
Graph-Based Intermediate Representations:
An Overview and Perspectives

Peter Sovietov

2/85About me (in compiler-related context)

● IntellaSys with Chuck Moore (author of Forth language).
Superoptimizer and a mapper of high-level task graphs for
custom multicore chips with 144 PEs.

● JBOG, Origin PC, Corsair.
DSL compilers for FPGA soft-processors.

● RDI Kvant, MSU, MALT System.
SW/HW co-design and C-like DSL compilers for
domain-specific accelerators.

● RTU MIREA.
PhD in compiler design. DSLs and compilers for
high-level synthesis of pipelined accelerators.

3/85IR is the heart of the compiler. What is a good IR?

● Use of normalization. Functionally equal but syntactically different
source fragments should be mapped to the same canonical IR code.

● Easy access to the non-local context of any instruction. There is no
such access if we use IRs based on lists of instructions.

● Executable semantics. Phi nodes are non-interpretable.

● Support for different models of computation, including parallel ones.
LLVM IR is RISC-based.

● Ability to combine different transformations in a single pass. Register
allocation and instruction scheduling are best done together.

● Support of both high-level and low-level constructs.
There is no loop construct in LLVM IR.

● Engineering considerations.Use of performant algorithms, small
memory footprint, simple implementation.

4/85IR is the heart of the compiler. What is a good IR?

● Use of normalization. Functionally equal but syntactically different
source fragments should be mapped to the same canonical IR code.

● Easy access to the non-local context of any instruction. There is no
such access if we use IRs based on lists of instructions.

● Executable semantics. Phi nodes are non-interpretable.

● Support for different models of computation, including parallel ones.
LLVM IR is RISC-based.

● Ability to combine different transformations in a single pass. Register
allocation and instruction scheduling are best done together.

● Support of both high-level and low-level constructs.
There is no loop construct in LLVM IR.

● Engineering considerations.Use of performant algorithms, small
memory footprint, simple implementation.

5/85IR is the heart of the compiler. What is a good IR?

● Use of normalization. Functionally equal but syntactically different
source fragments should be mapped to the same canonical IR code.

● Easy access to the non-local context of any instruction. There is no
such access if we use IRs based on lists of instructions.

● Executable semantics. Phi nodes are non-interpretable.

● Support for different models of computation, including parallel ones.
LLVM IR is RISC-based.

● Ability to combine different transformations in a single pass. Register
allocation and instruction scheduling are best done together.

● Support of both high-level and low-level constructs.
There is no loop construct in LLVM IR.

● Engineering considerations.Use of performant algorithms, small
memory footprint, simple implementation.

6/85IR is the heart of the compiler. What is a good IR?

● Use of normalization. Functionally equal but syntactically different
source fragments should be mapped to the same canonical IR code.

● Easy access to the non-local context of any instruction. There is no
such access if we use IRs based on lists of instructions.

● Executable semantics. Phi nodes are non-interpretable.

● Support for different models of computation, including parallel ones.
LLVM IR is RISC-based.

● Ability to combine different transformations in a single pass. Register
allocation and instruction scheduling are best done together.

● Support of both high-level and low-level constructs.
There is no loop construct in LLVM IR.

● Engineering considerations.Use of performant algorithms, small
memory footprint, simple implementation.

7/85IR is the heart of the compiler. What is a good IR?

● Use of normalization. Functionally equal but syntactically different
source fragments should be mapped to the same canonical IR code.

● Easy access to the non-local context of any instruction. There is no
such access if we use IRs based on lists of instructions.

● Executable semantics. Phi nodes are non-interpretable.

● Support for different models of computation, including parallel ones.
LLVM IR is RISC-based.

● Ability to combine different transformations in a single pass. Register
allocation and instruction scheduling are best done together.

● Support of both high-level and low-level constructs.
There is no loop construct in LLVM IR.

● Engineering considerations.Use of performant algorithms, small
memory footprint, simple implementation.

8/85IR is the heart of the compiler. What is a good IR?

● Use of normalization. Functionally equal but syntactically different
source fragments should be mapped to the same canonical IR code.

● Easy access to the non-local context of any instruction. There is no
such access if we use IRs based on lists of instructions.

