_exit(1);
}

shmem_finalize();
return 0;

}

9.11.12 SHMEM_TEST_ALL_VECTOR

Indicate whether all variables within an array of variables on the local PE meet the specified test conditions.

SYNOPSIS

C11:
int shmem_test_all_vector(TYPE *ivars, size_t nelems, const int *status, int cmp,

const TYPE *cmp_values);

DRAFT

CONTENTS 145

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
int shmem_TYPENAME_test_all_vector(TYPE *ivars, size_t nelems, const int *status, int cmp,

const TYPE *cmp_values);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ivars Symmetric address of an array of remotely accessible data objects. The
type of ivars should match that implied in the SYNOPSIS section.

IN nelems The number of elements in the ivars array.
IN status Local address of an optional mask array of length nelems that indicates

which elements in ivars are excluded from the test set.
IN cmp A comparison operator from Table 13 that compares elements of ivars

with elements of cmp_values.
IN cmp_values Local address of an array of length nelems containing values to be com-

pared with the respective objects in ivars. The type of cmp_values
should match that implied in the SYNOPSIS section.

API Description
The shmem_test_all_vector routine indicates whether all entries in the test set specified by ivars and status
have satisfied the test condition at the calling PE. The ivars objects at the calling PE may be updated by
an AMO performed by a thread located within the calling PE or within another PE. This routine does
not block and returns zero if not all entries in ivars satisfied the test conditions. This routine compares
each element of the ivars array in the test set with each respective value in cmp_values according to the
comparison operator cmp at the calling PE.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the test set. Elements of status set to 0
will be included in the test set, and elements set to a nonzero value will be ignored. If all elements in status
are nonzero or nelems is 0, the test set is empty and this routine returns 1. If status is a null pointer, it is
ignored and all elements in ivars are included in the test set. The ivars, indices, and status arrays must not
overlap in memory.
Implementations must ensure that shmem_test_all_vector does not return 1 before the update of the mem-
ory indicated by ivars is fully complete.

Return Values
shmem_test_all_vector returns 1 if all variables in ivars satisfy the test conditions or if nelems is 0,
otherwise this routine returns 0.

9.11.13 SHMEM_TEST_ANY_VECTOR

Indicate whether any one variable within an array of variables on the local PE meets its specified test condition.

SYNOPSIS

C11:
size_t shmem_test_any_vector(TYPE *ivars, size_t nelems, const int *status, int cmp,

const TYPE *cmp_values);

DR
AF
T

CONTENTS 146

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
size_t shmem_TYPENAME_test_any_vector(TYPE *ivars, size_t nelems, const int *status,

int cmp, const TYPE *cmp_values);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ivars Symmetric address of an array of remotely accessible data objects. The
type of ivars should match that implied in the SYNOPSIS section.

IN nelems The number of elements in the ivars array.
IN status Local address of an optional mask array of length nelems that indicates

which elements in ivars are excluded from the test set.
IN cmp A comparison operator from Table 13 that compares elements of ivars

with elements of cmp_values.
IN cmp_values Local address of an array of length nelems containing values to be com-

pared with the respective objects in ivars. The type of cmp_values
should match that implied in the SYNOPSIS section.

API Description
The shmem_test_any_vector routine indicates whether any entry in the test set specified by ivars and status
has satisfied the test condition at the calling PE. The ivars objects at the calling PE may be updated by
an AMO performed by a thread located within the calling PE or within another PE. This routine does
not block and returns SIZE_MAX if no entries in ivars satisfied the test condition. This routine compares
each element of the ivars array in the test set with each respective value in cmp_values according to the
comparison operator cmp at the calling PE. The order in which these elements are tested is unspecified. If
an entry i in ivars within the test set satisfies the test condition, a series of calls to shmem_test_any_vector
must eventually return i.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the test set. Elements of status set to
0 will be included in the test set, and elements set to a nonzero value will be ignored. If all elements in
status are nonzero or nelems is 0, the test set is empty and this routine returns SIZE_MAX. If status is a null
pointer, it is ignored and all elements in ivars are included in the test set. The ivars and status arrays must
not overlap in memory.
Implementations must ensure that shmem_test_any_vector does not return an index before the update of
the memory indicated by the corresponding ivars element is fully complete.

Return Values
shmem_test_any_vector returns the index of an element in the ivars array that satisfies the test condition.
If the test set is empty or no conditions in the test set are satisfied, this routine returns SIZE_MAX.

9.11.14 SHMEM_TEST_SOME_VECTOR

Indicate whether at least one variable within an array of variables on the local PE meets its specified test condition.

SYNOPSIS

C11:

DRAFT

CONTENTS 147

size_t shmem_test_some_vector(TYPE *ivars, size_t nelems, size_t *indices, const int *status,
int cmp, const TYPE *cmp_values);

where TYPE is one of the standard AMO types specified by Table 6.

C/C++:
size_t shmem_TYPENAME_test_some_vector(TYPE *ivars, size_t nelems, size_t *indices,

const int *status, int cmp, const TYPE *cmp_values);

where TYPE is one of the standard AMO types and has a corresponding TYPENAME specified by Table 6.

DESCRIPTION

Arguments

IN ivars Symmetric address of an array of remotely accessible data objects. The
type of ivars should match that implied in the SYNOPSIS section.

IN nelems The number of elements in the ivars array.
OUT indices Local address of an array of indices of length at least nelems into ivars

that satisfied the test condition.
IN status Local address of an optional mask array of length nelems that indicates

which elements in ivars are excluded from the test set.
IN cmp A comparison operator from Table 13 that compares elements of ivars

with elements of cmp_values.
IN cmp_values Local address of an array of length nelems containing values to be com-

pared with the respective objects in ivars. The type of cmp_values
should match that implied in the SYNOPSIS section.

API Description
The shmem_test_some_vector routine indicates whether at least one entry in the test set specified by ivars
and status satisfies the test condition at the calling PE. The ivars objects at the calling PE may be updated
by an AMO performed by a thread located within the calling PE or within another PE. This routine does not
block and returns zero if no entries in ivars satisfied the test condition. This routine compares each element
of the ivars array in the test set with each respective value in cmp_values according to the comparison
operator cmp at the calling PE. This routine tests all elements of ivars in the test set at least once, and the
order in which the elements are tested is unspecified.
Upon return, the indices array contains the indices of the elements in the test set that satisfied the test
condition during the call to shmem_test_some_vector. The return value of shmem_test_some_vector is
equal to the total number of these satisfied elements. If the return value is N, then the first N elements of the
indices array contain those unique indices that satisfied the test condition. These first N elements of indices
may be unordered with respect to the corresponding indices of ivars. The array pointed to by indices must
be at least nelems long. If an entry i in ivars within the test set satisfies the test condition, a series of calls
to shmem_test_some_vector must eventually include i in the indices array.
The optional status is a mask array of length nelems where each element corresponds to the respective
element in ivars and indicates whether the element is excluded from the test set. Elements of status set to 0
will be included in the test set, and elements set to a nonzero value will be ignored. If all elements in status
are nonzero or nelems is 0, the test set is empty and this routine returns 0. If status is a null pointer, it is
ignored and all elements in ivars are included in the test set. The ivars, indices, and status arrays must not
overlap in memory.
Implementations must ensure that shmem_test_some_vector does not return indices before the updates of
the memory indicated by the corresponding ivars elements are fully complete.

DRAFT

CONTENTS 148

Return Values
shmem_test_some_vector returns the number of indices returned in the indices array. If the test set is
empty, this routine returns 0.

9.11.15 SHMEM_SIGNAL_WAIT_UNTIL

Wait for a variable on the local PE to change from a signaling operation.

SYNOPSIS

C/C++:
uint64_t shmem_signal_wait_until(uint64_t *sig_addr, int cmp, uint64_t cmp_value);

DESCRIPTION

Arguments

IN sig_addr Local address of the remotely accessible source signal variable.
IN cmp The comparison operator that compares sig_addr with cmp_value.
IN cmp_value The value against which the object pointed to by sig_addr will be com-

pared.

API Description
shmem_signal_wait_until operation blocks until the value contained in the signal data object, sig_addr,
at the calling PE satisfies the wait condition. In an OpenSHMEM program with single-threaded or multi-
threaded PEs, the sig_addr object at the calling PE is expected only to be updated as a signal, through the
signaling operations available in Section 9.8.3 and Section 9.8.4.
This routine can be used to implement point-to-point synchronization between PEs or between threads
within the same PE. A call to this routine blocks until the value of sig_addr at the calling PE satisfies the
wait condition specified by the comparison operator, cmp, and comparison value, cmp_value.
Implementations must ensure that shmem_signal_wait_until do not return before the update of the memory
indicated by sig_addr is fully complete.

Return Values
Return the contents of the signal data object, sig_addr, at the calling PE that satisfies the wait condition.

9.12 Memory Ordering Routines

The following section discusses OpenSHMEM APIs that provide mechanisms to ensure ordering and/or delivery of
completion on memory store, blocking, and nonblocking OpenSHMEM routines. Table 14 lists the operations affected
by OpenSHMEM memory ordering routines.

Operations Fence Quiet
Memory Store 9 X X
Blocking Put X X

9Ordering and/or delivery of memory store operations are ensured only on contexts created with certain options. For details, refer the description
of context options in Section 9.5.1.

DRAFT

CONTENTS 149

Blocking Get
Blocking AMO X X
Blocking put-with-signal X X
Nonblocking Put X X
Nonblocking Get X
Nonblocking AMO X10 X
Nonblocking put-with-signal X X

Table 14: List of operations affected by OpenSHMEM Memory Ordering routines

9.12.1 SHMEM_FENCE

Ensures ordering of delivery of operations on symmetric data objects.

SYNOPSIS

C/C++:
void shmem_fence(void);
void shmem_ctx_fence(shmem_ctx_t ctx);

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

API Description
This routine ensures ordering of delivery of operations on symmetric data objects. Table 14 lists the oper-
ations that are ordered by the shmem_fence routine. All operations on symmetric data objects issued to a
particular PE on the given context prior to the call to shmem_fence are guaranteed to be delivered before
any subsequent operations on symmetric data objects to the same PE on the same context. shmem_fence
guarantees order of delivery, not completion. It does not guarantee order of delivery of nonblocking Get or
values fetched by nonblocking AMO routines. If ctx has the value SHMEM_CTX_INVALID, no operation
is performed.

Return Values
None.

Notes
shmem_fence only provides per-PE ordering guarantees and does not guarantee completion of delivery.
shmem_fence also does not have an effect on the ordering between memory accesses issued by the target
PE. shmem_wait_until, shmem_test, shmem_barrier, shmem_barrier_all routines can be called by the
target PE to guarantee ordering of its memory accesses. There is a subtle difference between shmem_fence
and shmem_quiet, in that, shmem_quiet guarantees completion of all operations on symmetric data objects
which makes the updates visible to all other PEs.
The shmem_quiet routine should be called if completion of operations on symmetric data objects is desired
when multiple PEs are involved.
In an OpenSHMEM program with multithreaded PEs, it is the user’s responsibility to ensure ordering
between operations issued by the threads in a PE that target symmetric memory and calls by threads in that

10OpenSHMEM fence routines does not guarantee order of delivery of values fetched by nonblocking AMO routines.

DRAFT

CONTENTS 150

PE to shmem_fence. The shmem_fence routine can enforce memory store ordering only for the calling
thread. Thus, to ensure ordering for memory stores performed by a thread that is not the thread calling
shmem_fence, the update must be made visible to the calling thread according to the rules of the memory
model associated with the threading environment.

EXAMPLES

Example 45. The following example uses shmem_fence in a C11 program:

#include <shmem.h>
#include <stdio.h>

int main(void) {
int src = 99;
long source[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
static long dest[10];
static int targ;
shmem_init();
int mype = shmem_my_pe();
if (mype == 0) {

shmem_put(dest, source, 10, 1); /* put1 */
shmem_put(dest, source, 10, 2); /* put2 */
shmem_fence();
shmem_put(&targ, &src, 1, 1); /* put3 */
shmem_put(&targ, &src, 1, 2); /* put4 */

}
shmem_barrier_all(); /* sync sender and receiver */
printf("dest[0] on PE %d is %ld\n", mype, dest[0]);
shmem_finalize();
return 0;

}

Put1 will be ordered to be delivered before put3 and put2 will be ordered to be delivered before put4.

9.12.2 SHMEM_QUIET

Waits for completion of outstanding operations on symmetric data objects issued by a PE.

SYNOPSIS

C/C++:
void shmem_quiet(void);
void shmem_ctx_quiet(shmem_ctx_t ctx);

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

API Description
The shmem_quiet routine ensures completion of all operations on symmetric data objects issued by the
calling PE on the given context. Table 14 lists the operations for which the shmem_quiet routine ensures
completion. All operations on symmetric data objects are guaranteed to be complete and visible to all PEs
when shmem_quiet returns. If ctx has the value SHMEM_CTX_INVALID, no operation is performed.

DRAFT

CONTENTS 151

Return Values
None.

Notes
shmem_quiet is most useful as a way of ensuring completion of several operations on symmetric data
objects initiated by the calling PE. For example, one might use shmem_quiet to await delivery of a block
of data before issuing another Put or nonblocking Put routine, which sets a completion flag on another
PE. shmem_quiet is not usually needed if shmem_barrier_all or shmem_barrier are called. The barrier
routines wait for the completion of outstanding operations to symmetric data objects on all PEs.
In an OpenSHMEM program with multithreaded PEs, it is the user’s responsibility to ensure ordering
between operations issued by the threads in a PE that target symmetric memory and calls by threads in
that PE to shmem_quiet. The shmem_quiet routine can enforce memory store ordering only for the calling
thread. Thus, to ensure ordering for memory stores performed by a thread that is not the thread calling
shmem_quiet, the update must be made visible to the calling thread according to the rules of the memory
model associated with the threading environment.
A call to shmem_quiet by a thread completes the operations posted prior to calling shmem_quiet. If the user
intends to also complete operations issued by a thread that is not the thread calling shmem_quiet, the user
must ensure that the operations are performed prior to the call to shmem_quiet. This may require the use of
a synchronization operation provided by the threading package. For example, when using POSIX Threads,
the user may call the pthread_barrier_wait routine to ensure that all threads have issued operations before
a thread calls shmem_quiet.
shmem_quiet does not have an effect on the ordering between memory accesses issued by the target PE.
shmem_wait_until, shmem_test, shmem_barrier, shmem_barrier_all routines can be called by the target
PE to guarantee ordering of its memory accesses.

