
P416 Language Specification
version 1.2.4

The P4 Language Consortium

2024-08-14

Abstract

P4 is a language for programming the data plane of network devices. This document provides a pre-
cise definition of theP416 language, which is the 2016 revisionof theP4 language (http://p4.org).
The target audience for thisdocument includesdeveloperswhowant towrite compilers, simulators,
IDEs, and debuggers for P4 programs. This document may also be of interest to P4 programmers
who are interested in understanding the syntax and semantics of the language at a deeper level.

Contents
1. Scope 5
2. Terms, definitions, and symbols 6
3. Overview 6

3.1. Benefits of P4 . 9
3.2. P4 language evolution: comparison to previous versions (P4 v1.0/v1.1) 9

4. Architecture Model 10
4.1. Standard architectures . 12
4.2. Data plane interfaces . 12
4.3. Extern objects and functions . 12

5. Example: A very simple switch 13
5.1. Very Simple Switch Architecture . 14
5.2. Very Simple Switch Architecture Description . 17

5.2.1. Arbiter block . 17
5.2.2. Parser runtime block . 17
5.2.3. Demux block . 17
5.2.4. Available extern blocks . 18

5.3. A complete Very Simple Switch program . 18
6. P4 language definition 24

6.1. Syntax and semantics . 24
6.1.1. Grammar . 24
6.1.2. Semantics and the P4 abstract machines . 25

6.2. Preprocessing . 25
6.3. P4 core library . 26
6.4. Lexical constructs . 26

6.4.1. Identifiers . 26

1

http://p4.org

6.4.2. Comments . 27
6.4.3. Literal constants . 27
6.4.4. Optional trailing commas . 28

6.5. Naming conventions . 29
6.6. P4 programs . 29

6.6.1. Scopes . 30
6.6.2. Stateful elements . 30

6.7. L-values . 30
6.8. Calling convention: call by copy in/copy out . 31

6.8.1. Justification . 34
6.8.2. Optional parameters . 35

6.9. Name resolution . 36
6.10. Visibility . 37

7. P4 data types 37
7.1. Base types . 37

7.1.1. The void type . 38
7.1.2. The error type . 38
7.1.3. Thematch kind type . 38
7.1.4. The Boolean type . 39
7.1.5. Strings . 39
7.1.6. Integers (signed and unsigned) . 39

7.2. Derived types . 42
7.2.1. Enumeration types . 43
7.2.2. Header types . 45
7.2.3. Header stacks . 47
7.2.4. Header unions . 47
7.2.5. Struct types . 48
7.2.6. Tuple types . 48
7.2.7. List types . 49
7.2.8. Type nesting rules . 49
7.2.9. Synthesized data types . 50
7.2.10. Extern types . 51
7.2.11. Type specialization . 53
7.2.12. Parser and control blocks types . 55
7.2.13. Package types . 55
7.2.14. Don't care types . 56

7.3. Default values . 56
7.4. Numeric types . 56
7.5. typedef . 57
7.6. Introducing new types . 57

8. Expressions 58
8.1. Expression evaluation order . 60
8.2. Operations on error types . 60
8.3. Operations on enum types . 60
8.4. Operations on match_kind types . 64
8.5. Expressions on Booleans . 64

2

8.5.1. Conditional operator . 65
8.6. Operations on fixed-width bit types (unsigned integers) 65
8.7. Operations on fixed-width signed integers . 67
8.8. Operations on arbitrary-precision integers . 68
8.9. Concatenation and shifts . 69

8.9.1. Concatenation . 69
8.9.2. A note about shifts . 69

8.10. Operations on variable-size bit types . 70
8.11. Operations on Strings . 71
8.12. Casts . 71

8.12.1. Explicit casts . 71
8.12.2. Implicit casts . 72
8.12.3. Illegal arithmetic expressions . 73

8.13. Operations on tuple expressions . 73
8.14. Operations on structure-valued expressions . 75
8.15. Operations on lists . 76
8.16. Operations on sets . 76

8.16.1. Singleton sets . 77
8.16.2. The universal set . 78
8.16.3. Masks . 78
8.16.4. Ranges . 78
8.16.5. Products . 79

8.17. Operations on struct types . 79
8.18. Operations on headers . 79
8.19. Operations on header stacks . 80

8.19.1. Header stack expressions . 83
8.20. Operations on header unions . 83
8.21. Method invocations and function calls . 87
8.22. Constructor invocations . 89
8.23. Operations on extern objects . 89
8.24. Operations on types introduced by type . 89
8.25. Operations on types that are type variables . 90
8.26. Reading uninitialized values and writing fields of invalid headers 90
8.27. Initializing with default values . 92

9. Compile-time size determination 93
10. Function declarations 94
11. Constants and variable declarations 95

11.1. Constants . 95
11.2. Variables . 95
11.3. Instantiations . 96

11.3.1. Instantiating objects with abstract methods . 97
11.3.2. Restrictions on top-level instantiations . 98

12. Statements 98
12.1. Assignment statement . 99
12.2. Empty statement . 99
12.3. Block statement . 99

3

12.4. Return statement . 99
12.5. Exit statement . 100
12.6. Conditional statement . 101
12.7. Switch statement . 101

12.7.1. Switch statement with action_run expression . 103
12.7.2. Switch statement with integer or enumerated type expression 103
12.7.3. Notes common to all switch statements . 104

13. Packet parsing 104
13.1. Parser states . 104
13.2. Parser declarations . 105
13.3. The Parser abstract machine . 106
13.4. Parser states . 106
13.5. Transition statements . 108
13.6. Select expressions . 108
13.7. verify . 110
13.8. Data extraction . 111

13.8.1. Fixed-width extraction . 112
13.8.2. Variable-width extraction . 112
13.8.3. Lookahead . 114
13.8.4. Skipping bits . 115

13.9. Header stacks . 115
13.10. Sub-parsers . 116
13.11. Parser Value Sets . 118

14. Control blocks 119
14.1. Actions . 120

14.1.1. Invoking actions . 120
14.2. Tables . 121

14.2.1. Table properties . 123
14.2.2. Match-action unit invocation . 133
14.2.3. Match-action unit execution semantics . 134

14.3. TheMatch-Action Pipeline Abstract Machine . 136
14.4. Invoking controls . 136

15. Parameterization 137
15.1. Direct type invocation . 138

16. Deparsing 139
16.1. Data insertion into packets . 139

17. Architecture description 140
17.1. Example architecture description . 141
17.2. Example architecture program . 142
17.3. A Packet Filter Model . 143

18. P4 abstract machine: Evaluation 143
18.1. Compile-time known and local compile-time known values 144
18.2. Compile-time Evaluation . 145
18.3. Control plane names . 146

18.3.1. Computing control-plane names . 147
18.3.2. Annotations controlling naming . 150

4

18.3.3. Recommendations . 150
18.4. Dynamic evaluation . 151

18.4.1. Concurrency model . 151
19. Static assertions 152
20. Annotations 152

20.1. Bodies of Unstructured Annotations . 153
20.2. Bodies of Structured Annotations . 154

20.2.1. Structured Annotation Examples . 155
20.3. Predefined annotations . 156

20.3.1. Optional parameter annotations . 156
20.3.2. Annotations on the table action list . 157
20.3.3. Control-plane API annotations . 157
20.3.4. Concurrency control annotations . 158
20.3.5. Value set annotations . 158
20.3.6. Extern function/method annotations . 158
20.3.7. Deprecated annotation . 159
20.3.8. No warnings annotation . 159

20.4. Target-specific annotations . 159
A. Appendix: Revision History 159

A.1. Summary of changes made in version 1.2.4 . 159
A.2. Summary of changes made in version 1.2.3, released July 11, 2022. 160
A.3. Summary of changes made in version 1.2.2, releasedMay 17, 2021 161
A.4. Summary of changes made in version 1.2.1, released June 11, 2020 161
A.5. Summary of changes made in version 1.2.0, released October 14, 2019 161
A.6. Summary of changes made in version 1.1.0, released November 26, 2017. 162
A.7. Initial version 1.0.0, releasedMay 17, 2017 . 163

B. Appendix: P4 reserved keywords 163
C. Appendix: P4 reserved annotations 163
D. Appendix: P4 core library 164
E. Appendix: Checksums 165
F. Appendix: Restrictions on compile time and run time calls 166
G. Appendix: P4 grammar 169

1. Scope
This specification document defines the structure and interpretation of programs in the P416 language.
It defines the syntax, semantic rules, and requirements for conformant implementations of the lan-
guage.

It does not define:

• Mechanisms by which P4 programs are compiled, loaded, and executed on packet-processing
systems,

• Mechanisms by which data are received by one packet-processing system and delivered to an-
other system,

• Mechanisms by which the control planemanages thematch-action tables and other stateful ob-
jects defined by P4 programs,

5

• The size or complexity of P4 programs,
• The minimal requirements of packet-processing systems that are capable of providing a confor-

mant implementation.

It is understood that some implementations may be unable to implement the behavior defined here
in all cases, or may provide options to eliminate some safety guarantees in exchange for better perfor-
mance or handling larger programs. They should documentwhere they deviate from this specification.

2. Terms, definitions, and symbols
Throughout this document, the following terms will be used:

• Architecture: A set of P4-programmable components and the data plane interfaces between
them.

• Control plane: A class of algorithms and the corresponding input and output data that are con-
cerned with the provisioning and configuration of the data plane.

• Data plane: A class of algorithms that describe transformations on packets by packet-processing
systems.

• Metadata: Intermediate data generated during execution of a P4 program.
• Packet: A network packet is a formatted unit of data carried by a packet-switched network.
• Packet header: Formatted data at the beginning of a packet. A given packet may contain a se-

quence of packet headers representing different network protocols.
• Packet payload: Packet data that follows the packet headers.
• Packet-processing system: A data-processing system designed for processing network packets.

In general, packet-processing systems implement control plane and data plane algorithms.
• Target: A packet-processing system capable of executing a P4 program.

All terms defined explicitly in this document should not be understood to refer implicitly to similar
terms defined elsewhere. Conversely, any terms not defined explicitly in this document should be
interpreted according to generally recognizable sources—e.g., IETF RFCs.

3. Overview
P4 is a language for expressing how packets are processed by the data plane of a programmable for-
warding element such as a hardware or software switch, network interface card, router, or network
appliance. The name P4 comes from the original paper that introduced the language, “Programming
Protocol-independent Packet Processors,” https://arxiv.org/pdf/1312.1719.pdf. While P4 was
initially designed for programming switches, its scope has been broadened to cover a large variety of
devices. In the rest of this document we use the generic term target for all such devices.

Many targets implement both a control plane and a data plane. P4 is designed to specify only the
data plane functionality of the target. P4 programs also partially define the interface by which the con-
trol plane and the data-plane communicate, but P4 cannot be used to describe the control-plane func-
tionality of the target. In the rest of this document, when we talk about P4 as “programming a target”,
wemean “programming the data plane of a target”.

As a concrete example of a target, Figure 1 illustrates the difference between a traditional fixed-
function switch and a P4-programmable switch. In a traditional switch the manufacturer defines the
data-plane functionality. The control-plane controls the data plane bymanaging entries in tables (e.g.

6

https://arxiv.org/pdf/1312.1719.pdf

Figure 1. Traditional switches vs. programmable switches.

routing tables), configuring specialized objects (e.g. meters), and by processing control-packets (e.g.
routing protocol packets) or asynchronous events, such as link state changes or learning notifications.

A P4-programmable switch differs from a traditional switch in two essential ways:

• Thedataplane functionality is notfixed inadvancebut is definedbyaP4program. Thedataplane
is configured at initialization time to implement the functionality described by the P4 program
(shown by the long red arrow) and has no built-in knowledge of existing network protocols.

• The control plane communicates with the data plane using the same channels as in a fixed-
function device, but the set of tables and other objects in the data plane are no longer fixed, since
they are defined by a P4 program. The P4 compiler generates the API that the control plane uses
to communicate with the data plane.

Hence, P4 can be said to be protocol independent, but it enables programmers to express a rich set of
protocols and other data plane behaviors.

The core abstractions provided by the P4 language are:

• Header types describe the format (the set of fields and their sizes) of eachheaderwithin a packet.
• Parsers describe the permitted sequences of headers within received packets, how to identify

those header sequences, and the headers and fields to extract from packets.
• Tables associate user-defined keys with actions. P4 tables generalize traditional switch tables;

they can be used to implement routing tables, flow lookup tables, access-control lists, and other
user-defined table types, including complex multi-variable decisions.

• Actions are code fragments that describe how packet header fields and metadata are manipu-

7

Figure 2. Programming a target with P4.

lated. Actions can include data, which is supplied by the control-plane at runtime.
• Match-action units perform the following sequence of operations:

– Construct lookup keys from packet fields or computedmetadata,
– Perform table lookup using the constructed key, choosing an action (including the associ-

ated data) to execute, and
– Finally, execute the selected action.

• Control flow expresses an imperative program that describes packet-processing on a target, in-
cluding the data-dependent sequence of match-action unit invocations. Deparsing (packet re-
assembly) can also be performed using a control flow.

• Externobjects arearchitecture-specificconstructs that canbemanipulatedbyP4programs through
well-defined APIs, but whose internal behavior is hard-wired (e.g., checksum units) and hence
not programmable using P4.

• User-definedmetadata: user-defined data structures associated with each packet.
• Intrinsicmetadata: metadata provided by the architecture associatedwith eachpacket—e.g., the

input port where a packet has been received.

Figure 2 shows a typical tool workflow when programming a target using P4.
Target manufacturers provide the hardware or software implementation framework, an architec-

ture definition, and a P4 compiler for that target. P4 programmers write programs for a specific archi-
tecture, which defines a set of P4-programmable components on the target as well as their external
data plane interfaces.

Compiling a set of P4 programs produces two artifacts:

• a data plane configuration that implements the forwarding logic described in the input program
and

• an API for managing the state of the data plane objects from the control plane

P4 is a domain-specific language that is designed to be implementable on a large variety of targets in-

8

cluding programmable network interface cards, FPGAs, software switches, and hardware ASICs. As
such, the language is restricted to constructs that can be efficiently implemented on all of these plat-
forms.

Assuming a fixed cost for table lookup operations and interactions with extern objects, all P4 pro-
grams (i.e., parsers and controls) execute a constant number of operations for each byte of an input
packet received and analyzed. Althoughparsersmay contain loops, provided someheader is extracted
on each cycle, the packet itself provides a bound on the total execution of the parser. In other words,
under these assumptions, the computational complexity of a P4 program is linear in the total size of
all headers, and never depends on the size of the state accumulated while processing data (e.g., the
number of flows, or the total number of packets processed). These guarantees are necessary (but not
sufficient) for enabling fast packet processing across a variety of targets.

P4 conformance of a target is defined as follows: if a specific target T supports only a subset of the
P4 programming language, say P4T, programs written in P4T executed on the target should provide
the exact same behavior as is described in this document. Note that P4 conformant targets can provide
arbitrary P4 language extensions and extern elements.

3.1. Benefits of P4
Compared to state-of-the-art packet-processing systems (e.g., based on writing microcode on top of
custom hardware), P4 provides a number of significant advantages:

• Flexibility: P4 makes many packet-forwarding policies expressible as programs, in contrast to
traditional switches, which expose fixed-function forwarding engines to their users.

• Expressiveness: P4 can express sophisticated, hardware-independent packet processing algo-
rithms using solely general-purpose operations and table look-ups. Such programs are portable
across hardware targets that implement the same architectures (assuming sufficient resources
are available).

• Resource mapping and management: P4 programs describe storage resources abstractly (e.g.,
IPv4 source address); compilers map such user-defined fields to available hardware resources
andmanage low-level details such as allocation and scheduling.

• Software engineering: P4 programs provide important benefits such as type checking, informa-
tion hiding, and software reuse.

• Component libraries: Component libraries suppliedbymanufacturers canbeused towraphardware-
specific functions into portable high-level P4 constructs.

• Decoupling hardware and software evolution: Target manufacturers may use abstract architec-
tures to further decouple the evolution of low-level architectural details fromhigh-level process-
ing.

• Debugging: Manufacturers can provide software models of an architecture to aid in the devel-
opment and debugging of P4 programs.

3.2. P4 language evolution: comparison to previous versions (P4 v1.0/v1.1)
Compared to P414, the earlier version of the language, P416 makes a number of significant, backwards-
incompatible changes to the syntax and semantics of the language. The evolution from the previous
version (P414) to the current one (P416) is depicted in Figure 3. In particular, a large number of lan-
guage features have been eliminated from the language and moved into libraries including counters,
checksum units, meters, etc.

9

Figure 3. Evolution of the language between versions P414 (versions 1.0 and 1.1) and P416.

Hence, the language has been transformed froma complex language (more than 70 keywords) into
a relatively small core language (less than 40 keywords, shown in Section B) accompanied by a library
of fundamental constructs that are needed for writing most P4.

The v1.1 version of P4 introduced a language construct called extern that can be used to describe
library elements. Many constructs defined in the v1.1 language specification will thus be transformed
into such library elements (including constructs that have been eliminated from the language, such
as counters and meters). Some of these extern objects are expected to be standardized, and they will
be in the scope of a future document describing a standard library of P4 elements. In this document
we provide several examples of extern constructs. P416 also introduces and repurposes some v1.1 lan-
guage constructs for describing the programmable parts of an architecture. These language constructs
are: parser, state, control, and package.

One important goal of the P416 language revision is to provide a stable language definition. In other
words, we strive to ensure that all programswritten inP416 will remain syntactically correct andbehave
identically when treated as programs for future versions of the language. Moreover, if some future ver-
sion of the language requires breaking backwards compatibility, we will seek to provide an easy path
for migrating P416 programs to the new version.

4. Architecture Model
The P4 architecture identifies the P4-programmable blocks (e.g., parser, ingress control flow, egress
control flow, deparser, etc.) and their data plane interfaces.

The P4 architecture can be thought of as a contract between the program and the target. Each
manufacturermust therefore provide both a P4 compiler as well as an accompanying architecture def-
inition for their target. (We expect that P4 compilers can share a common front-end that handles all
architectures). The architecture definition does not have to expose the entire programmable surface
of the data plane—amanufacturermay even choose to providemultiple definitions for the same hard-
ware device, each with different capabilities (e.g., with or without multicast support).

10

Figure 4. P4 program interfaces.

Figure 5. P4 program invoking the services of a fixed-function object.

Figure 4 illustrates the data plane interfaces between P4-programmable blocks. It shows a target
thathas twoprogrammableblocks (#1and#2). Eachblock is programmed througha separate fragment
of P4 code. The target interfaces with the P4 program through a set of control registers or signals. Input
controls provide information to P4 programs (e.g., the input port that a packet was received from),
while output controls canbewritten to byP4programs to influence the target behavior (e.g., the output
port where a packet has to be directed). Control registers/signals are represented in P4 as intrinsic
metadata. P4 programs can also store and manipulate data pertaining to each packet as user-defined
metadata.

The behavior of a P4 program can be fully described in terms of transformations that map vectors
of bits to vectors of bits. To actually process a packet, the architecture model interprets the bits that
the P4 programwrites to intrinsic metadata. For example, to cause a packet to be forwarded on a spe-
cific output port, a P4 program may need to write the index of an output port into a dedicated control
register. Similarly, to cause a packet to be dropped, a P4 program may need to set a “drop” bit into
another dedicated control register. Note that the details of how intrinsic metadata are interpreted is
architecture-specific.

P4 programs can invoke services implemented by extern objects and functions provided by the

11

architecture. Figure 5 depicts a P4 program invoking the services of a built-in checksum computation
unit on a target. The implementation of the checksum unit is not specified in P4, but its interface is. In
general, the interface for an extern object describes each operation it provides, as well as their param-
eter and return types.

In general, P4 programs are not expected to be portable across different architectures. For exam-
ple, executing a P4 program that broadcasts packets by writing into a custom control register will not
function correctly on a target that does not have the control register. However, P4 programswritten for
a given architecture should be portable across all targets that faithfully implement the corresponding
model, provided there are sufficient resources.

4.1. Standard architectures
We expect that the P4 community will evolve a small set of standard architecture models pertaining
to specific verticals. Wide adoption of such standard architectures will promote portability of P4 pro-
grams across different targets. However, defining these standard architectures is outside of the scope
of this document.

4.2. Data plane interfaces
To describe a functional block that can be programmed in P4, the architecture includes a type declara-
tion that specifies the interfaces between the block and the other components in the architecture. For
example, the architecture might contain a declaration such as the following:

control MatchActionPipe<H>(in bit<4> inputPort,

inout H parsedHeaders,

out bit<4> outputPort);

This type declaration describes a block named MatchActionPipe that can be programmed using a data-
dependent sequence of match-action unit invocations and other imperative constructs (indicated by
the control keyword). The interface between the MatchActionPipe block and the other components of
the architecture can be read off from this declaration:

• Thefirst parameter is a 4-bit value named inputPort. Thedirection in indicates that this param-
eter is an input that cannot be modified.

• Thesecondparameter is anobject of type Hnamed parsedHeaders, where H is a type variable repre-
senting theheaders thatwill bedefined later by theP4programmer. Thedirection inout indicates
that this parameter is both an input and an output.

• The third parameter is a 4-bit value named outputPort. The direction out indicates that this pa-
rameter is an output whose value is undefined initially but can bemodified.

4.3. Extern objects and functions
P4 programs can also interact with objects and functions provided by the architecture. Such objects
are described using the extern construct, which describes the interfaces that such objects expose to the
data-plane.

An extern object describes a set of methods that are implemented by an object, but not the imple-
mentation of these methods (i.e., it is similar to an abstract class in an object-oriented language). For

12

Figure 6. The Very Simple Switch (VSS) architecture.

example, the following construct could be used to describe the operations offered by an incremental
checksum unit:

extern Checksum16 {

Checksum16(); // constructor

void clear(); // prepare unit for computation

void update<T>(in T data); // add data to checksum

void remove<T>(in T data); // remove data from existing checksum

bit<16> get(); // get the checksum for the data added since last clear

}

5. Example: A very simple switch
As an example to illustrate the features of architectures, consider implementing a very simple switch
in P4. We will first describe the architecture of the switch and then write a complete P4 program that
specifies the data plane behavior of the switch. This example demonstrates many important features
of the P4 programming language.

We call our architecture the “Very Simple Switch” (VSS). Figure 6 is a diagram of this architecture.
There is nothing inherently special about VSS—it is just a pedagogical example that illustrates how
programmable switches can be described and programmed in P4. VSS has a number of fixed-function
blocks (shown in cyan in our example), whose behavior is described in Section 5.2. The white blocks
are programmable using P4.

VSS receives packets through one of 8 input Ethernet ports, through a recirculation channel, or
fromaport connecteddirectly to theCPU.VSShas one single parser, feeding into a singlematch-action
pipeline, which feeds into a single deparser. After exiting thedeparser, packets are emitted throughone
of 8 output Ethernet ports or one of 3 “special” ports:

13

• Packets sent to the “CPU port” are sent to the control plane
• Packets sent to the “Drop port” are discarded
• Packets sent to the “Recirculate port” are re-injected in the switch through a special input port

The white blocks in the figure are programmable, and the user must provide a corresponding P4 pro-
gram to specify the behavior of each such block. The red arrows indicate the flow of user-defined data.
The cyan blocks are fixed-function components. The green arrows are data plane interfaces used to
convey information between the fixed-function blocks and the programmable blocks—exposed in the
P4 program as intrinsic metadata.

5.1. Very Simple Switch Architecture
The following P4 programprovides a declaration of VSS in P4, as it would be provided by the VSSman-
ufacturer. The declaration contains several type declarations, constants, and finally declarations for
the three programmable blocks; the code uses syntax highlighting. The programmable blocks are de-
scribed by their types; the implementation of these blocks has to be provided by the switch program-
mer.

// File "very_simple_switch_model.p4"

// Very Simple Switch P4 declaration

// core library needed for packet_in and packet_out definitions

include <core.p4>

/* Various constants and structure declarations */

/* ports are represented using 4-bit values */

typedef bit<4> PortId;

/* only 8 ports are "real" */

const PortId REAL_PORT_COUNT = 4w8; // 4w8 is the number 8 in 4 bits

/* metadata accompanying an input packet */

struct InControl {

PortId inputPort;

}

/* special input port values */

const PortId RECIRCULATE_IN_PORT = 0xD;

const PortId CPU_IN_PORT = 0xE;

/* metadata that must be computed for outgoing packets */

struct OutControl {

PortId outputPort;

}

/* special output port values for outgoing packet */

const PortId DROP_PORT = 0xF;

const PortId CPU_OUT_PORT = 0xE;

const PortId RECIRCULATE_OUT_PORT = 0xD;

/* Prototypes for all programmable blocks */

/**

* Programmable parser.

* @param <H> type of headers; defined by user

* @param b input packet

14

* @param parsedHeaders headers constructed by parser

*/

parser Parser<H>(packet_in b,

out H parsedHeaders);

/**

* Match-action pipeline

* @param <H> type of input and output headers

* @param headers headers received from the parser and sent to the deparser

* @param parseError error that may have surfaced during parsing

* @param inCtrl information from architecture, accompanying input packet

* @param outCtrl information for architecture, accompanying output packet

*/

control Pipe<H>(inout H headers,

in error parseError,// parser error

in InControl inCtrl,// input port

out OutControl outCtrl); // output port

/**

* VSS deparser.

* @param <H> type of headers; defined by user

* @param b output packet

* @param outputHeaders headers for output packet

*/

control Deparser<H>(inout H outputHeaders,

packet_out b);

/**

* Top-level package declaration - must be instantiated by user.

* The arguments to the package indicate blocks that

* must be instantiated by the user.

* @param <H> user-defined type of the headers processed.

*/

package VSS<H>(Parser<H> p,

Pipe<H> map,

Deparser<H> d);

// Architecture-specific objects that can be instantiated

// Checksum unit

extern Checksum16 {

Checksum16(); // constructor

void clear(); // prepare unit for computation

void update<T>(in T data); // add data to checksum

void remove<T>(in T data); // remove data from existing checksum

bit<16> get(); // get the checksum for the data added since last clear

}

Let us describe some of these elements:

• The included file core.p4 is described in more detail in Appendix D. It defines some standard
data-types and error codes.

15

• bit<4> is the type of bit-strings with 4 bits.

• The syntax 4w0xF indicates the value 15 represented using 4 bits. An alternative notation is 4w15.
In many circumstances the width modifier can be omitted, writing just 15.

• error is a built-in P4 type for holding error codes

• Next follows the declaration of a parser:

parser Parser<H>(packet_in b, out H parsedHeaders);

Thisdeclaration describes the interface for a parser, but not yet its implementation, whichwill be
provided by the programmer. The parser reads its input from a packet_in, which is a pre-defined
P4 extern object that represents an incoming packet, declared in the core.p4 library. The parser
writes its output (the out keyword) into the parsedHeaders argument. The type of this argument is
H, yet unknown—it will also be provided by the programmer.

• The declaration

control Pipe<H>(inout H headers,

in error parseError,

in InControl inCtrl,

out OutControl outCtrl);

describes the interface of a Match-Action pipeline named Pipe.

The pipeline receives three inputs: the headers headers, a parser error parseError, and the inCtrl con-
trol data. Figure 6 indicates the different sources of these pieces of information. The pipeline writes its
outputs into outCtrl, and it must update in place the headers to be consumed by the deparser.

• The top-level package is called VSS; in order to program a VSS, the user will have to instantiate a
package of this type (shown in the next section). The top-level package declaration also depends
on a type variable H:

package VSS<H>

A type variable indicates a type yet unknown that must be provided by the user at a later time. In this
case H is the type of the set of headers that the user program will be processing; the parser will pro-
duce the parsed representation of these headers, and the match-action pipeline will update the input
headers in place to produce the output headers.

• The package VSS declaration has three complex parameters, of types Parser, Pipe, and Deparser

respectively; which are exactly the declarations we have just described. In order to program the
target one has to supply values for these parameters.

• In this program the inCtrl and outCtrl structures represent control registers. The content of the
headers structure is stored in general-purpose registers.

16

• The extern Checksum16 declaration describes an extern object whose services can be invoked to
compute checksums.

5.2. Very Simple Switch Architecture Description
In order to fully understand VSS's behavior and write meaningful P4 programs for it, and for imple-
menting a control plane, we also need a full behavioral description of the fixed-function blocks. This
section can be seen as a simple example illustrating all the details that have to be handled when writ-
ing an architecture description. The P4 language is not intended to cover the description of all such
functional blocks—the language can only describe the interfaces between programmable blocks and
the architecture. For the current program, this interface is given by the Parser, Pipe, and Deparser dec-
larations. In practicewe expect that the complete description of the architecturewill be provided as an
executable program and/or diagrams and text; in this document wewill provide informal descriptions
in English.

5.2.1. Arbiter block

The input arbiter block performs the following functions:

• It receives packets from one of the physical input Ethernet ports, from the control plane, or from
the input recirculation port.

• For packets received fromEthernet ports, the block computes the Ethernet trailer checksum and
verifies it. If the checksumdoes notmatch, the packet is discarded. If the checksumdoesmatch,
it is removed from the packet payload.

• Receiving a packet involves running an arbitration algorithm if multiple packets are available.
• If the arbiter block is busy processing a previous packet and no queue space is available, input

portsmay drop arriving packets, without indicating the fact that the packetswere dropped in any
way.

• After receiving a packet, the arbiter block sets the inCtrl.inputPort value that is an input to the
match-action pipeline with the identity of the input port where the packet originated. Physical
Ethernet ports are numbered 0 to 7, while the input recirculation port has a number 13 and the
CPU port has the number 14.

5.2.2. Parser runtime block

The parser runtime block works in concert with the parser. It provides an error code to the match-
action pipeline, based on the parser actions, and it provides information about the packet payload
(e.g., the size of the remaining payload data) to the demux block. As soon as a packet's processing is
completed by the parser, the match-action pipeline is invoked with the associated metadata as inputs
(packet headers and user-definedmetadata).