● Executable semantics. Phi nodes are non-interpretable.

● Support for different models of computation, including parallel ones.
LLVM IR is RISC-based.

● Ability to combine different transformations in a single pass. Register
allocation and instruction scheduling are best done together.

● Support of both high-level and low-level constructs.
There is no loop construct in LLVM IR.

● Engineering considerations.Use of performant algorithms, small
memory footprint, simple implementation.

9/85IR is the heart of the compiler. What is a good IR?

● Use of normalization. Functionally equal but syntactically different
source fragments should be mapped to the same canonical IR code.

● Easy access to the non-local context of any instruction. There is no
such access if we use IRs based on lists of instructions.

● Executable semantics. Phi nodes are non-interpretable.

● Support for different models of computation, including parallel ones.
LLVM IR is RISC-based.

● Ability to combine different transformations in a single pass. Register
allocation and instruction scheduling are best done together.

● Support of both high-level and low-level constructs.
There is no loop construct in LLVM IR.

● Engineering considerations. Use of performant algorithms, small
memory footprint, simple implementation.

10/85What is graph-based IR? These are graphs too…

AST
Hybrid IR:

CFG + SSA + lists of instructions

11/85The class of graph-based IRs has many names

● Sea of nodes.

● Graph IR.

● Program dependence graph.

● Data dependence graph.

● Data-centric IR.

● Dataflow-centric IR.

● Dataflow IR.

● …

12/85Graph-based IR

● Single graph structure.

● Using one of the dataflow models.

● Optimizations are done by simple
algorithms on graphs.

● Optimizations without a schedule.

13/85Development of graph-based IRs

Main uses: JIT compilers, deep learning compilers, high-level synthesis.

1. Classical dataflow models
2. Program dependence graphs
3. Gated data dependence graphs
4. Perspectives

15/85Static dataflow

This model was proposed in the 1970s by Jack Dennis.

Data is produced and consumed by nodes in the form of
tokens.

Node firing rules:

1. All inputs of the node have a token.
2. All consumers' inputs connected to the node’s output

are empty.

16/85Static dataflow: example of execution (1)

This model was proposed in the 1970s by Jack Dennis.

Data is produced and consumed by nodes in the form of
tokens.

Node firing rules:

1. All inputs of the node have a token.
2. All consumers' inputs connected to the node’s output

are empty.

17/85Static dataflow: example of execution (2)

This model was proposed in the 1970s by Jack Dennis.

Data is produced and consumed by nodes in the form of
tokens.

Node firing rules:

1. All inputs of the node have a token.
2. All consumers' inputs connected to the node’s output

are empty.

18/85Static dataflow: example of execution (3)

This model was proposed in the 1970s by Jack Dennis.

Data is produced and consumed by nodes in the form of
tokens.

Node firing rules:

1. All inputs of the node have a token.
2. All consumers' inputs connected to the node’s output

are empty.

19/85Static dataflow: example of execution (4)

Lots of parallelism!

In addition to the data-driven model, there is also a
demand-driven model: from outputs to inputs and back.

20/85A toy compiler: linear code to dataflow IR (1)
def add(*node):
 n = next(index)
 graph[n] = node
 return n

We use env and graph tables to get the generated code in SSA form;
every expression has a unique index in graph.

def parse_stmt(tree):
 match tree:
 case Assign([Name(name)], expr):
 env[name] = parse_expr(expr)
 case Return(value):
 add('return', parse_expr(value))

def parse_expr(tree):
 match tree:
 case Constant(val):
 return add('const', val)
 case Name(name):
 if name not in env:
 env[name] = add('in', name)
 return env[name]
 case BinOp(x, op, y):
 a, b = parse_expr(x), parse_expr(y)
 return add(get_op_name(op), a, b)

21/85A toy compiler: linear code to dataflow IR (2)
def add(*node):
 n = next(index)
 graph[n] = node
 return n

def parse_stmt(tree):
 match tree:
 case Assign([Name(name)], expr):
 env[name] = parse_expr(expr)
 case Return(value):
 add('return', parse_expr(value))

def parse_expr(tree):
 match tree:
 case Constant(val):
 return add('const', val)
 case Name(name):
 if name not in env:
 env[name] = add('in', name)
 return env[name]
 case BinOp(x, op, y):
 a, b = parse_expr(x), parse_expr(y)
 return add(get_op_name(op), a, b)

We use env and graph tables to get the generated code in SSA form;
every expression value has a unique index in graph.
This is LVN and it can be seen as a form of symbolic execution.