EXAMPLES

Example 46. The following example uses shmem_quiet in a C11 program:

#include <shmem.h>
#include <stdio.h>

int main(void) {
static long dest[3];
static long source[3] = {1, 2, 3};
static int targ;
static int src = 90;
long x[3] = {0};
int y = 0;
shmem_init();
int mype = shmem_my_pe();
if (mype == 0) {

shmem_put(dest, source, 3, 1); /* put1 */
shmem_put(&targ, &src, 1, 2); /* put2 */
shmem_quiet();
shmem_get(x, dest, 3, 1); /* get array dest on PE 1 to local array x */
shmem_get(&y, &targ, 1, 2); /* get value targ on PE 2 to local variable y */
printf("x: { %ld, %ld, %ld }\n", x[0], x[1], x[2]); /* x: { 1, 2, 3 } */
printf("y: %d\n", y); /* y: 90 */
shmem_put(&targ, &src, 1, 1); /* put3 */
shmem_put(&targ, &src, 1, 2); /* put4 */

}
shmem_finalize();
return 0;

}

Put1 and put2 will be completed and visible before put3 and put4.

DRAFT

CONTENTS 152

9.12.3 SHMEM_PE_QUIET

Waits for completion of all outstanding memory store, blocking Put, AMO, and put-with-signal, as well as nonblocking
Put, put-with-signal, and Get routines to symmetric data objects issued by the calling PE at the target PEs.

SYNOPSIS

C/C++:
void shmem_pe_quiet(const int *target_pes, size_t npes);
void shmem_ctx_pe_quiet(shmem_ctx_t ctx, const int *target_pes, size_t npes);

DESCRIPTION

Arguments
IN ctx A context handle specifying the context on which to perform the oper-

ation. When this argument is not provided, the operation is performed
on the default context.

IN target_pes Address of target PE array where the operations need to be completed
IN npes The number of PEs in the target PE array

API Description
The shmem_pe_quiet ensures completion of memory store, blocking Put, AMO, and put-with-signal, as
well as nonblocking Put, put-with-signal, and Get routines on the symmetric data objects issued by the
calling PE to the target PEs and on the given context. If npes is set to 0, the target_pes is ignored and the
routine returns immediately.
The completion and visibility semantics of these operations are the same as the shmem_quiet routine.
However, it applies only to the target PEs, i.e., the operations to the target PEs are guaranteed to be complete
and visible to all PEs when shmem_pe_quiet returns.

Return Values
None.

Notes
On certain platforms, when shmem_pe_quiet is invoked on a set of PEs, the performance might be
equivalent to shmem_quiet.

9.12.4 Synchronization and Communication Ordering in OpenSHMEM

When using the OpenSHMEM API, synchronization, ordering, and completion of communication become critical.
The updates via Put routines, AMOs, stores, and nonblocking Put and Get routines on symmetric data cannot be
guaranteed until some form of synchronization or ordering is introduced in the user’s program. The table below gives
the different synchronization and ordering choices, and the situations where they may be useful.

DRAFT

CONTENTS 153

OpenSHMEM API Working of OpenSHMEM API
Point-to-point synchro-
nization
shmem_wait_until

PE 0 PE 1

shmem_wait_until (...)
is completed

shmem_atomic_set (addr, value, PE 1)

shmem_wait_until
(addr,SHMEM_CMP_EQ, value)

shmem_wait_until is a blocking
operation therefore it waits until

value in addr is updated

The addr is updated tovalue

Waits for a symmetric variable to be updated by a remote PE. Should be used when
computation on the local PE cannot proceed without the value that the remote PE
is to update.

Ordering puts issued by
a local PE
shmem_fence

PE 0 PE 1

shmem_p (addr1, value1, PE 1)

shmem_fence()

shmem_p (addr2, value2, PE 2)

shmem_p (addr3, value3, PE 1)

shmem_p (addr4, value4, PE 1)

shmem_p (addr5, value5, PE 2)

PE 2

value2 is delivered to
PE2, before value5

value1 and value3
are delivered to PE1,

before value4

value4 will be
delivered after value1

and value3

value5 will be
delivered after value2

All Put, AMO, store, and nonblocking Put routines on symmetric data issued to
same PE are guaranteed to be delivered before Puts (to the same PE) issued after
the fence call.

DRAFT

CONTENTS 154

OpenSHMEM API Working of OpenSHMEM API
Ordering puts issued by
all PE
shmem_quiet

PE 0 PE 1

shmem_p (addr1, value1, PE 1)

shmem_quiet()

shmem_p (addr2, value2, PE 2)

shmem_p (addr3, value3, PE 1)

shmem_p (addr4, value4, PE 1)

shmem_p (addr5, value5, PE 2)

PE KPE 2

PE K is any PE in the
system.

value1, value2, and value3
are delivered to target PEs
and visible for PE K after
the shmem_quiet() call.

All Put, AMO, store, and nonblocking Put and Get routines on symmetric data
issued by a local PE to all remote PEs are guaranteed to be completed and visible
once quiet returns. This routine should be used when all remote writes issued by a
local PE need to be visible to all other PEs before the local PE proceeds.

OpenSHMEM API Working of OpenSHMEM API
Collective synchroniza-
tion over all PEs
shmem_barrier_all

All PEs

PE 0 PE 1

shmem_p (...)

shmem_barrier_all ()

shmem_put(…)

shmem_atomic_add (...)

shmem_p (...)

shmem_p (...)

PE 2

All local and remote memory operations issued by PEs are guaranteed to be completed before any PE returns from the call.

shmem_barrier_all ()shmem_barrier_all ()

shmem_p (...)

shmem_atomic_fetch_add(...)

shmem_get (...)

shmem_p (...)

PE K

shmem_get (...)

shmem_barrier_all ()

shmem_p (...)

All local and remote memory operations issued by all PEs are guaranteed to be
completed before any PE returns from the call. Additionally no PE shall return
from the barrier until all PEs have entered the same shmem_barrier_all call. This
routine should be used when synchronization as well as completion of all stores
and remote memory updates via OpenSHMEM is required over all PEs.

DRAFT

CONTENTS 155

Collective synchroniza-
tion over
shmem_team_sync

All PEs in a Team

PE 0 PE 1

shmem_p (...)

shmem_team_sync (...)

shmem_put(…)
shmem_atomic_add (...)

shmem_p (...)

shmem_p (...)

PE 2

A shmem_quiet is required to be used by all PEs within a Team before the shmem_team_sync
call to guarantee completion of all local and remote memory operations issued by all PEs

within the team before any PE returns from the shmem_team_sync call

shmem_team_sync (...)shmem_team_sync (...)

shmem_p (...)

shmem_atomic_fetch_add(...)

shmem_get (...)

shmem_p (...)

PE K

shmem_get (...)

shmem_put(…)

shmem_quiet (…) shmem_quiet (…) shmem_quiet (…)

shmem_team_sync guarantees that no PE shall return from the synchronization rou-
tine until all PEs in the team have entered the same shmem_team_sync call. It does
not guarantee completion of local and remote memory operations issued by PEs
within the team. To do so, shmem_quiet should be called on the desired context(s)
by all PEs within the team before the shmem_team_sync call to guarantee the com-
pletion of the associated stores and remote memory updates via OpenSHMEM.

DR
AF
T

CONTENTS 156

9.13 Distributed Locking Routines

The following section discusses OpenSHMEM locks as a mechanism to provide mutual exclusion. Three routines are
available for distributed locking, set, test and clear.

9.13.1 SHMEM_LOCK

Releases, locks, and tests a mutual exclusion memory lock.

SYNOPSIS

C/C++:
void shmem_clear_lock(long *lock);
void shmem_set_lock(long *lock);
int shmem_test_lock(long *lock);

DESCRIPTION

Arguments
IN lock Symmetric address of data object that is a scalar variable or an array of

length 1. This data object must be set to 0 on all PEs prior to the first
use.

API Description
The shmem_set_lock routine sets a mutual exclusion lock after waiting for the lock to be freed by any
other PE currently holding the lock. Waiting PEs are guaranteed to set the lock in a first-come, first-served
manner. The shmem_test_lock routine sets a mutual exclusion lock only if it is currently cleared. By
using this routine, a PE can avoid blocking on a set lock. If the lock is currently set, the routine returns
without waiting. The shmem_clear_lock routine releases a lock previously set by shmem_set_lock or
shmem_test_lock after performing a quiet operation on the default context to ensure that all symmetric
memory accesses that occurred during the critical region are complete. These routines are appropriate for
protecting a critical region from simultaneous update by multiple PEs.
The OpenSHMEM lock API provides a non-reentrant mutex. Thus, a call to shmem_set_lock or
shmem_test_lock when the calling PE already holds the given lock will result in undefined behavior. In a
multithreaded OpenSHMEM program, the user must ensure that such calls do not occur.

Return Values
The shmem_test_lock routine returns 0 if the lock was originally cleared and this call was able to set the
lock. A value of 1 is returned if the lock had been set and the call returned without waiting to set the lock.

Notes
The lock variable must be initialized to zero before any PE performs an OpenSHMEM lock operation on
the given variable. Accessing an in-use lock variable using any method other than the OpenSHMEM lock
API (e.g, using local load/store, RMA, or AMO operations) results in undefined behavior.
Calls to shmem_ctx_quiet can be performed prior to calling the shmem_clear_lock routine to ensure
completion of operations issued on additional contexts.

EXAMPLES

Example 47. The following example uses shmem_lock in a C11 program.

DRAFT

CONTENTS 157

#include <shmem.h>
#include <stdio.h>

int main(void) {
static long lock = 0;
static int count = 0;
shmem_init();
int mype = shmem_my_pe();
shmem_set_lock(&lock);
int val = shmem_g(&count, 0); /* get count value on PE 0 */
printf("%d: count is %d\n", mype, val);
val++; /* incrementing and updating count on PE 0 */
shmem_p(&count, val, 0);
shmem_clear_lock(&lock); /* ensures count update completes before clearing the lock */
shmem_finalize();
return 0;

}

10 OpenSHMEM Profiling Interface

The objective of the OpenSHMEM profiling interface is to ensure an easy and flexible usage model for profiling (and
other similar) tool developers to interface their code into OpenSHMEM implementations on different platforms. Since
OpenSHMEM is a machine-independent standard with different implementations, it is unreasonable to expect that the
authors and developers of profiling tools for OpenSHMEM will have access to the source code that implements Open-
SHMEM on any particular machine. It is, therefore, necessary to provide a mechanism by which the implementors of
such tools can collect whatever performance information they wish without access to the underlying implementation.
The OpenSHMEM profiling interface places the following requirements on implementations.

1. An OpenSHMEM implementation must provide a mechanism through which all of the OpenSHMEM defined
functions may be accessible with a name shift. This requires an alternate entry point name, with the prefix
pshmem_ for each OpenSHMEM function. For OpenSHMEM inlined functions (e.g., macros), it is also required
that the pshmem_ version is supplied although it is not possible to replace the shmem_ version with a user-defined
version at link time.

2. It must be ensured that the OpenSHMEM functions that are not replaced as above, may still be linked into an
executable image without causing name clashes.

3. Documentation of the implementation of different language bindings of the OpenSHMEM interface must in-
dicate if they are layered on top of each other. Using this documentation, developers can determine whether
they need to implement the profile interface for each binding or not. For example, it must be noted that the
OpenSHMEM C11 type-generic interfaces for different RMA and AMO operations cannot have any equivalent
pshmem_ interfaces because the C11 type-generic interfaces are implemented as macros.

4. In the case where the implementation of different API feature sets is implemented through a layered approach
using “wrapper” functions, the wrapper functions must be kept separate from the rest of the library. This require-
ment allows the developers to extract these functions from the original OpenSHMEM library and add them into
the profiling library without bringing along any other code.

5. A no-op routine, shmem_pcontrol, must be provided in the OpenSHMEM library.

6. It must be ensured that any OpenSHMEM types or constants that are needed by the pshmem_ interfaces are
defined in pshmem.h.

Provided that an OpenSHMEM implementation meets these requirements, it is possible for the implementer of the
profiling system to intercept the OpenSHMEM calls that are made by the user program. The information required
can be collected before and after calling the underlying OpenSHMEM implementation through the name shifted entry
points.

DRAFT

CONTENTS 158

10.1 Control of Profiling

Any user code must be able to control the profiler dynamically during runtime. Generally, this capability is used for
the purposes of

• Enabling and disabling of profiling based on the current state of the execution and calculation,

• Flushing of the trace buffers at noncritical execution regions,

• Adding user events to a trace file.

These functionalities can be achieved through the usage of shmem_pcontrol.

10.1.1 SHMEM_PCONTROL

Allows the user to control profiling.

SYNOPSIS

C/C++:
void shmem_pcontrol(int level, ...);

DESCRIPTION

Arguments

IN level The profiling level.

API Description
shmem_pcontrol sets the profiling level and any other library defined effects through additional arguments.
OpenSHMEM libraries make no use of this routine and simply return immediately to the user code.

Return Values
None.

Notes
Since OpenSHMEM has no control of the implementation of the profiling code, it is impossible to precisely
specify the semantics that will be provided by calls to shmem_pcontrol. This vagueness extends to the
number of arguments to the function and their datatypes. However, to provide some level of portability of
user code to different profiling libraries, the following level values are recommended.

• level <= 0 Profiling is disabled.
• level == 1 Profiling is enabled at the default level of detail.
• level == 2 Profiling is enabled and profile buffers are flushed if available.
• level > 2 Profiling is enabled with profile library defined effects and additional arguments.

The default state after shmem_init is recommended to have profiling enabled at the default level of detail
(level == 1). This allows users to link with a profiling library and to obtain profile output without
having to modify the user-level source code.

DRAFT

CONTENTS 159

10.2 Example Implementations

10.2.1 Profiler

Example 48. The following example illustrates how a profiler can measure the total and average time spent by the
shmem_long_put function in the profiling library that intercepts the OpenSHMEM function calls from the user appli-
cation.