5.2.3. Demux block

The core functionality of the demux block is to receive the headers for the outgoing packet from the
deparser and the packet payload from the parser, to assemble them into a new packet and to send the
result to the correct output port. The output port is specified by the value of outCtrl.ouputPort, which
is set by the match-action pipeline.

17

• Sending the packet to the drop port causes the packet to disappear.
• Sending the packet to an output Ethernet port numbered between 0 and 7 causes it to be emitted

on the corresponding physical interface. Thepacketmay be placed in a queue if the output inter-
face is already busy emitting another packet. When the packet is emitted, the physical interface
computes a correct Ethernet checksum trailer and appends it to the packet.

• Sending a packet to the output CPU port causes the packet to be transferred to the control plane.
In this case, the packet that is sent to the CPU is the original input packet, and not the packet
received from the deparser—the latter packet is discarded.

• Sending the packet to the output recirculation port causes it to appear at the input recirculation
port. Recirculation is useful when packet processing cannot be completed in a single pass.

• If the outputPort has an illegal value (e.g., 9), the packet is dropped.
• Finally, if the demux unit is busy processing a previous packet and there is no capacity to queue

the packet coming from the deparser, the demux unit may drop the packet, irrespective of the
output port indicated.

Please note that some of the behaviors of the demux block may be unexpected—we have highlighted
them in bold. We are not specifying here several important behaviors related to queue size, arbitration,
and timing, which also influence the packet processing.

Thearrow shown from the parser runtime to the demuxblock represents an additional information
flow from the parser to the demux: the packet being processed as well as the offset within the packet
where parsing ended (i.e., the start of the packet payload).

5.2.4. Available extern blocks

The VSS architecture provides an incremental checksum extern block, called Checksum16. The check-
sum unit has a constructor and four methods:

• clear(): prepares the unit for a new computation
• update<T>(in T data): add some data to be checksummed. The datamust be either a bit-string, a

header-typed value, or a struct containing such values. The fields in the header/struct are con-
catenated in the order they appear in the type declaration.

• get(): returns the 16-bit one's complement checksum. When this function is invoked the check-
summust have received an integral number of bytes of data.

• remove<T>(in T data): assuming that datawas used for computing the current checksum, data is
removed from the checksum.

5.3. A complete Very Simple Switch program
Here we provide a complete P4 program that implements basic forwarding for IPv4 packets on the
VSS architecture. This program does not utilize all of the features provided by the architecture—e.g.,
recirculation—but it does use preprocessor #include directives (see Section 6.2).

The parser attempts to recognize an Ethernet header followed by an IPv4 header. If either of these
headers aremissing, parsing terminateswith an error. Otherwise it extracts the information from these
headers into a Parsed_packet structure. The match-action pipeline is shown in Figure 7; it comprises
four match-action units (represented by the P4 table keyword):

• If any parser error has occurred, the packet is dropped (i.e., by assigning outputPort to DROP_PORT)

18

Figure 7. Diagram of the match-action pipeline expressed by the VSS P4 program.

• Thefirst table uses the IPv4destination address to determine the outputPort and the IPv4 address
of the next hop. If this lookup fails, the packet is dropped. The table also decrements the IPv4 ttl

value.
• Thesecond table checks the ttl value: if the ttlbecomes 0, the packet is sent to the control plane

through the CPU port.
• The third table uses the IPv4 address of the next hop (which was computed by the first table) to

determine the Ethernet address of the next hop.
• Finally, the last table uses the outputPort to identify the source Ethernet address of the current

switch, which is set in the outgoing packet.

The deparser constructs the outgoing packet by reassembling the Ethernet and IPv4 headers as com-
puted by the pipeline.

// Include P4 core library

include <core.p4>

// Include very simple switch architecture declarations

include "very_simple_switch_model.p4"

// This program processes packets comprising an Ethernet and an IPv4

// header, and it forwards packets using the destination IP address

typedef bit<48> EthernetAddress;

typedef bit<32> IPv4Address;

// Standard Ethernet header

header Ethernet_h {

EthernetAddress dstAddr;

EthernetAddress srcAddr;

19

bit<16> etherType;

}

// IPv4 header (without options)

header IPv4_h {

bit<4> version;

bit<4> ihl;

bit<8> diffserv;

bit<16> totalLen;

bit<16> identification;

bit<3> flags;

bit<13> fragOffset;

bit<8> ttl;

bit<8> protocol;

bit<16> hdrChecksum;

IPv4Address srcAddr;

IPv4Address dstAddr;

}

// Structure of parsed headers

struct Parsed_packet {

Ethernet_h ethernet;

IPv4_h ip;

}

// Parser section

// User-defined errors that may be signaled during parsing

error {

IPv4OptionsNotSupported,

IPv4IncorrectVersion,

IPv4ChecksumError

}

parser TopParser(packet_in b, out Parsed_packet p) {

Checksum16() ck; // instantiate checksum unit

state start {

b.extract(p.ethernet);

transition select(p.ethernet.etherType) {

0x0800: parse_ipv4;

// no default rule: all other packets rejected

}

}

state parse_ipv4 {

20

b.extract(p.ip);

verify(p.ip.version == 4w4, error.IPv4IncorrectVersion);

verify(p.ip.ihl == 4w5, error.IPv4OptionsNotSupported);

ck.clear();

ck.update(p.ip);

// Verify that packet checksum is zero

verify(ck.get() == 16w0, error.IPv4ChecksumError);

transition accept;

}

}

// Match-action pipeline section

control TopPipe(inout Parsed_packet headers,

in error parseError, // parser error

in InControl inCtrl, // input port

out OutControl outCtrl) {

IPv4Address nextHop; // local variable

/**

* Indicates that a packet is dropped by setting the

* output port to the DROP_PORT

*/

action Drop_action() {

outCtrl.outputPort = DROP_PORT;

}

/**

* Set the next hop and the output port.

* Decrements ipv4 ttl field.

* @param ipv4_dest ipv4 address of next hop

* @param port output port

*/

action Set_nhop(IPv4Address ipv4_dest, PortId port) {

nextHop = ipv4_dest;

headers.ip.ttl = headers.ip.ttl - 1;

outCtrl.outputPort = port;

}

/**

* Computes address of next IPv4 hop and output port

* based on the IPv4 destination of the current packet.

* Decrements packet IPv4 TTL.

* @param nextHop IPv4 address of next hop

*/

table ipv4_match {

21

key = { headers.ip.dstAddr: lpm; } // longest-prefix match

actions = {

Drop_action;

Set_nhop;

}

size = 1024;

default_action = Drop_action;

}

/**

* Send the packet to the CPU port

*/

action Send_to_cpu() {

outCtrl.outputPort = CPU_OUT_PORT;

}

/**

* Check packet TTL and send to CPU if expired.

*/

table check_ttl {

key = { headers.ip.ttl: exact; }

actions = { Send_to_cpu; NoAction; }

const default_action = NoAction; // defined in core.p4

}

/**

* Set the destination MAC address of the packet

* @param dmac destination MAC address.

*/

action Set_dmac(EthernetAddress dmac) {

headers.ethernet.dstAddr = dmac;

}

/**

* Set the destination Ethernet address of the packet

* based on the next hop IP address.

* @param nextHop IPv4 address of next hop.

*/

table dmac {

key = { nextHop: exact; }

actions = {

Drop_action;

Set_dmac;

}

size = 1024;

default_action = Drop_action;

22

}

/**

* Set the source MAC address.

* @param smac: source MAC address to use

*/

action Set_smac(EthernetAddress smac) {

headers.ethernet.srcAddr = smac;

}

/**

* Set the source mac address based on the output port.

*/

table smac {

key = { outCtrl.outputPort: exact; }

actions = {

Drop_action;

Set_smac;

}

size = 16;

default_action = Drop_action;

}

apply {

if (parseError != error.NoError) {

Drop_action(); // invoke drop directly

return;

}

ipv4_match.apply(); // Match result will go into nextHop

if (outCtrl.outputPort == DROP_PORT) return;

check_ttl.apply();

if (outCtrl.outputPort == CPU_OUT_PORT) return;

dmac.apply();

if (outCtrl.outputPort == DROP_PORT) return;

smac.apply();

}

}

// deparser section

control TopDeparser(inout Parsed_packet p, packet_out b) {

Checksum16() ck;

apply {

23

b.emit(p.ethernet);

if (p.ip.isValid()) {

ck.clear(); // prepare checksum unit

p.ip.hdrChecksum = 16w0; // clear checksum

ck.update(p.ip); // compute new checksum.

p.ip.hdrChecksum = ck.get();

}

b.emit(p.ip);

}

}

// Instantiate the top-level VSS package

VSS(TopParser(),

TopPipe(),

TopDeparser()) main;

6. P4 language definition
The P4 language can be viewed as having several distinct components, which we describe separately:

• The core language, comprising of types, variables, scoping, declarations, statements, expres-
sions, etc. We start by describing this part of the language.

• A sub-language for expressing parsers, based on state machines (Section 13).
• A sub-language for expressing computations usingmatch-action units, based on traditional im-

perative control-flow (Section 14).
• A sub-language for describing architectures (Section 17).

6.1. Syntax and semantics
6.1.1. Grammar

The complete grammar of P416 is given in Appendix G, using Yacc/Bison grammar description lan-
guage. This text is based on the same grammar. We adopt several standard conventions when we
provide excerpts from the grammar:

• UPPERCASE symbols denote terminals in the grammar.
• Excerpts from the grammar are given in BNF notation as follows:

p4program

: /* empty */

| p4program declaration

| p4program ";" /* empty declaration */

;

Pseudo-code (mostly used for describing the semantics of various P4 constructs) are shownwith fixed-
size fonts as in the following example:

24

ParserModel.verify(bool condition, error err) {

if (condition == false) {

ParserModel.parserError = err;

goto reject;

}

}

6.1.2. Semantics and the P4 abstract machines

We describe the semantics of P4 in terms of abstract machines executing traditional imperative code.
There is an abstract machine for each P4 sub-language (parser, control). The abstract machines are
described in this text in pseudo-code and English.

P4compilers are free to reorganize the code theygenerate inanywayas longas theexternally visible
behaviors of the P4 programs are preserved as described by this specification where externally visible
behavior is defined as:

• The input/output behavior of all P4 blocks, and
• The state maintained by extern blocks.

6.2. Preprocessing
To aid composition of programs from multiple source files P4 compilers should support the following
subset of the C preprocessor functionality:

• #define for defining macros (without arguments)
• #undef

• #if #else #endif #ifdef #ifndef #elif

• #include

Thepreprocessor should also remove the sequence backslash newline (ASCII codes 92, 10) to facilitate
splitting content across multiple lines when convenient for formatting.

Additional C preprocessor capabilities may be supported, but are not guaranteed—e.g., macros
with arguments. Similar to C, #include can specify a file name either within double quotes or within <>.

include <system_file>

include "user_file"

The difference between the two forms is the order in which the preprocessor searches for header files
when the path is incompletely specified.

P4 compilers should correctly handle #line directives thatmay be generated during preprocessing.
This functionality allows P4 programs to be built from multiple source files, potentially produced by
different programmers at different times:

• the P4 core library, defined in this document,
• the architecture, defining data plane interfaces and extern blocks,
• user-defined libraries of useful components (e.g. standard protocol header definitions), and
• the P4 programs that specify the behavior of each programmable block.

25

6.3. P4 core library
TheP4 language specification defines a core library that includes several common programming con-
structs. A description of the core library is provided in Appendix D. All P4 programs must include the
core library. Including the core library is done with

include <core.p4>

6.4. Lexical constructs
All P4 keywords use only ASCII characters. All P4 identifiers must use only ASCII characters. P4 com-
pilers should handle correctly strings containing 8-bit characters in comments and string literals. P4
is case-sensitive. Whitespace characters, including newlines are treated as token separators. Indenta-
tion is free-form; however, P4hasC-likeblock constructs, andall our examplesuseC-style indentation.
Tab characters are treated as spaces.

The lexer recognizes the following kinds of terminals:

• IDENTIFIER: start with a letter or underscore, and contain letters, digits and underscores
• TYPE_IDENTIFIER: identifier that denotes a type name
• INTEGER: integer literals
• DONTCARE: a single underscore
• Keywords such as RETURN. By convention, each keyword terminal corresponds to a language key-

word with the same spelling but using lowercase. For example, the RETURN terminal corresponds
to the return keyword.

6.4.1. Identifiers

P4 identifiers may contain only letters, numbers, and the underscore character _, and must start with
a letter or underscore. The special identifier consisting of a single underscore _ is reserved to indicate
a “don't care” value; its type may vary depending on the context. Certain keywords (e.g., apply) can be
used as identifiers if the context makes it unambiguous.

nonTypeName

: IDENTIFIER

| APPLY

| KEY

| ACTIONS

| STATE

| ENTRIES

| TYPE

| PRIORITY

;

name

: nonTypeName

| TYPE_IDENTIFIER

26

;

6.4.2. Comments

P4 supports several kinds of comments:

• Single-line comments, introduced by // and spanning to the end of line,
• Multi-line comments, enclosed between /* and */

• Nestedmulti-line comments are not supported.
• Javadoc-style comments, starting with /** and ending with */

Use of Javadoc-style comments is strongly encouraged for the tables and actions that are used to syn-
thesize the interface with the control-plane.

P4 treats comments as token separators andno comments are allowedwithin a token—e.g. bi/**/t
is parsed as two tokens, bi and t, and not as a single token bit.

6.4.3. Literal constants

6.4.3.1. Boolean literals There are two Boolean literal constants: true and false.

6.4.3.2. Integer literals Integer literals are non-negative arbitrary-precision integers. By default,
literals are represented in base 10. The following prefixesmust be employed to specify the base explic-
itly:

• 0x or 0X indicates base 16 (hexadecimal)
• 0o or 0O indicates base 8 (octal)
• 0d or 0D indicates base 10 (decimal)
• 0b or 0B indicates base 2

The width of a numeric literal in bits can be specified by an unsigned number prefix consisting of a
number of bits and a signedness indicator:

• w indicates unsigned numbers
• s indicates signed numbers

Note that a leading zero by itself does not indicate an octal (base 8) constant. Theunderscore character
is considered a digit within number literals but is ignored when computing the value of the parsed
number. This allows long constant numbers to be more easily read by grouping digits together. The
underscore cannot be used in the width specification or as the first character of an integer literal. No
comments or whitespaces are allowed within a literal. Here are some examples of numeric literals:

32w255 // a 32-bit unsigned number with value 255

32w0d255 // same value as above

32w0xFF // same value as above

32s0xFF // a 32-bit signed number with value 255

8w0b10101010 // an 8-bit unsigned number with value 0xAA

8w0b_1010_1010 // same value as above

8w170 // same value as above

27

8s0b1010_1010 // an 8-bit signed number with value -86

16w0377 // 16-bit unsigned number with value 377 (not 255!)

16w0o377 // 16-bit unsigned number with value 255 (base 8)

6.4.3.3. String literals String literals are specified as an arbitrary sequence of 8-bit characters,
enclosedwithin double quote characters " (ASCII code 34). Strings start with a double quote character
and extend to the first double quote sign which is not immediately preceded by an odd number of
backslash characters (ASCII code 92). P4 does not make any validity checks on strings (i.e., it does not
check that strings represent legal UTF-8 encodings).

Since P4 does not allow strings to exist at runtime, string literals are generally passed unchanged
through the P4 compiler to other third-party tools or compiler-backends, including the terminating
quotes. These tools can define their own handling of escape sequences (e.g., how to specify Unicode
characters, or handle unprintable ASCII characters).

Here are 3 examples of string literals:

"simple string"

"string \" with \" embedded \" quotes"

"string with embedded

line terminator"

6.4.4. Optional trailing commas

The P4 grammar allows several kinds of comma-separated lists to end in an optional comma.

optTrailingComma

: /* empty */

| ","

;

For example, the following declarations are both legal, and have the samemeaning:

enum E {

a, b, c

}

enum E {

a, b, c,

}

This is particularly useful in combination with preprocessor directives:

enum E {

#if SUPPORT_A

a,

#endif

28

b,

c,

}

6.5. Naming conventions
P4 provides a rich assortment of types. Base types include bit-strings, numbers, and errors. There are
also built-in types for representing constructs such as parsers, pipelines, actions, and tables. Users can
construct new types based on these: structures, enumerations, headers, header stacks, header unions,
etc.

In this document we adopt the following conventions:

• Built-in types are written with lowercase characters—e.g., int<20>,
• User-defined types are capitalized—e.g., IPv4Address,
• Type variables are always uppercase—e.g., parser P<H, IH>(),
• Variables are uncapitalized— e.g., ipv4header,
• Constants are written with uppercase characters—e.g., CPU_PORT, and
• Errors and enumerations are written in camel-case— e.g. PacketTooShort.

6.6. P4 programs
A P4 program is a list of declarations:

p4program

: /* empty */

| p4program declaration

| p4program ";" /* empty declaration */

;

declaration

: constantDeclaration

| externDeclaration

| actionDeclaration

| parserDeclaration

| typeDeclaration

| controlDeclaration

| instantiation

| errorDeclaration

| matchKindDeclaration

| functionDeclaration

;

An empty declarations is indicated with a single semicolon. (Allowing empty declarations accommo-
dates the habits of C/C++ and Java programmers—e.g., certain constructs, like struct, do not require a
terminating semicolon).

29

6.6.1. Scopes

Some P4 constructs act as namespaces that create local scopes for names including:

• Derived type declarations (struct, header, header_union, enum), which introduce local scopes for
field names,

• Block statements, which introduce local lexically-enclosed scopes,
• parser, table, action, and control blocks, which introduce local scopes
• Declarations with type variables, which introduce a new scope for those variables. For example,

in the following extern declaration, the scope of the type variable H extends to the end of the
declaration:

extern E<H>(/* parameters omitted */) { /* body omitted */ } // scope of H ends here.

The order of declarations is important; with the exception of parser states, all uses of a symbol must
follow the symbol's declaration. (This is a departure fromP414, which allows declarations in any order.
This requirement significantly simplifies the implementation of compilers for P4, allowing compilers
to use additional information about declared identifiers to resolve ambiguities.)

6.6.2. Stateful elements

Most P4 constructs are stateless: given some inputs they produce a result that solely depends on these
inputs. There are only two stateful constructs that may retain information across packets:

• tables: Tables are read-only for the data plane, but their entries can be modified by the control-
plane,

• extern objects: many objects have state that can be read and written by the control plane and
data plane. All constructs from the P414 language version that encapsulate state (e.g., counters,
meters, registers) are represented using extern objects in P416.

In P4 all stateful elements must be explicitly allocated at compilation-time through the process called
“instantiation”.

Inaddition, parsers, controlblocks, and packagesmaycontain stateful element instantiations. Thus,
they are also treated as stateful elements, even if they appear to contain no state, andmust be instanti-
ated before they canbeused. However, although they are stateful, tables donot need to be instantiated
explicitly—declaring a table also creates an instance of it. This convention is designed to support the
common case, sincemost tables are used just once. To have finer-grained control over when a table is
instantiated, a programmer can declare it within a control.

Recall the example in Section 5.3: TopParser, TopPipe, TopDeparser, Checksum16, and Switch are types.
There are two instances of Checksum16, one in TopParser and one in TopDeparser, both called ck. The
TopParser, TopDeparser, TopPipe, and Switchare instantiatedat theendof theprogram, in thedeclaration
of the main instance object, which is an instance of the Switch type (a package).

6.7. L-values
L-values are expressions that may appear on the left side of an assignment operation or as arguments
corresponding to out and inout function parameters. An l-value represents a storage reference. The
following expressions are legal l-values:

30

prefixedNonTypeName

: nonTypeName

| dotPrefix nonTypeName

;

lvalue

: prefixedNonTypeName

| THIS

| lvalue "." member

| lvalue "[" expression "]"

| lvalue "[" expression ":" expression "]"

| "(" lvalue ")"

;

• Identifiers of a base or derived type.
• Structure, header, and header union field member access operations (using the dot notation).
• References to elements within header stacks (see Section 8.19): indexing, and references to last

and next.
• The result of a bit-slice operator [m:l].

The following is a legal l-value: headers.stack[4].field. Note that method and function calls cannot
return l-values.

6.8. Calling convention: call by copy in/copy out
P4 provides multiple constructs for writing modular programs: extern methods, parsers, controls, ac-
tions. All these constructs behave similarly to procedures in standard general-purpose programming
languages:

• They have named and typed parameters.
• They introduce a new local scope for parameters and local variables.
• They allow arguments to be passed by binding them to their parameters.

Invocations are executed using copy-in/copy-out semantics.
Each parameter may be labeled with a direction:

• in parameters are read-only. It is an error to use an in parameter on the left-hand side of an
assignment or to pass it to a callee as a non-in argument. inparameters are initialized by copying
the value of the corresponding argument when the invocation is executed.

• out parameters are, with a few exceptions listed below, uninitialized and are treated as l-values
(See Section 6.7) within the body of the method or function. An argument passed as an out pa-
rametermust be an l-value; after the execution of the call, the value of the parameter is copied to
the corresponding storage location for that l-value.

• inout parameters behave like a combination of in and out parameters simultaneously: On entry
the value of the arguments is copied to the parameters. On return the value of the parameters is
copied back to the arguments. In consequence, an argument passed as an inout parametermust
be an l-value.

31

• The meaning of parameters with no direction depends upon the kind of entity the parameter is
for:

– For anything other than an action, e.g. a control, parser, or function, a directionless param-
eter means that the value supplied as an argument in a call must be a compile-time known
value (see Section 18.1).

– For an action, a directionless parameter indicates that it is “action data”. See Section 14.1 for
the meaning of action data, but its meaning includes the following possibilities:

∗ The parameter's value is provided in the P4 program. In this case, the parameter be-
haves as if the direction were in. Such an argument expression need not be a compile-
time known value.

∗ Theparameter's value is provided by the control plane softwarewhen an entry is added
to a table that uses that action. See Section 14.1.

A directionless parameter of extern object type is passed by reference.
Direction out parameters are always initialized at the beginning of execution of the portion of the

program that has the out parameters, e.g. control, parser, action, function, etc. This initialization is not
performed for parameters with any direction that is not out.

• If a direction out parameter is of type header or header_union, it is set to “invalid”.
• If a direction out parameter is of type header stack, all elements of the header stack are set to

“invalid”, and its nextIndex field is initialized to 0 (see Section 8.19).
• If a direction out parameter is a compound type, e.g. a struct or tuple, other than one of the types

listed above, then apply these rules recursively to its members.
• If a direction outparameter has any other type, e.g. bit<W>, an implementationneednot initialize

it to any predictable value.

For example, if a direction out parameter has type s2_t named p:

header h1_t {

bit<8> f1;

bit<8> f2;

}

struct s1_t {

h1_t h1a;

bit<3> a;

bit<7> b;

}

struct s2_t {

h1_t h1b;

s1_t s1;

bit<5> c;

}

then at the beginning of execution of the part of the program that has the out parameter p, it must be
initialized so that p.h1b and and p.s1.h1a are invalid. No other parts of p are required to be initialized.

Arguments are evaluated from left to right prior to the invocation of the function itself. The order of
evaluation is important when the expression supplied for an argument can have side-effects. Consider

32

the following example:

extern void f(inout bit x, in bit y);

extern bit g(inout bit z);

bit a;

f(a, g(a));

Note that the evaluation of g may mutate its argument a, so the compiler has to ensure that the value
passed to f for its first parameter is not changed by the evaluation of the second argument. The seman-
tics for evaluating a function call is given by the following algorithm (implementations can be different
as long as they provide the same result):

1. Arguments are evaluated from left to right as they appear in the function call expression.
2. If a parameter has a default value and no corresponding argument is supplied, the default value

is used as an argument.
3. For each out and inout argument the corresponding l-value is saved (so it cannot be changed by

the evaluation of the following arguments). This is important if the argument contains indexing
operations into a header stack.

4. The value of each argument is saved into a temporary.
5. The function is invoked with the temporaries as arguments. We are guaranteed that the tempo-

raries that are passed as arguments are never aliased to each other, so this “generated” function
call can be implemented using call-by-reference if supported by the architecture.

6. On function return, the temporaries that correspond to out or inout arguments are copied in
order from left to right into the l-values saved in Step 3.

According to this algorithm, the previous function call is equivalent to the following sequence of state-
ments:

bit tmp1 = a; // evaluate a; save result

bit tmp2 = g(a); // evaluate g(a); save result; modifies a

f(tmp1, tmp2); // evaluate f; modifies tmp1

a = tmp1; // copy inout result back into a

To see why Step 3 in the above algorithm is important, consider the following example:

header H { bit z; }

H[2] s;

f(s[a].z, g(a));

The evaluation of this call is equivalent to the following sequence of statements:

bit tmp1 = a; // save the value of a

bit tmp2 = s[tmp1].z; // evaluate first argument

bit tmp3 = g(a); // evaluate second argument; modifies a

f(tmp2, tmp3); // evaluate f; modifies tmp2

s[tmp1].z = tmp2; // copy inout result back; dest is not s[a].z

When used as arguments, extern objects can only be passed as directionless parameters—e.g., see the

33

packet argument in the very simple switch example.

6.8.1. Justification

Themain reason for using copy-in/copy-out semantics (insteadof themore commoncall-by-reference
semantics) is for controlling the side-effects of extern functions and methods. extern methods and
functions are the mainmechanism by which a P4 program communicates with its environment. With
copy-in/copy-out semantics extern functions cannot hold references to P4 program objects; this en-
ables the compiler to limit the side-effects that extern functions may have on the P4 program both in
space (they can only affect out parameters) and in time (side-effects can only occur at function call
time).

In general, extern functions are arbitrarily powerful: they can store information in global storage,
spawn separate threads, “collude” with each other to share information— but they cannot access any
variable in a P4 program. With copy-in/copy-out semantics the compiler can still reason about P4
programs that invoke extern functions.

There are additional benefits of using copy-in copy-out semantics:

• It enables P4 to be compiled for architectures that do not support references (e.g., where all data
is allocated to named registers. Such architectures may require indices into header stacks that
appear in a program to be compile-time known values.)

• It simplifies some compiler analyses, since function parameters can never alias to each other
within the function body.

parameterList

: /* empty */

| nonEmptyParameterList

;

nonEmptyParameterList

: parameter

| nonEmptyParameterList "," parameter

;

parameter

: optAnnotations direction typeRef name

| optAnnotations direction typeRef name "=" expression

;

direction

: IN

| OUT

| INOUT

| /* empty */

;

Following is a summary of the constraints imposed by the parameter directions:

• When used as arguments, extern objects can only be passed as directionless parameters.

34

• All constructor parameters are evaluated at compilation-time, and in consequence theymust all
be directionless (they cannot be in, out, or inout); this applies to package, control, parser, and
extern objects. Expressions for these parameters must be supplied at compile-time, and they
must evaluate to compile-time known values. See Section 15 for further details.

• For actions all directionless parameters must be at the end of the parameter list. When an ac-
tion appears in a table's actions list, only the parameters with a direction must be bound. See
Section 14.1 for further details.

• Actions can also be explicitly invoked using function call syntax, either from a control block or
from another action. In this case, values for all action parametersmust be supplied explicitly, in-
cluding values for the directionless parameters. Thedirectionless parameters in this case behave
like in parameters. See Section 14.1.1 for further details.

• Default expressions are only allowed for ‘in’ or direction-less parameters, and the expressions
supplied as defaults must be compile-time known values.

• If parameters with default values do not appear at the end of the list of parameters, invocations
that use the default values must use named arguments, as in the following example:

extern void f(in bit a, in bit<3> b = 2, in bit<5> c);

void g()

{

f(a = 1, b = 2, c = 3); // ok

f(a = 1, c = 3); // ok, equivalent to the previous call, b uses default value

f(1, 2, 3); // ok, equivalent to the previous call

// f(1, 3); // illegal, since the parameter b is not the last in the list

}

6.8.2. Optional parameters

A parameter that is annotated with the @optional annotation is optional: the user may omit the value
for that parameter in an invocation. Optional parameters can only appear for arguments of: packages,
parser types, control types, extern functions, externmethods, and extern object constructors. Optional
parameters cannot have default values. If a procedure-like construct has both optional parameters
and default values then it can only be called using named arguments. It is recommended, but not
mandatory, for all optional parameters to be at the end of a parameter list.

The implementation of such objects is not expressed in P4, so the meaning and implementation
of optional parameters should be specified by the target architecture. For example, we can imagine a
two-stage switch architecture where the second stage is optional. This could be declared as a package
with an optional parameter:

package pipeline(/* parameters omitted */);

package switch(pipeline first, @optional pipeline second);

pipeline(/* arguments omitted */) ingress;

switch(ingress) main; // a switch with a single-stage pipeline

Here the target architecture could implement the elided optional argument using an empty pipeline.

35

The following example shows optional parameters and parameters with default values.

extern void h(in bit<32> a, in bool b = true); // default value

// function calls

h(10); // same as h(10, true);

h(a = 10); // same as h(10, true);

h(a = 10, b = true);

struct Empty {}

control nothing(inout Empty h, inout Empty m) {

apply {}

}

parser parserProto<H, M>(packet_in p, out H h, inout M m);

control controlProto<H, M>(inout H h, inout M m);

package pack<HP, MP, HC, MC>(@optional parserProto<HP, MP> _parser, // optional parameter

controlProto<HC, MC> _control = nothing()); // default parameter value

pack() main; // No value for _parser, _control is an instance of nothing()

6.9. Name resolution
P4 objects that introduce namespaces are organized in a hierarchical fashion. There is a top-level un-
named namespace containing all top-level declarations.