22/85A toy compiler: linear code to dataflow IR (3)
def add(*node):
 n = next(index)
 graph[n] = node
 return n

..> parse(‘a=x; a=y*(a+4); return a’)
{0: ('in', 'x'),
 1: ('in', 'y'),
 2: ('const', 4),
 3: ('+', 0, 2),
 4: ('*', 1, 3),
 5: ('return', 4)}

We use env and graph tables to get the generated code in SSA form;
every expression has a unique index in graph.
This is LVN and it can be seen as a form of symbolic execution.

def parse_stmt(tree):
 match tree:
 case Assign([Name(name)], expr):
 env[name] = parse_expr(expr)
 case Return(value):
 add('return', parse_expr(value))

def parse_expr(tree):
 match tree:
 case Constant(val):
 return add('const', val)
 case Name(name):
 if name not in env:
 env[name] = add('in', name)
 return env[name]
 case BinOp(x, op, y):
 a, b = parse_expr(x), parse_expr(y)
 return add(get_op_name(op), a, b)

23/85A toy compiler: common subexpression elimination (1)

b = 11
y = x + (15 - b)
z = a / 42
a = x + 4 - y
y = y - (x + (15 - b)) + a
return y

24/85A toy compiler: common subexpression elimination (2)

def add(*node):
 n = table.get(node)
 if n is None:
 n = next(index)
 graph[n] = node
 table[node] = n
 return nDon't add a new node if it's already in the hash table.

b = 11
y = x + (15 - b)
z = a / 42
a = x + 4 - y
y = y - (x + (15 - b)) + a
return y

25/85A toy compiler: dead code elimination (1)

b = 11
y = x + (15 - b)
z = a / 42
a = x + 4 - y
y = y - (x + (15 - b)) + a
return y

26/85A toy compiler: dead code elimination (2)

b = 11
y = x + (15 - b)
z = a / 42
a = x + 4 - y
y = y - (x + (15 - b)) + a
return y

def dce(graph):
 scheduled = toposort(graph) # mark
 return {i: n for i, n in graph.items()
 if i in scheduled} # sweep

27/85A toy compiler: instruction scheduling

b = 11
y = x + (15 - b)
z = a / 42
a = x + 4 - y
y = y - (x + (15 - b)) + a
return y

t1 = x
t2 = 15
t0 = 11
t3 = t2 - t0
t4 = t1 + t3
t11 = t4 - t4
t8 = 4
t9 = t1 + t8
t10 = t9 - t4
t12 = t11 + t10
return t12

We start scheduling from the program results
(in a demand-driven style).

def dce(graph):
 scheduled = toposort(graph) # mark
 return {i: n for i, n in graph.items()
 if i in scheduled} # sweep

28/85A toy compiler: constant folding and propagation (1)

b = 11
y = x + (15 - b)
z = a / 42
a = x + 4 - y
y = y - (x + (15 - b)) + a
return y

def fold(node):
 match node:
 case ('-', a, b) if consts(a, b):
 return ('const', val(a) - val(b))
 case ('-', a, b) if a .= b:
 return ('const', 0)
 case ('-', a, b) if equal(b, 0):
 return graph[a]
 return node

def add(*node):
 node = fold(node)
 n = table.get(node)
 if n is None:
 n = next(index)
 graph[n] = node
 table[node] = n
 return n

29/85A toy compiler: constant folding and propagation (2)

b = 11
y = x + (15 - b)
z = a / 42
a = x + 4 - y
y = y - (x + (15 - b)) + a
return y

def fold(node):
 match node:
 case ('-', a, b) if consts(a, b):
 return ('const', val(a) - val(b))
 case ('-', a, b) if a .= b:
 return ('const', 0)
 case ('-', a, b) if equal(b, 0):
 return graph[a]
 return node

def add(*node):
 node = fold(node)
 n = table.get(node)
 if n is None:
 n = next(index)
 graph[n] = node
 table[node] = n
 return n

t8 = 0
return t8

30/85A toy compiler: what we already got

● Combined CSE and constant folding/propagation
at the parsing time.

