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I. INTRODUCTION

Decentralization facilitates transparent, censorship-resistant,
and democratic systems. The shift towards decentralized tech-
nologies like cryptocurrencies and Web3 is motivated by the
desire to redistribute ownership and control away from cen-
tralized authorities, empowering individual users with greater
autonomy and participation in the digital ecosystem.

In the same way that search engines like Google laid the
foundation for the usability and popularity of the World Wide
Web (WWW), effective search is also paramount for the
success of decentralized applications. P2P file sharing services
like BitTorrent and IPFS are flourishing. Yet, search tasks
are usually outsourced to centralized indices (e.g., The Pi-
rateBay [?] and IPFS Search [1]). The reliance on centralized
search indices presents a critical vulnerability. Providers of
these services have the power to manipulate search results, and
hide or suppress content. They can also succumb to external
pressure [?].

II. PROBLEM DESCRIPTION

Although various algorithms for decentralized content re-
trieval have been proposed [2], [9], [14], [15], centralized
search indices remain popular. While decentralized content re-
trieval is notoriously challenging [12], we argue that one of the
main reasons for its limited adoption is the lack of descriptive
metadata. In the WWW, files are addressed by their location
(the hosting website) rather than their content. Websites, being
text-based, naturally provide a lot of auxiliary information on
top of the content. Moreover, the intricate hyperlink structure
of the web aids content discovery and relevance ranking, as has
been exploited in Google’s PageRank [6] algorithm. Website
hosts furthermore have economic incentives (e.g., through ad
revenue) to direct users to ther website, and thus to curate
good quality metadata.

Content providers in P2P file sharing systems lack these
incentives. Furthermore, files in these systems are usually non-
textual (e.g., video and music) and, in the case of torrents,
merely described by their name. For search, relying on the
name alone is not only insufficient from an information
perspective but it is also not trustworthy. The file name
could be misleading or simply of inferior quality to a similar
torrent. This is where ranking of retrieved search result
candidates becomes paramount. While PageRank offered an
elegant solution for the traditional web, the same principle
cannot be applied to systems like BitTorrent. P2P file sharing,
however, has another very powerful property, which is the
number of seeders that provide a file: the more nodes that
keep the data, the more popular it is assumed to be. Ranking
according to this metric has been employed in The PirateBay,
as well as for Tribler [?] and other decentralized search

engines [22]. Retrieving this metric on-the-fly, however, is very
slow. While researchers proposed to maintain this information
in a DHT [22], security threats like those posed by Sybils have
so far been left ignored.

III. PROPOSED SOLUTION

We propose a novel strategy for ranking in P2P systems,
for which we borrow a technique from traditional information
retrieval. Learning-to-Rank (LTR) [18] describes a set of ma-
chine learning techniques that has been developed and applied
to web search for decades. Based on historical user behavior
(search queries, clickthroughs, etc.), a model is trained to learn
the rules and patterns that guide relevance ranking. In that way,
instead of asking users to provide metadata explicitly (e.g.,
through keywords or star-ratings), LTR leverages implicit cues
(i.e., query content, selected result, and other user signals).
Not only does learning from implicit signals remove the
need for incentivization, but it is also expected with higher
accuracy []. When applying LTR to P2P systems, we consider
two possible implementations: local-only and collaborative.

A. Local-Only Strategy

In the local-only implementation, each peer trains their own
LTR model on their personal search history and interactions
only. The strength of this solution lies in its security. As
training and inference happen only locally, and training data
is sourced from the peer’s own interactions, ranking quality
cannot be corrupted by adversarial peers. Specializing the
ranking model on the user level also yields the benefit of
personalization, as peers can have different preferences based
on their region, language, culture, or taste [23], [16]. However,
when peers learn only from their own history, they miss
out on collective knowledge, limiting their models ability to
generalize to new or infrequent queries, especially when its
own training data is scarce.

B. Collaborative Strategy

Ideally, we want to use the knowledge gained from other
peers to improve our model’s performance while still optimize
for personal taste. To this end, we also propose a collaborative
strategy that employs LTR with multi-task learning, treating
each peers ranking function as one distinct task. Specifically,
we use gossip learning [4] to establish globally shared layers
of the LTR model, while reserving the final layers for local
training and personalization.

IV. RELATED WORKS

The idea of using MTL for personalized LTR is not new; it
has been previously proposed for region- or language-specific
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adaptations in centralized services like web search [3] and
e-commerce platforms [16]. Ma et al. [19] proposed an archi-
tecture combining MTL with Mixture-of-Experts (MoE) for
movie recommendations (fundamentally a ranking problem).
In their work, the authors use MTL with tasks representing
different objectives, e.g., watching a movie, purchasing a
movie, and liking a movie.

While not with the application of LTR in mind, more recent
work has examined MTL in P2P systems. Bouchra et al. [5]
propose

RELATED WORK in Multi-task peer-to-peer learning using
an encoder-only transformer: - In a peer-to-peer environment,
Mohammadi et al. [21] implemented a system where indi-
vidual agents retained specific expertise through local skills
while simultaneously sharing general knowledge with nearby
agents. This collaborative approach allowed agents to benefit
from knowledge exchange while maintaining their proficiency
in solving localized data, improving overall performance -
Zantedeschi et al. [6] introduced a method to enable the dy-
namic formation of peer-to-peer connections by exploiting the
resemblance among agents local linear models using empirical
loss on the agents local dataset. Building on this idea, several
other studies have further applied this approach to neural
networks, yielding better model performance in scenarios with
heterogeneous data distribution [29-33].

V. BACKGROUND

A. Learning-to-Rank (LTR)

[7], [18]

B. Multi-Task Learning (MTL)

MTL [8] is a strategy for learning multiple related tasks.
The idea is that related tasks differ in some attributes and are
similar in others. It works by sharing a common set of features
or representations among tasks (the shared layers), while
allowing task-specific adaptations (task-specific layers). This
shared learning helps the model generalize better by leveraging
information across tasks. As a result, MTL achieves better pre-
diction accuracy compared to training related tasks separately
or training them together without differentiation [20], [17],
[13].

C. Gossip Learning

Decentralized learning [4], [11], [10], also called gossip
learning, provides a framework for collaborative training on
edge devices. Peers train on their locally generated data and
disseminate their updated model parameters to other peers.
Incoming model parameters are aggregated and merged with
the local model. Ultimately, models converge network-wide.
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