Identifiers prefixed with a dot are always resolved in the top-level namespace.

const bit<32> x = 2;

control c() {

int<32> x = 0;

apply {

x = x + (int<32>).x; // x is the int<32> local variable,

// .x is the top-level bit<32> variable

}

}

References to resolve an identifier are attempted inside-out, starting with the current scope and pro-
ceeding to all lexically enclosing scopes. The compiler may provide a warning if multiple resolutions
are possible for the same name (name shadowing).

const bit<4> x = 1;

control p() {

const bit<8> x = 8; // x declaration shadows global x

const bit<4> y = .x; // reference to top-level x

36

const bit<8> z = x; // reference to p's local x

apply {}

}

6.10. Visibility
Identifiers defined in the top-level namespace are globally visible. Declarationswithin a parser or con-
trol are private and cannot be referred to from outside of the enclosing parser or control.

7. P4 data types
P416 is a statically-typed language. Programs that do not pass the type checker are considered invalid
and rejected by the compiler. P4 provides a number of base types as well as type operators that con-
struct derived types. Some values can be converted to a different type using casts. However, to make
user intents clear, implicit casts are only allowed in a few circumstances and the range of casts available
is intentionally restricted.

7.1. Base types
P4 supports the following built-in base types:

• The void type, which has no values and can be used only in a few restricted circumstances.
• The error type, which is used to convey errors in a target-independent, compiler-managed way.
• The string type, which can be used with compile-time known values of type string.
• The match_kind type, which is used for describing the implementation of table lookups,
• bool, which represents Boolean values
• int, which represents arbitrary-sized integer values
• Bit-strings of fixed width, denoted by bit<>

• Fixed-width signed integers represented using two's complement int<>
• Bit-strings of dynamically-computed width with a fixedmaximumwidth varbit<>

baseType

: BOOL

| MATCH_KIND

| ERROR

| BIT

| STRING

| INT

| BIT "<" INTEGER ">"

| INT "<" INTEGER ">"

| VARBIT "<" INTEGER ">"

| BIT "<" "(" expression ")" ">"

| INT "<" "(" expression ")" ">"

| VARBIT "<" "(" expression ")" ">"

;

37

7.1.1. The void type

Thevoid type is written void. It contains no values. It is not included in the production rule baseType as
it can only appear in few restricted places in P4 programs.

7.1.2. The error type

The error type contains opaque distinct values that can be used to signal errors. It is written as error.
New elements of the error type are defined with the syntax:

errorDeclaration

: ERROR "{" identifierList "}"

;

All elements of the error type are inserted into the error namespace, irrespective of the place where
an error is defined. error is similar to an enumeration (enum) type in other languages. A program can
contain multiple error declarations, which the compiler will merge together. It is an error to declare
the same identifier multiple times. Expressions of type error are described in Section 8.2.

For example, the following declaration creates two elements of the error type (these errors are de-
clared in the P4 core library):

error { ParseError, PacketTooShort }

The underlying representation of errors is target-dependent.

7.1.3. The match kind type

The match_kind type is very similar to the error type and is used to declare a set of distinct names that
may be used in a table's key property (described in Section 14.2.1). All identifiers are inserted into the
top-level namespace. It is an error to declare the same match_kind identifier multiple times.

matchKindDeclaration

: MATCH_KIND "{" identifierList optTrailingComma "}"

;

The P4 core library contains the following match_kind declaration:

match_kind {

exact,

ternary,

lpm

}

Architectures may support additional match_kinds. The declaration of new match_kinds can only occur
within model description files; P4 programmers cannot declare newmatch kinds.

Operations on values of type match_kind are described in Section 8.4.

38

7.1.4. The Boolean type

TheBoolean type bool contains just two values, false and true. Boolean values are not integers or bit-
strings. Operations that can be performed on booleans are described in Section 8.5.

7.1.5. Strings

The type string represents strings. The values are either string literals, or concatenations of multiple
string literals. Operations that can be performed on strings are described in Section 8.11.

One cannot declare variableswith a string type. Parameterswith type string canbeonly direction-
less (see Section 6.8). P4 does not support stringmanipulation in the dataplane; the string type is only
allowed for describing compile-time known values (i.e., string literals, as discussed in Section 6.4.3.3).
Even so, the string type is useful, for example, in giving the type signature for extern functions such as
the following:

extern void log(string message);

As another example, the following annotation indicates that the specified name should be used for a
given table in the generated control-plane API:

@name("acl") table t1 { /* body omitted */ }

7.1.6. Integers (signed and unsigned)

P4 supports arbitrary-size integer values. The typing rules for the integer types are chosen according
to the following principles:

• Inspired by C: Typing of integers is modeled after the well-defined parts of C, expanded to cope
with arbitrary fixed-width integers. In particular, the type of the result of an expression only de-
pends on the expression operands, and not on how the result of the expression is consumed.

• Noundefinedbehaviors: P4 attempts to avoidmanyofC's behaviors, which include the size of an
integer (int), the results produced on overflow, and the results produced for some input combi-
nations (e.g., shifts with negative amounts, overflows on signed numbers, etc.). P4 computations
on integer types have no undefined behaviors.

• Least surprise: The P4 typing rules are chosen to behave as closely as possible to traditional well-
behaved C programs.

• Forbid rather than surprise: Rather than provide surprising or undefined results (e.g., in C com-
parisons between signed and unsigned integers), we have chosen to forbid expressionswith am-
biguous interpretations. For example, P4 does not allow binary operations that combine signed
and unsigned integers.

The priority of arithmetic operations is identical to C—e.g., multiplication binds tighter than addition.

7.1.6.1. Portability No P4 target can support all possible types and operations. For example, the
type bit<23132312> is legal in P4, but it is highly unlikely to be supported on any target in practice.
Hence, each target can impose restrictions on the types it can support. Such restrictions may include:

• Themaximumwidth supported

39

• Alignment and padding constraints (e.g., arithmeticmay only be supported onwidths which are
an integral number of bytes).

• Constraints on some operands (e.g., some architectures may only support multiplications by
small values, or shifts with small values).

The documentation supplied with a target should clearly specify restrictions, and target-specific com-
pilers should provide clear error messages when such restrictions are encountered. An architecture
may reject a well-typed P4 program and still be conformant to the P4 spec. However, if an architecture
accepts a P4 program as valid, the runtime program behavior should match this specification.

7.1.6.2. Unsigned integers (bit-strings) Anunsigned integer (whichwe also call a “bit-string”)
has an arbitrary width, expressed in bits. A bit-string of width W is declared as: bit<W>. W must be an
expression that evaluates to a local compile-time known value (see Section 18.1) that is a non-negative
integer. When using an expression for the size, the expression must be parenthesized. Bitstrings with
width 0 are allowed; they have no actual bits, and can only have the value 0. See 8.26 for additional
details. Note that bit<W> type refers to both cases of bit<W> and bit<(expression)>where the width is a
compile-time known value.

const bit<32> x = 10; // 32-bit constant with value 10.

const bit<(x + 2)> y = 15; // 12-bit constant with value 15.

// expression for width must use ()

Bits within a bit-string are numbered from 0 to W-1. Bit 0 is the least significant, and bit W-1 is the most
significant.

For example, the type bit<128> denotes the type of bit-string values with 128 bits numbered from 0
to 127, where bit 127 is the most significant.

The type bit is a shorthand for bit<1>.
P4 architectures may impose additional constraints on bit types: for example, they may limit the

maximum size, or they may only support some arithmetic operations on certain sizes (e.g., 16-, 32-,
and 64- bit values).

All operations that can be performed on unsigned integers are described in Section 8.6.

7.1.6.3. Signed Integers Signed integers are represented using two's complement. An integer
with W bits is declared as: int<W>. Wmust be an expression that evaluates to a local compile-time known
(see Section 18.1) value that is a non-negative integer. Note that int<W> type refers to both cases of
int<W> and int<(expression)>where the width is a local compile-time known value.

Bits within an integer are numbered from 0 to W-1. Bit 0 is the least significant, and bit W-1 is the sign
bit.

For example, the type int<64> describes the type of integers represented using exactly 64 bits with
bits numbered from 0 to 63, where bit 63 is the most significant (sign) bit.

P4 architectures may impose additional constraints on signed types: for example, they may limit
themaximumsize, or theymay only support some arithmetic operations on certain sizes (e.g., 16-, 32-,
and 64- bit values).

All operations that can be performed on signed integers are described in Section 8.7.
A signed integer with width 1 can only have two legal values: 0 and -1.

40

7.1.6.4. Dynamically-sized bit-strings Some network protocols use fields whose size is only
known at runtime (e.g., IPv4 options). To support restrictedmanipulations of such values, P4 provides
a special bit-string type whose size is set at runtime, called a varbit.

The type varbit<W> denotes a bit-string with a width of at most W bits, where W is a local compile-
time known value (see Section 18.1) that is a non-negative integer. For example, the type varbit<120>

denotes the type of bit-string values that may have between 0 and 120 bits. Most operations that are
applicable to fixed-size bit-strings (unsigned numbers) cannot be performed on dynamically sized bit-
strings. Note that varbit<W> type refers to both cases of varbit<W> and varbit<(expression)>where the
width is a compile-time known value.

P4 architectures may impose additional constraints on varbit types: for example, they may limit
the maximum size, or they may require varbit values to always contain an integer number of bytes at
runtime.

All operations that can be performed on varbits are described in Section 8.10.

7.1.6.5. Arbitrary-precision integers Thearbitrary-precision data type describes integers with
an unlimited precision. This type is written as int.

This type is reserved for integer literals and expressions that involve only literals. No P4 runtime
value can have an int type; at compile time the compiler will convert all int values that have a runtime
component to fixed-width types, according to the rules described below.

All operations that can be performed on arbitrary-precision integers are described in Section 8.8.
The following example shows three constant definitions whose values are arbitrary-precision integers.

const int a = 5;

const int b = 2 * a;

const int c = b - a + 3;

Parameters with type int are not supported for actions. Parameters with type int for other callable
entities of a program, e.g. controls, parsers, or functions, must be directionless, indicating that all calls
must provide a compile-time known value as an argument for such a parameter. See Section 6.8 for
more details on directionless parameters.

7.1.6.6. Integer literal types The types of integer literals are as follows:

• An integer with no type prefix has type int.
• A non-negative integer prefixed with an integer width W and the character w has type bit<W>.
• An integer prefixed with an integer width W and the character s has type int<W>.

The table below shows several examples of integer literals and their types. For additional examples of
literals see Section 6.4.3.

Literal Interpretation
10 Type is int, value is 10

8w10 Type is bit<8>, value is 10
8s10 Type is int<8>, value is 10
2s3 Type is int<2>, value is -1 (last 2 bits), overflow warning

1w10 Type is bit<1>, value is 0 (last bit), overflow warning

41

1s1 Type is int<1>, value is -1, overflow warning

7.2. Derived types
P4 provides a number of type constructors that can be used to derive additional types including:

• enum

• header

• header stacks
• struct

• header_union

• tuple

• type specialization
• extern

• parser

• control

• package

The types header, header_union, enum, struct, extern, parser, control, and package can only be used in
typedeclarations,where they introduceanewname for the type. The typecan subsequentlybe referred
to using this identifier.

Other types cannot bedeclared, but are synthesizedby the compiler internally to represent the type
of certain language constructs. These types are described in Section 7.2.9: set types and function types.
For example, the programmer cannot declare a variablewith type “set”, but she canwrite an expression
whose value evaluates to a set type. These types are used during type-checking.

typeDeclaration

: derivedTypeDeclaration

| typedefDeclaration ";"

| parserTypeDeclaration ";"

| controlTypeDeclaration ";"

| packageTypeDeclaration ";"

;

derivedTypeDeclaration

: headerTypeDeclaration

| headerUnionDeclaration

| structTypeDeclaration

| enumDeclaration

;

typeRef

: baseType

| typeName

| specializedType

| headerStackType

42

| p4listType

| tupleType

;

namedType

: typeName

| specializedType

;

prefixedType

: TYPE_IDENTIFIER

| dotPrefix TYPE_IDENTIFIER

;

typeName

: prefixedType

;

7.2.1. Enumeration types

An enumeration type is defined using the following syntax:

enumDeclaration

: optAnnotations ENUM name "{" identifierList optTrailingComma "}"

| optAnnotations ENUM typeRef name "{"

specifiedIdentifierList optTrailingComma "}"

;

identifierList

: name

| identifierList "," name

;

specifiedIdentifierList

: specifiedIdentifier

| specifiedIdentifierList "," specifiedIdentifier

;

specifiedIdentifier

: name "=" initializer

;

For example, the declaration

enum Suits { Clubs, Diamonds, Hearths, Spades }

43

introduces a newenumeration type, which contains four elements—e.g., Suits.Clubs. An enumdeclara-
tion introduces a new identifier in the current scope for naming the created type along with its distinct
elements. The underlying representation of the Suits enum is not specified, so their “size” in bits is not
specified (it is target-specific).

It is also possible to specify an enumwith an underlying representation. These are sometimes called
serializable enums, because headers are allowed to have fields with such enum types. This requires the
programmer provide both the fixed-width unsigned (or signed) integer type and an associated integer
value for each symbolic entry in the enumeration. The symbol typeRef in the grammar above must be
one of the following types:

• an unsigned integer, i.e. bit<W> for some local compile-time known value W.
• a signed integer, i.e. int<W> for some local compile-time known value W.
• a type name declared via typedef, where the base type of that type is either one of the types listed

above, or another typedef name that meets these conditions. For example, the declaration

enum bit<16> EtherType {

VLAN = 0x8100,

QINQ = 0x9100,

MPLS = 0x8847,

IPV4 = 0x0800,

IPV6 = 0x86dd

}

introduces a newenumeration type, which contains five elements—e.g., EtherType.IPV4. This enumdec-
laration specifies the fixed-width unsigned integer representation for each entry in the enum and pro-
vides an underlying type: bit<16>. This kind of enum declaration can be thought of as declaring a new
bit<16> type, where variables or fields of this type are expected to be unsigned 16-bit integer values,
and the mapping of symbolic to numeric values defined by the enum are also defined as a part of this
declaration. In this way, an enumwith an underlying type can be thought of as being a type derived from
the underlying type carrying equality, assignment, and casts to/from the underlying type.

Compiler implementations are expected to raise an error if the fixed-width integer representation
for an enumeration entry falls outside the representation range of the underlying type.

For example, the declaration

enum bit<8> FailingExample {

first = 1,

second = 2,

third = 3,

unrepresentable = 300

}

would raise an error because 300, the value associated with FailingExample.unrepresentable cannot be
represented as a bit<8> value.

The initializer expressionmust be a compile-time known value.
Annotations, represented by the non-terminal optAnnotations, are described in Section 20.
Operations on enum values are described in Section 8.3.

44

7.2.2. Header types

The declaration of a header type is given by the following syntax:

headerTypeDeclaration

: optAnnotations HEADER name optTypeParameters "{" structFieldList "}"

;

structFieldList

: /* empty */

| structFieldList structField

;

structField

: optAnnotations typeRef name ";"

;

where each typeRef is restricted to a bit-string type (fixed or variable), a fixed-width signed integer
type, a boolean type, or a struct that itself contains other struct fields, nested arbitrarily, as long as all
of the “leaf” types are bit<W>, int<W>, a serializable enum, or a bool. If a bool is used inside a P4 header,
all implementations encode the bool as a one bit long field, with the value 1 representing true and 0

representing false. Field names have to be distinct.
A header declaration introduces a new identifier in the current scope; the type can be referred to

using this identifier. A header is similar to a struct in C, containing all the specified fields. However,
in addition, a header also contains a hidden Boolean “validity” field. When the “validity” bit is true

we say that the “header is valid”. When a local variable with a header type is declared, its “validity”
bit is automatically set to false. The “validity” bit can be manipulated by using the header methods
isValid(), setValid(), and setInvalid(), as described in Section 8.18.

Note, nesting of headers is not supported. One reason is that it leads to complications in defin-
ing the behavior of arbitrary sequences of setValid, setInvalid, and emit operations. Consider an ex-
ample where header h1 contains header h2 as a member, both currently valid. A program executes
h2.setInvalid() followed by packet.emit(h1). Should all fields of h1 be emitted, but skipping h2? Simi-
larly, should h1.setInvalid() invalidate all headers contained within h1, regardless of how deeply they
are nested?

Header types may be empty:

header Empty_h { }

Note that an empty header still contains a validity bit.
When a struct is inside of a header, the order of the fields for the purposes of extract and emit calls

is the order of the fields as defined in the source code. An example of a header including a struct is
included below.

struct ipv6_addr {

bit<32> Addr0;

bit<32> Addr1;

bit<32> Addr2;

45

bit<32> Addr3;

}

header ipv6_t {

bit<4> version;

bit<8> trafficClass;

bit<20> flowLabel;

bit<16> payloadLen;

bit<8> nextHdr;

bit<8> hopLimit;

ipv6_addr src;

ipv6_addr dst;

}

Headers that do not contain any varbit field are “fixed size.” Headers containing varbit fields have
“variable size.” The size (in bits) of a fixed-size header is simply the sum of the sizes of all component
fields (without counting the validity bit). There is no padding or alignment of the header fields. Targets
may imposeadditional constraints onheader types—e.g., restrictingheaders to sizes that are an integer
number of bytes.

For example, the following declaration describes a typical Ethernet header:

header Ethernet_h {

bit<48> dstAddr;

bit<48> srcAddr;

bit<16> etherType;

}

The following variable declaration uses the newly introduced type Ethernet_h:

Ethernet_h ethernetHeader;

P4's parser language provides an extractmethod that can be used to “fill in” the fields of a header from
a network packet, as described in Section 13.8. The successful execution of an extract operation also
sets the validity bit of the extracted header to true.

Here is an example of an IPv4 header with variable-sized options:

header IPv4_h {

bit<4> version;

bit<4> ihl;

bit<8> diffserv;

bit<16> totalLen;

bit<16> identification;

bit<3> flags;

bit<13> fragOffset;

bit<8> ttl;

bit<8> protocol;

bit<16> hdrChecksum;

46

bit<32> srcAddr;

bit<32> dstAddr;

varbit<320> options;

}

As demonstrated by a code example in Section 13.8.2, another way to support headers that contain
variable-length fields is to define two headers – one fixed length, one containing a varbit field – and
extract each part in separate parsing steps.

Notice that the names isValid, setValid, minSizeInBits, etc. are all valid header field names.

7.2.3. Header stacks

A header stack represents an array of headers or header unions. A header stack type is defined as:

headerStackType

: typeName "[" expression "]"

| specializedType "[" expression "]"

;

where typeName is the name of a header or header union type. For a header stack hs[n], the term n is
the maximum defined size, and must be a local compile-time known value that is a positive integer.
Nested header stacks are not supported. At runtime a stack contains n values with type typeName, only
some of whichmay be valid. Expressions on header stacks are discussed in Section 8.19.

For example, the following declarations,

header Mpls_h {

bit<20> label;

bit<3> tc;

bit bos;

bit<8> ttl;

}

Mpls_h[10] mpls;

introduce a header stack called mpls containing ten entries, each of type Mpls_h.
Operations on header stacks are described in Section 8.19.

7.2.4. Header unions

A header union represents an alternative containing at most one of several different headers. Header
unions can be used to represent “options” in protocols like TCP and IP. They also provide hints to P4
compilers that only one alternative will be present, allowing them to conserve storage resources.

A header union is defined as:

headerUnionDeclaration

: optAnnotations HEADER_UNION name optTypeParameters "{" structFieldList "}"

;

47

This declaration introduces a new type with the specified name in the current scope. Each element of
the list of fields used to declare a header union must be of header type. An empty list of fields is legal.
Field names have to be distinct.

As an example, the type Ip_h below represents the union of an IPv4 and IPv6 headers:

header_union IP_h {

IPv4_h v4;

IPv6_h v6;

}

A header union is not considered a type with fixed length.
Operation on header unions are described in Section 8.20.

7.2.5. Struct types

P4 struct types are defined with the following syntax:

structTypeDeclaration

: optAnnotations STRUCT name optTypeParameters "{" structFieldList "}"

;

This declaration introduces a new typewith the specified name in the current scope. Field names have
to be distinct. An empty struct (with nofields) is legal. For example, the structure Parsed_headersbelow
contains the headers recognized by a simple parser:

header Tcp_h { /* fields omitted */ }

header Udp_h { /* fields omitted */ }

struct Parsed_headers {

Ethernet_h ethernet;

Ip_h ip;

Tcp_h tcp;

Udp_h udp;

}

7.2.6. Tuple types

A tuple is similar to a struct, in that it holdsmultiple values. The type of tupleswith n component types
T1,…,Tn is written as

tuple<T1,/* more fields omitted */,Tn>

tupleType

: TUPLE "<" typeArgumentList ">"

;

Operations that manipulate tuple types are described in Section 8.13.

48

The type tuple<> is a tuple type with no components.

7.2.7. List types

A list holds zero ormore values, where every elementmust have the same type. The type of a list where
all elements have type T is written as

list<T>

p4listType

: LIST "<" typeArg ">"

;

Operations that manipulate list types are described in Section 8.15.

7.2.8. Type nesting rules

The table below lists all types that may appear as members of headers, header unions, structs, tuples,
and lists. Note that int by itself (i.e. not as part of an int<N> type expression) means an arbitrary-
precision integer, without a width specified.

Container kind
Element type header header_union struct or tuple list header stack
bit<W> allowed error allowed allowed error
int<W> allowed error allowed allowed error
varbit<W> allowed error allowed allowed error
int error error error allowed error
void error error error error error
string error error error allowed error
error error error allowed allowed error
match_kind error error error allowed error
bool allowed error allowed allowed error
enumeration types allowed1 error allowed allowed error
header types error allowed allowed allowed allowed
header stacks error error allowed allowed error
header unions error error allowed allowed allowed
struct types allowed2 error allowed allowed error
tuple types error error allowed allowed error
list types error error error allowed error

Rationale: int does not have precise storage requirements, unlike bit<> or int<> types. match_kind val-
ues are not useful to store in a variable, as they are only used to specify how to match fields in table
search keys, which are all declared at compile time. void is not useful as part of another data structure.

1an enum type used as a field in a header must specify a underlying type and representation for enum elements.
2a struct or nested struct type that has the same properties, used as a field in a header must contain only bit<W>,

int<W>, a serializable enum, or a bool.

49

Headers must have precisely defined formats as sequences of bits in order for them to be parsed or
deparsed.

Note the two-argument extractmethod (see Section 13.8.2) on packets only supports a single var-

bit field in a header.
The table below lists all types that may appear as base types in a typedef or type declaration.

Base type B typedef B <name> type B <name>

bit<W> allowed allowed
int<W> allowed allowed
varbit<W> allowed error
int allowed error
void error error
string allowed error
error allowed error
match_kind error error
bool allowed allowed
enumeration types allowed error
header types allowed error
header stacks allowed error
header unions allowed error
struct types allowed error
tuple types allowed error
list types allowed error
a typedef name allowed allowed3

a type name allowed allowed

Rationale: So far, noclearmotivation for allowing typedef for voidand match_kindwaspresented. There-
fore, to be on the safe side this is disallowed.

7.2.9. Synthesized data types

For the purposes of type-checking the P4 compiler can synthesize some type representations which
cannot be directly expressed by users. These are described in this section: set types and function types.

7.2.9.1. Set types Thetype set<T>describes sets of values of some type T. Set types canonly appear
in restricted contexts in P4 programs. For example, the range expression 8w5 .. 8w8 describes a set
containing the 8-bit numbers 5, 6, 7, and 8, so its type is set<bit<8>>;. This expression can be used as
a label in a select expression (see Section 13.6), matching any value in this range. Set types cannot be
named or declared by P4 programmers, they are only synthesized by the compiler internally and used
for type-checking. Expressions with set types are described in Section 8.16.

7.2.9.2. Function types Function types are created by the P4 compiler internally to repre-
sent the types of functions (explicit functions or extern functions) andmethods during type-checking.
We also call the type of a function its signature. Libraries can contain functions and extern function
declarations.

3type B <name> is allowed for a type name B defined via typedef X B if type X <name> is allowed.

50

For example, consider the following declarations:

extern void random(in bit<5> logRange, out bit<32> value);

bit<32> add(in bit<32> left, in bit<32> right) {

return left + right;

}

These declarations describe two objects:

• random, which has a function type, representing the following information:

– the result type is void
– the function has two inputs
– the first formal parameter has direction in, type bit<5>, and name logRange

– the second formal parameter has direction out, type bit<32>, and name value

• add, also has a function type, representing the following information:

– the result type is bit<32>
– the function has two inputs
– both inputs have direction in and type bit<32>

7.2.10. Extern types

P4 supports externobject declarations andextern functiondeclarationsusing the following syntax.

externDeclaration

: optAnnotations EXTERN nonTypeName optTypeParameters "{" methodPrototypes "}"

| optAnnotations EXTERN functionPrototype ";"

;

7.2.10.1. Extern functions An extern function declaration describes the name and type sig-
nature of the function, but not its implementation.

functionPrototype

: typeOrVoid name optTypeParameters "(" parameterList ")"

;

For an example of an extern function declaration, see Section 7.2.9.2.

7.2.10.2. Extern objects Anexternobject declarationdeclares anobject andallmethods that
can be invoked to perform computations and to alter the state of the object. Extern object declarations
can also optionally declare constructor methods; these must have the same name as the enclosing
extern type, no type parameters, and no return type. Extern declarations may only appear as allowed
by the architecture model andmay be specific to a target.

51

methodPrototypes

: /* empty */

| methodPrototypes methodPrototype

;

methodPrototype

: optAnnotations functionPrototype ';'

| optAnnotations TYPE_IDENTIFIER '(' parameterList ')' ';' //constructor

| optAnnotations ABSTRACT functionPrototype ";"

;

typeOrVoid

: typeRef

| VOID

| IDENTIFIER // may be a type variable

;

optTypeParameters

: /* empty */

| typeParameters

;

typeParameters

: "<" typeParameterList ">"

;

typeParameterList

: name

| typeParameterList "," name

;

For example, the P4 core library introduces two extern objects packet_in and packet_out used for ma-
nipulating packets (see Sections 13.8 and 16). Here is an example showing how the methods of these
objects can be invoked on a packet:

extern packet_out {

void emit<T>(in T hdr);

}

control d(packet_out b, in Hdr h) {

apply {

b.emit(h.ipv4); // write ipv4 header into output packet

} // by calling emit method

}

Functions and methods are the only P4 constructs that support overloading: there can exist multiple
methodswith the same name in the same scope. When overloading is used, the compilermust be able

52

to disambiguate at compile-time which method or function is being called, either by the number of
arguments or by the names of the arguments, when calls are specifying argument names. Argument
type information is not used in disambiguating calls.

Notice that overloading of parsers, controls, or packages is not allowed:

parser p(packet_in p, out bit<32> value) {

...

}

// The following will cause an error about a duplicate declaration

//parser p(packet_in p, out Headers headers) {

// ...

//}

Abstract methods Typical extern object methods are built-in, and are implemented by the target
architecture. P4 programmers can only call suchmethods.

However, some types of extern objects may provide methods that can be implemented by the P4
programmers. Suchmethods are described with the abstract keyword prior to the method definition.
Here is an example:

extern Balancer {

Balancer();

// get the number of active flows

bit<32> getFlowCount();

// return port index used for load-balancing

// @param address: IPv4 source address of flow

abstract bit<4> on_new_flow(in bit<32> address);

}

When such an object is instantiated the user has to supply an implementation of all the abstractmeth-
ods (see 11.3.1).

7.2.11. Type specialization

A generic type may be specialized by specifying arguments for its type variables. In cases where the
compiler can infer type arguments type specialization is not necessary. When a type is specialized all
its type variables must be bound.

specializedType

: typeName "<" typeArgumentList ">"

;

For example, the following extern declaration describes a generic block of registers, where the type of
the elements stored in each register is an arbitrary T.

53

extern Register<T> {

Register(bit<32> size);

T read(bit<32> index);

void write(bit<32> index, T value);

}

The type T has to be specified when instantiating a set of registers, by specializing the Register type:

Register<bit<32>>(128) registerBank;

The instantiation of registerBank is made using the Register type specialized with the bit<32> bound
to the T type argument.

struct, header, header_union and header stack types can be generic as well. In order to use such a
generic type it must be specialized with appropriate type arguments. For example

// generic structure type

struct S<T> {

T field;

bool valid;

}

struct G<T> {

S<T> s;

}

// specialize S by replacing 'T' with 'bit<32>'

const S<bit<32>> s = { field = 32w0, valid = false };

// Specialize G by replacing 'T' with 'bit<32>'

const G<bit<32>> g = { s = { field = 0, valid = false } };

// generic header type

header H<T> {

T field;

}

// Specialize H by replacing 'T' with 'bit<8>'

const H<bit<8>> h = { field = 1 };

// Header stack produced from a specialization of a generic header type

H<bit<8>>[10] stack;

// Generic header union

header_union HU<T> {

H<bit<32>> h32;

H<bit<8>> h8;

H<T> ht;

}

54

// Header union with a type obtained by specializing a generic header union type

HU<bit> hu;

7.2.12. Parser and control blocks types

Parsers and control blocks types are similar to function types: they describe the signature of parsers
and control blocks. Such functions have no return values. Declarations of parsers and control block
types in architectures may be generic (i.e., have type parameters).

The types parser, control, and package cannot be used as types of arguments for methods, parsers,
controls, tables, or actions. They can be used as types for the arguments passed to constructors (see
Section 15).

7.2.12.1. Parser type declarations Aparser type declaration describes the signature of a parser.
A parser should have at least one argument of type packet_in, representing the received packet that is
processed.

parserTypeDeclaration

: optAnnotations PARSER name optTypeParameters

"(" parameterList ")"

;

For example, the following is a type declaration of a parser type named P that is parameterized on a
type variable H. That parser receives as input a packet_in value b and produces two values:

• A value with a user-defined type H

• A value with a predefined type Counters

struct Counters { /* Fields omitted */ }

parser P<H>(packet_in b,

out H packetHeaders,

out Counters counters);

7.2.12.2. Control type declarations Acontrol type declaration describes the signature of a con-
trol block.

controlTypeDeclaration

: optAnnotations CONTROL name optTypeParameters

"(" parameterList ")"

;

Control type declarations are similar to parser type declarations.