● Combined DCE and instruction scheduling.

We got some important optimizations that are used in
graph-based IRs. But at the level of a basic block.

The main difference between graph-based IRs is how they
work outside the basic blocks.

31/85A toy compiler: memory operations (1)

def parse_stmt(tree):
 match tree:
 ...
 case Assign([Subscript(Name(id=name) as val, slice)], expr):
 env[name] = add('store', parse_expr(val), parse_expr(slice),
 parse_expr(expr))
 ...

def parse_expr(tree):
 match tree:
 ...
 case Subscript(Name(id=name) as val, slice):
 return add('load', parse_expr(val), parse_expr(slice))

We will treat arrays as values, like in functional programming, so
every store operation will update the env table.

32/85A toy compiler: memory operations (2)

arr[i] = 0
arr[j] = 1
r = arr[i] + arr[j]
r = r + arr[i * 2]
arr[j * 3] = 42
return r, arr

33/85A toy compiler: memory operations (3)

arr[i] = 0
arr[j] = 1
r = arr[i] + arr[j]
r = r + arr[i * 2]
arr[j * 3] = 42
return r, arr

Incorrect ld/st ordering is possible!

34/85A toy compiler: memory operations (4)

def parse_expr(tree):
 match tree:
 ...
 case Subscript(Name(id=name) as val, slice):
 env[name] = add('load', parse_expr(val), parse_expr(slice))
 return env[name]

Let's update the env table in the load operation too.
Now we have a state value, a memory dependency,
that memory nodes send to each other.

35/85A toy compiler: memory operations (5)

arr[i] = 0
arr[j] = 1
r = arr[i] + arr[j]
r = r + arr[i * 2]
arr[j * 3] = 42
return r, arr

Now this is correct, but there is no
memory parallelism!

36/85A toy compiler: memory parallelism (1)
def synchronize(op, name):
 ...
 if not all(node_op(n) .= op for n in mem[name]):
 env[name] = add_synch(name)
 mem[name] = []

def parse_expr(tree):
 match tree:
 ...
 case Subscript(Name(id=name), slice):
 synchronize('load', name)
 n = add('load', env[name], parse_expr(slice))
 mem[name].append(n)
 return n

def parse_stmt(tree):
 match tree:
 ...
 case Assign([Subscript(Name(id=name), slice)], expr):
 synchronize('store', name)
 n = add('store', env[name], parse_expr(slice),
 parse_expr(expr))
 mem[name].append(n)
 ...

The mem table contains memory
operations of the same type with a
common input memory state.

The synch node is used to produce
a new memory state with inputs
from all mem table members.

37/85A toy compiler: memory parallelism (2)

arr[i] = 0
arr[j] = 1
r = arr[i] + arr[j]
r = r + arr[i * 2]
arr[j * 3] = 42
return r, arr

38/85A toy compiler: memory parallelism (3)

x = arr1[a] + arr1[b]
y = arr2[a] + arr2[b]
arr1[x] = 1
arr1[2 * x] = 2
arr2[y] = 3
arr2[2 * y] = 4
return arr1, arr2

Different arrays have different memory
states and use their own synch nodes.

39/85Static dataflow: conditionals

Culler, David E. "Dataflow architectures." (1986).

if x < y:
 r = x + y
else:
 r = x - y
return r

Switch node has data input, two outputs and
is strict only on its predicate input.
Predicate value determines the output port
for the input data token.

Merge node is strict only on its predicate
input.
Predicate value determines the input port for
the data token.
It may also be called a multiplexer or a gated
phi node.

40/85Static dataflow: loops

Culler, David E. "Dataflow architectures." (1986).

i = 0
sum = 0
while i .= N:
 sum += F(i)
 i = i + 1
return sum

Switch node has two outputs and is strict
only on its predicate input.
Predicate value determines the output port
for the input data token.

Merge node is strict only on its predicate
input.
Predicate value determines the input port for
the data token.
It may also be called a multiplexer or a gated
phi node.