#include <pshmem.h>
#include <stdio.h>
#include <sys/time.h>

static double total_put_time = 0.0;
static double avg_put_time = 0.0;
static long put_count = 0;

static inline double get_wtime(void) {
double wtime = 0.0;
struct timeval tv;
gettimeofday(&tv, NULL);
wtime = tv.tv_sec;
wtime += (double)tv.tv_usec / 1.0e6;
return wtime;

}

void shmem_long_put(long *dest, const long *source, size_t nelems, int pe) {
double t_start = get_wtime(); /* Start timer */
pshmem_long_put(dest, source, nelems, pe); /* Name shifted call to put */
total_put_time += get_wtime() - t_start; /* Calculate total time elapsed */
put_count += 1; /* Increment put counts */
avg_put_time = total_put_time / (double)put_count; /* Calculate average put latency */

return;
}

10.2.2 OpenSHMEM Library

To implement the name-shift versions of the OpenSHMEM functions, there are various options available. The follow-
ing two examples present two such options that can be implemented in C on a Unix system. These two options are
dependent on whether the linker and compiler support weak symbols.
If the compiler and linker support weak external symbols, then only a single library is required. The following two
examples show how the name-shifted requirement can be achieved on such platforms.

Example 49. Here, the effect of the #pragma directive is to define the external symbol shmem_example as a weak
definition that aliases the pshmem_example function. This means that the linker will allow another definition of the
symbol (e.g., the profiling library may contain an alternate definition). The weak definition is used in the case where
no other definition for the same function exists.

#pragma weak shmem_example = pshmem_example

void pshmem_example(/* appropriate arguments */) { /* function body */
}

DRAFT

CONTENTS 160

Example 50. In this example, the keyword __attribute__ is used to declare the shmem_example function as an alias
for the original function, pshmem_example.

void pshmem_example(/* appropriate arguments */) { /* function body */
}

void shmem_example(/* appropriate arguments */)
__attribute__((weak, alias("pshmem_example")));

In the absence of weak symbols, one possible solution would be to use the C macro preprocessor as shown in the
following example.

Example 51. Each of the user-defined functions in the profiling library is declared using the SHFN macro, which
name-shifts the function depending on the state of the BUILD_PSHMEM_INTERFACES macro symbol. The same
source file can then be compiled to produce both versions of the library.

#ifdef BUILD_PSHMEM_INTERFACES
#define SHFN(fn) p##fn
#else
#define SHFN(fn) fn
#endif

void SHFN(shmem_example)(/* appropriate arguments */) { /* function body */
}

10.3 Limitations

10.3.1 Multiple Counting

Since some functions in the OpenSHMEM library may be implemented using more basic OpenSHMEM functions, it is
possible for these basic profiling functions to be called from within an OpenSHMEM function that was originally called
from a profiling routine. For example, OpenSHMEM collective operations can be implemented using basic point-to-
point operations. Thus, profiling such a collective operation may lead to counting a profiling function for a point-to-
point operation more than once after being called from the collective function. It is the developer’s responsibility to
ensure the profiling application does not count a function more than once if that effect is not intended. For a single-
threaded profiler, this can be achieved through a static variable counting the number of times a function has been
profiled. In a multi-threaded environment, additional synchronizations are needed to manage updates to this counter
and thus, it becomes more complex to accurately profile the OpenSHMEM functions.

10.3.2 Separate Build and Link

To build the profiling tool with both the default OpenSHMEM functions as well as the OpenSHMEM functions to be
intercepted, developers must build the multiple instances of the OpenSHMEM functions separately and link them to
provide all the definitions. This is necessary so that the developers of the profiling library need only to define those
OpenSHMEM functions that they wish to intercept; references to any other functions will be fulfilled by the default
OpenSHMEM library. The link step can be summarized as follows.

% cc ... -lmyprof -lpsma -lsma

Here, libmyprof.a contains the profiler functions that intercept the OpenSHMEM functions to be profiled,
libpsma.a contains the name-shifted OpenSHMEM function definitions, and libsma.a contains the default Open-
SHMEM function definitions.

DRAFT

CONTENTS 161

10.3.3 C11 Type-Generic Interfaces

OpenSHMEM provides type-generic interfaces through C11 generic selection. These interfaces are defined as macros
and are mapped to C interface bindings. As a result, the C11 type-generic interfaces cannot be intercepted and name-
shifted pshmem_ routines are not provided for these bindings. Furthermore, because no two associations in a C11
_Generic selection expression can contain compatible types, the type name of the C operation that is invoked may not
be identical to the type name of the original call’s arguments (e.g., int32_t may map to int).

DRAFT
Annex A

Writing OpenSHMEM Programs

Incorporating OpenSHMEM into Programs

The following section describes how to write a “Hello World" OpenSHMEM program. To write a “Hello World"
OpenSHMEM program, the user must:

• Include the header file shmem.h for C.

• Add the initialization call shmem_init.

• Use OpenSHMEM calls to query the local PE number (shmem_my_pe) and the total number of PEs
(shmem_n_pes).

• Add the finalization call shmem_finalize.

In OpenSHMEM, the order in which lines appear in the output is not deterministic because PEs execute asynchronously
in parallel.

Example 52. “Hello World” example program in C

#include <shmem.h> /* The OpenSHMEM header file */
#include <stdio.h>

int main(void) {
shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();
printf("Hello from %d of %d\n", mype, npes);
shmem_finalize();
return 0;

}

Output 1. Possible ordering of expected output with 4 PEs from the program in Example 52

Hello from 0 of 4
Hello from 2 of 4
Hello from 3 of 4
Hello from 1 of 4

162

DRAFT

ANNEX A. WRITING OPENSHMEM PROGRAMS 163

Example 53 shows a more complex OpenSHMEM program that illustrates the use of symmetric data objects. Note the
declaration of the static short dest array and its use as the remote destination in shmem_put.
The static keyword makes the dest array symmetric on all PEs. Each PE is able to transfer data to a remote dest array
by simply specifying to an OpenSHMEM routine such as shmem_put the local address of the symmetric data object
that will receive the data. This local address resolution aids programmability because the address of the dest need not
be exchanged with the active side (PE 0) prior to the Remote Memory Access (RMA) routine.
Conversely, the declaration of the short source array is asymmetric (local only). The source object does not need to be
symmetric because Put handles the references to the source array only on the active (local) side.

Example 53. Example program with symmetric data objects

#include <shmem.h>
#include <stdio.h>

#define N 16

int main(void) {
short source[N];
static short dest[N];
static long lock = 0;
shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();
if (mype == 0) {

/* initialize array */
for (int i = 0; i < N; i++)
source[i] = i;

/* local, not symmetric */
/* static makes it symmetric */
/* put "size" words into dest on each PE */
for (int i = 1; i < npes; i++)
shmem_put(dest, source, N, i);

}
shmem_barrier_all(); /* sync sender and receiver */
if (mype != 0) {

shmem_set_lock(&lock);
printf("dest on PE %d is \t", mype);
for (int i = 0; i < N; i++)
printf("%hd \t", dest[i]);

printf("\n");
shmem_clear_lock(&lock);

}
shmem_finalize();
return 0;

}

Output 2. Possible ordering of expected output with 4 PEs from the program in Example 53

dest on PE 1 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
dest on PE 2 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
dest on PE 3 is 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DRAFT
Annex B

Compiling and Running Programs

The OpenSHMEM Specification does not specify how OpenSHMEM programs are compiled, linked, and run. This
section shows some examples of how wrapper programs are utilized in the OpenSHMEM Reference Implementation
to compile and launch programs.

B.1 Compilation

Programs written in C

The OpenSHMEM Reference Implementation provides a wrapper program, named oshcc, to aid in the compilation of
C programs. The wrapper may be called as follows:

oshcc <compiler options> -o myprogram myprogram.c

Where the ⟨compiler options⟩ are options understood by the underlying C compiler called by oshcc.

Programs written in C++

The OpenSHMEM Reference Implementation provides a wrapper program, named oshc++, to aid in the compilation
of C++ programs. The wrapper may be called as follows:

oshc++ <compiler options> -o myprogram myprogram.cpp

Where the ⟨compiler options⟩ are options understood by the underlying C++ compiler called by oshc++.

B.2 Running Programs

The OpenSHMEM Reference Implementation provides a wrapper program, named oshrun, to launch OpenSHMEM
programs. The wrapper may be called as follows:

oshrun <runner options> -np <#> <program> <program arguments>

The arguments for oshrun are:
⟨runner options⟩ Options passed to the underlying launcher.
-np ⟨#⟩ The number of PEs to be used in the execution.
⟨program⟩ The program executable to be launched.
⟨program arguments⟩ Flags and other parameters to pass to the program.

164

DRAFT
Annex C

Undefined Behavior in OpenSHMEM

The OpenSHMEM Specification formalizes the expected behavior of its library routines. In cases where routines are
improperly used or the input is not in accordance with the Specification, the behavior is undefined.

Inappropriate Usage Undefined Behavior
Uninitialized library If the OpenSHMEM library is not initialized, calls to OpenSHMEM

routines that do not initialize the OpenSHMEM library have undefined
behavior. For example, an implementation may try to continue or may
abort immediately upon an OpenSHMEM call into the uninitialized
library.

Specifying invalid PE numbers For OpenSHMEM routines that accept a PE number as an argument, if
the PE number is invalid for the team associated with the operation
(either implicitly or explicitly), the behavior is undefined. An invalid
PE number includes those that are negative or greater than or equal to
the size of the associated team.

Use of non-symmetric variables Some routines require remotely accessible variables to perform their
function. For example, an OpenSHMEM library may detect a Put to a
non-symmetric variable and choose to abort the program. However,
another implementation may choose to continue execution with or
without a warning.

Non-symmetric allocation of
symmetric memory

The symmetric memory management routines are collectives. For
example, all PEs in the program must call shmem_malloc with the
same size argument. Program behavior after a mismatched
shmem_malloc call is undefined.

Use of null pointers with nonzero
len specified

In any OpenSHMEM routine that takes a pointer and len describing
the number of elements in that pointer, a null pointer may not be given
unless the corresponding len is also specified as zero. Otherwise, the
resulting behavior is undefined. The following cases summarize this
behavior:

• len is 0, pointer is null: supported.

• len is not 0, pointer is null: undefined behavior.

• len is 0, pointer is non-null: supported.

• len is not 0, pointer is non-null: supported.

165

DRAFT

ANNEX C. UNDEFINED BEHAVIOR IN OPENSHMEM 166

Inappropriate Usage Undefined Behavior
Multithreaded use of a team in
concurrent team-based collectives

Team-based collective operations are not thread-safe on the same team
object. Concurrent collective operations on the same team from
multiple threads may result in undefined behavior. For example, it is
undefined behavior for one thread to call a team-implicit collective
which implicitly operates on the world team (e.g.,
shmem_barrier_all) and another thread to concurrently call a
team-based collective (e.g., shmem_broadcastmem) on the same world
team object, SHMEM_TEAM_WORLD.

Destroying a team with unfreed
private contexts

Before destroying a given team, the user is responsible for destroying
all contexts created from that team with the SHMEM_CTX_PRIVATE
option enabled; otherwise, the behavior is undefined.

DRAFT
Annex D

Interoperability with Other Programming
Models

OpenSHMEM routines may be used in conjunction with the routines of other communication libraries or parallel
languages in the same program. This section describes the interoperability with other programming models, including
clarification of undefined behaviors caused by mixed use of different models, and advice to OpenSHMEM library users
and developers that may improve the portability and performance of hybrid programs.

D.1 MPI Interoperability

OpenSHMEM and MPI are two commonly used parallel programming models for distributed-memory systems. The
user can choose to utilize both models in the same program to efficiently and easily support various communication
patterns.
A vendor may implement the OpenSHMEM and MPI libraries in different ways. For instance, one may implement both
OpenSHMEM and MPI as standalone libraries, each of which allocates and initializes fully isolated communication
resources. Another approach is to implement both OpenSHMEM and MPI interfaces within the same software system
in order to share a communication resource when possible.
To improve interoperability and portability in OpenSHMEM + MPI hybrid programming, we clarify the relevant se-
mantics in the following subsections.

D.1.1 Initialization

In order to ensure that a hybrid program can be portably performed with different vendor implementations, the Open-
SHMEM environment of the program must be initialized by a call to shmem_init or shmem_init_thread and be final-
ized by a call to shmem_finalize; the MPI environment of the program must be initialized by a call to MPI_Init or
MPI_Init_thread and be finalized by a call to MPI_Finalize.

Note to Implementers
Portable implementations of OpenSHMEM and MPI must ensure that the initialization calls can be made in an
arbitrary order within a program; the same rule also applies to the finalization calls. A software runtime that
utilizes a shared communication resource for OpenSHMEM and MPI communication may maintain an internal
reference counter in order to ensure that the shared resource is initialized only once and thus no shared resource
is released until the last finalization call is made.

167

DRAFT

ANNEX D. INTEROPERABILITY WITH OTHER PROGRAMMING MODELS 168

D.1.2 Dynamic Process Creation

MPI defines a dynamic process model that allows creation of processes after an MPI application has started (e.g.,
by calling MPI_Comm_spawn) and connection to independent processes (e.g., through MPI_Comm_accept and
MPI_Comm_connect). It provides a mechanism to establish communication between the newly created processes
and the existing MPI application (see MPI standard version 3.1, Chapter 10). Unlike MPI, OpenSHMEM starts all
processes at once and requires all PEs to collectively allocate and initialize resources (e.g., symmetric heap) used by
the OpenSHMEM library before any other OpenSHMEM routine may be called. OpenSHMEM does not support com-
munication with dynamically created or connected processes. In such a scenario, MPI can be used to communicate
with these processes.

D.1.3 Thread Safety

Both OpenSHMEM and MPI define the interaction with user threads in a program with routines that can be used
for initializing and querying the thread environment. A hybrid program may request different thread levels at the
initialization calls of OpenSHMEM and MPI environments; however, the returned support level provided by the Open-
SHMEM or MPI library might be different from that returned in an non-hybrid program. For instance, the former
initialization call in a hybrid program may initialize a resource with the requested thread level, but the supported level
cannot be updated by a subsequent initialization call if the underlying software runtime of OpenSHMEM and MPI
share the same internal communication resource. The program should always check the provided thread level returned
at the corresponding initialization call or query the level of thread support after initialization to portably ensure thread
support in each communication environment.
Both OpenSHMEM and MPI define similar thread levels, namely, THREAD_SINGLE, THREAD_FUNNELED,
THREAD_SERIALIZED, and THREAD_MULTIPLE. When requesting threading support in a hybrid program, how-
ever, the following additional rules are applied if the implementations of OpenSHMEM and MPI share the same internal
communication resource. It is strongly recommended to always follow these rules to ensure program portability.