7.2.13. Package types

A package type describes the signature of a package.

55

packageTypeDeclaration

: optAnnotations PACKAGE name optTypeParameters

"(" parameterList ")"

;

All parameters of a package are evaluated at compilation time, and in consequence they must all be
directionless (they cannot be in, out, or inout). Otherwise package types are very similar to parser type
declarations. Packages can only be instantiated; there are no runtime behaviors associated with them.

7.2.14. Don’t care types

A don't care (underscore, "_") can be used in some circumstances as a type. It should be only used in
a position where one could write a bound type variable. The underscore can be used to reduce code
complexity—when it is not importantwhat the type variable binds to (during type unification the don't
care type can unify with any other type). An example is given Section 17.1.

7.3. Default values
SomeP4 types define a “default value,” which can be used to automatically initialize values of that type.
The default values are as follows:

• For int, bit<N> and int<N> types the default value is 0.
• For bool the default value is false.
• For error the default value is error.NoError (defined in core.p4)
• For string the default value is the empty string ""

• For varbit<N> the default value is a string of zero bits (there is currently no P4 literal to represent
such a value).

• For enum values with an underlying type the default value is 0, even if 0 is actually not one of the
named values in the enum.

• For enum values without an underlying type the default value is the first value that appears in the
enum type declaration.

• For header types the default value is invalid.
• For header stacks the default value is that all elements are invalid and the nextIndex is 0.
• For header_union values the default value is that all union elements are invalid.
• For struct types the default value is a structwhere each field has the default value of the suitable

field type – if all such default values are defined.
• For a tuple type the default value is a tuplewhere each field has the default value of the suitable

type – if all such default values are defined.

Note that some types donot have default values, e.g., match_kind, set types, function types, extern types,
parser types, control types, package types.

7.4. Numeric types
Many P4 operations are restrained to expressions that evaluate to numeric values. Such expressions
must have one of the following numeric types:

• int - an arbitrary-precision integer (section 7.1.6.5)

56

• bit<W> - a W-bit unsigned integer where W >= 0 (section 7.1.6.2)
• int<W> - a W-bit signed integer where W >= 1 (section 7.1.6.3)
• a serializable enumwith an underlying type that is bit<W> or int<W> (section 7.2.1).

7.5. typedef
A typedef declaration can be used to give an alternative name to a type.

typedefDeclaration

: optAnnotations TYPEDEF typeRef name ';'

| optAnnotations TYPEDEF derivedTypeDeclaration name ';'

;

typedef bit<32> u32;

typedef struct Point { int<32> x; int<32> y; } Pt;

typedef Empty_h[32] HeaderStack;

The two types are treated as synonyms, and all operations that can be executed using the original type
can be also executed using the newly created type.

If typedef is used with a generic type the typemust be specialized with the suitable number of type
arguments:

struct S<T> {

T field;

}

// typedef S X; -- illegal: S does not have type arguments

typedef S<bit<32>> X; // -- legal

7.6. Introducing new types
Similarly to typedef, the keyword type can be used to introduce a new type.

| optAnnotations TYPE typeRef name

type bit<32> U32;

U32 x = (U32)0;

While similar to typedef, the type keyword introduces a new type which is not a synonym with the
original type: values of the original type and thenewly introduced type cannot bemixed in expressions.

Currently the types that can be created by the type keyword are restricted to one of: bit<>, int<>,
bool, or types defined using type from such types.

One important use of such types is in describing P4 values that need to be exchangedwith the con-
trol plane through communication channels (e.g., through the control-plane API or through network
packets sent to the control plane). For example, a P4 architecturemaydefinea type for the switchports:

57

type bit<9> PortId_t;

This declaration will prevent PortId_t values from being used in arithmetic expressions without casts.
Moreover, this declaration may enable special manipulation or such values by software that lies out-
side of the datapath (e.g., a target-specific toolchain could include software that automatically converts
values of type PortId_t to a different representationwhen exchangedwith the control-plane software).

8. Expressions
This sectiondescribes all expressions that canbeused inP4, groupedby the type of value they produce.

The grammar production rule for general expressions is as follows:

expression

: INTEGER

| DOTS // DOTS is ...

| STRING_LITERAL

| TRUE

| FALSE

| prefixedNonTypeName

| expression '[' expression ']'

| expression '[' expression ':' expression ']'

| '{' expressionList optTrailingComma '}'

| "{#}"

| '{' kvList optTrailingComma '}'

| "{" kvList "," DOTS optTrailingComma "}"

| '(' expression ')'

| '!' expression

| '~' expression

| '-' expression

| '+' expression

| typeName '.' member

| ERROR '.' member

| expression '.' member

| expression '*' expression

| expression '/' expression

| expression '%' expression

| expression '+' expression

| expression '-' expression

| expression '|+|' expression

| expression '|-|' expression

| expression SHL expression // SHL is <<

| expression '>''>' expression // check that >> are contiguous

| expression LE expression // LE is <=

| expression GE expression // GE is >=

| expression '<' expression

58

| expression '>' expression

| expression NE expression // NE is !=

| expression EQ expression // EQ is ==

| expression '&' expression

| expression '^' expression

| expression '|' expression

| expression PP expression // PP is ++

| expression AND expression // AND is &&

| expression OR expression // OR is ||

| expression '?' expression ':' expression

| expression '<' realTypeArgumentList '>' '(' argumentList ')'

| expression '(' argumentList ')'

| namedType '(' argumentList ')'

| '(' typeRef ')' expression

;

expressionList

: /* empty */

| expression

| expressionList "," expression

;

member

: name

;

argumentList

: /* empty */

| nonEmptyArgList

;

nonEmptyArgList

: argument

| nonEmptyArgList "," argument

;

argument

: expression

;

typeArg

: typeRef

| nonTypeName

| VOID

| "_"

;

59

typeArgumentList

: /* empty */

| typeArg

| typeArgumentList "," typeArg

;

See Appendix G for the complete P4 grammar.
This grammar does not indicate the precedence of the various operators. The precedence mostly

follows the C precedence rules, with one change and some additions. The precedence of the bitwise
operators & | and ^ is higher than the precedence of relation operators <, <=, >, >=. This is more natural
given the addition of a true boolean type in the type system, as bitwise operators cannot be applied to
boolean types. Concatenation (++) has the same precedence as infix addition. Bit-slicing a[m:l] has
the same precedence as array indexing (a[i]).

In addition to these expressions, P4 also supports select expressions (described in Section 13.6),
whichmay be used only in parsers.

8.1. Expression evaluation order
Given a compound expression, the order in which sub-expressions are evaluated is important when
the sub-expressions have side-effects. P4 expressions are evaluated as follows:

• Boolean operators && and || use short-circuit evaluation—i.e., the second operand is only eval-
uated if necessary.

• The conditional operator e1 ? e2 : e3 evaluates e1, and then either evaluates e2 or e3.
• All other expressions are evaluated left-to-right as they appear in the source program.
• Method and function calls are evaluated as described in Section 6.8.

8.2. Operations on error types
Symbolic names declared by an error declaration belong to the error namespace. The error type only
supports equality (==) and inequality (!=) comparisons. The result of such a comparison is a Boolean
value.

For example, the following operation tests for the occurrence of an error:

error errorFromParser;

if (errorFromParser != error.NoError) { /* code omitted */ }

8.3. Operations on enum types
Symbolic names declared by an enum belong to the namespace introduced by the enum declaration
rather than the top-level namespace.

enum X { v1, v2, v3 }

X.v1 // reference to v1

60

v1 // error - v1 is not in the top-level namespace

Similar to errors, enum expressions without a specified underlying type only support equality (==) and
inequality (!=) comparisons. Expressions whose type is an enum without a specified underlying type
cannot be cast to or from any other type.

An enummay also specify an underlying type, such as the following:

enum bit<8> E {

e1 = 0,

e2 = 1,

e3 = 2

}

More than one symbolic value in an enummaymap to the same fixed-width integer value.

enum bit<8> NonUnique {

b1 = 0,

b2 = 1, // Note, both b2 and b3 map to the same value.

b3 = 1,

b4 = 2

}

An enum with an underlying type also supports explicit casts to and from the underlying type. For in-
stance, the following code:

bit<8> x;

E a = E.e2;

E b;

x = (bit<8>) a; // sets x to 1

b = (E) x; // sets b to E.e2

…casts a (whichwas initializedwith E.e2) to a bit<8>, using the specified fixed-width unsigned integer
representation for E.e2, i.e. 1. The variable b is then set to the symbolic value E.e2, which corresponds
to the fixed-width unsigned integer value 1.

Because it is always safe to cast from an enum to its underlying fixed-width integer type, implicit
casting from an enum to its fixed-width (signed or unsigned) integer type is also supported (see Sec-
tion 8.12.2):

bit<8> x = E.e2; // sets x to 1 (E.e2 is automatically casted to bit<8>)

E a = E.e2

bit<8> y = a << 3; // sets y to 8 (a is automatically casted to bit<8> and then shifted)

Implicit casting from an underlying fixed-width type to an enum is not supported.

61

enum bit<8> E1 {

e1 = 0, e2 = 1, e3 = 2

}

enum bit<8> E2 {

e1 = 10, e2 = 11, e3 = 12

}

E1 a = E1.e1;

E2 b = E2.e2;

a = b; // Error: b is automatically casted to bit<8>,

// but bit<8> cannot be automatically casted to E1

a = (E1) b; // OK

a = E1.e1 + 1; // Error: E.e1 is automatically casted to bit<8>,

// and the right-hand expression has

// the type bit<8>, which cannot be casted to E automatically.

a = (E1)(E1.e1 + 1); // Final explicit casting makes the assignment legal

a = E1.e1 + E1.e2; // Error: both arguments to the addition are automatically

// casted to bit<8>. Thus the addition itself is legal, but

// the assignment is not

a = (E1)(E2.e1 + E2.e2); // Final explicit casting makes the assignment legal

A reasonable compiler might generate a warning in cases that involve multiple automatic casts.

E1 a = E1.e1;

E2 b = E2.e2;

bit<8> c;

if (a > b) { // Potential warning: two automatic and different casts to bit<8>.

// code omitted

}

c = a + b; // Legal, but a warning would be reasonable

Note that while it is always safe to cast from an enum to its fixed-width unsigned integer type, and vice
versa, there may be cases where casting a fixed-width unsigned integer value to its related enum type
produces an unnamed value.

bit<8> x = 5;

E e = (E) x; // sets e to an unnamed value

62

sets e to anunnamedvalue, since there is no symbol corresponding to thefixed-widthunsigned integer
value 5.

For example, in the following code, the else clause of the if/else if/else block can be reached
even though the matches on x are complete with respect to the symbols defined in MyPartialEnum_t:

enum bit<2> MyPartialEnum_t {

VALUE_A = 2w0,

VALUE_B = 2w1,

VALUE_C = 2w2

}

bit<2> y = < some value >;

MyPartialEnum_t x = (MyPartialEnum_t)y;

if (x == MyPartialEnum_t.VALUE_A) {

// some code here

} else if (x == MyPartialEnum_t.VALUE_B) {

// some code here

} else if (x == MyPartialEnum_t.VALUE_C) {

// some code here

} else {

// A P4 compiler MUST ASSUME that this branch can be executed

// some code here

}

Additionally, if an enumeration is used as a field of a header, we would expect the transition select to
match default when the parsed integer value does not match one of the symbolic values of EtherType
in the following example:

enum bit<16> EtherType {

VLAN = 0x8100,

IPV4 = 0x0800,

IPV6 = 0x86dd

}

header ethernet {

// Some fields omitted

EtherType etherType;

}

parser my_parser(/* parameters omitted */) {

state parse_ethernet {

packet.extract(hdr.ethernet);

transition select(hdr.ethernet.etherType) {

EtherType.VLAN : parse_vlan;

EtherType.IPV4 : parse_ipv4;

63

EtherType.IPV6: parse_ipv6;

default: reject;

}

}

Any variable with an enum type that contains an unnamed value (whether as the result of a cast to an
enum with an underlying type, parse into the field of an enum with an underlying type, or simply the
declaration of any enum without a specified initial value) will not be equal to any of the values defined
for that type. Such an unnamed value should still lead to predictable behavior in cases where any legal
value would match, e.g. it should match in any of these situations:

• If used in a select expression, it should match default or _ in a key set expression.
• If used as a key with match_kind ternary in a table, it should match a table entry where the field

has all bit positions “don't care”.
• If used as a key with match_kind lpm in a table, it should match a table entry where the field has a

prefix length of 0.

Note that if an enum value lacking an underlying type appears in the control-plane API, the compiler
must select a suitable serialization data type and representation. For enum values with an underlying
type and representations, the compiler should use the specified underlying type as the serialization
data type and representation.

Additionally, the size of a serializable enum can be determined at compile-time. However, the size
of an enumwithout an underlying type cannot be determined at compile-time (Section 9).

8.4. Operations on match_kind types
Values of type match_kind are similar to enum values. They support only assignment and comparisons
for equality and inequality.

match_kind { fuzzy }

const bool same = exact == fuzzy; // always 'false'

8.5. Expressions on Booleans
The following operations are provided on Boolean expressions:

• “And”, denoted by &&

• “Or”, denoted by ||

• Negation, denoted by !

• Equality and inequality tests, denoted by == and != respectively.

The precedence of these operators is similar to C and uses short-circuited evaluation where relevant.
Additionally, the size of a boolean can be determined at compile-time (Section 9).
P4 does not implicitly cast from bit-strings to Booleans or vice versa. As a consequence, a program

that is valid in a language like C such as,

if (x) /* body omitted */

64

(where x has an integer type) must instead be written in P4 as:

if (x != 0) /* body omitted */

See the discussion on arbitrary-precision types and implicit casts in Section 8.12.2 for details on how
the 0 in this expression is evaluated.

8.5.1. Conditional operator

Aconditional expression of the form e1 ? e2 : e3behaves the sameas in languages likeC. As described
above, the expression e1 is evaluated first, and second either e2 or e3 is evaluated depending on the
result.

Thefirst sub-expression e1must haveBoolean type and the second and third sub-expressionsmust
have the same type, which cannot both be arbitrary-precision integers unless the condition itself can
be evaluated at compilation time. This restriction is designed to ensure that the width of the result of
the conditional expression can be inferred statically at compile time.

8.6. Operations on fixed-width bit types (unsigned integers)
This section discusses all operations that can be performed on expressions of type bit<W> for some
width W, also known as bit-strings.

Arithmetic operations “wrap around”, similar toC operations onunsigned values (i.e., representing
a large value on W bits will only keep the least-significant W bits of the value). In particular, P4 does
not have arithmetic exceptions—the result of an arithmetic operation is defined for all possible inputs.

P4 target architectures may optionally support saturating arithmetic. All saturating operations are
limited to a fixed range between a minimum and maximum value. Saturating arithmetic has advan-
tages, inparticularwhenusedas counters. Theresult of a saturating countermax-ingout ismuchcloser
to the real result than a counter that overflows and wraps around. According to Wikipedia Saturating
Arithmetic saturating arithmetic is as numerically close to the true answer as possible; for 8-bit binary
signed arithmetic, when the correct answer is 130, it is considerably less surprising to get an answer of
127 from saturating arithmetic than to get an answer of −126 from modular arithmetic. Likewise, for
8-bit binary unsigned arithmetic, when the correct answer is 258, it is less surprising to get an answer
of 255 from saturating arithmetic than to get an answer of 2 from modular arithmetic. At this time, P4
defines saturating operations only for addition and subtraction. For anunsigned integerwith bit-width
of W, the minimum value is 0 and the maximum value is 2^W-1. The precedence of saturating addition
and subtraction operations is the same as for modular arithmetic addition and subtraction.

All binary operations except shifts and concatenation require both operands to have the same ex-
act type and width; supplying operands with different widths produces an error at compile time. No
implicit casts are inserted by the compiler to equalize the widths. There are no other binary opera-
tions that accept signed and unsigned values simultaneously besides shifts and concatenation. The
following operations are provided on bit-string expressions:

• Test for equality between bit-strings of the same width, designated by ==. The result is a Boolean
value.

• Test for inequality betweenbit-stringsof the samewidth, designatedby !=. The result is aBoolean
value.

65

https://en.wikipedia.org/wiki/Saturation_arithmetic
https://en.wikipedia.org/wiki/Saturation_arithmetic

• Unsigned comparisons <,>,<=,>=. Both operands must have the same width and the result is a
Boolean value.

Each of the following operations produces a bit-string result when applied to bit-strings of the same
width:

• Negation, denoted by unary -. The result is computed by subtracting the value from 2W. The re-
sult is unsigned andhas the samewidth as the input. The semantics is the same as theCnegation
of unsigned numbers.

• Unary plus, denoted by +. This operation behaves like a no-op.
• Addition, denoted by +. This operation is associative. The result is computed by truncating the

result of the addition to the width of the output (similar to C).
• Subtraction, denoted by -. The result is unsigned, and has the same type as the operands. It is

computed by adding the negation of the second operand (similar to C).
• Multiplication, denoted by *. The result has the samewidth as the operands and is computed by

truncating the result to the output's width. P4 architectures may impose additional restrictions
— e.g., they may only allowmultiplication by a non-negative integer power of two.

• Bitwise “and” between two bit-strings of the same width, denoted by &.
• Bitwise “or” between two bit-strings of the same width, denoted by |.
• Bitwise “complement” of a single bit-string, denoted by ~.
• Bitwise “xor” of two bit-strings of the same width, denoted by ^.
• Saturating addition, denoted by |+|.
• Saturating subtraction, denoted by |-|.

Bit-strings also support the following operations:

• Logical shift left and right by a non-negative integer value (which need not be a compile-time
known value), denoted by << and >> respectively. In a shift, the left operand is unsigned, and
right operandmust be either an expression of type bit<S> or a non-negative integer value that is
known at compile time. The result has the same type as the left operand. Shifting by an amount
greater than or equal to the width of the input produces a result where all bits are zero.

• Extraction of a set of contiguous bits, also known as a slice, denoted by [H:L], where H and Lmust
be expressions that evaluate to non-negative, local compile-time known values, and H >= L. The
types of H and L (which do not need to be identical) must be numeric (Section 7.4). The result
is a bit-string of width H - L + 1, including the bits numbered from L (which becomes the least
significant bit of the result) to H (the most significant bit of the result) from the source operand.
The conditions 0 <= L <= H < W are checked statically (where W is the length of the source bit-
string). Note that both endpoints of the extraction are inclusive. The bounds are required to be
local compile-timeknownvalues so that thewidthof the result canbe computedat compile time.
Slices are also l-values, whichmeans that P4 supports assigning to a slice: e[H:L] = x . The effect
of this statement is to set bits H through L (inclusive of both) of e to the bit-pattern represented by
x, and leaves all other bits of e unchanged. A slice of an unsigned integer is an unsigned integer.

• Concatenationofbit-stringsand/orfixed-width signed integers, denotedby ++. The twooperands
must be either bit<W> or int<W>, and they can be of different signedness andwidth. The result has
the same signedness as the left operand and the width equal to the sum of the two operands'
width. In concatenation, the left operand is placed as the most significant bits.

Additionally, the size of a bit-string can be determined at compile-time (Section 9).

66

8.7. Operations on fixed-width signed integers
This section discusses all operations that can be performed on expressions of type int<W> for some W.
Recall that the int<W> denotes signed W-bit integers, represented using two's complement.

In general, P4 arithmetic operations do not detect “underflow” or “overflow”: operations simply
“wrap around”, similar toCoperations onunsigned values. Hence, attempting to represent large values
using W bits will only keep the least-significant W bits of the value.

P4 supports saturating arithmetic (addition and subtraction) for signed integers. Targets may op-
tionally reject programs using saturating arithmetic. For a signed integer with bit-width of W, the min-
imum value is -2^(W-1) and the maximum value is 2^(W-1)-1.

P4 also does not support arithmetic exceptions. The runtime result of an arithmetic operation is
defined for all combinations of input arguments.

All binary operations except shifts and concatenation require both operands to have the same ex-
act type (signedness) andwidth and supplying operands with different widths or signedness produces
a compile-time error. No implicit casts are inserted by the compiler to equalize the types. Except
for shifts and concatenation, P4 does not have any binary operations that operate simultaneously on
signed and unsigned values.

Note that bitwise operations on signed integers are well-defined, since the representation is man-
dated to be two's complement.

The int<W>datatype supports the following operations; all binary operations require both operands
to have the exact same type. The result always has the same width as the left operand.

• Negation, denoted by unary -.
• Unary plus, denoted by +. This operation behaves like a no-op.
• Addition, denoted by +.
• Subtraction, denoted by -.
• Comparison for equality and inequality, denoted == and != respectively. These operations pro-

duce a Boolean result.
• Numeric comparisons, denoted by <,<=,>, and >=. These operations produce a Boolean result.
• Multiplication, denoted by *. Result has the same width as the operands. P4 architectures may

impose additional restrictions—e.g., they may only allowmultiplication by a power of two.
• Bitwise “and” between two bit-strings of the same width, denoted by &.
• Bitwise “or” between two bit-strings of the same width, denoted by |.
• Bitwise “complement” of a single bit-string, denoted by ~.
• Bitwise “xor” of two bit-strings of the same width, denoted by ^.
• Saturating addition, denoted by |+|.
• Saturating subtraction, denoted by |-|.

The int<W> datatype also support the following operations:

• Arithmetic shift left and right denoted by << and >>. The left operand is signed and the right
operandmust be either an unsigned number of type bit<S> or a compile-time known value that
is a non-negative integer. The result has the same type as the left operand. Shifting left produces
the exact same bit pattern as a shift left of an unsigned value. Shift left can thus overflow, when
it leads to a change of the sign bit. Shifting by an amount greater than the width of the input
produces a “correct” result:

– all result bits are zero when shifting left

67

– all result bits are zero when shifting a non-negative value right
– all result bits are one when shifting a negative value right

• Extraction of a set of contiguous bits, also known as a slice, denoted by [H:L], where H and Lmust
be expressions that evaluate to non-negative, local compile-time known values, and H >= Lmust
be true. The types of H and L (which do not need to be identical) must be numeric (Section 7.4).
The result is an unsigned bit-string of width H - L + 1, including the bits numbered from L (which
becomes the least significant bit of the result) to H (themost significant bit of the result) from the
source operand. The conditions 0 <= L <= H < W are checked statically (where W is the length
of the source bit-string). Note that both endpoints of the extraction are inclusive. The bounds
are required to be values that are known at compile time so that the width of the result can be
computed at compile time. Slices are also l-values, which means that P4 supports assigning to
a slice: e[H:L] = x . The effect of this statement is to set bits H through L of e to the bit-pattern
represented by x, and leaves all other bits of e unchanged. A slice of a signed integer is treated as
an unsigned integer.

• Concatenationofbit-stringsand/orfixed-width signed integers, denotedby ++. The twooperands
must be either bit<W> or int<W>, and they can be of different signedness andwidth. The result has
the same signedness as the left operand and the width equal to the sum of the two operands'
width. In concatenation, the left operand is placed as the most significant bits.

Additionally, the size of a fixed-width signed integer can be determined at compile-time (Section 9).

8.8. Operations on arbitrary-precision integers
The type int denotes arbitrary-precision integers. In P4, all expressions of type int must be compile-
time known values. The type int supports the following operations:

• Negation, denoted by unary -

• Unary plus, denoted by +. This operation behaves like a no-op.

• Addition, denoted by +.

• Subtraction, denoted by -.

• Comparison for equality and inequality, denoted by == and != respectively. These operations
produce a Boolean result.

• Numeric comparisons <,<=,>, and >=. These operations produce a Boolean result.

• Multiplication, denoted by *.

• Truncating integer division between positive values, denoted by /.

• Modulo between positive values, denoted by %.

• Arithmetic shift left and right denoted by << and >>. These operations produce an int result. The
right operand must be either an unsigned value of type bit<S> or a compile-time known value
that is a non-negative integer. The expression a << b is equal to a × 2b while a >> b is equal to
⌊a/2b⌋.

68

• Bit slices, denoted by [H:L], where H and L must be expressions that evaluate to non-negative,
local compile-time known values, and H >= L must be true. The types of H and L (which do not
need to be identical) must be one of the following:

– int - an arbitrary-precision integer (section 7.1.6.5)
– bit<W> - a W-bit unsigned integer where W >= 0 (section 7.1.6.2)
– int<W> - a W-bit signed integer where W >= 1 (section 7.1.6.3)
– a serializable enumwith an underlying type that is bit<W> or int<W> (section 7.2.1).

The result is an unsigned bit-string of width H - L + 1, including the bits numbered from L (which
becomes the least significant bit of the result) to H (themost significant bit of the result) from the
source operand. The conditions 0 <= L <= H are checked statically. If necessary, the source
integer value that is sliced is automatically extended to have a width with H bits. Note that both
endpoints of the extraction are inclusive. The bounds are required to be values that are known at
compile time so that thewidthof the result canbe computedat compile time. A slice of anegative
or positive value is always a positive value.

Each operand that participates in any of these operationmust have type int (except shifts). Binary op-
erations cannot be used to combine values of type intwith values of a fixed-width type (except shifts).
However, the compiler automatically inserts casts from int to fixed-width types in certain situations—
see Section 8.12.

All computations on int values are carried out without loss of information. For example, multiply-
ing two1024-bit valuesmayproduce a 2048-bit value (note that concrete representationof int values is
not specified). int values can be cast to bit<w> and int<w> values. Casting an int value to a fixed-width
type will preserve the least-significant bits. If truncation causes significant bits to be lost, the compiler
should emit a warning.

Note: bitwise-operations (|,&,^,~) are not defined on expressions of type int. In addition, it is illegal
to apply division andmodulo to negative values.

Note: saturating arithmetic is not supported for arbitrary-precision integers.

8.9. Concatenation and shifts
8.9.1. Concatenation

Concatenation is applied to two bit-strings (signed or unsigned). It is denoted by the infix operator ++.
The result is a bit-string whose length is the sum of the lengths of the inputs where themost significant
bits are taken from the left operand; the sign of the result is taken from the left operand.

8.9.2. A note about shifts

The left operand of shifts can be any one out of unsigned bit-strings, signed bit-strings, and arbitrary-
precision integers, and the right operand of shifts must be either an expression of type bit<S> or a
compile-time known value that is a non-negative integer. The result has the same type as the left
operand.

Shifts on signed and unsigned bit-strings deserve a special discussion for the following reasons:

• Right shift behavesdifferently for signedandunsignedbit-strings: right shift for signedbit-strings
is an arithmetic shift, and for unsigned bit-strings is a logical shift.

69

• Shifting with a negative amount does not have a clear semantics: the P4 type system makes it
illegal to shift with a negative amount.

• Unlike C, shifting by an amount larger than or equal to the number of bits has a well-defined
result.

• Finally, depending on the capabilities of the target, shifting may require doing work which is
exponential in the number of bits of the right-hand-side operand.

Consider the following examples:

bit<8> x;

bit<16> y;

bit<16> z = y << x;

bit<16> w = y << 1024;

As mentioned above, P4 gives a precise meaning shifting with an amount larger than the size of the
shifted value, unlike C.

P4 targets may impose additional restrictions on shift operations such as forbidding shifts by non-
constant expressions, or by expressions whose width exceeds a certain bound. For example, a target
may forbid shifting an 8-bit value by a non-constant value whose width is greater than 3 bits.

8.10. Operations on variable-size bit types
To support parsing headers with variable-length fields, P4 offers a type varbit. Each occurrence of the
type varbit has a statically-declared maximum width, as well as a dynamic width, which must not ex-
ceed the static bound. Prior to initialization a variable-size bit-string has an unknown dynamic width.

Variable-length bit-strings support a limited set of operations:

• Assignment to another variable-sizedbit-string. The target of the assignmentmust have the same
static width as the source. When executed, the assignment sets the dynamic width of the target
to the dynamic width of the source.

• Comparison for equality or inequality with another varbit field. Two varbit fields can be com-
pared only if they have the same type. Two varbits are equal if they have the samedynamicwidth
and all the bits up to the dynamic width are the same.

The followingoperationsarenot supporteddirectlyonavalueof type varbit, but insteadonany type for
which extractand emitoperationsare supported (e.g. a valuewith typeheader) thatmaycontainafield
of type varbit. They arementioned here only to ease finding this information in a section dedicated to
type varbit.

• Parser extraction into a header containing a variable-sized bit-string using the two-argument
extractmethod of a packet_in extern object (see Section 13.8.2). This operation sets the dynamic
width of the field.

• The emit method of a packet_out extern object can be performed on a header and a few other
types (see Section 16) that contain a field with type varbit. Such an emit method call inserts a
variable-sized bit-string with a known dynamic width into the packet being constructed.

Additionally, themaximumsizeof a variable-lengthbit-string canbedeterminedat compile-time (Sec-
tion 9).

70

8.11. Operations on Strings
The only operation allowed on strings is concatenation, denoted by ++. For string concatenation, both
operandsmust be strings and the result is also a string. String concatenation can be only performed at
compile time.

extern void log(string message);

void foo(int<8> v) {

// ...

log("my log message " ++

"continuation of the log message");

}

8.12. Casts
P4 provides a limited set of casts between types. A cast is written (t) e, where t is a type and e is an
expression. Casts are only permitted on base types and derived types introduced by typedef, type, and
enum. While this design is arguably more onerous for programmers, it has several benefits:

• It makes user intent unambiguous.
• It makes the costs associated with converting numeric values explicit. Implementing certain

casts involves sign extensions, and thus can require significant computational resources on some
targets.

• It reduces the number of cases that have to be considered in the P4 specification. Some targets
may not support all casts.