41/85A toy compiler: nodes with multiple output ports

The switch node has two outputs. With the current
compiler design, it’s possible to have only one output.

In the next iteration of the compiler, we define the input
port as a pair (node index, node output port).

An example:

...
5 node(op='switch', ins=(...))
6 node(op='switch', ins=(...))
7 node(op='merge', ins=((...), (5, 0), (6, 1)))
...

42/85A toy compiler: conditionals (1)

We use ins and outs tables to keep the input and output variables
sets for true and false blocks while parsing.

For each input name in both blocks:
1. Create a switch node with the external value of the name

as an input.
2. Connect the switch node with the block's value using the

corresponding output port of the switch.

For each output name in both blocks:
1. Compare two blocks' values, if they are not equal, create a

merge node to store the combined value under the name
from the external table.

43/85A toy compiler: conditionals (2)

We use ins and outs tables to keep the input and output variables
sets for true and false blocks while parsing.

For each input name in both blocks:
1. Create a switch node with the external value of the name as

an input.
2. Connect the switch node with the block's value using the

corresponding output port of the switch.

For each output name in both blocks:
1. Compare two blocks' values, if they are not equal, create a

merge node to store the combined value under the name
from the external table.

44/85A toy compiler: conditionals (3)

We use ins and outs tables to keep the input and output variables
sets for true and false blocks while parsing.

For each input name in both blocks:
1. Create a switch node with the external value of the name as

an input.
2. Connect the switch node with the block's value using the

corresponding output port of the switch.

For each output name in both blocks:
1. Compare two blocks' values, if they are not equal, create a

merge node to store the combined value under the name
from the external table.

45/85A toy compiler: conditionals, an example (1)

if x < y:
 r = x + y
else:
 r = x - y
return r

46/85A toy compiler: conditionals, an example (2)

if x < y:
 r = x + y
else:
 r = x - y
return r

47/85A toy compiler: conditionals, an example (3)

if x < y:
 r = x + y
else:
 r = x - y
return r

48/85A toy compiler: conditionals, an example (4)

if x < y:
 r = x + y
else:
 r = x - y
return r

49/85A toy compiler: conditionals, an example (5)

if x < y:
 r = x + y
else:
 r = x - y
return r

50/85A toy compiler: loops (1)

For each input and output name in the loop body:
1. Create a merge node to combine a loop

body output value with its external value.
Connect the predicate output value with
the merge input.

2. Connect the merge node output with a
predicate input value.

3. Create a switch node with inputs from the
predicate output value and the merge node
output.

4. Connect the output T of the switch node to
the loop body input value and store the
value on the output F under the name from
the external table.

51/85A toy compiler: loops (2)

For each input and output name in the loop body:
1. Create a merge node to combine a loop body

output value with its external value. Connect
the predicate output value with the merge
input.

2. Connect the merge node output with a
predicate input value.

3. Create a switch node with inputs from the
predicate output value and the merge node
output.

4. Connect the output T of the switch node to
the loop body input value and store the
value on the output F under the name from
the external table.

52/85A toy compiler: loops (3)

For each input and output name in the loop body:
1. Create a merge node to combine a loop body

output value with its external value. Connect
the predicate output value with the merge
input.

2. Connect the merge node output with a
predicate input value.

3. Create a switch node with inputs from the
predicate output value and the merge node
output.

4. Connect the output T of the switch node to
the loop body input value and store the
value on the output F under the name from
the external table.

53/85A toy compiler: loops (4)

For each input and output name in the loop body:
1. Create a merge node to combine a loop body

output value with its external value. Connect
the predicate output value with the merge
input.

2. Connect the merge node output with a
predicate input value.

3. Create a switch node with inputs from the
predicate output value and the merge node
output.

4. Connect the output T of the switch node to
the loop body input value and store the
value on the output F under the name from
the external table.