• The THREAD_SINGLE thread level requires a single-threaded program. Hence, a hybrid program should not
request THREAD_SINGLE at the initialization call of either OpenSHMEM or MPI but request a different thread
level at the initialization call of the other model.

• The THREAD_FUNNELED thread level allows only the main thread to make communication calls. A hybrid
program using the THREAD_FUNNELED thread level in both OpenSHMEM and MPI should ensure that the
same main thread is used in both communication environments.

• The THREAD_SERIALIZED thread level requires the program to ensure that communication calls are not made
concurrently by multiple threads. If a hybrid program uses THREAD_SERIALIZED in one communication
environment and THREAD_SERIALIZED or THREAD_FUNNELED in the other one, it should also guarantee
that the OpenSHMEM and MPI calls are not made concurrently from two distinct threads.

D.1.4 Mapping Process Identification Numbers

Similar to the PE number in OpenSHMEM, MPI defines rank as the identification number of a process in a communi-
cator. Both the OpenSHMEM PE and the MPI rank are unique integers assigned from zero to one less than the total
number of processes. In a hybrid program, the OpenSHMEM PE number in SHMEM_TEAM_WORLD and the MPI
rank in MPI_COMM_WORLD of a process can be equal. This feature, however, may be provided by only some of
the OpenSHMEM and MPI implementations (e.g., if both environments share the same underlying process manager)
and is not portably guaranteed. A portable program should always use the standard functions in each model, namely,
shmem_team_my_pe or shmem_my_pe in OpenSHMEM and MPI_Comm_rank in MPI, to query the process iden-
tification numbers in each communication environment and manage the mapping of identifiers in the program when
necessary.

DRAFT

ANNEX D. INTEROPERABILITY WITH OTHER PROGRAMMING MODELS 169

Examples

Example 54. The following example demonstrates how to manage the mapping between OpenSHMEM PE numbers
and MPI ranks in MPI_COMM_WORLD in a hybrid OpenSHMEM and MPI program.

#include <mpi.h>
#include <shmem.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);
shmem_init();

int mype = shmem_team_my_pe(SHMEM_TEAM_WORLD);
int npes = shmem_team_n_pes(SHMEM_TEAM_WORLD);

static int myrank;
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

int *mpi_ranks = shmem_calloc(npes, sizeof(int));

shmem_int_collect(SHMEM_TEAM_WORLD, mpi_ranks, &myrank, 1);
if (mype == 0)

for (int i = 0; i < npes; i++)
printf("PE %d’s MPI rank is %d\n", i, mpi_ranks[i]);

shmem_free(mpi_ranks);

shmem_finalize();
MPI_Finalize();

return 0;
}

DRAFT

ANNEX D. INTEROPERABILITY WITH OTHER PROGRAMMING MODELS 170

Example 55. The following example demonstrates an alternative approach for managing the mapping of process
identification numbers in a hybrid program. The program creates a new MPI communicator, named shmem_comm,
that contains all processes in MPI_COMM_WORLD and each process has the same MPI rank number as its Open-
SHMEM PE number.

#include <mpi.h>
#include <shmem.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);
shmem_init();

int mype = shmem_my_pe();

MPI_Comm shmem_comm;
MPI_Comm_split(MPI_COMM_WORLD, 0, mype, &shmem_comm);

int myrank;
MPI_Comm_rank(shmem_comm, &myrank);
printf("PE %d’s MPI rank is %d\n", mype, myrank);

MPI_Comm_free(&shmem_comm);
shmem_finalize();
MPI_Finalize();

return 0;
}

D.1.5 RMA Programming Models

OpenSHMEM and MPI each define similar one-sided communication models; however, a portable program should not
assume interoperability between these models. For instance, OpenSHMEM guarantees the atomicity only of concurrent
OpenSHMEM AMO operations that operate on symmetric data with the same datatype. Access to the same symmetric
object with MPI atomic operations, such as an MPI_Fetch_and_op, may result in an undefined result. A hybrid
program should avoid situations where MPI and OpenSHMEM one-sided operations perform concurrent accesses to
the same memory location; otherwise, the behavior is undefined.

D.1.6 Communication Progress

OpenSHMEM promises the progression of communication both with and without OpenSHMEM calls and requires
the software progress mechanism in the implementation (e.g., a progress thread) when the hardware does not provide
asynchronous communication capabilities (see Section 4.1). In MPI, however, a weak progress semantics is applied.
That is, an MPI communication call is guaranteed only to complete in finite time. For instance, an MPI_Put may
be completed only when the remote process makes an MPI call that internally triggers the progress of MPI, if the
underlying hardware does not support asynchronous communication. A hybrid program should not assume that the
OpenSHMEM library also makes progress for MPI. It can explicitly manage the asynchronous communication of MPI
in order to prevent any deadlock or performance degradation.

DRAFT
Annex E

History of OpenSHMEM

SHMEM has a long history as a parallel-programming model and has been extensively used on a number of products
since 1993, including the Cray T3D, Cray X1E, Cray XT3 and XT4, SGI Origin, SGI Altix, Quadrics-based clusters,
and InfiniBand-based clusters.

• SHMEM Timeline

– Cray SHMEM

* SHMEM first introduced by Cray Research, Inc. in 1993 for Cray T3D

* Cray was acquired by SGI in 1996

* Cray was acquired by Tera in 2000 (MTA)

* Platforms: Cray T3D, T3E, C90, J90, SV1, SV2, X1, X2, XE, XMT, XT

* HPE acquired Cray in 2019

– SGI SHMEM

* SGI acquired Cray Research, Inc. and SHMEM was integrated into SGI’s Message Passing Toolkit
(MPT)

* SGI currently owns the rights to SHMEM and OpenSHMEM

* Platforms: Origin, Altix 4700, Altix XE, ICE, UV

* SGI was acquired by Rackable Systems in 2009

* SGI and OSSS signed a SHMEM trademark licensing agreement in 2010

* HPE acquired SGI in 2016

A listing of OpenSHMEM implementations can be found on http://www.openshmem.org/.

171

http://www.openshmem.org/

DRAFT
Annex F

Deprecated API

F.1 Overview

For the OpenSHMEM Specification, deprecation is the process of identifying API that is supported but no longer
recommended for use by users. The deprecated API must be supported until clearly indicated as otherwise by the
Specification. This chapter records the API or functionality that have been deprecated, the version of the OpenSHMEM
Specification that effected the deprecation, and the most recent version of the OpenSHMEM Specification in which the
feature was supported before removal.

Deprecated API Deprecated Since Last Version Supported Replaced By
Header Directory: mpp 1.1 Current (none)
C/C++: start_pes 1.2 Current shmem_init
Fortran: START_PES 1.2 1.4 SHMEM_INIT
Implicit finalization 1.2 Current shmem_finalize
C/C++: _my_pe 1.2 Current shmem_my_pe
C/C++: _num_pes 1.2 Current shmem_n_pes
Fortran: MY_PE 1.2 1.4 SHMEM_MY_PE
Fortran: NUM_PES 1.2 1.4 SHMEM_N_PES
C/C++: shmalloc 1.2 Current shmem_malloc
C/C++: shfree 1.2 Current shmem_free
C/C++: shrealloc 1.2 Current shmem_realloc
C/C++: shmemalign 1.2 Current shmem_align
Fortran: SHMEM_PUT 1.2 1.4 SHMEM_PUT8 or SHMEM_PUT64
C/C++: shmem_clear_cache_inv
C/C++: shmem_clear_cache_line_inv
C/C++: shmem_set_cache_inv
C/C++: shmem_set_cache_line_inv
C/C++: shmem_udcflush
C/C++: shmem_udcflush_line

1.3 1.4 (none)

Fortran: SHMEM_CLEAR_CACHE_INV
Fortran: SHMEM_SET_CACHE_INV
Fortran: SHMEM_SET_CACHE_LINE_INV
Fortran: SHMEM_UDCFLUSH
Fortran: SHMEM_UDCFLUSH_LINE

1.3 1.4 (none)

_SHMEM_SYNC_VALUE 1.3 Current SHMEM_SYNC_VALUE
_SHMEM_BARRIER_SYNC_SIZE 1.3 Current SHMEM_BARRIER_SYNC_SIZE
_SHMEM_BCAST_SYNC_SIZE 1.3 Current SHMEM_BCAST_SYNC_SIZE
_SHMEM_COLLECT_SYNC_SIZE 1.3 Current SHMEM_COLLECT_SYNC_SIZE
_SHMEM_REDUCE_SYNC_SIZE 1.3 Current SHMEM_REDUCE_SYNC_SIZE
_SHMEM_REDUCE_MIN_WRKDATA_SIZE 1.3 Current SHMEM_REDUCE_MIN_WRKDATA_SIZE
_SHMEM_MAJOR_VERSION 1.3 Current SHMEM_MAJOR_VERSION
_SHMEM_MINOR_VERSION 1.3 Current SHMEM_MINOR_VERSION
_SHMEM_MAX_NAME_LEN 1.3 Current SHMEM_MAX_NAME_LEN
_SHMEM_VENDOR_STRING 1.3 Current SHMEM_VENDOR_STRING
_SHMEM_CMP_EQ 1.3 Current SHMEM_CMP_EQ
_SHMEM_CMP_NE 1.3 Current SHMEM_CMP_NE
_SHMEM_CMP_LT 1.3 Current SHMEM_CMP_LT
_SHMEM_CMP_LE 1.3 Current SHMEM_CMP_LE
_SHMEM_CMP_GT 1.3 Current SHMEM_CMP_GT
_SHMEM_CMP_GE 1.3 Current SHMEM_CMP_GE
SMA_VERSION 1.4 Current SHMEM_VERSION

172

DR
AF
T

ANNEX F. DEPRECATED API 173

Deprecated API Deprecated Since Last Version Supported Replaced By
SMA_INFO 1.4 Current SHMEM_INFO
SMA_SYMMETRIC_SIZE 1.4 Current SHMEM_SYMMETRIC_SIZE
SMA_DEBUG 1.4 Current SHMEM_DEBUG
C/C++: shmem_wait
C/C++: shmem_TYPENAME_wait 1.4 Current See Notes for shmem_wait_until

C/C++: shmem_wait_until 1.4 Current C11: shmem_wait_until, C/C++: shmem_long_wait_until
C11: shmem_fetch
C/C++: shmem_TYPENAME_fetch 1.4 Current shmem_atomic_fetch

C11: shmem_set
C/C++: shmem_TYPENAME_set 1.4 Current shmem_atomic_set

C11: shmem_cswap
C/C++: shmem_TYPENAME_cswap 1.4 Current shmem_atomic_compare_swap

C11: shmem_swap
C/C++: shmem_TYPENAME_swap 1.4 Current shmem_atomic_swap

C11: shmem_finc
C/C++: shmem_TYPENAME_finc 1.4 Current shmem_atomic_fetch_inc

C11: shmem_inc
C/C++: shmem_TYPENAME_inc 1.4 Current shmem_atomic_inc

C11: shmem_fadd
C/C++: shmem_TYPENAME_fadd 1.4 Current shmem_atomic_fetch_add

C11: shmem_add
C/C++: shmem_TYPENAME_add 1.4 Current shmem_atomic_add

Entire Fortran API 1.4 1.4 OpenSHMEM C API through Fortran–C interoperability
SHMEM_SYNC_VALUE
SHMEM_SYNC_SIZE
SHMEM_BARRIER_SYNC_SIZE
SHMEM_ALLTOALL_SYNC_SIZE
SHMEM_ALLTOALLS_SYNC_SIZE
SHMEM_BCAST_SYNC_SIZE
SHMEM_COLLECT_SYNC_SIZE
SHMEM_REDUCE_SYNC_SIZE
SHMEM_REDUCE_MIN_WRKDATA_SIZE

1.5 Current Team-based collectives, Section 9.10.

C/C++: Active-set-based shmem_sync 1.5 Current Team-based shmem_sync
C/C++: shmem_alltoall{32, 64} 1.5 Current shmem_alltoall
C/C++: shmem_alltoalls{32, 64} 1.5 Current shmem_alltoalls
C/C++: shmem_broadcast{32, 64} 1.5 Current shmem_broadcast
C/C++: shmem_collect{32, 64} 1.5 Current shmem_collect
C/C++: shmem_fcollect{32, 64} 1.5 Current shmem_fcollect
C/C++: shmem_TYPENAME_and_to_all 1.5 Current shmem_and_reduce
C/C++: shmem_TYPENAME_or_to_all 1.5 Current shmem_or_reduce
C/C++: shmem_TYPENAME_xor_to_all 1.5 Current shmem_xor_reduce
C/C++: shmem_TYPENAME_max_to_all 1.5 Current shmem_max_reduce
C/C++: shmem_TYPENAME_min_to_all 1.5 Current shmem_min_reduce
C/C++: shmem_TYPENAME_sum_to_all 1.5 Current shmem_sum_reduce
C/C++: shmem_TYPENAME_prod_to_all 1.5 Current shmem_prod_reduce
C/C++: shmem_barrier 1.5 Current shmem_quiet + shmem_sync
C11: shmem_wait_until(short ...)
C/C++: shmem_short_wait_until 1.5 Current (none)

C11: shmem_wait_until(unsigned short ...)
C/C++: shmem_ushort_wait_until 1.5 Current (none)

C11: shmem_test(short ...)
C/C++: shmem_short_test 1.5 Current (none)

C11: shmem_test(unsigned short ...)
C/C++: shmem_ushort_test 1.5 Current (none)

Table 12: point-to-point synchronization types 1.5 Current Table 6: standard AMO types

F.2 Deprecation Rationale

F.2.1 Header Directory: mpp

In addition to the default system header paths, OpenSHMEM implementations must provide all OpenSHMEM-
specified header files from the mpp header directory such that these headers can be referenced in C/C++ as

#include <mpp/shmem.h>
#include <mpp/shmemx.h>

and in Fortran as

include ’mpp/shmem.fh’

DRAFT

ANNEX F. DEPRECATED API 174

include ’mpp/shmemx.fh’

for backwards compatibility with SGI SHMEM.