8.12.1. Explicit casts

The following casts are legal in P4:

• bit<1>↔ bool: converts the value 0 to false, the value 1 to true, and vice versa.
• int→ bool: only if the int value is 0 (converted to false) or 1 (converted to true)
• int<W>→ bit<W>: preserves all bits unchanged and reinterprets negative values as positive values
• bit<W>→ int<W>: preserves all bits unchanged and reinterprets valueswhosemost-significant bit

is 1 as negative values
• bit<W>→ bit<X>: truncates the value if W > X, and otherwise (i.e., if W <= X) pads the value with

zero bits.
• int<W>→ int<X>: truncates the value if W > X, and otherwise (i.e., if W < X) extends it with the sign

bit.
• bit<W>→ int: preserves the value unchanged but converts it to an unlimited-precision integer;

the result is always non-negative
• int<W>→ int: preserves the value unchanged but converts it to an unlimited-precision integer;

the result may be negative
• int → bit<W>: converts the integer value into a sufficiently large two's complement bit string to

avoid information loss, and then truncates the result to W bits. The compiler should emit a warn-
ing on overflow or on conversion of negative value.

71

• int → int<W>: converts the integer value into a sufficiently-large two's complement bit string
to avoid information loss, and then truncates the result to W bits. The compiler should emit a
warning on overflow.

• casts between two types that are introduced by typedef and are equivalent to one of the above
combinations.

• casts between a typedef and the original type.
• casts between a type introduced by type and the original type.
• casts between an enumwith an explicit type and its underlying type
• casts of a key-value list to a struct type or a header type (see Section 8.14)
• casts of a tuple expression to a header stack type
• casts of an invalid expression {#} to a header or a header union type
• casts where the destination type is the same as the source type if the destination type appears in

this list (this excludes e.g., parsers or externs).

8.12.2. Implicit casts

To keep the language simple and avoid introducing hidden costs, P4 only implicitly casts from int to
fixed-width types and fromenumswith an underlying type to the underlying type. In particular, apply-
ing a binary operation (except shifts and concatenation) to an expression of type int and an expression
with a fixed-width type will implicitly cast the int expression to the type of the other expression. For
enums with an underlying type, it can be implicitly cast to its underlying type whenever appropriate,
including but not limited to in shifts, concatenation, bit slicing indexes, header stack indexes as well
as other unary and binary operations.

For example, given the following declarations,

enum bit<8> E {

a = 5

}

bit<8> x;

bit<16> y;

int<8> z;

the compiler will add implicit casts as follows:

• x + 1 becomes x + (bit<8>)1

• z < 0 becomes z < (int<8>)0

• x | 0xFFF becomes x | (bit<8>)0xFFF; overflow warning
• x + E.a becomes x + (bit<8>)E.a

• x &&& 8 becomes x &&& (bit<8>)8

• x << 256 remains unchanged; 256 not implicitly cast to 8w0 in a shift; overflow warning
• 16w11 << E.a becomes 16w11 << (bit<8>)E.a

• x[E.a:0] becomes x[(bit<8>)E.a:0]
• E.a ++ 8w0 becomes (bit<8>)E.a ++ 8w0

Thecompiler also adds implicit casts when types of different expressions need tomatch‘’; for example,
as described in Section 13.6, since select labels are compared against the selected expression, the com-

72

piler will insert implicit casts for the select labels when they have int types. Similarly, when assigning a
structure-valued expression to a structure or header, the compiler will add implicit casts for int fields.

8.12.3. Illegal arithmetic expressions

Many arithmetic expressions that would be allowed in other languages are illegal in P4. To illustrate,
consider the following declarations:

bit<8> x;

bit<16> y;

int<8> z;

The table below shows several expressions which are illegal because they do not obey the P4 typing
rules. For each expression we provide several ways that the expression could be manually rewritten
into a legal expression. Note that for some expression there are several legal alternatives, which may
produce different results! The compiler cannot guess the user intent, so P4 requires the user to disam-
biguate.

Expression Why it is illegal Alternatives
x + y Different widths (bit<16>)x + y

x + (bit<8>)y

x + z Different signedness (int<8>)x + z

x + (bit<8>)z

(int<8>)y Cannot change both sign and width (int<8>)(bit<8>)y

(int<8>)(int<16>)y

y + z Different widths and signs (int<8>)(bit<8>)y + z

y + (bit<16>)(bit<8>)z

(bit<8>)y + (bit<8>)z

(int<16>)y + (int<16>)z

x << z RHS of shift cannot be signed x << (bit<8>)z

x < z Different signs x < (bit<8>)z

(int<8>)x < z

1 << x Either LHS should have a fixed width (bit shift), 32w1 << x

Or RHSmust be compile-time known (int shift) None
~1 Bitwise operation on int ~32w1

5 & -3 Bitwise operation on int 32w5 & -3

8.13. Operations on tuple expressions
Tuples can be assigned to other tuples with the same type, passed as arguments and returned from
functions, and can be initialized with tuple expressions.

tuple<bit<32>, bool> x = { 10, false };

The fields of a tuple can be accessed using array index syntax x[0], x[1]. The indexes must be local
compile-time known values, to enable the type-checker to identify the field types statically.

73

Tuples can be compared for equality using == and !=; two tuples are equal if and only if all their
fields are respectively equal.

Currently tuple fields are not left-values, even if the tuple itself is. (I.e. a tuple can only be assigned
monolithically, and the field values cannot be changed individually.) This restriction may be lifted in
a future version of the language.

A tuple expression is written using curly braces, with each element separated by a comma:

expression ...

| '{' expressionList '}'

expressionList

: /* empty */

| expression

| expressionList "," expression

;

The type of a tuple expression is a tuple type (Section 7.2.6). Tuple expressions can be assigned to
expressions of type tuple, struct or header, and can also be passed as arguments to methods. Tuples
may be nested. However, tuple expressions are not l-values.

For example, the following program fragment uses a tuple expression to pass several header fields
simultaneously to a learning provider:

extern LearningProvider<T> {

LearningProvider();

void learn(in T data);

}

LearningProvider<tuple<bit<48>, bit<32>>>() lp;

lp.learn({ hdr.ethernet.srcAddr, hdr.ipv4.src });

A tuple may be used to initialize a structure if the tuple has the same number of elements as fields in
the structure. The effect of such an initializer is to assign the nth element of the tuple to the nth field in
the structure:

struct S {

bit<32> a;

bit<32> b;

}

const S x = { 10, 20 }; //a = 10, b = 20

A tuple expression can have an explicit structure or header type specified, and then it is converted
automatically to a structure-valued expression (see 8.14):

struct S {

bit<32> a;

bit<32> b;

74

}

extern void f<T>(in T data);

f((S){ 10, 20 }); // automatically converted to f((S){a = 10, b = 20});

Tuple expressions can also be used to initialize variables whose type is a tuple type.

tuple<bit<32>, bool> x = { 10, false };

The empty tuple expression has type tuple<> - a tuple with no components.

8.14. Operations on structure-valued expressions
One can write expressions that evaluate to a structure or header. The syntax of these expressions is
given by:

expression ...

| '{' kvList '}'

| '(' typeRef ')' expression

;

kvList

: kvPair

| kvList "," kvPair

;

kvPair

: name "=" expression

;

For a structure-valued expression typeRef is the name of a struct or header type. The typeRef can be
omitted if it canbe inferred fromcontext, e.g., when initializing a variablewith a struct type. Structure-
valued expressions that evaluate to a value of some header type are always valid.

The following example shows a structure-valued expression used in an equality comparison ex-
pression:

struct S {

bit<32> a;

bit<32> b;

}

S s;

// Compare s with a structure-valued expression

bool b = s == (S) { a = 1, b = 2 };

75

Structure-valued expressions can be used in the right-hand side of assignments, in comparisons, in
field selection expressions, and as arguments to functions, method or actions. Structure-valued ex-
pressions are not left values.

Structure-valued expressions that do not have ... as their last element must provide a value for
everymember of the struct or header type towhich it evaluates, bymentioning each field name exactly
once.

Structure-valued expressions that have ... as their last element are allowed to give values to only a
subset of the fields of the struct or header type to which it evaluates. Any field names not given a value
explicitly will be given their default value (see Section 8.27).

The order of the fields of the struct or header type does not need tomatch the order of the values of
the structure-valued expression.

It is a compile-time error if a field name appears more than once in the same structure-valued
expression.

8.15. Operations on lists
Thevalue of a list is written using curly braces, with each element separated by a comma. The left curly
brace is preceded by a (list<T>) where T is the list element type. Such a value can be passed as an
argument, e.g. to extern constructor functions.

struct pair_t {

bit<16> a;

bit<32> b;

}

extern E {

E(list<pair_t> data);

void run();

}

control c() {

E((list<pair_t>) {{2, 3}, {4, 5}}) e;

apply {

e.run();

}

}

Additionally, the size of a list can be determined at compile-time (Section 9).

8.16. Operations on sets
Some P4 expressions denote sets of values (set<T>, for some type T; see Section 7.2.9.1). These expres-
sions can appear only in a few contexts—parsers and table entries. For example, the select expression
(Section 13.6) has the following structure:

76

select (expression) {

set1: state1;

set2: state2;

// More labels omitted

}

Here the expressions set1, set2, etc. evaluate to sets of values and the select expression tests whether
expression belongs to the sets used as labels.

keysetExpression

: tupleKeysetExpression

| simpleKeysetExpression

;

tupleKeysetExpression

: "(" simpleKeysetExpression "," simpleExpressionList ")"

| "(" reducedSimpleKeysetExpression ")"

;

simpleExpressionList

: simpleKeysetExpression

| simpleExpressionList "," simpleKeysetExpression

;

reducedSimpleKeysetExpression

: expression "&&&" expression

| expression ".." expression

| DEFAULT

| "_"

;

simpleKeysetExpression

: expression

| expression "&&&" expression

| expression ".." expression

| DEFAULT

| "_"

;

Themask (&&&) and range (..) operators have the same precedence; the just above the ?: operator.

8.16.1. Singleton sets

In a set context, expressions denote singleton sets. For example, in the following program fragment,

77

select (hdr.ipv4.version) {

4: continue;

}

The label 4 denotes the singleton set containing the int value 4.

8.16.2. The universal set

In a set context, the expressions defaultor _denote theuniversal set, which contains all possible values
of a given type:

select (hdr.ipv4.version) {

4: continue;

_: reject;

}

8.16.3. Masks

The infix operator &&& takes two arguments of the same numeric type (Section 7.4), and creates a value
of the same type. The right value is used as a “mask”, where each bit set to 0 in the mask indicates a
“don't care” bit. More formally, the set denoted by a &&& b is defined as follows:

a &&& b = { c where a & b = c & b }

For example:

8w0x0A &&& 8w0x0F

denotes a set that contains 16 different bit<8> values, whose bit-pattern is XXXX1010, where the value of
an X can be any bit. Note that there may be multiple ways to express a keyset using a mask operator—
e.g., 8w0xFA &&& 8w0x0F denotes the same keyset as in the example above.

Similar to other binary operations, the mask operator allows the compiler to automatically insert
casts to unify the argument types in certain situations (section 8.12.2).

P4 architectures may impose additional restrictions on the expressions on the left and right-hand
side of amask operator: for example, theymay require that either or both sub-expressions be compile-
time known values.

8.16.4. Ranges

The infix operator .. takes two arguments of the same numeric type T (Section 7.4), and creates a value
of the type set<T>. The set contains all values numerically between the first and the second, inclusively.
For example:

4s5 .. 4s8

denotes a set of 4 consecutive int<4> values 4s5, 4s6, 4s7, and 4s8.

78

Similar to other binary operations, the range operator allows the compiler to automatically insert
casts to unify the argument types in certain situations (section 8.12.2).

A range where the second value is smaller than the first one represents an empty set.

8.16.5. Products

Multiple sets can be combined using Cartesian product:

select(hdr.ipv4.ihl, hdr.ipv4.protocol) {

(4w0x5, 8w0x1): parse_icmp;

(4w0x5, 8w0x6): parse_tcp;

(4w0x5, 8w0x11): parse_udp;

(_, _): accept; }

The type of a product of sets is a set of tuples.

8.17. Operations on struct types
The only operation defined on expressions whose type is a struct is field access, written using dot (“.”)
notation—e.g., s.field. If s is an l-value, then s.field is also an l-value. P4 also allows copying structs
using assignment when the source and target of the assignment have the same type. Finally, structs
can be initialized with a tuple expression, as discussed in Section 8.13, or with a structure-valued ex-
pression, as described in 8.14. Both of these cases must initialize all fields of the structure. The size of
a struct can be determined at compile-time (Section 9).

Two structs can be compared for equality (==) or inequality (!=) only if they have the same type and
all of their fields can be recursively compared for equality. Two structures are equal if and only if all
their corresponding fields are equal.

The following example shows a structure initialized in several different ways:

struct S {

bit<32> a;

bit<32> b;

}

const S x = { 10, 20 }; // tuple expression

const S x = { a = 10, b = 20 }; // structure-valued expression

const S x = (S) { a = 10, b = 20 }; // structure-valued expression

See Section 8.26 for a description of the behavior if struct fields are read without being initialized.

8.18. Operations on headers
Headers provide the same operations as structs. Assignment between headers also copies the “valid-
ity” header bit.

In addition, headers support the following methods:

• Themethod isValid() returns the value of the “validity” bit of the header.
• Themethod setValid() sets the header's validity bit to “true”. It can only be applied to an l-value.

79

• The method setInvalid() sets the header's validity bit to “false”. It can only be applied to an l-
value.

Similar to a struct, a header object can be initialized with a tuple expression (see Section 8.13) — the
tuple fields are assigned to the header fields in the order they appear — or with a structure-valued
expression (see Section 8.17). When initialized the header automatically becomes valid:

header H { bit<32> x; bit<32> y; }

H h;

h = { 10, 12 }; // This also makes the header h valid

h = { y = 12, x = 10 }; // Same effect as above

Two headers can be compared for equality (==) or inequality (!=) only if they have the same type. Two
headers are equal if and only if they are both invalid, or they are both valid and all their corresponding
fields are equal. Furthermore, the size of a header can be determined at compile-time (Section 9).

The expression {#} represents an invalid header of some type, but it can be any header or header
union type. A P4 compiler may require an explicit cast on this expression in cases where it cannot
determine the particular header or header union type from the context.

expression

...

| "{#}"

For example:

header H { bit<32> x; bit<32> y; }

H h;

h = {#}; // This make the header h become invalid

if (h == {#}) { // This is equivalent to the condition !h.isValid()

// ...

}

Note that the # character cannot be misinterpreted as a preprocessor directive, since it cannot be the
first character on a line when it occurs in the single lexical token {#}, which may not have whitespace
or any other characters between those shown.

See Section 8.26 for a description of the behavior if header fields are read without being initialized,
or header fields are written to a currently invalid header.

8.19. Operations on header stacks
A header stack is a fixed-size array of headers with the same type. The valid elements of a header stack
need not be contiguous. P4 provides a set of computations for manipulating header stacks. A header
stack hs of type h[n] can be understood in terms of the following pseudocode:

// type declaration

struct hs_t {

bit<32> nextIndex;

80

bit<32> size;

h[n] data; // Ordinary array

}

// instance declaration and initialization

hs_t hs;

hs.nextIndex = 0;

hs.size = n;

Intuitively, a header stack can be thought of as a struct containing an ordinary array of headers hs and
a counter nextIndex that can be used to simplify the construction of parsers for header stacks, as dis-
cussed below. The nextIndex counter is initialized to 0.

Given a header stack value hs of size n, the following expressions are legal:

• hs[index]: produces a reference to the header at the specified position within the stack; if hs
is an l-value, the result is also an l-value. The header may be invalid. Some implementations
may impose the constraint that the index expressionmust be a compile-time known value. A P4
compiler must give an error if an index that is a compile-time known value is out of range.

Accessing a header stack hs with an index less than 0 or greater than or equal to hs.size results
in an undefined value. See Section 8.26 for more details.

The index is an expression that must be of numeric types (Section 7.4).

• hs.size: produces a 32-bit unsigned integer that returns the size of the header stack (a local
compile-time known value).

• assignment from a header stack hs into another stack requires the stacks to have the same types
and sizes. All components of hs are copied, including its elements and their validity bits, as well
as nextIndex.

To help programmers write parsers for header stacks, P4 also offers computations that automatically
advance through the stack as elements are parsed:

• hs.next: produces a reference to the element with index hs.nextIndex in the stack. May only be
used in a parser. If the stack's nextIndex counter is greater than or equal to size, then evaluating
this expression results in a transition to reject and sets the error to error.StackOutOfBounds. If hs
is an l-value, then hs.next is also an l-value.

• hs.last: produces a reference to the element with index hs.nextIndex - 1 in the stack, if such an
element exists. May only be used in a parser. If the nextIndex counter is less than 1, or greater
than size, then evaluating this expression results in a transition to reject and sets the error to
error.StackOutOfBounds. Unlike hs.next, the resulting reference is never an l-value.

• hs.lastIndex: produces a 32-bit unsigned integer that encodes the index hs.nextIndex - 1. May
only be used in a parser. If the nextIndex counter is 0, then evaluating this expression produces
an undefined value.

Finally, P4 offers the following computations that can be used to manipulate the elements at the front
and back of the stack:

81

• hs.push_front(int count): shifts hs “right” by count. Thefirst count elements become invalid. The
last count elements in the stack are discarded. The hs.nextIndex counter is incremented by count.
The count argument must be a compile-time known value that is a positive integer. The return
type is void.

• hs.pop_front(int count): shifts hs “left” by count (i.e., element with index count is copied in stack
at index 0). The last count elements become invalid. The hs.nextIndex counter is decremented
by count. The count argumentmust be a compile-time known value that is a positive integer. The
return type is void.

The following pseudocode defines the behavior of push_front and pop_front:

void push_front(int count) {

for (int i = this.size-1; i >= 0; i -= 1) {

if (i >= count) {

this[i] = this[i-count];

} else {

this[i].setInvalid();

}

}

this.nextIndex = this.nextIndex + count;

if (this.nextIndex > this.size) this.nextIndex = this.size;

// Note: this.last, this.next, and this.lastIndex adjust with this.nextIndex

}

void pop_front(int count) {

for (int i = 0; i < this.size; i++) {

if (i+count < this.size) {

this[i] = this[i+count];

} else {

this[i].setInvalid();

}

}

if (this.nextIndex >= count) {

this.nextIndex = this.nextIndex - count;

} else {

this.nextIndex = 0;

}

// Note: this.last, this.next, and this.lastIndex adjust with this.nextIndex

}

Similar to structs and headers, the size of a header stack is a compile-time known value (Section 9).
Two header stacks can be compared for equality (==) or inequality (!=) only if they have the same

element type and the same length. Two stacks are equal if and only if all their corresponding elements
are equal. Note that the nextIndex value is not used in the equality comparison.

82

8.19.1. Header stack expressions

One can write expressions that evaluate to a header stack. The syntax of these expressions is given by:

expression ...

| '{' expressionList '}'

| '(' typeRef ')' expression

;

The typeRef is a header stack type. The typeRef can be omitted if it can be inferred from context, e.g.,
when initializing a variable with a header stack type. Each expression in the list must evaluate to a
header of the same type as the other stack elements.

Here is an example:

header H<T> {

bit<32> b;

T t;

}

H<bit<32>>[3] s = (H<bit<32>>[3]){ {0, 1}, {2, 3}, (H<bit<32>>){#} };

// without an explicit cast

H<bit<32>>[3] s1 = { {0, 1}, {2, 3}, (H<bit<32>>){#} };

// using the default initializer

H<bit<32>>[3] s2 = { {0, 1}, {2, 3}, ... };

The values of s, s1, and s2 in the above example are identical.

8.20. Operations on header unions
A variable declared with a union type is initially invalid. For example:

header H1 {

bit<8> f;

}

header H2 {

bit<16> g;

}

header_union U {

H1 h1;

H2 h2;

}

U u; // u invalid

This also implies that each of the headers h1 through hn contained in a header union are also initially
invalid. Unlike headers, a union cannot be initialized. However, the validity of a header union can be
updated by assigning a valid header to one of its elements:

83

U u;

H1 my_h1 = { 8w0 }; // my_h1 is valid

u.h1 = my_h1; // u and u.h1 are both valid

We can also assign a tuple to an element of a header union,

U u;

u.h2 = { 16w1 }; // u and u.h2 are both valid

or set their validity bits directly.

U u;

u.h1.setValid(); // u and u.h1 are both valid

H1 my_h1 = u.h1; // my_h1 is now valid, but contains an undefined value

Note that readinganuninitializedheaderproduces anundefinedvalue, even if theheader is itself valid.
If u is anexpressionwhose type is aheaderunion Uwithfields rangedoverby hi, then theexpression

u.hi evaluates to a header, and thus it can be used wherever a header expression is allowed. If u is a
left-value, then u.hi is also a left-value.

The following operations:

• u.hi.setValid(): sets the valid bit for header hi to true and sets the valid bit for all other headers
to false, which implies that it is unspecified what value reading any member header of u will
return.

• u.hi.setInvalid(): if the valid bit for any member header of u is true then sets it to false, which
implies that it is unspecified what value reading anymember header of uwill return.

The assignment to a union field:

u.hi = e;

has the following meaning:

• if e is valid, then it is equivalent to:

u.hi.setValid();

u.hi = e;

• if e is invalid, then it is equivalent to:

u.hi.setInvalid();

Assignmentsbetweenvariablesof the same typeofheaderunionarepermitted. Theassignment u1 = u2

copies the full state of header union u2 to u1. If u2 is valid, then there is some header u2.hi that is valid.
The assignment behaves the same as u1.hi = u2.hi. If u2 is not valid, then u1 becomes invalid (i.e. if
any header of u1was valid, it becomes invalid).

84

u.isValid() returns true if any member of the header union u is valid, otherwise it returns false.
setValid() and setInvalid()methods are not defined for header unions.

Supplying an expression with a union type to emit simply emits the single header that is valid, if
any.

The following example shows how we can use header unions to represent IPv4 and IPv6 headers
uniformly:

header_union IP {

IPv4 ipv4;

IPv6 ipv6;

}

struct Parsed_packet {

Ethernet ethernet;

IP ip;

}

parser top(packet_in b, out Parsed_packet p) {

state start {

b.extract(p.ethernet);

transition select(p.ethernet.etherType) {

16w0x0800 : parse_ipv4;

16w0x86DD : parse_ipv6;

}

}

state parse_ipv4 {

b.extract(p.ip.ipv4);

transition accept;

}

state parse_ipv6 {

b.extract(p.ip.ipv6);

transition accept;

}

}

As another example, we can also use unions to parse (selected) TCP options:

header Tcp_option_end_h {

bit<8> kind;

}

header Tcp_option_nop_h {

bit<8> kind;

}

header Tcp_option_ss_h {

bit<8> kind;

bit<32> maxSegmentSize;

85

}

header Tcp_option_s_h {

bit<8> kind;

bit<24> scale;

}

header Tcp_option_sack_h {

bit<8> kind;

bit<8> length;

varbit<256> sack;

}

header_union Tcp_option_h {

Tcp_option_end_h end;

Tcp_option_nop_h nop;

Tcp_option_ss_h ss;

Tcp_option_s_h s;

Tcp_option_sack_h sack;

}

typedef Tcp_option_h[10] Tcp_option_stack;

struct Tcp_option_sack_top {

bit<8> kind;

bit<8> length;

}

parser Tcp_option_parser(packet_in b, out Tcp_option_stack vec) {

state start {

transition select(b.lookahead<bit<8>>()) {

8w0x0 : parse_tcp_option_end;

8w0x1 : parse_tcp_option_nop;

8w0x2 : parse_tcp_option_ss;

8w0x3 : parse_tcp_option_s;

8w0x5 : parse_tcp_option_sack;

}

}

state parse_tcp_option_end {

b.extract(vec.next.end);

transition accept;

}

state parse_tcp_option_nop {

b.extract(vec.next.nop);

transition start;

}

state parse_tcp_option_ss {

b.extract(vec.next.ss);

transition start;

86

}

state parse_tcp_option_s {

b.extract(vec.next.s);

transition start;

}

state parse_tcp_option_sack {

bit<8> n = b.lookahead<Tcp_option_sack_top>().length;

// n is the total length of the TCP SACK option in bytes.

// The length of the varbit field 'sack' of the

// Tcp_option_sack_h header is thus n-2 bytes.

b.extract(vec.next.sack, (bit<32>) (8 * n - 16));

transition start;

}

}

Similar to headers, the size of a header union is a local compile-time known value (Section 9).
The expression {#} represents an invalid header union of some type, but it can be any header or

header union type. A P4 compiler may require an explicit cast on this expression in cases where it
cannot determine the particular header or header union type from the context.

header_union HU { ... }

HU h = (HU){#}; // invalid header union; same as an uninitialized header union.

Two header unions can be compared for equality (==) or inequality (!=) if they have the same type. The
unions are equal if and only if all their corresponding fields are equal (i.e., either all fields are invalid
in both unions, or in both unions the same field is valid, and the values of the valid fields are equal as
headers).

8.21. Method invocations and function calls
Method invocations and function calls can be invoked using the following syntax:

expression

: ...

| expression '<' realTypeArgumentList '>' '(' argumentList ')'

| expression '(' argumentList ')'

argumentList

: /* empty */

| nonEmptyArgList

;

nonEmptyArgList

: argument

| nonEmptyArgList "," argument

;

87

argument

: expression /* positional argument */

| name "=" expression /* named argument */

| "_"

| name "=" "_"

;

realTypeArgumentList

: realTypeArg

| realTypeArgumentList "," typeArg

;

realTypeArg

: typeRef

| VOID

| "_"

;

A function call or method invocation can optionally specify for each argument the corresponding pa-
rameter name. It is illegal to use names only for some arguments: either all or no arguments must
specify the parameter name. Function arguments are evaluated in the order they appear, left to right,
before the function invocation takes place.

extern void f(in bit<32> x, out bit<16> y);

bit<32> xa = 0;

bit<16> ya;

f(xa, ya); // match arguments by position

f(x = xa, y = ya); // match arguments by name

f(y = ya, x = xa); // match arguments by name in any order

//f(x = xa); -- error: enough arguments

//f(x = xa, x = ya); -- error: argument specified twice

//f(x = xa, ya); -- error: some arguments specified by name

//f(z = xa, w = yz); -- error: no parameter named z or w

//f(x = xa, y = 0); -- error: y must be a left-value

The calling convention is copy-in/copy-out (Section 6.8). For generic functions the type arguments
can be explicitly specified in the function call. The compiler only inserts implicit casts for direction
in arguments to methods or functions as described in Section 8.12. The types for all other arguments
must match the parameter types exactly.

The result returned by a function call is discarded when the function call is used as a statement.
The “don't care” identifier (_) can only be used for an out function/method argument, when the

value of returned in that argument is ignored by subsequent computations. When used in generic
functions or methods, the compiler may reject the program if it is unable to infer a type for the don't
care argument.

88

8.22. Constructor invocations
Several P4 constructs denote resources that are allocated at compilation time:

• extern objects
• parsers
• control blocks
• packages

Allocation of such objects can be performed in two ways:

• Using constructor invocations, which are expressions that return an object of the corresponding
type.

• Using instantiations, described in Section 11.3.

The syntax for a constructor invocation is similar to a function call; constructors can also be called
using named arguments. Constructors are evaluated entirely at compilation time (see Section 18). In
consequence, all constructor argumentsmust also be expressions that canbe evaluated at compilation
time. When performing type inference and overload resolution, constructor invocations are treated
similar to methods or functions.

The following example shows a constructor invocation for setting the target-dependent implemen-
tation property of a table:

extern ActionProfile {

ActionProfile(bit<32> size); // constructor

}

table tbl {

actions = { /* body omitted */ }

implementation = ActionProfile(1024); // constructor invocation

}

8.23. Operations on extern objects
The only operations that can be performed on extern objects are the following:

• Instantiating an extern object using a constructor invocation, as described in Section 8.22.
• Invoking a method of an extern object instance using a method call expression, as described in

Section 8.21.

Controls, parsers, packages, and extern constructors canhaveparameters of type externonly if they are
directionless parameters. Extern object instances can thus be used as arguments in the construction
of such objects.

No other operations are available on extern objects, e.g., equality comparison is not defined.

8.24. Operations on types introduced by type

Values with a type introduced by the type keyword provide only a few operations:

• assignment to left-values of the same type

89

• comparisons for equality and inequality if the original type supported such comparisons
• casts to and from the original type

type bit<32> U32;

U32 x = (U32)0; // cast needed

U32 y = (U32) ((bit<32>)x + 1); // casts needed for arithmetic

bit<32> z = 1;

bool b0 = x == (U32)z; // cast needed

bool b1 = (bit<32>)x == z; // cast needed

bool b2 = x == y; // no cast needed

8.25. Operations on types that are type variables
Because functions, methods, control, and parsers can be generic, they offer the possibility of declaring
values with types that are type variables:

control C<T>() {

apply {

T x; // the type of x is T, a type variable

}

}

The type of such objects is not known until the control is instantiated with specific type arguments.
Currently the only operations that are available for such values are assignment (explicit through =,

or implicit, through argument passing). This behavior is similar to languages such as Java, anddifferent
from languages such as C++.

A future version of P4 may introduce a notion of type constraints which would enable more oper-
ations on such values. Because of this limitation, such values are currently of limited utility.

8.26. Reading uninitialized values and writing fields of invalid headers
As mentioned in Section 8.19, any reference to an element of a header stack hs[index] where index

is a compile-time known value must give an error at compile time if the value of the index is out of
range. That section also defines the run time behavior of the expressions hs.next and hs.last, and the
behaviors specified there take precedence over anything in this section for those expressions.

All mentions of header stack elements in this section only apply for expressions hs[index] where
index is not a compile-time known value. A P4 implementation may elect not to support expressions
of the form hs[index] where index is not a compile-time known value. However, it does support such
expressions, the implementation should conform to the behaviors specified in this section.