54/85A toy compiler: problem with merge (1)

i = 0
sum = 0
while i .= N:
 sum += f(i)
 i = i + 1
return sum

55/85A toy compiler: problem with merge (2)

The merge node infinitely waits for the
predicate value, to send initial value into the
loop body.
We will use imerge node that
unconditionally reads the initial value at the
start of the program's execution.

i = 0
sum = 0
while i .= N:
 sum += f(i)
 i = i + 1
return sum

56/85

r = 0
while a > 0:
 if a % 2 .= 0:
 r = r + b
 a = a / 2
 b = b * 2
return r

A toy compiler: imerge example (1)

57/85

r = 0
while a > 0:
 if a % 2 .= 0:
 r = r + b
 a = a / 2
 b = b * 2
return r

A toy compiler: imerge example (2)

58/85

r = 0
while a > 0:
 if a % 2 .= 0:
 r = r + b
 a = a / 2
 b = b * 2
return r

A toy compiler: imerge example (3)

59/85

r = 0
while a > 0:
 if a % 2 .= 0:
 r = r + b
 a = a / 2
 b = b * 2
return r

A toy compiler: imerge example (and so on…)

60/85Classical dataflow IRs today: Dynamatic

An HLS tool to compile C/C++ code into
dynamically scheduled FPGA circuits.

Josipović, Lana, Andrea Guerrieri, and Paolo Ienne. "From C/C++ code to high-performance dataflow circuits." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41.7
(2021): 2142-2155.

61/85Classical dataflow IRs today: TensorFlow

A compiler of machine learning models into dynamic dataflow representation.

Authors, TensorFlow. "Implementation of Control Flow in TensorFlow." Nov 1 (2016): 18.

62/85Classical dataflow IR vs. modern CPUs

Modern processors use dataflow execution model on the microarchitectural
level. But the CPUs still use ISAs based on the sequential model!

All modern and advanced compilers convert source code through various stages
and representation into an internal data-flow representation [...]
The compiler backend converts that back to an imperative representation, i.e.
machine code. [...]
A modern CPU uses super-scalar and out-of-order execution. So the first thing it
has to do, is to perform data-flow analysis on the machine code to turn that back
into an (implicit) data-flow representation! Otherwise the CPU cannot analyze
the dependencies between instructions. Sounds wasteful? Oh, yes, it is.

Mike Pall, the LuaJIT author

https://www.freelists.org/post/luajit/Ramblings-on-languages-and-architectures-was-Re-any-benefit-to-throwing-off-lua51-constraints

63/85Dataflow-based “LLVM IR” from the past: IF1

Originally designed for the SISAL single
assignment (functional) language
(an alternative to Fortran in HPC).

Uses a hierarchical and acyclic graph
of simple and complex nodes.

Complex nodes:
● If-else.
● Case.
● While.
● Do-while.
● For-all.

Global CSE based on isomorphism checking of
subgraphs of complex nodes.

Raisinghani, Manoj H. "Allocation of SISAL program graphs to processors using BLAS." (1994).

1. Classical dataflow models
2. Program dependence graphs
3. Gated data dependence graphs
4. Perspectives

65/85Control dependence graph (CDG)

if x < y: (P1)
 r = x + y (S3)
else:
 r = x - y (S5)
return r (S6)

Control dependence means that execution of one node in the graph
conditionally depends upon the execution of another node in the graph.

Region nodes summarize the control dependencies of a group of statements.

CDG doesn't have a sequential nature of CFG. If two nodes are not
control-dependent on each other, we can try to execute them in any order.

66/85Building CDG

def parse_stmt(region, tree):
 match tree:
 case Assign() | Return():
 add('S', region)
 case If(_, true, false):
 test = add('P', region)
 parse_block(add('R', test), true)
 parse_block(add('R', test), false)
 case While(_, body):
 header = add('R', region)
 parse_block(header, body)
 add_edge(header, add('R', add('P', header)))

Ballance, Robert A., and Arthur B. Maccabe. Program dependence graphs for the rest of us. Department of Computer Science, College of Engineering, University of New Mexico, 1992.

67/85Building CDG: an example

r = 0 (S1)
while a > 0: (P9)
 if a % 2 .= 0: (P3)
 r = r + b (S5)
 a = a / 2 (S7)
 b = b * 2 (S8)
return r (S11)

68/85 Program dependence graph (PDG)

PDG = control dependence graph + data dependence graph.
But data dependencies are not in SSA form!