F.2.2 C/C++: start_pes

The C/C++ routine start_pes includes an unnecessary initialization argument that is remnant of historical SHMEM
implementations and no longer reflects the requirements of modern OpenSHMEM implementations. Furthermore, the
naming of start_pes does not include the standardized shmem_ naming prefix. This routine has been deprecated and
OpenSHMEM users are encouraged to use shmem_init instead.

F.2.3 Implicit Finalization

Implicit finalization was deprecated and replaced with explicit finalization using the shmem_finalize routine. Explicit
finalization improves portability and also improves interoperability with profiling and debugging tools.

F.2.4 C/C++: _my_pe, _num_pes, shmalloc, shfree, shrealloc, shmemalign

The C/C++ routines _my_pe, _num_pes, shmalloc, shfree, shrealloc, and shmemalign were deprecated in order to
normalize the OpenSHMEM API to use shmem_ as the standard prefix for all routines.

F.2.5 Fortran: START_PES, MY_PE, NUM_PES

The Fortran routines START_PES, MY_PE, and NUM_PES were deprecated in order to minimize the API differences
from the deprecation of C/C++ routines start_pes, _my_pe, and _num_pes.

F.2.6 Fortran: SHMEM_PUT

The Fortran routine SHMEM_PUT is defined only for the Fortran API and is semantically identical to Fortran routines
SHMEM_PUT8 and SHMEM_PUT64. Since SHMEM_PUT8 and SHMEM_PUT64 have defined equivalents in the
C/C++ interface, SHMEM_PUT is ambiguous and has been deprecated.

F.2.7 SHMEM_CACHE

The SHMEM_CACHE API

C/C++: Fortran:
shmem_clear_cache_inv SHMEM_CLEAR_CACHE_INV
shmem_set_cache_inv SHMEM_SET_CACHE_INV
shmem_set_cache_line_inv SHMEM_SET_CACHE_LINE_INV
shmem_udcflush SHMEM_UDCFLUSH
shmem_udcflush_line SHMEM_UDCFLUSH_LINE
shmem_clear_cache_line_inv

was originally implemented for systems with cache-management instructions. This API has largely gone unused on
cache-coherent system architectures. SHMEM_CACHE has been deprecated.

F.2.8 _SHMEM_* Library Constants

The library constants

DRAFT

ANNEX F. DEPRECATED API 175

_SHMEM_SYNC_VALUE _SHMEM_MAX_NAME_LEN
_SHMEM_BARRIER_SYNC_SIZE _SHMEM_VENDOR_STRING
_SHMEM_BCAST_SYNC_SIZE _SHMEM_CMP_EQ
_SHMEM_COLLECT_SYNC_SIZE _SHMEM_CMP_NE
_SHMEM_REDUCE_SYNC_SIZE _SHMEM_CMP_LT
_SHMEM_REDUCE_MIN_WRKDATA_SIZE _SHMEM_CMP_LE
_SHMEM_MAJOR_VERSION _SHMEM_CMP_GT
_SHMEM_MINOR_VERSION _SHMEM_CMP_GE

do not adhere to the C standard’s reserved identifiers and the C++ standard’s reserved names. These constants were
deprecated and replaced with corresponding constants of prefix SHMEM_ that adhere to C/C++ and Fortran naming
conventions.

F.2.9 SMA_* Environment Variables

The environment variables SMA_VERSION, SMA_INFO, SMA_SYMMETRIC_SIZE, and SMA_DEBUG were depre-
cated in order to normalize the OpenSHMEM API to use SHMEM_ as the standard prefix for all environment variables.

F.2.10 C/C++: shmem_wait

The C/C++ interface for shmem_wait and shmem_TYPENAME_wait was identified as unintuitive with respect to
the comparison operation it performed. As shmem_wait can be trivially replaced by shmem_wait_until where cmp
is SHMEM_CMP_NE, the shmem_wait interface was deprecated in favor of shmem_wait_until, which makes the
comparison operation explicit and better communicates the developer’s intent.

F.2.11 C/C++: shmem_wait_until

The long-typed C/C++ routine shmem_wait_until was deprecated in favor of the C11 type-generic interface of the
same name or the explicitly typed C/C++ routine shmem_long_wait_until.

F.2.12 C11 and C/C++: shmem_fetch, shmem_set, shmem_cswap, shmem_swap, shmem_finc,
shmem_inc, shmem_fadd, shmem_add

The C11 and C/C++ interfaces for

C11: C/C++:
shmem_fetch shmem_TYPENAME_fetch
shmem_set shmem_TYPENAME_set
shmem_cswap shmem_TYPENAME_cswap
shmem_swap shmem_TYPENAME_swap
shmem_finc shmem_TYPENAME_finc
shmem_inc shmem_TYPENAME_inc
shmem_fadd shmem_TYPENAME_fadd
shmem_add shmem_TYPENAME_add

were deprecated and replaced with similarly named interfaces within the shmem_atomic_* namespace in order to more
clearly identify these calls as performing atomic operations. In addition, the abbreviated names “cswap”, “finc”, and
“fadd” were expanded for clarity to “compare_swap”, “fetch_inc”, and “fetch_add”.

F.2.13 Fortran API

The entire OpenSHMEM Fortran API was deprecated in OpenSHMEM 1.4 and removed in OpenSHMEM 1.5 because
of a general lack of use and a lack of conformance with legacy Fortran standards. In lieu of an extensive update of the

DRAFT

ANNEX F. DEPRECATED API 176

Fortran API, Fortran users are encouraged to leverage the OpenSHMEM Specification’s C API through the Fortran–C
interoperability initially standardized by Fortran 20031.

F.2.14 Active-set-based library constants and collectives

With the addition of OpenSHMEM teams, Section 9.4, the previous method for performing collective operations has
been superseded by a more readable, flexible method for organizing and communicating between groups of PEs. All
collective routines which previously indicated subgroups of PEs with a list of parameters to describe the subgroup
composition (active set) should be phased out in favor of using collective operations with a team parameter.
The library constants

SHMEM_SYNC_VALUE SHMEM_BCAST_SYNC_SIZE
SHMEM_SYNC_SIZE SHMEM_COLLECT_SYNC_SIZE
SHMEM_BARRIER_SYNC_SIZE SHMEM_REDUCE_SYNC_SIZE
SHMEM_ALLTOALL_SYNC_SIZE SHMEM_REDUCE_MIN_WRKDATA_SIZE
SHMEM_ALLTOALLS_SYNC_SIZE

were deprecated as these constants pertain only to active-set-based collectives.
The C/C++ active-set-based shmem_sync routine was deprecated and replaced with the team-based C11 shmem_sync
or C/C++ shmem_team_sync routine.
The fixed-sized versions of the active-set-based routines

shmem_alltoall32 shmem_alltoall64
shmem_alltoalls32 shmem_alltoalls64
shmem_broadcast32 shmem_broadcast64
shmem_collect32 shmem_collect64
shmem_fcollect32 shmem_fcollect64

were deprecated. Instead, all team-based collective routines use standard C types with the option to use generic C11
functions for more portable and maintainable implementations.
The active-set-based reduction routines

shmem_TYPENAME_and_to_all shmem_TYPENAME_max_to_all
shmem_TYPENAME_or_to_all shmem_TYPENAME_min_to_all
shmem_TYPENAME_xor_to_all shmem_TYPENAME_sum_to_all

shmem_TYPENAME_prod_to_all

were deprecated and replaced with team-based reduction routines.

F.2.15 C/C++: shmem_barrier

Each OpenSHMEM team might be associated with some number of communication contexts. The shmem_barrier
function implies that the default context is quiesced after synchronizing some active set of PEs. Since teams may have
some number of contexts associated with the team, it becomes less clear which context would be the “default” context
for that particular team. Rather than continue to support shmem_barrier for active-sets or teams, programs should use
a call to shmem_quiet followed by a call to shmem_sync in order to explicitly indicate which context to quiesce.

F.2.16 C11 and C/C++: short and unsigned short variants of shmem_wait_until and shmem_test

The short and unsigned short type C/C++ and C11 routines for shmem_wait_until and shmem_test were deprecated
because point-to-point synchronization routines are only compatible with AMOs (as of OpenSHMEM 1.5), and there
is no corresponding AMO for short and unsigned short.

1Formally, Fortran 2003 is known as ISO/IEC 1539-1:2004(E).

DRAFT

ANNEX F. DEPRECATED API 177

F.2.17 Table 12: point-to-point synchronization types

As of OpenSHMEM 1.5, the point-to-point synchronization routines are only compatible with AMOs, so their inter-
faces are defined via the standard AMO types in Table 6.

DRAFT
Annex G

Changes to this Document

G.1 Version 1.6

Major changes in OpenSHMEM 1.6 include the addition of the new shmem_team_ptr, shmem_ibget, and shmem_ibput
functions.
The following list describes the specific changes in OpenSHMEM 1.6:

1. Added an inclusive (shmem_sum_inscan) and exclusive (shmem_sum_exscan) collective summation operation.
See Section 9.10.10.

2. Added support for initialization and finalization routines to be called multiple times, and added an initialization
status query API shmem_query_initialized.
See Sections 9.1.1, 9.1.4 and 9.1.5.

3. Added interleaved block transfer APIs shmem_ibget and shmem_ibput.
See Sections 9.6.1.4 and 9.6.1.8.

4. Added shmem_signal_add and shmem_signal_set to update a remote flag without associated data transfer of a
put-with-signal operation.
See Sections 9.8.5 and 9.8.7.

5. Added a team-based pointer query routine: shmem_team_ptr.
See Section 9.1.10.

6. Clarified that the behavior of shmem_team_split_strided is undefined when the input start, stride, and size
arguments imply a wrap-around with respect to the parent team’s PEs.
See Section 9.4.6.

7. Added the session routines, shmem_ctx_session_start and shmem_ctx_session_stop, which allow users to pass
hints to the OpenSHMEM library to apply runtime optimizations.
See Section 9.9.

8. Added fine grained completion routine: shmem_pe_quiet.
See Section 9.12.3.

9. Split the listings for the shmem_{malloc, free, realloc, align} functions from a single entry in OpenSHMEM 1.5
into separate entries.
See Sections 9.3.1 to 9.3.4.

10. Clarified that the shmem_{malloc, free, realloc, align, malloc_with_hints, calloc} functions are collective oper-
ations on the world team.
See Sections 9.3.1 to 9.3.6.

178

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 179

11. Clarified that shmem_team_get_config returns the current configuration values, which may differ from the values
assigned at the time of the team’s creation.
See Section 9.4.4.

12. Clarified the behavior of shmem_team_get_config when the config_mask is 0 and/or the config argument is a
null pointer.
See Section 9.4.4.

13. Clarified the behavior of shmem_team_split_strided when the stride argument is 0 or negative.
See Section 9.4.6.

14. Clarified the requirements for the source buffer before entering the collective routines.
See Sections 9.10.5 and 9.10.7 to 9.10.10.

15. Added a new Errata Section H that indicates errors or ambiguities in the OpenSHMEM specification and the
version that required correction or clarification.
See Annex H.

16. Removed OpenSHMEM 1.5 Table 9, which was an incomplete duplicate of OpenSHMEM 1.5 Table 10, and
clarified the types, names, and supporting operations for team-based reductions.
See Table 10.

17. Clarified that source and dest arrays must be the same across PEs in OpenSHMEM reductions
See Section 9.10.9.

18. Clarified that Fence operations only guarantee ordering for operations that are performed on the same context.
See Section 9.12.1.

19. Clarified that shmem_test_all and shmem_test_all_vector routines return 1 when the test set is empty.
See Sections 9.11.9 and 9.11.12.

20. Clarified that shmem_team_split_strided and shmem_team_split_strided return a nonzero value when the par-
ent team compares equal to SHMEM_TEAM_INVALID.
See Sections 9.4.6 and 9.4.7.

21. Corrected the level argument’s recommended value in API notes for shmem_pcontrol to indicate that the value
should be greater than 2 to enable profiling with profile library defined effects and additional arguments.
See Section 10.1.1.

22. Added a const qualifier to the cmp_values argument in the following point-to-point synchronization
routines: shmem_wait_until_all_vector, shmem_wait_until_any_vector, shmem_wait_until_some_vector,
shmem_test_all_vector, shmem_test_any_vector, and shmem_test_some_vector.
See Sections 9.11.5 to 9.11.7 and 9.11.12 to 9.11.14.

G.2 Version 1.5

Major changes in OpenSHMEM 1.5 include the addition of new team-based collective functions, put-with-signal func-
tions, nonblocking AMO functions, multiple-element point-to-point synchronization and vector comparison functions,
a shmem_malloc_with_hints function, a profiling interface, and the removal of the entire Fortran API.
The following list describes the specific changes in OpenSHMEM 1.5:

1. Removed SHMEM_CACHE.
See Annex F.2.7.

2. Deprecated short and unsigned short variants for shmem_wait_until and shmem_test.
See Sections 9.11.1 and 9.11.8 and Annex F.2.16.

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 180

3. Added shmem_malloc_with_hints interface and corresponding hints SHMEM_MALLOC_ATOMICS_REMOTE
and SHMEM_MALLOC_SIGNAL_REMOTE.
See Sections 6 and 9.3.5.

4. Specified that team-based broadcast operations update the dest object on all PEs, including the root PE.
See Section 9.10.7.

5. Deprecated active-set-based library constants and collective functions.
See Sections 6 and 9.10 and Annexes F.2.14 and F.2.15.

6. Added team management functions: shmem_team_my_pe, shmem_team_n_pes, shmem_team_get_config,
shmem_team_translate_pe, shmem_team_split_strided, shmem_team_split_2d, and shmem_team_destroy.
See Sections 9.4.1, 9.4.2 and 9.4.4 to 9.4.8.

7. Added team-based communication-management functions: shmem_team_create_ctx and
shmem_ctx_get_team.
See Sections 9.5.2 and 9.5.4.

8. Added team-based collective functions: shmem_sync, shmem_alltoall[mem], shmem_alltoalls[mem],
shmem_broadcast[mem], shmem_collect[mem], shmem_fcollect[mem], and
shmem_{and, or, xor, max, min, sum, prod}_reduce.
See Sections 9.10.3 and 9.10.5 to 9.10.9.