The result of reading a value in any of the situations below is that some unspecified value will be
used for that field.

• reading a field from a header that is currently invalid.
• reading a field from a header that is currently valid, but the field has not been initialized since

the header was last made valid.

90

• reading any other value that has not been initialized, e.g. a field from a struct, any uninitialized
variable inside of an action or control, or an out parameter of a control or action you have called,
whichwasnot assignedavalueduring theexecutionof that controlor action (this list of examples
is not intended to be exhaustive).

• reading a field of a header that is an element of a header stack, where the index is out of range for
the header stack.

Calling the isValid()method on an element of a header stack, where the index is out of range, returns
an undefined boolean value, i.e., it is either true or false, but the specification does not require one or
the other, nor that a consistent value is returned across multiple such calls. Assigning an out-of-range
header stack element to another header variable h leads to a state where h is undefined in all of its field
values, and its validity is also undefined.

Where a header is mentioned, it may be amember of a header_union, an element in a header stack,
or a normal header. This unspecified value could differ from one such read to another.

For an uninitialized field or variable with a type of enum or error, the unspecified value that is read
might not be equal to any of the values defined for that type. Such an unspecified value should still
lead to predictable behavior in cases where any legal value wouldmatch, e.g. it shouldmatch in any of
these situations:

• If used in a select expression, it should match default or _ in a key set expression.
• If used as a key with match_kind ternary in a table, it should match a table entry where the field

has all bit positions “don't care”.
• If used as a key with match_kind lpm in a table, it should match a table entry where the field has a

prefix length of 0.

Consider a situationwhere a header_union u1hasmember headers u1.h1 and u1.h2, and at a given point
in the program's execution u1.h1 is valid and u1.h2 is invalid. If a write is attempted to a field of the
invalidmemberheader u1.h2, then anyor all of thefields of the validmemberheader u1.h1maychange
as a result. Such a write must not change the validity of anymember headers of u1, nor any other state
that is currently defined in the system, whether it is defined state in header fields or anywhere else.

If any of these kinds of writes are performed:

• a write to a field in a currently invalid header, either a regular header or an element of a header
stack with an index that is in range, and that header is not part of a header_union

• a write to a field in an element of a header stack, where the index is out of range
• a method call of setValid() or setInvalid() on an element of a header stack, where the index is

out of range

then thatwritemustnot changeany state that is currentlydefined in the system, neither inheaderfields
nor anywhere else. In particular, if an invalid header is involved in the write, it must remain invalid.

Anywrites to fields in a currently invalid header, or to header stack elements where the index is out
of range, are allowed to modify state whose values are not defined, e.g. the values of fields in headers
that are currently invalid.

For a top level parseror control in an architecture, it is up to that architecture to specifywhether pa-
rameterswithdirection inor inout are initializedwhen the control is called, andunderwhat conditions
they are initialized, and if so, what their values will be.

Since P4 allows empty tuples and structs, one can construct types whose values carry no “useful”
information, e.g.:

91

struct Empty {

tuple<> t;

}

We call the following “empty” types:

• bitstrings with 0 width
• varbits with 0 width
• empty tuples (tuple<>)
• stacks with 0 size
• structs with no fields
• a tuple having all fields of an empty type
• a struct having all fields of an empty type

Values with empty types carry no useful information. In particular, they do not have to be explicitly
initialized to have a legal value.

(Header types with no fields always have a validity bit.)

8.27. Initializing with default values
A left-value canbe initialized automaticallywith a default value of the suitable type using the syntax ...
(see Section 7.3). A value of type struct, header, or tuple can also be initialized using a mix of explicit
values anddefault values by using thenotation ... in a tuple expression initializer; in this case all fields
not explicitly initialized are initializedwith default values. When initializing a struct, header, and tuple

with a value containing partially default values using the ... notation the three dots must appear last
in the initializer.

struct S {

bit<32> b32;

bool b;

}

enum int<8> N0 {

one = 1,

zero = 0,

two = 2

}

enum N1 {

A, B, C, F

}

struct T {

S s;

N0 n0;

N1 n1;

}

92

header H {

bit<16> f1;

bit<8> f2;

}

N0 n0 = ...; // initialize n0 with the default value 0

N1 n1 = ...; // initialize n1 with the default value N1.A

S s0 = ...; // initialize s0 with the default value { 0, false }

S s1 = { 1, ... }; // initialize s1 with the value { 1, false }

S s2 = { b = true, ... }; // initialize s2 with the value { 0, true }

T t0 = ...; // initialize t0 with the value { { 0, false }, 0, N1.A }

T t1 = { s = ..., ... }; // initialize t1 with the value { { 0, false }, 0, N1.A }

T t2 = { s = ... }; // error: no initializer specified for fields n0 and n1

tuple<N0, N1> p = { ... }; // initialize p with default value { 0, N1.A }

T t3 = { ..., n0 = 2}; // error: ... must be last

H h1 = ...; // initialize h1 with a header that is invalid

H h2 = { f2=5, ... }; // initialize h2 with a header that is valid, field f1 0, field f2 5

H h3 = { ... }; // initialize h3 with a header that is valid, field f1 0, field f2 0

9. Compile-time size determination
The method calls minSizeInBits, minSizeInBytes, maxSizeInBits, and maxSizeInBytes can be applied to
certain expressions. These method calls return the minimum (or maximum) size in bits (or bytes) re-
quired to store the expression. Thus, the result type of these methods has type int. Except in certain
situations involving type variables, discussed below, these method calls produce local compile-time
known values; otherwise they produce compile-time known values. None of these methods evaluate
the expression that is the receiver of themethod call, so itmaybe invalid (e.g., an out-of-boundsheader
stack access).

Themethod minSizeInBytes returns the result of minSizeInBits rounded up to the next whole num-
berofbytes. Inotherwords, for anyexpression e, e.minSizeInBytes() is equal to (e.minSizeInBits() + 7) >> 3.

Themethod maxSizeInBytes always returns the result of maxSizeInBits roundedup to thenextwhole
numberofbytes. Inotherwords, for anyexpression e, e.maxSizeInBytes() is equal to (e.maxSizeInBits() + 7) >> 3.

The definition of e.minSizeInBits() and e.maxSizeInBits() is given recursively on the type of e as
described in the following table:

Type minSizeInBits maxSizeInBits
bit<N> N N
int<N> N N
bool 1 1
enum bit<N> N N
enum int<N> N N
tuple foreach field(tuple) sum of foreach field(tuple) sum of

field.minSizeInBits() field.maxSizeInBits()

93

varbit<N> 0 N
struct foreach field(struct) sum of foreach field(struct) sum of

field.minSizeInBits() field.maxSizeInBits()

header foreach field(header) sum of foreach field(header) sum of
field.minSizeInBits() field.maxSizeInBits()

H[N] N * H.minSizeInBits() N * H.maxSizeInBits()

header_union max(foreach field(header_union) max(foreach field(header_union)
field.minSizeInBits()) field.maxSizeInBits())

Themethods can also be applied to type name expressions e:

• if the type of e is a type introduced by type, the result is the application of the method to the
underlying type

• if e is the name of a type (e.g., introduced by a typedef declaration), where the type given a name
is one of the above, then the result is obtained by applying the method to the underlying type.

These methods are defined for:

• all serializable types
• for a type that does not contain varbit fields, both methods return the same result
• for a type that does contain varbit fields, maxSizeInBits is the worst-case size of the serialized

representation of the data and minSizeInBits is the “best” case.

Every other case is undefined andwill produce a compile-time error. In particular, cases involving type
variables produce a compile-time error.

10. Function declarations
Functions can only be declared at the top level and all parameters must have a direction. P4 functions
aremodeled after functions as found inmost other programming languages, but the language does not
permit recursive functions.

functionDeclaration

: annotations functionPrototype blockStatement

| functionPrototype blockStatement

;

functionPrototype

: typeOrVoid name optTypeParameters "(" parameterList ")"

;

Here is an example of a function that returns the maximum of two 32-bit values:

bit<32> max(in bit<32> left, in bit<32> right) {

return (left > right) ? left : right;

}

A function returns a value using the return statement. A function with a return type of void can simply

94

use the return statement with no arguments. A function with a non-void return type must return a
value of the suitable type on all possible execution paths.

11. Constants and variable declarations
11.1. Constants
Constant values are defined with the syntax:

constantDeclaration

: optAnnotations CONST typeRef name "=" initializer ";"

;

initializer

: expression

;

Such a declaration introduces a constant whose value has the specified type. The following are all legal
constant declarations:

const bit<32> COUNTER = 32w0x0;

struct Version {

bit<32> major;

bit<32> minor;

}

const Version version = { 32w0, 32w0 };

The initializer expressionmust be a compile-time known value.

11.2. Variables
Local variables are declared with a type, a name, and an optional initializer (as well as an optional
annotation):

variableDeclaration

: annotations typeRef name optInitializer ";"

| typeRef name optInitializer ";"

;

optInitializer

: /* empty */

| "=" initializer

;

Variable declarations without an initializer are uninitialized (except for headers and other header-
related types, which are initialized to invalid in the sameway as described for direction out parameters
in Section 6.8). The language places few restrictions on the types of the variables: most P4 types that

95

can be written explicitly can be used (e.g., base types, struct, header, header stack, tuple). However, it
is impossible to declare variables with type int, or with types that are only synthesized by the compiler
(e.g., set) In addition, variables of type parser, control, package, or extern typesmust be declared using
instantiations (see Section 11.3).

Reading thevalueof a variable thathasnotbeen initializedyieldsanundefined result. Thecompiler
should attempt to detect and emit a warning in such situations.

Variables declarations can appear in the following locations within a P4 program:

• In a block statement,
• In a parser state,
• In an action body,
• In a control block's apply sub-block,
• In the list of local declarations in a parser, and
• In the list of local declarations in a control.

Variables have local scope, and behave like stack-allocated variables in languages such as C.The value
of a variable is never preserved from one invocation of its enclosing block to the next. In particular,
variables cannot be used to maintain state between different network packets.

11.3. Instantiations
Instantiations are similar to variable declarations, but are reserved for the types with constructors
(extern objects, control blocks, parsers, and packages):

instantiation

: typeRef '(' argumentList ')' name ';'

| annotations typeRef '(' argumentList ')' name ';'

;

An instantiation is written as a constructor invocation followed by a name. Instantiations are always
executed at compilation time (Section 18.1). The effect is to allocate an object with the specified name,
and to bind it to the result of the constructor invocation. Note that instantiation arguments can be
specified by name.

For example, a hypothetical bank of counter objects can be instantiated as follows:

// from target library

enum CounterType {

Packets,

Bytes,

Both

}

extern Counter {

Counter(bit<32> size, CounterType type);

void increment(in bit<32> index);

}

// user program

control c(/* parameters omitted */) {

96

Counter(32w1024, CounterType.Both) ctr; // instantiation

apply { /* body omitted */ }

}

11.3.1. Instantiating objects with abstract methods

When instantiating an extern type that has abstractmethods users have to supply implementations for
all suchmethods. This is done using object initializers:

lvalue:

...

| THIS

expression:

...

| THIS

instantiation:

...

| annotations typeRef "(" argumentList ")" name "=" objInitializer ";"

| typeRef "(" argumentList ")" name "=" objInitializer ";"

objInitializer

: "{" objDeclarations "}"

;

objDeclarations

: /* empty */

| objDeclarations objDeclaration

;

objDeclaration

: functionDeclaration

| instantiation

;

The abstract methods can only use the supplied arguments or refer to values that are in the top-level
scope. When calling another method of the same instance the this keyword is used to indicate the
current object instance:

// Instantiate a balancer

Balancer() b = { // provide an implementation for the abstract methods

bit<4> on_new_flow(in bit<32> address) {

// uses the address and the number of flows to balance the load

bit<32> count = this.getFlowCount(); // call method of the same instance

return (address + count)[3:0];

97

}

}

Abstract methods may be invoked by users explicitly, or they may be invoked by the target architec-
ture. The architectural description has to specify when the abstract methods are invoked and what
the meaning of their arguments and return values is; target architectures may impose additional con-
straints on abstract methods.

11.3.2. Restrictions on top-level instantiations

A P4 program may not instantiate controls and parsers in the top-level package. This restriction is
designed to ensure that most state resides in the architecture itself, or is local to a parser or control.
For example, the following program is not valid:

// Program

control c(/* parameters omitted */) { /* body omitted */ }

c() c1; // illegal top-level instantiation

because control c1 is instantiated at the top-level. Note that top-level declarations of constants and
instantiations of extern objects are permitted.

12. Statements
Every statement in P4 except block statements must end with a semicolon. Statements can appear in
several places:

• Within parser states
• Within a control block
• Within an action

There are restrictions for the kinds of statements that can appear in each of these places. For example,
returns are not supported in parsers, and switch statements are only supported in control blocks. We
present here the most general case, for control blocks.

statement

: assignmentOrMethodCallStatement

| conditionalStatement

| emptyStatement

| blockStatement

| exitStatement

| returnStatement

| switchStatement

;

assignmentOrMethodCallStatement

: lvalue "(" argumentList ")" ";"

| lvalue "<" typeArgumentList ">" "(" argumentList ")" ";"

98

| lvalue "=" expression ";"

;

In addition, parsers support a transition statement (Section 13.5).

12.1. Assignment statement
An assignment, written with the = sign, first evaluates its left sub-expression to an l-value, then eval-
uates its right sub-expression to a value, and finally copies the value into the l-value. Derived types
(e.g. structs) are copied recursively, and all components of headers are copied, including “validity”
bits. Assignment is not defined for extern values.

12.2. Empty statement
The empty statement, written ; is a no-op.

emptyStatement

: ";"

;

12.3. Block statement
A block statement is denoted by curly braces. It contains a sequence of statements and declarations,
which are executed sequentially. The declarations (e.g., variables and constants) within a block state-
ment are only visible within the block.

blockStatement

: optAnnotations "{" statOrDeclList "}"

;

statOrDeclList

: /* empty */

| statOrDeclList statementOrDeclaration

;

statementOrDeclaration

: variableDeclaration

| constantDeclaration

| statement

;

12.4. Return statement
The return statement immediately terminates the execution of the action, function or control contain-
ing it. return statements are not allowed within parsers. return statements followed by an expression
are only allowedwithin functions that return values; in this case the type of the expressionmustmatch

99

the return type of the function. Any copy-out behavior due to direction out or inout parameters of the
enclosing action, function, or control are still performed after the execution of the return statement.
See Section 6.8 for details on copy-out behavior.

returnStatement

: RETURN ";"

| RETURN expression ";"

;

12.5. Exit statement
The exit statement immediately terminates the execution of all the blocks currently executing: the
current action (if invoked within an action), the current control, and all its callers. exit statements are
not allowed within parsers or functions.

Any copy-out behavior due to direction out or inout parameters of the enclosing action or control,
and all of its callers, are still performed after the execution of the exit statement. See Section 6.8 for
details on copy-out behavior.

exitStatement

: EXIT ";"

;

There are some expressionswhose evaluationmight cause an exit statement to be executed. Examples
include:

• table.apply().action_run, which can only appear as the expression of a switch statement (see
Section 12.7), and when it appears there, it must be the entire expression.

• Any expression containing table.apply().hit or table.apply().miss (see Section 14.2.2), which
can be part of arbitrarily complex expressions in many places of a P4 program, such as:

– the expression in an if statement.
– the expression e1 in a conditional expression e1 ? e2 : e3.
– in an assignment statement, in the left and/or right hand sides.
– an argument passed to a function or method call.
– an expression to calculate a table key (see Section 14.2.3).

This list is not intended to be exhaustive.
If applying the table causes an action to be executed, which in turn causes an exit statement to be

executed, then evaluation of the expression ends immediately, and the rest of the current expression
or statement does not complete its execution. See Section 8.1 for the order of evaluation of the parts of
an expression. For the examples listed above, it alsomeans the following behavior after the expression
evaluation is interrupted.

• For a switch statement, if table.apply() exits, then none of the blocks in the switch statement are
executed.

• If table.apply().hit or table.apply().miss cause an exit during the evaluation of an expression:

100

– If it is the expression of an if statement, then neither the ‘then’ nor ‘else’ branches of the if

statement are executed.
– If it is the expression e1 in a conditional expression e1 ? e2 : e3, then neither expression

e2 nor e3 are evaluated.
– If the expression is the right hand side of an assignment statement, or part of the calculation

of the L-value on the left hand side (e.g. the index expression of a header stack reference),
then no assignment occurs.

– If theexpression is anargumentpassed toa functionormethodcall, then the function/method
call does not occur.

– If the expression is a table key, then the table is not applied.

12.6. Conditional statement
The conditional statement uses standard syntax and semantics familiar frommany programming lan-
guages.

However, the condition expression in P4 is required to be a Boolean (and not an integer).

conditionalStatement

: IF "(" expression ")" statement

| IF "(" expression ")" statement ELSE statement

;

When several if statements are nested, the else applies to the innermost if statement that does not
have an else statement.

12.7. Switch statement
The switch statement can only be used within control blocks.

switchStatement

: SWITCH "(" expression ")" "{" switchCases "}"

;

switchCases

: /* empty */

| switchCases switchCase

;

switchCase

: switchLabel ":" blockStatement

| switchLabel ":" // fall-through

;

switchLabel

: DEFAULT

| nonBraceExpression

101

;

nonBraceExpression

: INTEGER

| STRING_LITERAL

| TRUE

| FALSE

| THIS

| prefixedNonTypeName

| nonBraceExpression "[" expression "]"

| nonBraceExpression "[" expression ":" expression "]"

| "(" expression ")"

| "!" expression %prec PREFIX

| "~" expression %prec PREFIX

| "-" expression %prec PREFIX

| "+" expression %prec PREFIX

| typeName "." member

| ERROR "." member

| nonBraceExpression "." member

| nonBraceExpression "*" expression

| nonBraceExpression "/" expression

| nonBraceExpression "%" expression

| nonBraceExpression "+" expression

| nonBraceExpression "-" expression

| nonBraceExpression "|+|" expression

| nonBraceExpression "|-|" expression

| nonBraceExpression "<<" expression

| nonBraceExpression ">>" expression

| nonBraceExpression "<=" expression

| nonBraceExpression ">=" expression

| nonBraceExpression "<" expression

| nonBraceExpression ">" expression

| nonBraceExpression "!=" expression

| nonBraceExpression "==" expression

| nonBraceExpression "&" expression

| nonBraceExpression "^" expression

| nonBraceExpression "|" expression

| nonBraceExpression "++" expression

| nonBraceExpression "&&" expression

| nonBraceExpression "||" expression

| nonBraceExpression "?" expression ":" expression

| nonBraceExpression "<" realTypeArgumentList ">" "(" argumentList ")"

| nonBraceExpression "(" argumentList ")"

| namedType "(" argumentList ")"

| "(" typeRef ")" expression

;

102

The nonBraceExpression is the same as expression as defined in Section 8, except it does not include any
cases that can begin with a left brace { character, to avoid syntactic ambiguity with a block statement.

There are two kinds of switch expressions allowed, described separately in the following two sub-
sections.

12.7.1. Switch statement with action_run expression

For this variant of switch statement, the expressionmust be of the form t.apply().action_run, where t

is the name of a table (see Section 14.2.2). All switch labels must be names of actions of the table t, or
default.

switch (t.apply().action_run) {

action1: // fall-through to action2:

action2: { /* body omitted */ }

action3: { /* body omitted */ } // no fall-through from action2 to action3 labels

default: { /* body omitted */ }

}

Note that the default label of the switch statement is used to match on the kind of action executed, no
matter whether there was a table hit or miss. The default label does not indicate that the table missed
and the default_actionwas executed.

12.7.2. Switch statement with integer or enumerated type expression

For this variant of switch statement, the expressionmust evaluate to a result with one of these types:

• bit<W>

• int<W>

• enum, either with or without an underlying representation specified
• error

All switch labels must be expressions with compile-time known values, andmust have a type that can
be implicitly cast to the type of the switch expression (see Section 8.12.2). Switch labelsmust not begin
with a left brace character {, to avoid ambiguity with a block statement.

// Assume the expression hdr.ethernet.etherType has type bit<16>

switch (hdr.ethernet.etherType) {

0x86dd: { /* body omitted */ }

0x0800: // fall-through to the next body

0x0802: { /* body omitted */ }

0xcafe: { /* body omitted */ }

default: { /* body omitted */ }

}

103

Figure 8. Parser FSM structure.

12.7.3. Notes common to all switch statements

It is a compile-time error if two labels of a switch statement equal each other. The switch label values
need not include all possible values of the switch expression. It is optional to have a switch case with
the default label, but if one is present, it must be the last one in the switch statement.

If a switch label is not followed by a block statement, it falls through to the next label. However,
if a block statement is present, it does not fall through. Note that this is different from C-style switch

statements, where a break is needed to prevent fall-through. If the last switch label is not followed by
a block statement, the behavior is the same as if the last switch label were followed by an empty block
statement { }.

When a switch statement is executed, first the switch expression is evaluated, and any side effects
from evaluating this expression are visible to any switch case that is executed. Among switch labels
that are not default, at most one of them can equal the value of the switch expression. If one is equal,
that switch case is executed.

If no labels are equal to the switch expression, then:

• if there is a default label, the case with the default label is executed.
• if there is no default label, then no switch case is executed, and execution continues after the

end of the switch statement, with no side effects (except any that were caused by evaluating the
switch expression).

See “Implementing generalized P4_16 switch statements” GeneralizedSwitchStatements for possible
techniques that onemight use to implement generalized switch statements.

13. Packet parsing
This section describes the P4 constructs specific to parsing network packets.

13.1. Parser states
A P4 parser describes a state machine with one start state and two final states. The start state is

always named start. The two final states are named accept (indicating successful parsing) and reject

(indicating a parsing failure). The start state is part of the parser, while the accept and reject states are

104

https://github.com/p4lang/p4-spec/blob/master/p4-16/spec/docs/implementing-generalized-switch-statements.md

distinct from the states provided by the programmer and are logically outside of the parser. Figure 8
illustrates the general structure of a parser state machine.

13.2. Parser declarations
Aparser declaration comprises a name, a list of parameters, an optional list of constructor parameters,
local elements, and parser states (as well as optional annotations).

parserTypeDeclaration

: optAnnotations PARSER name optTypeParameters

"(" parameterList ")"

;

parserDeclaration

: parserTypeDeclaration optConstructorParameters

"{" parserLocalElements parserStates "}"

;

parserLocalElements

: /* empty */

| parserLocalElements parserLocalElement

;

parserStates

: parserState

| parserStates parserState

;

For a description of optConstructorParameters, which are useful for building parameterized parsers,
see Section 15.

Unlike parser type declarations, parser declarationsmay not be generic—e.g., the following decla-
ration is illegal:

parser P<H>(inout H data) { /* body omitted */ }

Hence, used in the context of a parserDeclaration the production rule parserTypeDeclaration should
not yield type parameters.

At least one state, named start, must be present in any parser. A parser may not define two states
with the same name. It is also illegal for a parser to give explicit definitions for the accept and reject

states—those states are logically distinct from the states defined by the programmer.
State declarations are described below. Preceding the parser states, a parser may also contain a

list of local elements. These can be constants, variables, or instantiations of objects that may be used
within the parser. Such objects may be instantiations of extern objects, or other parsers that may be
invoked as subroutines. However, it is illegal to instantiate a control block within a parser.

parserLocalElement

: constantDeclaration

105

| instantiation

| variableDeclaration

| valueSetDeclaration

;

The states and local elements are all in the same namespace, thus the following example will produce
an error:

// erroneous example

parser p() {

bit<4> t;

state start {

t = 1;

transition t;

}

state t { // error: name t is duplicated

transition accept;

}

}

For an example containing a complete declaration of a parser see Section 5.3.

13.3. The Parser abstract machine
The semantics of a P4 parser can be formulated in terms of an abstract machine that manipulates a
ParserModel data structure. This section describes this abstract machine in pseudo-code.

A parser starts execution in the start state and ends execution when one of the reject or accept
states has been reached.

ParserModel {

error parseError;

onPacketArrival(packet p) {

ParserModel.parseError = error.NoError;

goto start;

}

}

An architecturemust specify the behavior when the accept and reject states are reached. For example,
an architecturemay specify that all packets reaching the reject state are dropped without further pro-
cessing. Alternatively, itmay specify that suchpackets are passed to thenext block after theparser, with
intrinsic metadata indicating that the parser reached the reject state, along with the error recorded.

13.4. Parser states
A parser state is declared with the following syntax:

106

parserState

: optAnnotations STATE name

"{" parserStatements transitionStatement "}"

;

Each state has a name and a body. The body consists of a sequence of statements that describe the
processing performed when the parser transitions to that state, including:

• Local variable declarations,
• Assignment statements,
• Method calls, which serve several purposes:

– Invoking functions (e.g., using verify to check the validity of data already parsed), and
– Invokingmethods (e.g., extracting data out of packets or computing checksums) and other

parsers (see Section 13.10), and

• Conditional statements,
• Transitions to other states (discussed in Section 13.5).

The syntax for parser statements is given by the following grammar rules:

parserStatements

: /* empty */

| parserStatements parserStatement

;

parserStatement

: assignmentOrMethodCallStatement

| directApplication

| emptyStatement

| variableDeclaration

| constantDeclaration

| parserBlockStatement

| conditionalStatement

;

parserBlockStatement

: optAnnotations "{" parserStatements "}"

;

Architectures may place restrictions on the expressions and statements that can be used in a parser—
e.g., they may forbid the use of operations such as multiplication or place restrictions on the number
of local variables that may be used.

In terms of the ParserModel, the sequence of statements in a state are executed sequentially.

107

13.5. Transition statements
The last statement in a parser state is an optional transition statement, which transfers control to an-
other state, possibly accept or reject. A transition statements is written using the following syntax:

transitionStatement

: /* empty */

| TRANSITION stateExpression

;

stateExpression

: name ";"

| selectExpression

;

Theexecution of the transition statement causes stateExpression to be evaluated, and transfers control
to the resulting state.

In terms of the ParserModel, the semantics of a transition statement can be formalized as follows:

goto eval(stateExpression)

For example, this statement:

transition accept;

terminates execution of the current parser and transitions immediately to the accept state.
If the body of a state block does not end with a transition statement, the implied statement is

transition reject;

13.6. Select expressions
A select expression evaluates to a state. The syntax for a select expression is as follows:

selectExpression

: SELECT "(" expressionList ")" "{" selectCaseList "}"

;

selectCaseList

: /* empty */

| selectCaseList selectCase

;

selectCase

: keysetExpression ":" name ";"

;

108

Each expression in the expressionList must have a type of bit<W>, int<W>, bool, enum, serializable enum,
or a tuple type with fields of one of the above types.

In a select expression, if the expressionList has type tuple<T>, then each keysetExpression must
have type set<tuple<T>>. In particular, if a set is specified as a range ormask expression, the endpoints
of the range andmask expression are implicitly cast to type T using the standard rules for casts.

In terms of the ParserModel, the meaning of a select expression:

select(e) {

ks[0]: s[0];

ks[1]: s[1];

/* more labels omitted */

ks[n-2]: s[n-1];

_ : sd; // ks[n-1] is default

}

is defined in pseudo-code as:

key = eval(e);

for (int i=0; i < n; i++) {

keyset = eval(ks[i]);

if (keyset.contains(key)) return s[i];

}

verify(false, error.NoMatch);

Some targets may require that all keyset expressions in a select expression be compile-time known
values. Keysets are evaluated in order, from top to bottom as implied by the pseudo-code above; the
first keyset that includes the value in the select argument provides the result state. If no labelmatches,
the execution triggers a runtime error with the standard error code error.NoMatch.

Note that this implies that all cases after a default or _ label are unreachable; the compiler should
emit awarning if it detects unreachable cases. This constitutes an important difference between select

expressions and the switch statements found in many programming languages since the keysets of a
select expressionmay “overlap”.

The typical way to use a select expression is to compare the value of a recently-extracted header
field against a set of values, as in the following example:

header IPv4_h { bit<8> protocol; /* more fields omitted */ }

struct P { IPv4_h ipv4; /* more fields omitted */ }

P headers;

select (headers.ipv4.protocol) {

8w6 : parse_tcp;

8w17 : parse_udp;

_ : accept;

}

For example, to detect TCP reserved ports (< 1024) one could write:

109

select (p.tcp.port) {

16w0 &&& 16w0xFC00: well_known_port;

_: other_port;

}

Theexpression 16w0 &&& 16w0xFC00 describes the set of 16-bit values whosemost significant six bits are
zero.

Some targetsmay support parser value sets; see Section 13.11. Givena type T for the typeparameter
of the value set, the type of the value set is set<T>. The type of the value setmustmatch to the type of all
other keysetExpressions in the same select expression. If there is a mismatch, the compiler must raise
an error. The type of the values in the set must be either bit<>, int<>, tuple, struct, or serializable enum.

For example, to allow the control plane API to specify TCP reserved ports at runtime, one could
write:

struct vsk_t {

@match(ternary)

bit<16> port;

}

value_set<vsk_t>(4) pvs;

select (p.tcp.port) {

pvs: runtime_defined_port;

_: other_port;

}

Theaboveexampleallows the runtimeAPI topopulateup to4different keysetExpressions in the value_set.
If the value_set takes a struct as type parameter, the runtimeAPI canuse the struct field names to name
the objects in the value set. Thematch type of the struct field is specified with the @match annotation. If
the @match annotation is not specified on a struct field, by default it is assumed to be @match(exact). A
single non-exact field must be placed into a struct by itself, with the desired @match annotation.

13.7. verify
The verify statement provides a simple form of error handling. verify can only be invoked within a
parser; it is used syntactically as if it were a function with the following signature:

extern void verify(in bool condition, in error err);

If the first argument is true, then executing the statement has no side-effect. However, if the first ar-
gument is false, it causes an immediate transition to reject, which causes immediate parsing termi-
nation; at the same time, the parserError associated with the parser is set to the value of the second
argument.