What the authors of PDG say about classical dataflow IRs:

 Unnecessary statement orderings are eliminated in data flow
machine graphs, exposing low-level parallelism. Yet, due to the
distribution of control operators throughout the data
dependence edges, both data and control become too
fragmented for the convenient application of conventional
optimizations.

 3737 citations!

69/85Sea of nodes (SoN): Most popular graph-based IR

Click, Cliff, and Keith D. Cooper. "Combining analyses, combining optimizations." ACM Transactions on Programming Languages and Systems (TOPLAS) 17.2 (1995): 181-196.

SoN = simplified PDG + SSA graph.

Direct correspondence to CFG:
● START and REGION nodes start a

basic block.
● IF, JUMP, and STOP nodes end a

basic block.

It has a sequential executable model
on the CFG level:
a single control token moves from node
to node by control edges.

Phi nodes are executable in SoN!

70/85SoN: multiple output ports

In SoN, the nodes with multiple output ports
return a tuple of results.

Then the PROJECTION node is used to select
one of the needed results.

71/85SoN: optimizations

GVN in SoN can be done using a simple LVN pass without checking
the control dependencies.
It works thanks to the CFG building pass, which also does LICM and
other code motion optimizations.

Removing the schedule from the machine independent optimizations
allows stronger optimizations using simpler algorithms.

Cliff Click, the SoN author

The advantage of building a PDG is the discovery of more
congruences. The disadvantage is that serialization is more difficult.

Cliff Click, the SoN author

1. Classical dataflow models
2. Program dependence graphs
3. Gated data dependence graphs
4. Perspectives

73/85Gated SSA (GSA)

GSA is an SSA graph with added gating phi-functions.
GSA has demand-driven semantics.

● The γ-node(P, true, false) is the same as a merge node.

● The µ-node(init, iter) at the loop header produces an
infinite sequence of values, starting from init.

● The η-node(P, final) at the loop exit returns the final
values.

Havlak, Paul. "Construction of thinned gated single-assignment form." International Workshop on Languages and Compilers for Parallel Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.

74/85Value State Dependence Graph (VSDG)

int fac(int n) {
 int result;
 if (n .= 1)
 result = n;
 else
 result= n * fac(n - 1);
 return result;
}

● VSDG is based on GSA and has two types of edges: value
dependencies and state dependencies.

● Building CFG is done by adding enough of serializing
state edges.

● VSDG was used for combined register allocation and
code motion.

Johnson, Neil E. Code size optimization for embedded processors. No. UCAM-CL-TR-607. University of Cambridge, Computer Laboratory, 2004.

75/85VSDG: loops

j = ...
for(i = 0; i < 10; .+i)
 .-j;

... = j;

● A θ-node(C, I, R, L, X) sets its internal value to initial
value I. Then, while condition value C holds true, sets L
to the current internal value and updates the internal
value with the repeat value R.

● When C evaluates to false loop computation stops and
the internal value is returned through the X port.

To get acyclic VSDG: θ-head(I, L) and θ-tail(R, X, C).

76/85VSDG: yet another loop definition

Hierarchical graph and tail recursion.

Lawrence, Alan C. Optimizing compilation with the value state dependence graph. No. UCAM-CL-TR-705. University of Cambridge, Computer Laboratory, 2007.

77/85Regionalized Value State Dependence Graph (RVSDG)

RVSDG — acyclic hierarchical graph consisting of nested subgraphs called regions.

Lots of complex nodes, containing regions:
1. If-else (gamma).

2. Do-while (theta).
3. Function (lambda).
4. Global variable (delta).
5. Mutally recursive

environment (phi).
6. Translation unit (omega).

No interesting optimizations yet.
And isn't it too similar to IF1?

Reissmann, Nico, et al. "RVSDG: An intermediate representation for optimizing compilers." ACM Transactions on Embedded Computing Systems (TECS) 19.6 (2020): 1-28.

1. Classical dataflow models
2. Program dependence graphs
3. Gated data dependence graphs
4. Perspectives

79/85Declarative graph rewriting

Graph rewriting rules can be very complex and error-prone. So it's
important to have a DSL for a declarative description of the rules.