9. Clarified interoperability of OpenSHMEM with other programming models.
See Annex D.

10. Clarified restrictions on using pointers to symmetric objects.
See Sections 3.1 and 4.2.

11. Added support for nonblocking AMO functions.
See Section 9.7.2.

12. Added support for blocking put-with-signal functions.
See Section 9.8.3.

13. Added support for nonblocking put-with-signal functions.
See Section 9.8.4.

14. Deprecated point-to-point synchronization types and names.
See Table 12 and Annex F.2.17.

15. Clarified that point-to-point synchronization routines preserve the atomicity of OpenSHMEM AMOs.
See Section 3.2.

16. Clarified that symmetric variables used as ivar arguments to point-to-point synchronization routines must be
updated using OpenSHMEM AMOs.
See Section 9.11.

17. Removed the entire OpenSHMEM Fortran API.
See Annex F.2.13.

18. Added support for multipliers in SHMEM_SYMMETRIC_SIZE environment variables.
See Section 8.

19. Added support for a multiple-element point-to-point synchronization API with the functions:
shmem_wait_until_all, shmem_wait_until_any, shmem_wait_until_some, shmem_test_all, shmem_test_any,
and shmem_test_some.
See Sections 9.11.2 to 9.11.4 and 9.11.9 to 9.11.11.

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 181

20. Added support for vectorized comparison values in the multiple-element point-to-point synchro-
nization API with the functions: shmem_wait_until_all_vector, shmem_wait_until_any_vector,
shmem_wait_until_some_vector, shmem_test_all_vector, shmem_test_any_vector, and
shmem_test_some_vector.
See Sections 9.11.5 to 9.11.7 and 9.11.12 to 9.11.14.

21. Added OpenSHMEM profiling interface.
See Section 10.

22. Specified the validity of communication contexts, added the constant SHMEM_CTX_INVALID, and clarified the
behavior of shmem_ctx_* routines on invalid contexts.
See Section 9.5.

23. Clarified PE active set requirements.
See Section 9.10.

24. Clarified that when the size argument is zero, symmetric heap allocation routines perform no action and return a
null pointer; that symmetric heap management routines that perform no action do not perform a barrier; and that
the alignment argument to shmem_align must be power of two multiple of sizeof(void*).
See Sections 9.3.1, 9.3.3 and 9.3.4.

25. Clarified that the OpenSHMEM lock API provides a non-reentrant mutex and that shmem_clear_lock performs
a quiet operation on the default context.
See Section 9.13.1.

26. Clarified the atomicity guarantees of the OpenSHMEM memory model.
See Section 3.2.

G.3 Version 1.4

Major changes in OpenSHMEM 1.4 include multithreading support, contexts for communication management,
shmem_sync, shmem_calloc, expanded type support, a new namespace for atomic operations, atomic bitwise oper-
ations, shmem_test for nonblocking point-to-point synchronization, and C11 type-generic interfaces for point-to-point
synchronization.
The following list describes the specific changes in OpenSHMEM 1.4:

1. New communication management API, including shmem_ctx_create; shmem_ctx_destroy; and additional
RMA, AMO, and memory ordering routines that accept shmem_ctx_t arguments.
See Section 9.5.

2. New API shmem_sync_all and shmem_sync to provide PE synchronization without completing pending com-
munication operations.
See Sections 9.10.3 and 9.10.4.

3. Clarified that the OpenSHMEM extensions header files are required, even when empty.
See Section 5.

4. Clarified that the SHMEM_GET64 and SHMEM_GET64_NBI routines are included in the Fortran language
bindings.
See Sections 9.6.1.5 and 9.6.2.2.

5. Clarified that shmem_init must be matched with a call to shmem_finalize.
See Sections 9.1.1 and 9.1.4.

6. Added the SHMEM_SYNC_SIZE constant.
See Section 6.

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 182

7. Added type-generic interfaces for shmem_wait_until.
See Section 9.11.1.

8. Removed the volatile qualifiers from the ivar arguments to shmem_wait routines and the lock arguments in the
lock API. Rationale: Volatile qualifiers were added to several API routines in OpenSHMEM 1.3; however, they
were later found to be unnecessary.
See Sections 9.11.1 and 9.13.1.

9. Deprecated the SMA_* environment variables and added equivalent SHMEM_* environment variables.
See Section 8 and Annex F.2.9.

10. Added the C11 _Noreturn function specifier to shmem_global_exit.
See Section 9.1.6.

11. Clarified ordering semantics of memory ordering, point-to-point synchronization, and collective synchronization
routines.

12. Clarified deprecation overview and added deprecation rationale.
See Annexes F.1 and F.2.

13. Deprecated header directory mpp.
See Annex F.2.1.

14. Deprecated the shmem_wait functions and the long-typed C/C++ shmem_wait_until function.
See Section 9.11.1 and Annexes F.2.10 and F.2.11.

15. Added the shmem_test functions.
See Section 9.11.

16. Added the shmem_calloc function.
See Section 9.3.6.

17. Introduced the thread safe semantics that define the interaction between OpenSHMEM routines and user threads.
See Section 9.2.

18. Added the new routine shmem_init_thread to initialize the OpenSHMEM library with one of the defined thread
levels.
See Section 9.2.1.

19. Added the new routine shmem_query_thread to query the thread level provided by the OpenSHMEM imple-
mentation.
See Section 9.2.2.

20. Clarified the semantics of shmem_quiet for a multithreaded OpenSHMEM PE.
See Section 9.12.2.

21. Revised the description of shmem_barrier_all for a multithreaded OpenSHMEM PE.
See Section 9.10.1.

22. Revised the description of shmem_wait for a multithreaded OpenSHMEM PE.
See Section 9.11.1.

23. Clarified description for SHMEM_VENDOR_STRING.
See Section 6.

24. Clarified description for SHMEM_MAX_NAME_LEN.
See Section 6.

25. Clarified API description for shmem_info_get_name.
See Section 9.1.12.

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 183

26. Expanded the type support for RMA, AMO, and point-to-point synchronization operations.
See Tables 5, 6, 7 and 12.

27. Renamed AMO operations to use shmem_atomic_* prefix and deprecated old AMO routines.
See Section 9.7 and Annex F.2.12.

28. Added fetching and non-fetching bitwise AND, OR, and XOR atomic operations.
See Section 9.7.

29. Deprecated the entire Fortran API.
See Annex F.2.13.

30. Replaced the complex macro in complex-typed reductions with the C99 (and later) type specifier _Complex to
remove an implicit dependence on complex.h.
See Section 9.10.9.

31. Clarified that complex-typed reductions in C are optionally supported.
See Section 9.10.9.

G.4 Version 1.3

Major changes in OpenSHMEM 1.3 include the addition of nonblocking RMA operations, atomic Put and Get opera-
tions, all-to-all collectives, and C11 type-generic interfaces for RMA and AMO operations.
The following list describes the specific changes in OpenSHMEM 1.3:

1. Clarified implementation of PEs as threads.

2. Added const to every read-only pointer argument.

3. Clarified definition of Fence.
See Section 2.

4. Clarified implementation of symmetric memory allocation.
See Section 3.

5. Restricted atomic operation guarantees to other atomic operations with the same datatype.
See Section 3.2.

6. Deprecation of all constants that start with _SHMEM_*.
See Section 6 and Annex F.2.8.

7. Added a type-generic interface to OpenSHMEM RMA and AMO operations based on C11 Generics.
See Sections 9.6 and 9.7.

8. New nonblocking variants of remote memory access, SHMEM_PUT_NBI and SHMEM_GET_NBI.
See Sections 9.6.2.1 and 9.6.2.2.

9. New atomic elemental read and write operations, SHMEM_FETCH and SHMEM_SET.
See Sections 9.7.1.1 and 9.7.1.2.

10. New alltoall data exchange operations, SHMEM_ALLTOALL and SHMEM_ALLTOALLS.
See Sections 9.10.5 and 9.10.6.

11. Added volatile to remotely accessible pointer argument in SHMEM_WAIT and SHMEM_LOCK.
See Sections 9.11.1 and 9.13.1.

12. Deprecation of SHMEM_CACHE.
See Annex F.2.7.

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 184

G.5 Version 1.2

Major changes in OpenSHMEM 1.2 include a new initialization routine (shmem_init), improvements to the execu-
tion model with an explicit library-finalization routine (shmem_finalize), an early-exit routine (shmem_global_exit),
namespace standardization, and clarifications to several API descriptions.
The following list describes the specific changes in OpenSHMEM 1.2:

1. Added specification of pSync initialization for all routines that use it.

2. Replaced all placeholder variable names target with dest to avoid confusion with Fortran’s target keyword.

3. New Execution Model for exiting/finishing OpenSHMEM programs.
See Section 4.

4. New library constants to support API that query version and name information.
See Section 6.

5. New API shmem_init to provide mechanism to start an OpenSHMEM program and replace deprecated start_pes.
See Section 9.1.1 and Annex F.2.2.

6. Deprecation of _my_pe and _num_pes routines.
See Sections 9.1.2 and 9.1.3 and Annex F.2.4.

7. New API shmem_finalize to provide collective mechanism to cleanly exit an OpenSHMEM program and release
resources.
See Section 9.1.4.

8. New API shmem_global_exit to provide mechanism to exit an OpenSHMEM program.
See Section 9.1.6.

9. Clarification related to the address of the referenced object in shmem_ptr.
See Section 9.1.9.

10. New API to query the version and name information.
See Sections 9.1.11 and 9.1.12.

11. OpenSHMEM library API normalization. All C symmetric memory management API begins with shmem_.
See Section 9.3 and Annex F.2.4.

12. Notes and clarifications added to shmem_malloc.
See Section 9.3.1.

13. Deprecation of Fortran API routine SHMEM_PUT.
See Annex F.2.6. See OpenSHMEM 1.4, Section 9.5.1.

14. Clarification related to shmem_wait.
See Section 9.11.1.

15. Undefined behavior for null pointers without zero counts added.
See Annex C.

16. Added new Annex for clearly specifying deprecated API and its support across versions of the OpenSHMEM
Specification.
See Annex F.

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 185

G.6 Version 1.1

Major changes from OpenSHMEM 1.0 to OpenSHMEM 1.1 include the introduction of the shmemx.h header file for
nonstandard API extensions, clarifications to completion semantics and API descriptions in agreement with the SGI
SHMEM specification, and general readability and usability improvements to the document structure.
The following list describes the specific changes in OpenSHMEM 1.1:

1. Clarifications of the completion semantics of memory synchronization interfaces.
See Section 9.12.

2. Clarification of the completion semantics of memory load and store operations in context of shmem_barrier_all
and shmem_barrier routines.
See Sections 9.10.1 and 9.10.2.

3. Clarification of the completion and ordering semantics of shmem_quiet and shmem_fence.
See Sections 9.12.1 and 9.12.2.

4. Clarifications of the completion semantics of RMA and AMO routines.
See Sections 9.6 and 9.7.

5. Clarifications of the memory model and the memory alignment requirements for symmetric data objects.
See Section 3.

6. Clarification of the execution model and the definition of a PE.
See Section 4.

7. Clarifications of the semantics of shmem_pe_accessible and shmem_addr_accessible.
See Sections 9.1.7 and 9.1.8.

8. Added an annex on interoperability with MPI.
See Annex D.

9. Added examples to the different interfaces.

10. Clarification of the naming conventions for constant in C and Fortran.
See Sections 6 and 9.11.1.

11. Added API calls: shmem_char_p, shmem_char_g.
See Sections 9.6.1.2 and 9.6.1.6.

12. Removed API calls: shmem_char_put, shmem_char_get.
See Sections 9.6.1.1 and 9.6.1.5.

13. The usage of ptrdiff_t, size_t, and int in the interface signature was made consistent with the description.
See Section 9.10 and Sections 9.6.1.3 and 9.6.1.7.

14. Revised shmem_barrier example.
See Section 9.10.2.

15. Clarification of the initial value of pSync work arrays for shmem_barrier.
See Section 9.10.2.

16. Clarification of the expected behavior when multiple start_pes calls are encountered.
See Section 9.1.13.

17. Corrected the definition of atomic increment operation.
See Section 9.7.1.6.

18. Clarification of the size of the symmetric heap and when it is set.
See Section 9.3.

DRAFT

ANNEX G. CHANGES TO THIS DOCUMENT 186

19. Clarification of the integer and real sizes for Fortran API.
See Sections 9.7.1.3 to 9.7.1.8.

20. Clarification of the expected behavior on program exit.
See Section 4.

21. More detailed description for the progress of OpenSHMEM operations provided.
See Section 4.1.

22. Clarification of naming convention for nonstandard interfaces and their inclusion in shmemx.h.
See Section 5.

23. Various fixes to OpenSHMEM code examples across the Specification to include appropriate header files.

24. Removing requirement that implementations should detect size mismatch and return error information for shmal-
loc and ensuring consistent language.
See Section 9.3.1 and Annex C.

25. Fortran programming fixes for examples.
See Sections 9.10.9 and 9.11.1.

26. Clarifications of the reuse pSync and pWork across collectives.
See Sections 9.10 and 9.10.7 to 9.10.9.

27. Name changes for UV and ICE for SGI systems.
See Annex E.

DRAFT
Annex H

Errata

Errors or ambiguities in the OpenSHMEM specification may be discovered after publication. Errata, or corrections, are
included in the sections below indicating the version of the OpenSHMEM specification that required the correction or
clarification. These corrections have been applied to all subsequent versions of the specification and this section serves
as a historical record of the changes made to assist users and implementors with applying the necessary corrections.
Errata that result in a change to the specification are also included in Annex G. For an implementation to comply with
a particular version of OpenSHMEM, it must account for all errata associated with that version as indicated below.

H.1 Version 1.5

1. Removed OpenSHMEM 1.5 Table 9, which was an incomplete duplicate of OpenSHMEM 1.5 Table 10, and
clarified the types, names, and supporting operations for team-based reductions (G.1.16).

2. Clarified that source and dest arrays must be the same across PEs in OpenSHMEM reductions (G.1.17).

3. Clarified that Fence operations only guarantee ordering for operations that are performed on the same context
(G.1.18).