In terms of the ParserModel the semantics of a verify statement is given by:

ParserModel.verify(bool condition, error err) {

if (condition == false) {

ParserModel.parserError = err;

110

goto reject;

}

}

13.8. Data extraction
The P4 core library contains the following declaration of a built-in extern type called packet_in that
represents incoming network packets. The packet_in extern is special: it cannot be instantiated by the
user explicitly. Instead, the architecture supplies a separate instance for each packet_in argument to a
parser instantiation.

extern packet_in {

void extract<T>(out T headerLvalue);

void extract<T>(out T variableSizeHeader, in bit<32> varFieldSizeBits);

T lookahead<T>();

bit<32> length(); // This method may be unavailable in some architectures

void advance(bit<32> bits);

}

To extract data from a packet represented by an argument b with type packet_in, a parser invokes the
extract methods of b. There are two variants of the extract method: a one-argument variant for ex-
tracting fixed-size headers, and a two-argument variant for extracting variable-sized headers. Because
these operations can cause runtime verification failures (see below), these methods can only be exe-
cuted within parsers.

When extracting data into a bit-string or integer, the first packet bit is extracted to the most signifi-
cant bit of the integer.

Some targets may perform cut-through packet processing, i.e., they may start processing a packet
before its length is known (i.e., before all bytes have been received). On such a target calls to the
packet_in.length()method cannot be implemented. Attempts to call thismethod should be flagged as
errors (either at compilation time by the compiler back-end, or when attempting to load the compiled
P4 program onto a target that does not support this method).

In terms of the ParserModel, the semantics of packet_in canbe capturedusing the following abstract
model of packets:

packet_in {

unsigned nextBitIndex;

byte[] data;

unsigned lengthInBits;

void initialize(byte[] data) {

this.data = data;

this.nextBitIndex = 0;

this.lengthInBits = data.sizeInBytes * 8;

}

bit<32> length() { return this.lengthInBits / 8; }

}

111

13.8.1. Fixed-width extraction

The single-argument extractmethod handles fixed-width headers, and is declared in P4 as follows:

void extract<T>(out T headerLeftValue);

Theexpression headerLeftValuemust evaluate to an l-value (see Section 6.7) of type headerwith a fixed
width. If this method executes successfully, on completion the headerLvalue is filled with data from
the packet and its validity bit is set to true. This method may fail in various ways—e.g., if there are not
enough bits left in the packet to fill the specified header.

For example, the following program fragment extracts an Ethernet header:

struct Result { Ethernet_h ethernet; /* more fields omitted */ }

parser P(packet_in b, out Result r) {

state start {

b.extract(r.ethernet);

}

}

In terms of the ParserModel, the semantics of the single-argument extract is given in terms of the fol-
lowingpseudo-codemethod, using data from the packet class defined above. Weuse the special valid$
identifier to indicate the hidden valid bit of a header, isNext$ to indicate that the l-value was obtained
using next, and nextIndex$ to indicate the corresponding header or header union stack properties.

void packet_in.extract<T>(out T headerLValue) {

bitsToExtract = sizeofInBits(headerLValue);

lastBitNeeded = this.nextBitIndex + bitsToExtract;

ParserModel.verify(this.lengthInBits >= lastBitNeeded, error.PacketTooShort);

headerLValue = this.data.extractBits(this.nextBitIndex, bitsToExtract);

headerLValue.valid$ = true;

if headerLValue.isNext$ {

verify(headerLValue.nextIndex$ < headerLValue.size, error.StackOutOfBounds);

headerLValue.nextIndex$ = headerLValue.nextIndex$ + 1;

}

this.nextBitIndex += bitsToExtract;

}

13.8.2. Variable-width extraction

The two-argument extract handles variable-width headers, and is declared in P4 as follows:

void extract<T>(out T headerLvalue, in bit<32> variableFieldSize);

Theexpression headerLvaluemust be an l-value representing a header that contains exactly one varbit

field. The expression variableFieldSize must evaluate to a bit<32> value that indicates the number of
bits tobe extracted into theunique varbitfieldof theheader (i.e., this size is not the size of the complete
header, just the varbit field).

112

In terms of the ParserModel, the semantics of the two-argument extract is captured by the following
pseudo-code:

void packet_in.extract<T>(out T headerLvalue,

in bit<32> variableFieldSize) {

// targets are allowed to include the following line, but need not

// verify(variableFieldSize[2:0] == 0, error.ParserInvalidArgument);

bitsToExtract = sizeOfFixedPart(headerLvalue) + variableFieldSize;

lastBitNeeded = this.nextBitIndex + bitsToExtract;

ParserModel.verify(this.lengthInBits >= lastBitNeeded, error.PacketTooShort);

ParserModel.verify(bitsToExtract <= headerLvalue.maxSize, error.HeaderTooShort);

headerLvalue = this.data.extractBits(this.nextBitIndex, bitsToExtract);

headerLvalue.varbitField.size = variableFieldSize;

headerLvalue.valid$ = true;

if headerLValue.isNext$ {

verify(headerLValue.nextIndex$ < headerLValue.size, error.StackOutOfBounds);

headerLValue.nextIndex$ = headerLValue.nextIndex$ + 1;

}

this.nextBitIndex += bitsToExtract;

}

The following example shows one way to parse IPv4 options—by splitting the IPv4 header into two
separate headers:

// IPv4 header without options

header IPv4_no_options_h {

bit<4> version;

bit<4> ihl;

bit<8> diffserv;

bit<16> totalLen;

bit<16> identification;

bit<3> flags;

bit<13> fragOffset;

bit<8> ttl;

bit<8> protocol;

bit<16> hdrChecksum;

bit<32> srcAddr;

bit<32> dstAddr;

}

header IPv4_options_h {

varbit<320> options;

}

struct Parsed_headers {

// Some fields omitted

IPv4_no_options_h ipv4;

113

IPv4_options_h ipv4options;

}

error { InvalidIPv4Header }

parser Top(packet_in b, out Parsed_headers headers) {

// Some states omitted

state parse_ipv4 {

b.extract(headers.ipv4);

verify(headers.ipv4.ihl >= 5, error.InvalidIPv4Header);

transition select (headers.ipv4.ihl) {

5: dispatch_on_protocol;

_: parse_ipv4_options;

}

}

state parse_ipv4_options {

// use information in the ipv4 header to compute the number of bits to extract

b.extract(headers.ipv4options,

(bit<32>)(((bit<16>)headers.ipv4.ihl - 5) * 32));

transition dispatch_on_protocol;

}

}

13.8.3. Lookahead

The lookahead method provided by the packet_in packet abstraction evaluates to a set of bits from the
input packet without advancing the nextBitIndex pointer. Similar to extract, it will transition to reject

and set the error if there arenot enoughbits in thepacket. When lookahead returns a value that contains
headers (e.g., a header type, or a struct containing headers), the headers values in the returned result
are always valid (otherwise lookaheadmust have transitioned to the reject state).

The lookaheadmethod can be invoked as follows:

b.lookahead<T>()

where T must be a type with fixed width. In case of success the result of the evaluation of lookahead
returns a value of type T.

In terms of the ParserModel, the semantics of lookahead is given by the following pseudocode:

T packet_in.lookahead<T>() {

bitsToExtract = sizeof(T);

lastBitNeeded = this.nextBitIndex + bitsToExtract;

ParserModel.verify(this.lengthInBits >= lastBitNeeded, error.PacketTooShort);

T tmp = this.data.extractBits(this.nextBitIndex, bitsToExtract);

return tmp;

114

}

TheTCP options example from Section 8.20 also illustrates how lookahead can be used:

state start {

transition select(b.lookahead<bit<8>>()) {

0: parse_tcp_option_end;

1: parse_tcp_option_nop;

2: parse_tcp_option_ss;

3: parse_tcp_option_s;

5: parse_tcp_option_sack;

}

}

// Some states omitted

state parse_tcp_option_sack {

bit<8> n = b.lookahead<Tcp_option_sack_top>().length;

b.extract(vec.next.sack, (bit<32>) (8 * n - 16));

transition start;

}

13.8.4. Skipping bits

P4 provides two ways to skip over bits in an input packet without assigning them to a header:
One way is to extract to the underscore identifier, explicitly specifying the type of the data:

b.extract<T>(_)

Another way is to use the advancemethod of the packet when the number of bits to skip is known.
In terms of the ParserModel, the meaning of advance is given in pseudocode as follows:

void packet_in.advance(bit<32> bits) {

// targets are allowed to include the following line, but need not

// verify(bits[2:0] == 0, error.ParserInvalidArgument);

lastBitNeeded = this.nextBitIndex + bits;

ParserModel.verify(this.lengthInBits >= lastBitNeeded, error.PacketTooShort);

this.nextBitIndex += bits;

}

13.9. Header stacks
A header stack has two properties, next and last, which can be used in parsing. Consider the follow-
ing declaration, which defines a stack for representing the headers of a packet with at most ten MPLS
headers:

115

header Mpls_h {

bit<20> label;

bit<3> tc;

bit bos;

bit<8> ttl;

}

Mpls_h[10] mpls;

The expression mpls.next represents an l-value of type Mpls_h that references an element in the mpls

stack. Initially, mpls.next refers to the first element of stack. It is automatically advanced on each suc-
cessful call to extract. The mpls.last property refers to the element immediately preceding next if such
anelement exists. Attempting to access mpls.next elementwhen the stack's nextIndex counter is greater
than or equal to size causes a transition to reject and sets the error to error.StackOutOfBounds. Like-
wise, attempting to access mpls.last when the nextIndex counter is equal to 0 causes a transition to
reject and sets the error to error.StackOutOfBounds.

The following example shows a simplified parser for MPLS processing:

struct Pkthdr {

Ethernet_h ethernet;

Mpls_h[3] mpls;

// other headers omitted

}

parser P(packet_in b, out Pkthdr p) {

state start {

b.extract(p.ethernet);

transition select(p.ethernet.etherType) {

0x8847: parse_mpls;

0x0800: parse_ipv4;

}

}

state parse_mpls {

b.extract(p.mpls.next);

transition select(p.mpls.last.bos) {

0: parse_mpls; // This creates a loop

1: parse_ipv4;

}

}

// other states omitted

}

13.10. Sub-parsers
P4 allows parsers to invoke the services of other parsers, similar to subroutines. To invoke the services
of another parser, the sub-parser must be first instantiated; the services of an instance are invoked by

116

Figure 9. Semantics of invoking a sub-parser: top: original program, bottom: equivalent program.

calling it using its applymethod.
The following example shows a sub-parser invocation:

parser callee(packet_in packet, out IPv4 ipv4) { /* body omitted */ }

parser caller(packet_in packet, out Headers h) {

callee() subparser; // instance of callee

state subroutine {

subparser.apply(packet, h.ipv4); // invoke sub-parser

transition accept; // accept if sub-parser ends in accept state

}

}

The semantics of a sub-parser invocation can be described as follows:

• The state invoking the sub-parser is split into two half-states at the parser invocation statement.
• The top half includes a transition to the sub-parser start state.
• The sub-parser's accept state is identified with the bottom half of the current state
• The sub-parser's reject state is identified with the reject state of the current parser.

Figure 9 shows a diagram of this process.
Note that since P4 requires definitions to precede uses, it is impossible to create recursive (or mu-

tually recursive) parsers.
When a parser is instantiated, local instantiations of stateful objects are evaluated recursively. That

is, each instantiation of a parser has a unique set of local parser value sets, extern objects, inner parser
instances, etc. Thus, in general, invoking a parser instance twice is not the same as invoking two copies

117

of the same parser instance. Note however that local variables do not persist across invocations of the
parser. This semantics also applies to direct invocation (see Section 15.1).

Architecturesmay impose (static ordynamic) constraints on thenumberofparser states that canbe
traversed for processing each packet. For example, a compiler for a specific target may reject parsers
containing loops that cannot be unrolled at compilation time or that may contain cycles that do not
advance the cursor. If a parser aborts execution dynamically because it exceeded the time budget allo-
cated for parsing, the parser should transition to reject and set the standard error error.ParserTimeout.

13.11. Parser Value Sets
In some cases, the values that determine the transition from one parser state to another need to be
determined at run time. MPLS is one example where the value of the MPLS label field is used to de-
termine what headers follow theMPLS tag and this mapping may change dynamically at run time. To
support this functionality, P4 supports the notion of a Parser Value Set. This is a named set of values
with a run time API to add and remove values from the set.

Value sets are declared locally within a parser. They should be declared before being referenced in
parser keysetExpression and can be used as a label in a select expression.

The syntax for declaring value sets is:

valueSetDeclaration

: optAnnotations

VALUESET "<" baseType ">" "(" expression ")" name ";"

| optAnnotations

VALUESET "<" tupleType ">" "(" expression ")" name ";"

| optAnnotations

VALUESET "<" typeName ">" "(" expression ")" name ";"

;

Parser Value Sets support a size argument to provide hints to the compiler to reserve hardware re-
sources to implement the value set. For example, this parser value set:

value_set<bit<16>>(4) pvs;

creates a value_set of size 4 with entries of type bit<16>.
The semantics of the size argument is similar to the size property of a table. If a value set has a

size argument with value N, it is recommended that a compiler should choose a data plane implemen-
tation that is capable of storing N value set entries. See “Size property of P4 tables and parser value
sets” P4SizeProperty for further discussion on the implementation of parser value set size.

The value set is populated by the control plane by methods specified in the P4Runtime specifica-
tion4.

4The P4Runtime API is defined as a Google Protocol Buffer .proto file and an accompanying English specification
document here: https://github.com/p4lang/p4runtime

118

https://github.com/p4lang/p4-spec/blob/master/p4-16/spec/docs/p4-table-and-parser-value-set-sizes.md
https://github.com/p4lang/p4runtime

14. Control blocks
P4 parsers are responsible for extracting bits from a packet into headers. These headers (and other
metadata) can be manipulated and transformed within control blocks. The body of a control block
resembles a traditional imperativeprogram. Within thebodyof a control block,match-actionunits can
be invoked to perform data transformations. Match-action units are represented in P4 by constructs
called tables.

Syntactically, a control block is declared with a name, parameters, optional type parameters, and
a sequence of declarations of constants, variables, actions, tables, and other instantiations:

controlDeclaration

: controlTypeDeclaration optConstructorParameters

/* controlTypeDeclaration cannot contain type parameters */

"{" controlLocalDeclarations APPLY controlBody "}"

;

controlLocalDeclarations

: /* empty */

| controlLocalDeclarations controlLocalDeclaration

;

controlLocalDeclaration

: constantDeclaration

| actionDeclaration

| tableDeclaration

| instantiation

| variableDeclaration

;

controlBody

: blockStatement

;

It is illegal to instantiate a parserwithin a control block. For a description of the optConstructorParam-

eters, which can be used to build parameterized control blocks, see Section 15.
Unlike control type declarations, control declarations may not be generic—e.g., the following dec-

laration is illegal:

control C<H>(inout H data) { /* Body omitted */ }

P4 does not support exceptional control-flow within a control block. The only statement which has a
non-local effect on control flow is exit, which causes execution of the enclosing control block to im-
mediately terminate. That is, there is no equivalent of the verify statement or the reject state from
parsers. Hence, all error handling must be performed explicitly by the programmer.

The rest of this section describes the core components of a control block, starting with actions.

119

Figure 10. Actions contain code and data. The code is in the P4 program, while the data is
provided in the table entries, typically populated by the control plane. Other parameters are
bound by the data plane.

14.1. Actions
Actions are code fragments that can read andwrite the data being processed. Actionsmay contain data
values that can be written by the control plane and read by the data plane. Actions are the main con-
struct by which the control plane can dynamically influence the behavior of the data plane. Figure 10
shows the abstract model of an action.

actionDeclaration

: optAnnotations ACTION name "(" parameterList ")" blockStatement

;

Syntactically actions resemble functionswithno returnvalue. Actionsmaybedeclaredwithina control
block; in this case they can only be used within instances of that control block.

The following example shows an action declaration:

action Forward_a(out bit<9> outputPort, bit<9> port) {

outputPort = port;

}

Actionparametersmaynothave extern types. Actionparameters thathavenodirection (e.g., port in the
previous example) indicate “action data.” All such parametersmust appear at the end of the parameter
list. Whenused in amatch-action table (see Section 14.2.1.2), these parameterswill be provided by the
table entries (e.g., as specified by the control plane, the default_action table property, or the entries

table property).
The body of an action consists of a sequence of statements and declarations. No table, control, or

parser applications can appear within actions.
Some targetsmay impose additional restrictions on action bodies—e.g., only allowing straight-line

code, with no conditional statements or expressions.

14.1.1. Invoking actions

Actions can be executed in two ways:

• Implicitly: by tables during match-action processing.
• Explicitly: either from a control block or from another action. In either case, the values for all

action parametersmust be supplied explicitly, including values for the directionless parameters.

120

Figure 11. Match-Action Unit Dataflow.

In this case, the directionless parameters behave like in parameters.

14.2. Tables
A table describes a match-action unit. The structure of a match-action unit is shown in Figure 11.
Processing a packet using a match-action table executes the following steps:

• Key construction.
• Key lookup in a lookup table (the “match” step). The result of key lookup is an “action”.
• Action execution (the “action step”) over the input data, resulting in mutations of the data.

A table declaration introduces a table instance. To obtain multiple instances of a table, it must be
declared within a control block that is itself instantiated multiple times.

The look-up table is a finite map whose contents are manipulated asynchronously (read/write) by
the target control plane, through a separate control-plane API (see Figure 11). Note that the term “ta-
ble” is overloaded: it can refer to the P4 table objects that appear in P4 programs, aswell as the internal
look-up tables used in targets. We will use the term “match-action unit” when necessary to disam-
biguate.

Syntactically a table is defined in termsof a set of key-valueproperties. Someof these properties are
“standard” properties, but the set of properties canbe extendedby target-specific compilers as needed.
Note duplicated properties are invalid and the compiler should reject them.

tableDeclaration

: optAnnotations TABLE name "{" tablePropertyList "}"

121

;

tablePropertyList

: tableProperty

| tablePropertyList tableProperty

;

tableProperty

: KEY '=' '{' keyElementList '}'

| ACTIONS '=' '{' actionList '}'

| optAnnotations optCONST ENTRIES '=' '{' entriesList '}'

| optAnnotations optCONST nonTableKwName '=' initializer ';'

;

nonTableKwName

: IDENTIFIER

| TYPE_IDENTIFIER

| APPLY

| STATE

| TYPE

| PRIORITY

;

The standard table properties include:

• key: An expression that describes how the key used for look-up is computed.
• actions: A list of all actions that may be found in the table.

In addition, the tables may optionally define the following properties,

• default_action: an action to execute when the lookup in the lookup table fails to find amatch for
the key used.

• size: an integer specifying the desired size of the table.
• entries: entries that are initially added to a table when the P4 program is loaded, some or all of

whichmay be unchangeable by the control plane software.
• largest_priority_wins -Onlyuseful for some tableswith the entriesproperty. See section14.2.1.4

for details.
• priority_delta - Only useful for some tables with the entries property. See section 14.2.1.4 for

details.

The compiler must set the default_action to NoAction (and also insert it into the list of actions) for ta-
bles that do not define the default_action property. Hence, all tables can be thought of as having a
default_action property, either implicitly or explicitly.

In addition, tables may contain architecture-specific properties (see Section 14.2.1.6).
A property marked as const cannot be changed dynamically by the control plane. The key, actions,

and size properties cannot be modified so the const keyword is not needed for these.

122

14.2.1. Table properties

14.2.1.1. Keys The key is a table propertywhich specifies thedata-plane values that shouldbeused
to look up an entry. A key is a list of pairs of the form (e : m), where e is an expression that describes
the data to bematched in the table, and m is a match_kind that describes the algorithm used to perform
the lookup (see Section 7.1.3).

keyElementList

: /* empty */

| keyElementList keyElement

;

keyElement

: expression ":" name optAnnotations ";"

;

For example, consider the following program fragment:

table Fwd {

key = {

ipv4header.dstAddress : ternary;

ipv4header.version : exact;

}

// more fields omitted

}

Here the key comprises two fields from the ipv4header header: dstAddress and version. The match_kind

elements serve three purposes:

• They specify the algorithm used to match data-plane values against the entries in the table at
runtime.

• They are used to synthesize the control-plane API that is used to populate the table.
• Theyare usedby the compiler back-end to allocate resources for the implementation of the table.

The P4 core library contains three predefined match_kind identifiers:

match_kind {

exact,

ternary,

lpm

}

These identifiers correspond to the P414 match kinds with the same names. The semantics of these
match kinds is actually not needed to describe the behavior of the P4 abstract machine; how they are
used influences only the control-plane API and the implementation of the look-up table. From the
point of viewof theP4program, a look-up table is anabstract finitemap that is givenakey andproduces
as a result either an action or a “miss” indication, as described in Section 14.2.3.

The expectedmeaning of these values is as follows:

123

• an exact match kind on a key field means that the value of the field in the table specifies exactly
the value the lookup key field must have in order to match. This is applicable for all legal key
fields whose types support equality comparisons.

• a ternary match kind on a key field means that the field in the table specifies a set of values for
the key field using a value and a mask. The meaning of the (value, mask) pair is similar to the
P4 mask expressions, as described in Section 8.16.3: a key field k matches the table entry when
k & mask == value & mask.

• a lpm (longest prefixmatch)match kindona keyfield is a specific type of ternarymatchwhere the
mask is required tohave a form inbinary that is a contiguous set of 1 bits followedbya contiguous
set of 0 bits. Masks withmore 1 bits have automatically higher priorities. Amask with all bits 0 is
legal.

Some table entries, in particular the ones with at least one ternary field, also require a priority value. A
priority is a numeric value which is used to break ties when a particular key belongs to multiple sets.
When table entries are specified in the P4 program the priorities are generated by the compiler; when
entries are specified by the control-plane, the priority may need to be explicitly specified. Entries with
higher priority are matched first. This specification does not mandate whether “higher” priorities are
represented by higher or lower numeric values; this choice is left to the target implementation.

An example specifying entries for a table is given in Section 14.2.1.4.
If a table has no key property, or if the value of its key property is the empty tuple, i.e. key = {}, then

it contains no look-up table, just a default action—i.e., the associated lookup table is always the empty
map.

Each key element can have an optional @name annotation which is used to synthesize the control-
plane-visible name for the key field.

Note some implementations might only support a limited number of keys or a limited combina-
tions of match_kind for the keys. The implementation should reject those cases with an error message
in this case.

14.2.1.2. Actions A table must declare all possible actions that may appear within the associated
lookup table or in the default action. This is done with the actions property; the value of this property
is always an actionList:

actionList

: /* empty */

| actionList optAnnotations actionRef ";"

;

actionRef

: prefixedNonTypeName

| prefixedNonTypeName "(" argumentList ")"

;

To illustrate, recall the example Very Simple Switch program in Section 5.3:

124

action Drop_action() {

outCtrl.outputPort = DROP_PORT;

}

action Rewrite_smac(EthernetAddress sourceMac) {

headers.ethernet.srcAddr = sourceMac;

}

table smac {

key = { outCtrl.outputPort : exact; }

actions = {

Drop_action;

Rewrite_smac;

}

}

• The entries in the smac tablemay contain two different actions: Drop_action and Rewrite_mac.
• The Rewrite_smac action has one parameter, sourceMac, which in this case will be provided by the

control plane.

Each action in the list of actions for a table must have a distinct name—e.g., the following program
fragment is illegal:

action a() {}

control c() {

action a() {}

// Illegal table: two actions with the same name

table t { actions = { a; .a; } }

}

Each action parameter that has a direction (in, inout, or out) must be bound in the actions list specifi-
cation; conversely, no directionless parameters may be bound in the list. The expressions supplied as
arguments to an action are not evaluated until the action is invoked. Applying tables, whether directly
via an expression like table1.apply().hit, or indirectly, are forbidden in the expressions supplied as
action arguments.

action a(in bit<32> x) { /* body omitted */ }

bit<32> z;

action b(inout bit<32> x, bit<8> data) { /* body omitted */ }

table t {

actions = {

// a; -- illegal, x parameter must be bound

a(5); // binding a's parameter x to 5

b(z); // binding b's parameter x to z

// b(z, 3); -- illegal, cannot bind directionless data parameter

// b(); -- illegal, x parameter must be bound

125

// a(table2.apply().hit ? 5 : 3); -- illegal, cannot apply a table here

}

}

14.2.1.3. Default action The default action for a table is an action that is invoked automatically
by the match-action unit whenever the lookup table does not find amatch for the supplied key.

If present, the default_action propertymust appear after the action property. Itmay be declared as
const, indicating that it cannot be changed dynamically by the control-plane. The default actionmust
be one of the actions that appear in the actions list. In particular, the expressions passed as in, out, or
inout parameters must be syntactically identical to the expressions used in one of the elements of the
actions list.

For example, in the above table we could set the default action as follows (marking it also as con-
stant):

const default_action = Rewrite_smac(48w0xAA_BB_CC_DD_EE_FF);

Note that the specified default actionmust supply arguments for the control-plane-bound parameters
(i.e., thedirectionlessparameters), since theaction is synthesizedat compilation time. Theexpressions
supplied as arguments for parameters with a direction (in, inout, or out) are evaluatedwhen the action
is invoked while the expressions supplied as arguments for directionless parameters are evaluated at
compile time.

Continuing the example from the previous section, the following are several legal and illegal spec-
ifications of default actions for the table t:

default_action = a(5); // OK - no control-plane parameters

// default_action = a(z); -- illegal, a's x parameter is already bound to 5

default_action = b(z,8w8); // OK - bind b's data parameter to 8w8

// default_action = b(z); -- illegal, b's data parameter is not bound

// default_action = b(x, 3); -- illegal: x parameter of b bound to x instead of z

14.2.1.4. Entries While table entries are typically installed by the control plane, tablesmay also be
initialized at compile time with a set of entries.

Declaring these entries with const entries is useful in situations where tables are used to imple-
ment fixed algorithms—defining table entries statically enables expressing these algorithms directly
in P4, which allows the compiler to infer how the table is actually used and potentially make better
allocation decisions for targets with limited resources.

Declaring entrieswith entries (without the constqualifier) enables one to specify amix of some im-
mutable entries that are always in the table, and somemutable entries that the control plane is allowed
to later change or remove.

Entries declared in the P4 source are installed in the table when the program is loaded onto the
target. Entries cannot be specified for a table with no key (see Sec. 14.2.1.1).

Table entries are defined using the following syntax:

126

tableProperty

: optAnnotations optCONST ENTRIES '=' '{' entriesList '}'

;

entriesList

: /* empty */

| entriesList entry

;

optCONST

: /* empty */

| CONST

;

entryPriority

: PRIORITY '=' INTEGER ":"

| PRIORITY '=' '(' expression ')' ":"

;

entry

: optCONST entryPriority keysetExpression ':' actionRef optAnnotations ';'

| optCONST keysetExpression ':' actionRef optAnnotations ';'

;

Table entries defined using const entries are immutable—i.e., they can only be read by the control
plane. The control plane is not allowed to remove or modify any entries defined within const

entries, nor is it allowed to add entries to such a table. It is allowed for individual entries to have the
const keyword before them, but this is redundant when the entries are declared using const entries.

Table entries definedusing entries (without a constqualifier before it)mayhave constbefore them,
or not, independently for each entry. Entries with const before themmay not be modified or removed
by the control plane. Entries without const may be modified or removed by the control plane. It is
permitted for the control plane to add entries to such a table (subject to table capacity limitations),
unlike tables declared with const entries.

Whether the control plane is allowed tomodify a table's default action at run time is determined by
the table's default_action table property (see Section 14.2.1.3), independently of whether the control
plane is allowed to modify the entries of the table.

The keysetExpression component of an entry is a tuple that must provide a field for each key in the
table keys (see Sec. 14.2.1). The table key type must match the type of the element of the set. The
actionRef componentmust be an action which appears in the table actions list (andmust not have the
@defaultonly annotation), with all its arguments bound.

If no entry priorities are specified in the source code, and if the runtime API requires a priority for
the entries of a table—e.g. when using the P4 Runtime API, tables with at least one ternary search key
field—then the entries are matched in program order, stopping at the first matching entry. Architec-
tures should define the significance of entry order (if any) for other kinds of tables.

Depending on the match_kind of the keys, key set expressions may define one or multiple entries.
The compiler will synthesize the correct number of entries to be installed in the table. Target con-

127

straints may further restrict the ability of synthesizing entries. For example, if the number of synthe-
sized entries exceeds the table size, the compiler implementationmay choose to issue a warning or an
error, depending on target capabilities.

To illustrate, consider the following example:

header hdr {

bit<8> e;

bit<16> t;

bit<8> l;

bit<8> r;

bit<1> v;

}

struct Header_t {

hdr h;

}

struct Meta_t {}

control ingress(inout Header_t h, inout Meta_t m,

inout standard_metadata_t standard_meta) {

action a() { standard_meta.egress_spec = 0; }

action a_params(bit<9> x) { standard_meta.egress_spec = x; }

table t_exact_ternary {

key = {

h.h.e : exact;

h.h.t : ternary;

}

actions = {

a;

a_params;

}

default_action = a;

const entries = {

(0x01, 0x1111 &&& 0xF) : a_params(1);

(0x02, 0x1181) : a_params(2);

(0x03, 0x1111 &&& 0xF000) : a_params(3);

(0x04, 0x1211 &&& 0x02F0) : a_params(4);

(0x04, 0x1311 &&& 0x02F0) : a_params(5);

(0x06, _) : a_params(6);

_ : a;

128

}

}

}

In this examplewe define a set of 7 entries, all of which invoke action a_params except for the final entry
which invokes action a. Once the program is loaded, these entries are installed in the table in the order
they are enumerated in the program.