A fragment of imperative rule definition from TensorFlow graph optimizer:
...
if (IsNeg(*y)) {
 // a - (-b) = a + b or a + (-b) = a - b
 ForwardControlDependencies(node, {y});
 ctx().node_map.>UpdateInput(node.>name(), node.>input(1), y.>input(0));
 node.>set_op(IsAdd(*node) ? "Sub" : "AddV2");
 node.>set_input(1, y.>input(0));
 updated = true;
 } else if (IsAdd(*node) .& IsNeg(*x)) {
 // (-a) + b = b - a
 ForwardControlDependencies(node, {x});
 ctx().node_map.>UpdateInput(node.>name(), node.>input(0), x.>input(0));
 node.>set_op("Sub");
 ...

https://github.com/tensorflow/tensorflow/blob/893aa7518fe3175739ac1ba70d7355a0b091115c/tensorflow/core/grappler/optimizers/arithmetic_optimizer.cc

80/85Global graph rewriting
It's important for algorithm-level transformations and custom hardware
support to rewrite graphs at the function level, using any type of graph,
not just trees or single output DAGs, as patterns.

The authors of Complete and Practical Universal Instruction Selection
(2017) use SoN-like IR, constraint programming and VF2 algorithm for
subgraph isomorphism testing.

Blindell, Gabriel Hjort, et al. "Complete and practical universal instruction selection." ACM Transactions on Embedded Computing Systems (TECS) 16.5s (2017): 1-18.

81/85Global equality saturation
Each optimization rule only adds information to the program graph in the form
of axioms denoting alternative rewrites without having to prematurely decide
on an order. Then the best result is found using some cost model once all the
information is known.

E-PEG (program expression graph, 2009) is a graph-based IR for global equality
saturation. E-PEG is based on gated SSA (θ-node below represent a loop header).

Tate, Ross, et al. "Equality saturation: a new approach to optimization." Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 2009.

82/85Partial evaluation (PE)

Graph-based IRs are good for PE because they may have an
executable model of the whole program, and at any
transformation step it's possible to know all needed
dependencies.

● LMS (2010), (Lightweight Modular Staging) framework.
Uses SoN-like IR.

● Graal IR (2013). Uses SoN IR.

● Thorin IR (2015), a part of AnyDSL project. Uses SoN-lke
IR with continuation-passing style.

Rompf, Tiark. "Reflections on LMS: exploring front-end alternatives." Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala. 2016.
Duboscq, Gilles, et al. "Graal IR: An extensible declarative intermediate representation." Proceedings of the Asia-Pacific Programming Languages and Compilers Workshop. 2013.
Leißa, Roland, Marcel Köster, and Sebastian Hack. "A graph-based higher-order intermediate representation." 2015 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). IEEE, 2015.

Partial evaluation allows the transformation of a program written in general and abstract form
into its specialized and optimized version.
It is especially good for DSL compilers.

83/85Other perspective ideas

● Combining global instruction scheduling with other code generation
phases.

● Combining graph-based IR with a more detailed loop representation
based on a polyhedral model.

● Adding powerful type systems to graph-based IR.
The authors of Graph IRs for Impure Higher-Order Languages (2023)
use reachability types (which combine ideas from ownership types and
separation logic) and an effect system.

BRAČEVAC, OLIVER, et al. "Graph IRs for Impure Higher-Order Languages." (2023).

84/85MLIR is starting to support graph-based IRs

Graph regions have recently been added to MLIR. CIRCT and
TensorFlow dialects already use them.

See Representing Concurrency with Graph Regions in MLIR talk.

But it looks like there is no support for hierarchical graphs yet:

Currently graph regions are arbitrarily limited to a single basic
block, although there is no particular semantic reason for this
limitation. This limitation has been added to make it easier to
stabilize the pass infrastructure and commonly used passes for
processing graph regions to properly handle feedback loops.
Multi-block regions may be allowed in the future if use cases that
require it arise.

https://mlir.llvm.org/docs/LangRef/#graph-regions

https://llvm.org/devmtg/2021-11/slides/2021-RepresentingConcurrencywithGraphRegionsinMLIR.pdf

THANK YOU!

 Email: peter.sovietov@gmail.com
Telegram: @true_grue