4. Clarified that shmem_test_all and shmem_test_all_vector routines return 1 when the test set is empty (G.1.19).

5. Clarified that shmem_team_split_strided and shmem_team_split_2d return a nonzero value when the parent
team is SHMEM_TEAM_INVALID (G.1.20).

6. Corrected the level argument’s recommended value in API notes for shmem_pcontrol to indicate that the value
should be greater than 2 to enable profiling with profile library defined effects and additional arguments (G.1.21).

7. Added a const qualifier to the cmp_values argument in the following point-to-point synchronization
routines: shmem_wait_until_all_vector, shmem_wait_until_any_vector, shmem_wait_until_some_vector,
shmem_test_all_vector, shmem_test_any_vector, and shmem_test_some_vector (G.1.22).

187

DRAFT
Glossary

Blocking An OpenSHMEM routine for which return from a call to that routine guarantees local completion for its
associated local buffers.

Local completion of an OpenSHMEM operation indicates that all local objects involved in the operation are locally
complete.

For an OpenSHMEM operation that reads a local object of memory—for example, the source argument of
shmem_put or, for only the root PE, shmem_team_broadcast—local completion of that object specifies the
point (in time) after which a write (or update) to that object by the PE initiating the operation would not affect
the value(s) read by the OpenSHMEM implementation in performing the operation.

For an OpenSHMEM operation that writes a local object of memory—for example, the dest argument of
shmem_get or shmem_team_broadcast—local completion of that object specifies the point after which a read
of that local object by the PE initiating the operation will return the value(s) produced by the OpenSHMEM
implementation in performing the operation.

Nonblocking An OpenSHMEM routine for which return from a call to that routine guarantees neither local nor remote
completion.

Remote completion of an OpenSHMEM operation indicates that all remote objects involved in the operation are
remotely complete.

For an OpenSHMEM operation that reads a remote object of memory—for example, the source argument of
shmem_get or shmem_team_alltoall—remote completion of that object specifies the point (in time) after which a
write (or update) to that object by any PE would not affect the value(s) read by the OpenSHMEM implementation
in performing the operation.

For an OpenSHMEM operation that writes a remote object of memory—for example, the dest argument of
shmem_put or shmem_team_alltoall—remote completion of that object specifies the point after which a read
of that remote object by the target PE will return the value(s) produced by the OpenSHMEM implementation in
performing the operation.

See shmem_quiet for mechanisms that ensure remote completion (Section 9.12.2).

188

DRAFT
Index

_SHMEM_BARRIER_SYNC_SIZE, 11, 172
_SHMEM_BCAST_SYNC_SIZE, 11, 172
_SHMEM_CMP_EQ, 13, 172
_SHMEM_CMP_GE, 14, 172
_SHMEM_CMP_GT, 14, 172
_SHMEM_CMP_LE, 14, 172
_SHMEM_CMP_LT, 13, 172
_SHMEM_CMP_NE, 13, 172
_SHMEM_COLLECT_SYNC_SIZE, 11, 172
_SHMEM_MAJOR_VERSION, 12, 172
_SHMEM_MAX_NAME_LEN, 13, 172
_SHMEM_MINOR_VERSION, 12, 172
_SHMEM_REDUCE_MIN_WRKDATA_SIZE, 12, 172
_SHMEM_REDUCE_SYNC_SIZE, 11, 172
_SHMEM_SYNC_VALUE, 10, 172
_SHMEM_VENDOR_STRING, 13, 172
_my_pe, 172
_num_pes, 172

Bitwise AMO Types and Names, 69

Constants, 9

Deprecated API, 172

Environment Variables, 15
Extended AMO Types and Names, 68

Handles, 14

Library Constants, 9
Library Handles, 14
List of operations affected by OpenSHMEM Memory Or-

dering routines, 149

Memory usage hints, 34
MY_PE, 172

NUM_PES, 172

Point-to-Point Comparison Constants, 128
Point-to-Point Synchronization Types and Names, 127

Reduction Types, Names and Supporting Operations for
Active-Set-Based Reductions, 120

Reduction Types, Names, and Supporting Operations for
Team-Based Reductions, 119

Session options, 98
shfree, 172
shmalloc, 172
shmem_add, 77, 173
shmem_addr_accessible, 23
shmem_align, 32
shmem_alltoall, 108
shmem_alltoall32, 108, 176
shmem_alltoall64, 108, 176
SHMEM_ALLTOALL_SYNC_SIZE, 12, 173, 176
shmem_alltoall{32, 64}, 173
shmem_alltoallmem, 108
shmem_alltoalls, 110
shmem_alltoalls32, 111, 176
shmem_alltoalls64, 111, 176
SHMEM_ALLTOALLS_SYNC_SIZE, 12, 173, 176
shmem_alltoalls{32, 64}, 173
shmem_alltoallsmem, 111
shmem_and_reduce, 118
shmem_atomic_add, 77
shmem_atomic_and, 79
shmem_atomic_compare_swap, 70
shmem_atomic_compare_swap_nbi, 83
shmem_atomic_fetch, 67
shmem_atomic_fetch_add, 75
shmem_atomic_fetch_add_nbi, 86
shmem_atomic_fetch_and, 78
shmem_atomic_fetch_and_nbi, 87
shmem_atomic_fetch_inc, 73
shmem_atomic_fetch_inc_nbi, 85
shmem_atomic_fetch_nbi, 82
shmem_atomic_fetch_or, 79
shmem_atomic_fetch_or_nbi, 87
shmem_atomic_fetch_xor, 81
shmem_atomic_fetch_xor_nbi, 88
shmem_atomic_inc, 74
shmem_atomic_or, 80
shmem_atomic_set, 69
shmem_atomic_swap, 72
shmem_atomic_swap_nbi, 84
shmem_atomic_xor, 82
shmem_barrier, 103, 173
shmem_barrier_all, 102
SHMEM_BARRIER_SYNC_SIZE, 11, 173, 176
SHMEM_BCAST_SYNC_SIZE, 11, 173, 176

189

DRAFT

INDEX 190

shmem_broadcast, 113
shmem_broadcast32, 113, 176
shmem_broadcast64, 113, 176
shmem_broadcast{32, 64}, 173
shmem_broadcastmem, 113
shmem_calloc, 34
SHMEM_CLEAR_CACHE_INV, 172
shmem_clear_cache_inv, 172
shmem_clear_cache_line_inv, 172
shmem_clear_lock, 156
SHMEM_CMP_EQ, 13, 128
SHMEM_CMP_GE, 14, 128
SHMEM_CMP_GT, 14, 128
SHMEM_CMP_LE, 14, 128
SHMEM_CMP_LT, 13, 128
SHMEM_CMP_NE, 13, 128
shmem_collect, 115
shmem_collect32, 116, 176
shmem_collect64, 116, 176
SHMEM_COLLECT_SYNC_SIZE, 11, 173, 176
shmem_collect{32, 64}, 173
shmem_collectmem, 116
shmem_cswap, 70, 173
shmem_ctx_create, 47
SHMEM_CTX_DEFAULT, 15, 46
shmem_ctx_destroy, 50
shmem_ctx_fence, 149
shmem_ctx_get_team, 54
shmem_ctx_getmem, 61
shmem_ctx_getmem_nbi, 66
shmem_ctx_getSIZE, 61
shmem_ctx_getSIZE_nbi, 66
shmem_ctx_ibgetSIZE, 64
shmem_ctx_ibputSIZE, 60
shmem_ctx_igetSIZE, 63
SHMEM_CTX_INVALID, 10, 47, 48, 54, 97
shmem_ctx_iputSIZE, 58
SHMEM_CTX_NOSTORE, 10, 47
shmem_ctx_pe_quiet, 152
SHMEM_CTX_PRIVATE, 10, 47, 166
shmem_ctx_putmem, 56
shmem_ctx_putmem_nbi, 65
shmem_ctx_putmem_signal, 90
shmem_ctx_putmem_signal_nbi, 92
shmem_ctx_putSIZE, 56
shmem_ctx_putSIZE_nbi, 65
shmem_ctx_putSIZE_signal, 90
shmem_ctx_putSIZE_signal_nbi, 92
shmem_ctx_quiet, 150
SHMEM_CTX_SERIALIZED, 10, 47
SHMEM_CTX_SESSION_*, 95
SHMEM_CTX_SESSION_BATCH, 10, 98
shmem_ctx_session_start, 97
shmem_ctx_session_stop, 98

SHMEM_CTX_SESSION_TOTAL_OPS, 10, 96
shmem_ctx_signal_add, 94
shmem_ctx_signal_set, 95
shmem_ctx_TYPENAME_atomic_add, 77
shmem_ctx_TYPENAME_atomic_and, 79
shmem_ctx_TYPENAME_atomic_compare_swap, 70
shmem_ctx_TYPENAME_atomic_compare_swap_nbi,

83
shmem_ctx_TYPENAME_atomic_fetch, 68
shmem_ctx_TYPENAME_atomic_fetch_add, 75
shmem_ctx_TYPENAME_atomic_fetch_add_nbi, 86
shmem_ctx_TYPENAME_atomic_fetch_and, 78
shmem_ctx_TYPENAME_atomic_fetch_and_nbi, 87
shmem_ctx_TYPENAME_atomic_fetch_inc, 73
shmem_ctx_TYPENAME_atomic_fetch_inc_nbi, 85
shmem_ctx_TYPENAME_atomic_fetch_nbi, 82
shmem_ctx_TYPENAME_atomic_fetch_or, 79
shmem_ctx_TYPENAME_atomic_fetch_or_nbi, 87
shmem_ctx_TYPENAME_atomic_fetch_xor, 81
shmem_ctx_TYPENAME_atomic_fetch_xor_nbi, 88
shmem_ctx_TYPENAME_atomic_inc, 74
shmem_ctx_TYPENAME_atomic_or, 80
shmem_ctx_TYPENAME_atomic_set, 69
shmem_ctx_TYPENAME_atomic_swap, 72
shmem_ctx_TYPENAME_atomic_swap_nbi, 84
shmem_ctx_TYPENAME_atomic_xor, 82
shmem_ctx_TYPENAME_g, 62
shmem_ctx_TYPENAME_get, 61
shmem_ctx_TYPENAME_get_nbi, 66
shmem_ctx_TYPENAME_ibget, 64
shmem_ctx_TYPENAME_ibput, 59
shmem_ctx_TYPENAME_iget, 63
shmem_ctx_TYPENAME_iput, 58
shmem_ctx_TYPENAME_p, 57
shmem_ctx_TYPENAME_put, 56
shmem_ctx_TYPENAME_put_nbi, 65
shmem_ctx_TYPENAME_put_signal, 90
shmem_ctx_TYPENAME_put_signal_nbi, 92
SHMEM_DEBUG, 16
shmem_fadd, 76, 173
shmem_fcollect, 115
shmem_fcollect32, 116, 176
shmem_fcollect64, 116, 176
shmem_fcollect{32, 64}, 173
shmem_fcollectmem, 116
shmem_fence, 149
shmem_fetch, 68, 173
shmem_finalize, 19
shmem_finc, 73, 173
shmem_free, 31
shmem_g, 61
shmem_get, 60
shmem_get_nbi, 66
shmem_getmem, 61

DRAFT

INDEX 191

shmem_getmem_nbi, 66
shmem_getSIZE, 61
shmem_getSIZE_nbi, 66
shmem_global_exit, 21
shmem_ibget, 63
shmem_ibgetSIZE, 64
shmem_ibput, 59
shmem_ibputSIZE, 60
shmem_iget, 62
shmem_igetSIZE, 63
shmem_inc, 74, 173
SHMEM_INFO, 15
shmem_info_get_name, 26
shmem_info_get_version, 26
shmem_init, 17
shmem_init_thread, 28
shmem_iput, 58
shmem_iputSIZE, 58
SHMEM_MAJOR_VERSION, 12
shmem_malloc, 30
SHMEM_MALLOC_ATOMICS_REMOTE, 10, 34
SHMEM_MALLOC_SIGNAL_REMOTE, 10, 34
shmem_malloc_with_hints, 33
SHMEM_MAX_NAME_LEN, 13
shmem_max_reduce, 120
shmem_min_reduce, 121
SHMEM_MINOR_VERSION, 12
shmem_my_pe, 18
shmem_n_pes, 19
shmem_or_reduce, 119
shmem_p, 57
shmem_pcontrol, 158
shmem_pe_accessible, 22
shmem_pe_quiet, 152
shmem_prod_reduce, 122
shmem_ptr, 24
SHMEM_PUT, 172
shmem_put, 56
shmem_put_nbi, 65
shmem_put_signal, 90
shmem_put_signal_nbi, 92
shmem_putmem, 56
shmem_putmem_nbi, 65
shmem_putmem_signal, 90
shmem_putmem_signal_nbi, 92
shmem_putSIZE, 56
shmem_putSIZE_nbi, 65
shmem_putSIZE_signal, 90
shmem_putSIZE_signal_nbi, 92
shmem_query_initialized, 21
shmem_query_thread, 29
shmem_quiet, 150, 173
shmem_realloc, 31

SHMEM_REDUCE_MIN_WRKDATA_SIZE, 12, 173,
176

SHMEM_REDUCE_SYNC_SIZE, 11, 173, 176
shmem_set, 69, 173
SHMEM_SET_CACHE_INV, 172
shmem_set_cache_inv, 172
SHMEM_SET_CACHE_LINE_INV, 172
shmem_set_cache_line_inv, 172
shmem_set_lock, 156
shmem_short_test, 173
shmem_short_wait_until, 173
SHMEM_SIGNAL_ADD, 10, 89, 90
shmem_signal_add, 94
shmem_signal_fetch, 94
SHMEM_SIGNAL_SET, 10, 89, 90
shmem_signal_set, 95
shmem_signal_wait_until, 148
shmem_sum_exscan, 125
shmem_sum_inscan, 125
shmem_sum_reduce, 121
shmem_swap, 72, 173
SHMEM_SYMMETRIC_SIZE, 16
shmem_sync, 105, 173, 176
shmem_sync_all, 107
SHMEM_SYNC_SIZE, 11, 173, 176
SHMEM_SYNC_VALUE, 10, 101, 173, 176
shmem_team_create_ctx, 48
shmem_team_destroy, 45
shmem_team_get_config, 38
SHMEM_TEAM_INVALID, 9, 25, 36–39, 41, 43, 46,

48, 54, 100, 105, 109, 114, 115, 117, 123, 126,
179, 187

shmem_team_my_pe, 36
shmem_team_n_pes, 36
SHMEM_TEAM_NUM_CONTEXTS, 9, 38
shmem_team_ptr, 25
SHMEM_TEAM_SHARED, 5, 15
shmem_team_split_2d, 42
shmem_team_split_strided, 40
shmem_team_sync, 105, 176
shmem_team_translate_pe, 38
SHMEM_TEAM_WORLD, 5, 14, 25, 35, 39, 42, 44, 46,

54, 166, 168
shmem_test, 138
shmem_test(short ...), 173
shmem_test(unsigned short ...), 173
shmem_test_all, 140
shmem_test_all_vector, 144
shmem_test_any, 141
shmem_test_any_vector, 145
shmem_test_lock, 156
shmem_test_some, 142
shmem_test_some_vector, 147
SHMEM_THREAD_FUNNELED, 9, 27

DRAFT

INDEX 192

SHMEM_THREAD_MULTIPLE, 9, 28
SHMEM_THREAD_SERIALIZED, 9, 28
SHMEM_THREAD_SINGLE, 9, 27
SHMEM_UDCFLUSH, 172
shmem_udcflush, 172
SHMEM_UDCFLUSH_LINE, 172
shmem_udcflush_line, 172
shmem_ushort_test, 173
shmem_ushort_wait_until, 173
SHMEM_VENDOR_STRING, 13
SHMEM_VERSION, 15
shmem_wait, 128, 173
shmem_wait_until, 128, 173
shmem_wait_until(short ...), 173
shmem_wait_until(unsigned short ...), 173
shmem_wait_until_all, 129
shmem_wait_until_all_vector, 134
shmem_wait_until_any, 130
shmem_wait_until_any_vector, 135
shmem_wait_until_some, 132
shmem_wait_until_some_vector, 137
shmem_xor_reduce, 120
shmem_TYPENAME_add, 77, 173
shmem_TYPENAME_alltoall, 108
shmem_TYPENAME_alltoalls, 110
shmem_TYPENAME_and_reduce, 118
shmem_TYPENAME_and_to_all, 119, 173, 176
shmem_TYPENAME_atomic_add, 77
shmem_TYPENAME_atomic_and, 79
shmem_TYPENAME_atomic_compare_swap, 70
shmem_TYPENAME_atomic_compare_swap_nbi, 83
shmem_TYPENAME_atomic_fetch, 68
shmem_TYPENAME_atomic_fetch_add, 75
shmem_TYPENAME_atomic_fetch_add_nbi, 86
shmem_TYPENAME_atomic_fetch_and, 78
shmem_TYPENAME_atomic_fetch_and_nbi, 87
shmem_TYPENAME_atomic_fetch_inc, 73
shmem_TYPENAME_atomic_fetch_inc_nbi, 85
shmem_TYPENAME_atomic_fetch_nbi, 82
shmem_TYPENAME_atomic_fetch_or, 79
shmem_TYPENAME_atomic_fetch_or_nbi, 87
shmem_TYPENAME_atomic_fetch_xor, 81
shmem_TYPENAME_atomic_fetch_xor_nbi, 88
shmem_TYPENAME_atomic_inc, 74
shmem_TYPENAME_atomic_or, 80
shmem_TYPENAME_atomic_set, 69
shmem_TYPENAME_atomic_swap, 72
shmem_TYPENAME_atomic_swap_nbi, 84
shmem_TYPENAME_atomic_xor, 82
shmem_TYPENAME_broadcast, 113
shmem_TYPENAME_collect, 116
shmem_TYPENAME_cswap, 71, 173
shmem_TYPENAME_fadd, 76, 173
shmem_TYPENAME_fcollect, 116

shmem_TYPENAME_fetch, 68, 173
shmem_TYPENAME_finc, 73, 173
shmem_TYPENAME_g, 62
shmem_TYPENAME_get, 61
shmem_TYPENAME_get_nbi, 66
shmem_TYPENAME_ibget, 64
shmem_TYPENAME_ibput, 59
shmem_TYPENAME_iget, 63
shmem_TYPENAME_inc, 74, 173
shmem_TYPENAME_iput, 58
shmem_TYPENAME_max_reduce, 121
shmem_TYPENAME_max_to_all, 121, 173, 176
shmem_TYPENAME_min_reduce, 121
shmem_TYPENAME_min_to_all, 121, 173, 176
shmem_TYPENAME_or_reduce, 119
shmem_TYPENAME_or_to_all, 120, 173, 176
shmem_TYPENAME_p, 57
shmem_TYPENAME_prod_reduce, 122
shmem_TYPENAME_prod_to_all, 122, 173, 176
shmem_TYPENAME_put, 56
shmem_TYPENAME_put_nbi, 65
shmem_TYPENAME_put_signal, 90
shmem_TYPENAME_put_signal_nbi, 92
shmem_TYPENAME_set, 70, 173
shmem_TYPENAME_sum_exscan, 125
shmem_TYPENAME_sum_inscan, 125
shmem_TYPENAME_sum_reduce, 121
shmem_TYPENAME_sum_to_all, 122, 173, 176
shmem_TYPENAME_swap, 72, 173
shmem_TYPENAME_test, 138
shmem_TYPENAME_test_all, 140
shmem_TYPENAME_test_all_vector, 145
shmem_TYPENAME_test_any, 141
shmem_TYPENAME_test_any_vector, 146
shmem_TYPENAME_test_some, 142
shmem_TYPENAME_test_some_vector, 147
shmem_TYPENAME_wait, 128, 173
shmem_TYPENAME_wait_until, 128
shmem_TYPENAME_wait_until_all, 129
shmem_TYPENAME_wait_until_all_vector, 134
shmem_TYPENAME_wait_until_any, 131
shmem_TYPENAME_wait_until_any_vector, 135
shmem_TYPENAME_wait_until_some, 132
shmem_TYPENAME_wait_until_some_vector, 137
shmem_TYPENAME_xor_reduce, 120
shmem_TYPENAME_xor_to_all, 120, 173, 176
shmemalign, 172
shrealloc, 172
SMA_DEBUG, 173
SMA_INFO, 173
SMA_SYMMETRIC_SIZE, 173
SMA_VERSION, 172
Standard AMO Types and Names, 68
Standard RMA Types and Names, 55

DRAFT

INDEX 193

START_PES, 172
start_pes, 27, 172

Tables
Bitwise AMO Types and Names, 69
Constants, 9
Deprecated API, 172
Environment Variables, 15
Extended AMO Types and Names, 68
Handles, 14
Library Constants, 9
Library Handles, 14
List of operations affected by OpenSHMEM Mem-

ory Ordering routines, 149
Memory usage hints, 34
Point-to-Point Comparison Constants, 128
Point-to-Point Synchronization Types and Names,

127
Reduction Types, Names and Supporting Operations

for Active-Set-Based Reductions, 120
Reduction Types, Names, and Supporting Operations

for Team-Based Reductions, 119
Session options, 98
Standard AMO Types and Names, 68
Standard RMA Types and Names, 55

	The OpenSHMEM Effort
	Programming Model Overview
	Memory Model
	Pointers to Symmetric Objects
	Atomicity Guarantees

	Execution Model
	Progress of OpenSHMEM Operations
	Invoking OpenSHMEM Operations

	Language Bindings and Conformance
	Library Constants
	Library Handles
	Environment Variables
	OpenSHMEM Library API
	Library Setup, Exit, and Query Routines
	SHMEM_INIT
	SHMEM_MY_PE
	SHMEM_N_PES
	SHMEM_FINALIZE
	SHMEM_QUERY_INITIALIZED
	SHMEM_GLOBAL_EXIT
	SHMEM_PE_ACCESSIBLE
	SHMEM_ADDR_ACCESSIBLE
	SHMEM_PTR
	SHMEM_TEAM_PTR
	SHMEM_INFO_GET_VERSION
	SHMEM_INFO_GET_NAME
	START_PES

	Thread Support
	SHMEM_INIT_THREAD
	SHMEM_QUERY_THREAD

	Memory Management Routines
	SHMEM_MALLOC
	SHMEM_FREE
	SHMEM_REALLOC
	SHMEM_ALIGN
	SHMEM_MALLOC_WITH_HINTS
	SHMEM_CALLOC

	Team Management Routines
	SHMEM_TEAM_MY_PE
	SHMEM_TEAM_N_PES
	SHMEM_TEAM_CONFIG_T
	SHMEM_TEAM_GET_CONFIG
	SHMEM_TEAM_TRANSLATE_PE
	SHMEM_TEAM_SPLIT_STRIDED
	SHMEM_TEAM_SPLIT_2D
	SHMEM_TEAM_DESTROY

	Communication Management Routines
	SHMEM_CTX_CREATE
	SHMEM_TEAM_CREATE_CTX
	SHMEM_CTX_DESTROY
	SHMEM_CTX_GET_TEAM

	Remote Memory Access Routines
	Blocking Remote Memory Access Routines
	SHMEM_PUT
	SHMEM_P
	SHMEM_IPUT
	SHMEM_IBPUT
	SHMEM_GET
	SHMEM_G
	SHMEM_IGET
	SHMEM_IBGET

	Nonblocking Remote Memory Access Routines
	SHMEM_PUT_NBI
	SHMEM_GET_NBI

	Atomic Memory Operations
	Blocking Atomic Memory Operations
	SHMEM_ATOMIC_FETCH
	SHMEM_ATOMIC_SET
	SHMEM_ATOMIC_COMPARE_SWAP
	SHMEM_ATOMIC_SWAP
	SHMEM_ATOMIC_FETCH_INC
	SHMEM_ATOMIC_INC
	SHMEM_ATOMIC_FETCH_ADD
	SHMEM_ATOMIC_ADD
	SHMEM_ATOMIC_FETCH_AND
	SHMEM_ATOMIC_AND
	SHMEM_ATOMIC_FETCH_OR
	SHMEM_ATOMIC_OR
	SHMEM_ATOMIC_FETCH_XOR
	SHMEM_ATOMIC_XOR

	Nonblocking Atomic Memory Operations
	SHMEM_ATOMIC_FETCH_NBI
	SHMEM_ATOMIC_COMPARE_SWAP_NBI
	SHMEM_ATOMIC_SWAP_NBI
	SHMEM_ATOMIC_FETCH_INC_NBI
	SHMEM_ATOMIC_FETCH_ADD_NBI
	SHMEM_ATOMIC_FETCH_AND_NBI
	SHMEM_ATOMIC_FETCH_OR_NBI
	SHMEM_ATOMIC_FETCH_XOR_NBI

	Signaling Operations
	Atomicity Guarantees for Signaling Operations
	Available Signal Operators
	SHMEM_PUT_SIGNAL
	SHMEM_PUT_SIGNAL_NBI
	SHMEM_SIGNAL_ADD
	SHMEM_SIGNAL_FETCH
	SHMEM_SIGNAL_SET

	Session Routines
	SHMEM_CTX_SESSION_CONFIG_T
	SHMEM_CTX_SESSION_START
	SHMEM_CTX_SESSION_STOP

	Collective Routines
	SHMEM_BARRIER_ALL
	SHMEM_BARRIER
	SHMEM_SYNC
	SHMEM_SYNC_ALL
	SHMEM_ALLTOALL
	SHMEM_ALLTOALLS
	SHMEM_BROADCAST
	SHMEM_COLLECT, SHMEM_FCOLLECT
	SHMEM_REDUCTIONS
	AND
	OR
	XOR
	MAX
	MIN
	SUM
	PROD

	SHMEM_SCAN

	Point-To-Point Synchronization Routines
	SHMEM_WAIT_UNTIL
	SHMEM_WAIT_UNTIL_ALL
	SHMEM_WAIT_UNTIL_ANY
	SHMEM_WAIT_UNTIL_SOME
	SHMEM_WAIT_UNTIL_ALL_VECTOR
	SHMEM_WAIT_UNTIL_ANY_VECTOR
	SHMEM_WAIT_UNTIL_SOME_VECTOR
	SHMEM_TEST
	SHMEM_TEST_ALL
	SHMEM_TEST_ANY
	SHMEM_TEST_SOME
	SHMEM_TEST_ALL_VECTOR
	SHMEM_TEST_ANY_VECTOR
	SHMEM_TEST_SOME_VECTOR
	SHMEM_SIGNAL_WAIT_UNTIL

	Memory Ordering Routines
	SHMEM_FENCE
	SHMEM_QUIET
	SHMEM_PE_QUIET
	Synchronization and Communication Ordering in OpenSHMEM

	Distributed Locking Routines
	SHMEM_LOCK

	OpenSHMEM Profiling Interface
	Control of Profiling
	SHMEM_PCONTROL

	Example Implementations
	Profiler
	OpenSHMEM Library

	Limitations
	Multiple Counting
	Separate Build and Link
	C11 Type-Generic Interfaces

	Writing OpenSHMEM Programs
	Compiling and Running Programs
	Compilation
	Running Programs

	Undefined Behavior in OpenSHMEM
	Interoperability with Other Programming Models
	MPI Interoperability
	Initialization
	Dynamic Process Creation
	Thread Safety
	Mapping Process Identification Numbers
	RMA Programming Models
	Communication Progress

	History of OpenSHMEM
	Deprecated API
	Overview
	Deprecation Rationale
	Header Directory: mpp
	C/C++: start_pes
	Implicit Finalization
	C/C++: _my_pe, _num_pes, shmalloc, shfree, shrealloc, shmemalign
	Fortran: START_PES, MY_PE, NUM_PES
	Fortran: SHMEM_PUT
	SHMEM_CACHE
	SHMEM* Library Constants
	SMA_* Environment Variables
	C/C++: shmem_wait
	C/C++: shmem_wait_until
	C11 and C/C++: shmem_fetch, shmem_set, shmem_cswap, shmem_swap, shmem_finc, shmem_inc, shmem_fadd, shmem_add
	Fortran API
	Active-set-based library constants and collectives
	C/C++: shmem_barrier
	C11 and C/C++: short and unsigned short variants of shmem_wait_until and shmem_test
	Table 12: point-to-point synchronization types

	Changes to this Document
	Version 1.6
	Version 1.5
	Version 1.4
	Version 1.3
	Version 1.2
	Version 1.1

	Errata
	Version 1.5

	Glossary
	Index