Entry priorities If a table has fields where their match_kinds are all exact or lpm, there is no reason
to assign numeric priorities to its entries. If they are all exact, duplicate keys are not allowed, and thus
every lookupkey canmatchatmost one entry, so there is noneed for a tiebreaker. If there is an lpmfield,
the priority of the entry corresponds to the length of the prefix, i.e. if a lookup key matches multiple
prefixes, the longest prefix is always the winner.

For tables with other match_kind values, e.g. at least one ternary field, in general it is possible to
install multiple entries such that the same lookup key can match the key of multiple entries installed
into the table at the same time. Control plane APIs such as P4Runtime API4 and TDI5 require control
plane software to provide a numeric priority with each entry added to such a table. This enables the
data plane to determine which of several matching entries is the “winner”, i.e. the one entry whose
action is invoked.

Unfortunately there are two commonly used, but different, ways of interpreting numeric priority
values.

The P4Runtime API requires numeric priorities to be positive integers, i.e. 1 or larger, and defines
that entries with larger prioritiesmust win over entries with smaller priorities. Wewill call this conven-
tion largest_priority_wins.

TDI requires numeric priorities to be non-negative integers, i.e. 0 or larger, and defines that en-
tries with smaller priorities must win over entries with larger priorities. We will call this convention
smallest_priority_wins.

We wish to support either of these conventions when developers specify priorities for initial table
entries in the program. Thus there is a table property largest_priority_wins. If explicitly specified for a
table, its valuemust be boolean. If true, then the priority values use the largest_priority_wins conven-
tion. If false, then the priority values use the smallest_priority_wins convention. If the table property
is not present at all, then the default convention is true, corresponding to largest_priority_wins.

We also wish to support developers that want the convenience of predictable entry priority values
automatically selected by the compiler, without having to write them in the program, plus the ability
to specify entry priorities explicitly, if they wish.

In somecases, developersmaywish the initial priority values tohave “gaps”between their values, to
leave room for possible later insertion of new entries between two initial entries. They can achieve this
by explicitly specifying all priority values, of course, but as a convenience we define the table property
priority_delta to be a positive integer value, with a default value of 1 if not specified for a table, to use
as a default difference between the priorities of consecutive entries.

There are two steps that occur at compile time for a table with the entries property involving entry
priorities:

4The P4Runtime API is defined as a Google Protocol Buffer .proto file and an accompanying English specification
document here: https://github.com/p4lang/p4runtime

5TDI is the Table Driven Interface. More information can be found here: https://github.com/p4lang/tdi

129

https://github.com/p4lang/p4runtime

• Determine the value of the priority of every entry in the entries list.
• Issue any errors or warnings that are appropriate for these priority values. Warningsmay be sup-

pressed via an appropriate @noWarn annotation.

These steps are performed independently for each table with the entries property, and each is de-
scribed in more detail below.

In general, if the developer specifies a priority value for an entry, that is the value that will be used.
If the developer does not specify priority values for any entry, then the compiler calculates priority

values for every entry as follows:

// For this pseudocode, table entries in the `entries` list are

// numbered 0 through n-1, 0 being the first to appear in order in the

// source code. Their priority values are named prio[0] through

// prio[n-1].

int p = 1;

if (largest_priority_wins == true) {

for (int j = n-1; j >= 0; j -= 1) {

prio[j] = p;

p += priority_delta;

}

} else {

for (int j = 0; j < n; j += 1) {

prio[j] = p;

p += priority_delta;

}

}

If the developer specifies priority values for at least one entry, then in order to simplify the rules for
determining priorities of entries without one in the source code, the first entry must have a priority
value explicitly provided. The priorities of entries that do not have one in the source code (if any) are
determined as follows:

// Same conventions here as in the previous block of pseudocode above.

// If entry j has a priority value specified in the source code,

// prio_specified[j] is true, otherwise it is false.

assert(prio_specified[0]); // compile time error if prio_specified[0] is false

p = prio[0];

for (int j = 1; j < n; j += 1) {

if (prio_specified[j]) {

p = prio[j];

} else {

if (largest_priority_wins == true) {

p -= priority_delta;

} else {

p += priority_delta;

}

prio[j] = p;

130

}

}

This is the end of the first step: determining entry priorities.
The priorities determined in this way are the values usedwhen the P4 program is first loaded into a

device. Afterwards, the priorities may only change bymeans provided by the control plane API in use.
In the second step, the compiler issues errors for out of range priority values, and/or warnings for

certain combinations of entry priorities that might be unintended by the developer, unless the devel-
oper explicitly disables those warnings.

If any priority values are negative, or larger than the maximum supported value, that is a compile
time error.

If the annotation @noWarn("duplicate_priorities") is not used on the entries table property, then
the compiler issues a warning if any two entries for the same table have equal priority values. Both
P4Runtime and TDI leave it unspecified which entry is the winner if a lookup key matches multiple
keys that all have the same priority, hence a warning is useful to less experienced developers that are
unfamiliar with this unspecified behavior.

If the annotation @noWarn("duplicate_priorities") is used on the entries table property, then no
warnings of this type are ever issued by the compiler. Using equal priority values formultiple entries in
the same table is sometimes useful in reducing thenumber of hardware updates requiredwhen adding
entries to such a table.

If the annotation @noWarn("entries_out_of_priority_order") is not used on the entries table prop-
erty, then the compiler issues a warning if:

• If largest_priority_wins is true for the table, and there is any pair of consecutive entries where
prio[j] < prio[j+1], then a warning is issued for that pair of entries.

• If largest_priority_wins is false for the table, and there is any pair of consecutive entries where
prio[j] > prio[j+1], then a warning is issued for that pair of entries.

Thiswarning is useful to developers thatwant the order that entries appear in the source code tomatch
the relative priority of entries in the target device.

If the annotation @noWarn("entries_out_of_priority_order") is used on the entries table property,
then no warnings of this type are ever issued by the compiler for this table. This option is provided
for developers who explicitly choose to specify entries in an order that does not match their relative
priority order.

The following example is the same as the first example in section 14.2.1.4, except for the definition
of table t_exact_ternary shown below.

table t_exact_ternary {

key = {

h.h.e : exact;

h.h.t : ternary;

}

actions = {

a;

a_params;

}

131

default_action = a;

largest_priority_wins = false;

priority_delta = 10;

@noWarn("duplicate_priorities")

entries = {

const priority=10: (0x01, 0x1111 &&& 0xF) : a_params(1);

(0x02, 0x1181) : a_params(2); // priority=20

(0x03, 0x1000 &&& 0xF000) : a_params(3); // priority=30

const (0x04, 0x0210 &&& 0x02F0) : a_params(4); // priority=40

priority=40: (0x04, 0x0010 &&& 0x02F0) : a_params(5);

(0x06, _) : a_params(6); // priority=50

}

}

The entries that do not have an explicit priority specified will be assigned the priority values shown in
the comments, because priority_delta is 10, and because of those entries that do have priority values
specified.

Normally this programwould cause a warning about multiple entries with the same priority of 40,
but those warnings will be suppressed because of the @noWarn("duplicate_priorities") annotation.

14.2.1.5. Size The size is an optional property of a table. When present, its valuemust always be a
compile-time known value that is an integer. The size property is specified in units of number of table
entries.

If a table is specified with a size property of value N, it is recommended that a compiler should
choose a data plane implementation that is capable of storing N table entries. This does not guarantee
that an arbitrary set of N entries can always be inserted in such a table, only that there is some set of
N entries that can be inserted. For example, attempts to add some combinations of N entries may fail
because the compiler selected a hash table with O(1) guaranteed search time. See “Size property of P4
tables and parser value sets” P4SizeProperty for further discussion on some P4 table implementations
and what they are able to guarantee.
If a P4 implementationmust dimension table resources at compile time, theymay treat it as an error if
they encounter a table with no size property.

Some P4 implementations may be able to dynamically dimension table resources at run time. If
a size value is specified in the P4 program, it is recommended that such an implementation uses the
size value as the initial capacity of the table.

14.2.1.6. Additional properties A table declaration defines its essential control and data plane
interfaces—i.e., keys and actions. However, the best way to implement a table may actually depend
on the nature of the entries that will be installed at runtime (for example, tables could be dense or
sparse, could be implemented as hash-tables, associative memories, tries, etc.) In addition, some ar-
chitectures may support extra table properties whose semantics lies outside the scope of this specifi-
cation. For example, in architectures where table resources are statically allocated, programmers may
be required to define a size table property, which can be used by the compiler back-end to allocate
storage resources. However, these architecture-specific properties may not change the semantics of

132

https://github.com/p4lang/p4-spec/blob/master/p4-16/spec/docs/p4-table-and-parser-value-set-sizes.md

table lookups, which always produce either a hit and an action or a miss—they can only change how
those results are interpreted on the state of the data plane. This restriction is needed to ensure that it is
possible to reason about the behavior of tables during compilation.

As another example, an implementation property could be used to pass additional information to
the compiler back-end. The value of this property could be an instance of an extern block chosen from
a suitable library of components. For example, the core functionality of the P414 table action_profile

constructs could be implemented on architectures that support this feature using a construct such as
the following:

extern ActionProfile {

ActionProfile(bit<32> size); // number of distinct actions expected

}

table t {

key = { /* body omitted */ }

size = 1024;

implementation = ActionProfile(32); // constructor invocation

}

Here the action profile might be used to optimize for the case where the table has a large number of
entries, but the actions associated with those entries are expected to range over a small number of dis-
tinct values. Introducing a layer of indirection enables sharing identical entries, which can significantly
reduce the table's storage requirements.

14.2.2. Match-action unit invocation

A table canbe invokedby calling its applymethod. Calling an applymethodon a table instance returns
a valuewith a struct typewith three fields. This structure is synthesized by the compiler automatically.
For each table T, the compiler synthesizes an enum and a struct, shown in pseudo-P4:

enum action_list(T) {

// one field for each action in the actions list of table T

}

struct apply_result(T) {

bool hit;

bool miss;

action_list(T) action_run;

}

The evaluation of the apply method sets the hit field to true and the field miss to false if a match is
found in the lookup-table; if a match is not found hit is set to false and miss to true. These bits can be
used to drive the execution of the control-flow in the control block that invoked the table:

if (ipv4_match.apply().hit) {

// there was a hit

} else {

// there was a miss

}

133

if (ipv4_host.apply().miss) {

ipv4_lpm.apply(); // Look up the route only if host table missed

}

The action_run field indicates which kind of actionwas executed (irrespective of whether it was a hit or
a miss). It can be used in a switch statement:

switch (dmac.apply().action_run) {

Drop_action: { return; }

}

14.2.3. Match-action unit execution semantics

The semantics of a table invocation statement:

m.apply();

is given by the following pseudocode (see also Figure 11):

apply_result(m) m.apply() {

apply_result(m) result;

var lookupKey = m.buildKey(m.key); // using key block

action RA = m.table.lookup(lookupKey);

if (RA == null) { // miss in lookup table

result.hit = false;

RA = m.default_action; // use default action

}

else {

result.hit = true;

}

result.miss = !result.hit;

result.action_run = action_type(RA);

evaluate_and_copy_in_RA_args(RA);

execute(RA);

copy_out_RA_args(RA);

return result;

}

Thebehaviorof the buildKeycall in thepseudocodeabove is toevaluateeachkeyexpression in theorder
they appear in the table keydefinition. Thebehaviormust be the sameas if the result of evaluating each
key expression is assigned to a fresh temporary variable, before starting the evaluation of the following
key expression. For example, this P4 table definition and apply call:

134

bit<8> f1 (in bit<8> a, inout bit<8> b) {

b = a + 5;

return a >> 1;

}

bit<8> x;

bit<8> y;

table t1 {

key = {

y & 0x7 : exact @name("masked_y");

f1(x, y) : exact @name("f1");

y : exact;

}

// ... rest of table properties defined here, not relevant to example

}

apply {

// assign values to x and y here, not relevant to example

t1.apply();

}

is equivalent in behavior to the following table definition and apply call:

// same definition of f1, x, and y as before, so they are not repeated here

bit<8> tmp_1;

bit<8> tmp_2;

bit<8> tmp_3;

table t1 {

key = {

tmp_1 : exact @name("masked_y");

tmp_2 : exact @name("f1");

tmp_3 : exact @name("y");

}

// ... rest of table properties defined here, not relevant to example

}

apply {

// assign values to x and y here, not relevant to example

tmp_1 = y & 0x7;

tmp_2 = f1(x, y);

tmp_3 = y;

t1.apply();

}

Note that the second code example above is given in order to specify the behavior of the first one. An
implementation is free to choose any technique that achieves this behavior6.

6Most existing P416 programs today do not use function or method calls in table key expressions, and the order
of evaluation of these key expressions makes no difference in the resulting lookup key value. In this overwhelmingly
common case, if an implementation chooses to insert extra assignment statements to implement side-effecting key

135

14.3. The Match-Action Pipeline Abstract Machine
We can describe the computational model of a match-action pipeline, embodied by a control block:
the bodyof the control block is executed, similarly to the executionof a traditional imperative program:

• At runtime, statements within a block are executed in the order they appear in the control block.
• Execution of the return statement causes immediate termination of the execution of the current

control block, and a return to the caller.
• Executionof the exit statement causes the immediate terminationof the executionof the current

control block and of all the enclosing caller control blocks.
• Applying a table executes the corresponding match-action unit, as described above.

14.4. Invoking controls
P4allows controls to invoke the services of other controls, similar to subroutines. To invoke the services
of another control, itmust befirst instantiated; the services of an instance are invokedby calling it using
its applymethod.

The following example shows a control invocation:

control Callee(inout IPv4 ipv4) { /* body omitted */ }

control Caller(inout Headers h) {

Callee() instance; // instance of callee

apply {

instance.apply(h.ipv4); // invoke control

}

}

As with parsers, when a control is instantiated, local instantiations of stateful objects are evaluated re-
cursively. That is, each instantiation of a control has a unique set of local tables, extern objects, inner
control instances, etc. Thus, in general, invoking a control instance twice is not the same as invok-
ing two copies of the same control instance. Note however, that local variables do not persist across
invocations of the control. This semantics also applies to direct invocation (see Section 15.1).

When a control is instantiated, all its local declarations of stateful instantiations are evaluated re-
cursively. Each instantiation of a control will have a unique set of local tables, extern objects, and inner
control instances. Thus, invoking a control instance twice is different from invoking two control in-
stances each once, where the former accesses the same local stateful constructs while the latter access
two different copies.

The exactly-once evaluation only applies to local stateful instantiations. For local variable declara-
tions, whether in the apply block or out, and whether with initializers or not, they are always evaluated
when a control instance is invoked. That is, local variables in a control never persist across invocations.
For variables declared outside the apply block, they are evaluated at the beginning of execution.

All the behavior above also applies to direct invocation (see Section 15.1).

expressions, but does not insert them when there are no side-effecting key expressions, then in typical programs they
will almost never be inserted.

136

15. Parameterization
In order to support libraries of useful P4 components, both parsers and control blocks can be addi-
tionally parameterized through the use of constructor parameters.

Consider again the parser declaration syntax:

parserDeclaration

: parserTypeDeclaration optConstructorParameters

"{" parserLocalElements parserStates "}"

;

optConstructorParameters

: /* empty */

| "(" parameterList ")"

;

From this grammar fragment we infer that a parser declarationmay have two sets of parameters:

• The runtime parser parameters (parameterList)
• Optional parser constructor parameters (optConstructorParameters)

Constructor parameters must be directionless (i.e., they cannot be in, out, or inout) and where the
parser is instantiated, itmustbepossible to fully evaluate theexpressions supplied for theseparameters
at compilation time.

Consider the following example:

parser GenericParser(packet_in b, out Packet_header p)

(bool udpSupport) { // constructor parameters

state start {

b.extract(p.ethernet);

transition select(p.ethernet.etherType) {

16w0x0800: ipv4;

}

}

state ipv4 {

b.extract(p.ipv4);

transition select(p.ipv4.protocol) {

6: tcp;

17: tryudp;

}

}

state tryudp {

transition select(udpSupport) {

false: accept;

true : udp;

}

}

137

state udp {

// body omitted

}

}

When instantiating the GenericParser it is necessary to supply a value for the udpSupport parameter, as
in the following example:

// topParser is a GenericParser where udpSupport = false

GenericParser(false) topParser;

15.1. Direct type invocation
Controls and parsers are often instantiated exactly once. As a light syntactic sugar, control and parser
declarations with no constructor parameters may be applied directly, as if they were an instance. This
has the effect of creating and applying a local instance of that type.

control Callee(/* parameters omitted */) { /* body omitted */ }

control Caller(/* parameters omitted */)(/* parameters omitted */) {

apply {

Callee.apply(/* arguments omitted */); // Callee is treated as an instance

}

}

The definition of Caller is equivalent to the following.

control Caller(/* parameters omitted */)(/* parameters omitted */) {

@name("Callee") Callee() Callee_inst; // local instance of Callee

apply {

Callee_inst.apply(/* arguments omitted */); // Callee_inst is applied

}

}

directApplication

: typeName "." APPLY "(" argumentList ")" ";"

| specializedType "." APPLY "(" argumentList ")" ";"

;

This feature is intended to streamline the common case where a type is instantiated exactly once.
The second production in the grammar allows direct calls for generic controls or parsers:

control Callee<T>(/* parameters omitted */) { /* body omitted */ }

control Caller(/* parameters omitted */)(/* parameters omitted */) {

138

apply {

Callee<bit<32>>.apply(/* arguments omitted */); // Callee<bit<32>> is treated as an in-

stance

}

}

For completeness, the behavior of directly invoking the same typemore thanonce is defined as follows.

• Direct type invocation in different scopes will result in different local instances with different
fully-qualified control names.

• In the same scope, direct type invocationwill result in a different local instance per invocation—
however, instances of the same typewill share the same global name, via the @name annotation. If
the type contains controllable entities, then invoking it directlymore thanonce in the same scope
is illegal, because it will producemultiple controllable entities with the same fully-qualified con-
trol name.

See Section 18.3.2 for details of @name annotations.
No direct invocation is possible for controls or parsers that require constructor arguments. These

need to be instantiated before they are invoked.

16. Deparsing
The inverse of parsing is deparsing, or packet construction. P4 does not provide a separate language
for packet deparsing; deparsing is done in a control block that has at least one parameter of type
packet_out.

For example, the following code sequence writes first an Ethernet header and then an IPv4 header
into a packet_out:

control TopDeparser(inout Parsed_packet p, packet_out b) {

apply {

b.emit(p.ethernet);

b.emit(p.ip);

}

}

Emitting a header appends the header to the packet_out only if the header is valid. Emitting a header
stack will emit all elements of the stack in order of increasing indices.

16.1. Data insertion into packets
The packet_out datatype is defined in the P4 core library, and reproduced below. It provides a method
for appending data to an output packet called emit:

extern packet_out {

void emit<T>(in T data);

}

139

The emit method supports appending the data contained in a header, header stack, struct, or header
union to the output packet.

• When applied to a header, emit appends the data in the header to the packet if it is valid and
otherwise behaves like a no-op.

• When applied to a header stack, emit recursively invokes itself to each element of the stack.
• When applied to a struct or header union, emit recursively invokes itself to each field. Note, a

structmust not contain a field of type error or enum because these types cannot be serialized.

It is illegal to invoke emit on an expression whose type is a base type, enum, or error.
We can define the meaning of the emitmethod in pseudocode as follows:

packet_out {

byte[] data;

unsigned lengthInBits;

void initializeForWriting() {

this.data.clear();

this.lengthInBits = 0;

}

/// Append data to the packet. Type T must be a header, header

/// stack, header union, or struct formed recursively from those types

void emit<T>(T data) {

if (isHeader(T))

if(data.valid$) {

this.data.append(data);

this.lengthInBits += data.lengthInBits;

}

else if (isHeaderStack(T))

for (e : data)

emit(e);

else if (isHeaderUnion(T) || isStruct(T))

for (f : data.fields$)

emit(e.f)

// Other cases for T are illegal

}

Here we use the special valid$ identifier to indicate the hidden valid bit of headers and fields$ to in-
dicate the list of fields for a struct or header union. We also use standard for-each notation to iterate
through theelementsof a stack (e : data)and list offields forheaderunionsandstructs (f : data.fields$).
The iteration order for a struct is the order those fields appear in the type declaration.

17. Architecture description
The architecture description must be provided by the target manufacturer in the form of a library P4
source file that contains at least one declaration for a package; this packagemust be instantiated by the
user to construct a program for a target. For an example see the Very Simple Switch declaration from
Section 5.1.

140

Figure 12. Fragment of example switch architecture.

The architecture description file may pre-define data types, constants, helper package implemen-
tations, and errors. Itmust also declare the types of all the programmable blocks that will appear in the
final target: parsers and controlblocks. Theprogrammable blocksmay optionally be grouped together
in packages, which can be nested.

Since some of the target components may manipulate user-defined types, which are unknown at
the target declaration time, these are described using type variables, which must be used parametri-
cally in the program—i.e., type variables are checked similar to Java generics, not C++ templates.

17.1. Example architecture description
The following example describes a switch by using two packages, each containing a parser, a match-
action pipeline, and a deparser:

parser Parser<IH>(packet_in b, out IH parsedHeaders);

// ingress match-action pipeline

control IPipe<T, IH, OH>(in IH inputHeaders,

in InControl inCtrl,

out OH outputHeaders,

out T toEgress,

out OutControl outCtrl);

// egress match-action pipeline

control EPipe<T, IH, OH>(in IH inputHeaders,

in InControl inCtrl,

in T fromIngress,

out OH outputHeaders,

out OutControl outCtrl);

control Deparser<OH>(in OH outputHeaders, packet_out b);

package Ingress<T, IH, OH>(Parser<IH> p,

IPipe<T, IH, OH> map,

Deparser<OH> d);

141

package Egress<T, IH, OH>(Parser<IH> p,

EPipe<T, IH, OH> map,

Deparser<OH> d);

package Switch<T>(Ingress<T, _, _> ingress, Egress<T, _, _> egress);

Just from these declarations, even without reading a precise description of the target, the programmer
can infer someuseful informationabout thearchitectureof thedescribed switch, as shown inFigure12:

• The switch contains two separate packages Ingress and Egress.
• The Parser, IPipe, and Deparser in the Ingress package are chained together in order. In addition,

the Ingress.IPipe block has an input of type Ingress.IH, which is an output of the Ingress.Parser.
• Similarly, the Parser, EPipe, and Deparser are chained in the Egress package.
• The Ingress.IPipe is connected to the Egress.EPipe, because the first outputs a value of type T,

which is an input to the second. Note that the occurrences of the type variable T are instanti-
ated with the same type in Switch. In contrast, the Ingress type IH and the Egress type IHmay be
different. To force them to be the same, we could instead declare IH and OH at the switch level:
package Switch<T,IH,OH>(Ingress<T, IH, OH> ingress, Egress<T, IH, OH> egress).

Hence, this architecturemodels a target switch that contains twoseparatechannelsbetween the ingress
and egress pipeline:

• A channel that can pass data directly via its argument of type T. On a software target with shared
memory between ingress and egress this could be implemented by passing directly a pointer;
on an architecture without shared memory presumably the compiler will need to automatically
synthesize serialization code.

• A channel that can pass data indirectly using a parser and deparser that serializes data into a
packet and back.

17.2. Example architecture program
To construct a program for the architecture, the P4 program must instantiate a top-level package by
passing values for all its arguments creating a variable called main in the top-level namespace. The
types of the arguments must match the types of the parameters—after a suitable substitution of the
type variables. The type substitution can be expressed directly, using type specialization, or can be
inferred by a compiler, using a unification algorithm like Hindley-Milner.

For example, given the following type declarations:

parser Prs<T>(packet_in b, out T result);

control Pipe<T>(in T data);

package Switch<T>(Prs<T> p, Pipe<T> map);

and the following declarations:

parser P(packet_in b, out bit<32> index) { /* body omitted */ }

control Pipe1(in bit<32> data) { /* body omitted */ }

control Pipe2(in bit<8> data) { /* body omitted */ }

The following is a legal declaration for the top-level target:

142

Figure 13. A packet filter target model. The parser computes a Boolean value, which is used to
decide whether the packet is dropped.

Switch(P(), Pipe1()) main;

And the following is illegal:

Switch(P(), Pipe2()) main;

The latter declaration is incorrect because the parser P requires T to be bit<32>, while Pipe2 requires T
to be bit<8>.

Theuser can also explicitly specify values for the type variables (otherwise the compiler has to infer
values for these type variables):

Switch<bit<32>>(P(), Pipe1()) main;

17.3. A Packet Filter Model
To illustrate the versatility of the P4 architecture description language, we give an example of another
architecture: one which models a packet filter that makes a drop/no drop decision based only on the
computation in a P4 parser, as shown in Figure 13.

This model could be used to program packet filters running in the Linux kernel. For example, we
could replace the tcpdump language with themuchmore powerful P4 language; P4 can seamlessly sup-
port newprotocols, while providing complete “type safety” duringpacket processing. For sucha target,
the P4 compiler could generate an eBPF (Extended Berkeley Packet Filter) program, which is injected
by the tcpdump utility into the Linux kernel, and executed by the eBPF kernel JIT compiler/runtime.

In this case the target is the Linux kernel, and the architecture model is a packet filter.
The declaration for this architecture is as follows:

parser Parser<H>(packet_in packet, out H headers);

control Filter<H>(inout H headers, out bool accept);

package Program<H>(Parser<H> p, Filter<H> f);

18. P4 abstract machine: Evaluation
The evaluation of a P4 program is done in two stages:

• static evaluation: at compile time the P4 program is analyzed and all stateful blocks are instanti-
ated.

143

• dynamic evaluation: at runtime each P4 functional block is executed to completion, in isolation,
when it receives control from the architecture

18.1. Compile-time known and local compile-time known values
Certain expressions in a P4 program have the property that their value can be determined at compile
time. Moreover, for some of these expressions, their value can be determined only using information
in the current scope. We call these compile-time known values and local compile-time known values
respectively.

The following are local compile-time known values:

• Integer literals, Boolean literals, and string literals.
• Identifiers declared in an error, enum, or match_kind declaration.
• The default identifier.
• The size field of a value with type header stack.
• The _ identifier when used as a select expression label
• The expression {#} representing an invalid header or header union value.
• Instances constructed by instance declarations (Section 11.3) and constructor invocations.
• Identifiers that representdeclared types, actions, functions, tables, parsers, controls, orpackages.
• Tuple expression where all components are local compile-time known values.
• Structure-valued expressions, where all fields are local compile-time known values.
• Expressions evaluating to a list type, where all elements are local compile-time known values.
• Legal casts applied to local compile-time known values.
• The following expressions (+, -, |+|, |-|, *, / , %, !, &, |, ^, &&, ||, << , >>, ~, /, >, <, ==, !=, <=, >=, ++,

[:], ?:) when their operands are all local compile-time known values.
• Expressionsof the form e.minSizeInBits(), e.minSizeInBytes(), e.maxSizeInBits()and e.maxSizeInBytes()

where the type of e is not generic.

The following are compile-time known values:

• All local compile-time known values.
• Constructor parameters (i.e., the declared parameters for a parser, control, etc.)
• Identifiers declared as constants using the const keyword.
• Tuple expression where all components are compile-time known values.
• Expressions evaluating to a list type, where all elements are compile-time known values.
• Structure-valued expressions, where all fields are compile-time known values.
• Expressions evaluating to a list type, where all elements are compile-time known values.
• Legal casts applied to compile-time known values.
• The following expressions (+, -, |+|, |-|, *, / , %, cast, !, &, |, ^, &&, ||, << , >> , ~, /, >, <, ==, !=, <=,

>=, ++, [:], ?:) when their operands are all compile-time known values.
• Expressionsof the form e.minSizeInBits(), e.minSizeInBytes(), e.maxSizeInBits()and e.maxSizeInBytes()

where the the type of e is generic.

Intuitively, the main difference between compile-time known values and local compile-time known
values is that the former also contains constructor parameters. The distinction is important when it
comes to defining the meaning of features like types. For example, in the type bit<e>, the expression
e must be a local compile-time known value. Suppose instead that e were a constructor parameter—
i.e., merely a compile-time known value. In this situation, it would be impossible to resolve bit<e>

144

to a concrete type using purely local information—we would have to wait until the constructor was
instantiated and the value of e known.

18.2. Compile-time Evaluation
Evaluation of a program proceeds in order of declarations, starting in the top-level namespace:

• All declarations (e.g., parsers, controls, types, constants) evaluate to themselves.
• Each table evaluates to a table instance.
• Constructor invocations evaluate to stateful objects of the corresponding type. For this purpose,

all constructor arguments are evaluated recursively and bound to the constructor parameters.
Constructor argumentsmust be compile-time known values. The order of evaluation of the con-
structor arguments should be unimportant — all evaluation orders should produce the same
results.

• Instantiations evaluate to named stateful objects.
• The instantiation of a parser or control block recursively evaluates all stateful instantiations de-

clared in the block.
• The result of the program's evaluation is the value of the top-level main variable.

Note that all stateful values are instantiated at compilation time.
As an example, consider the following program fragment:

// architecture declaration

parser P(/* parameters omitted */);

control C(/* parameters omitted */);

control D(/* parameters omitted */);

package Switch(P prs, C ctrl, D dep);

extern Checksum16 { /* body omitted */}

// user code

Checksum16() ck16; // checksum unit instance

parser TopParser(/* parameters omitted */)(Checksum16 unit) { /* body omitted */}

control Pipe(/* parameters omitted */) { /* body omitted */}

control TopDeparser(/* parameters omitted */)(Checksum16 unit) { /* body omitted */}

Switch(TopParser(ck16),

Pipe(),

TopDeparser(ck16)) main;

The evaluation of this program proceeds as follows:

1. The declarations of P, C, D, Switch, and Checksum16 all evaluate to themselves.
2. The Checksum16() ck16 instantiation is evaluated and it produces an object named ck16with type

Checksum16.
3. The declarations for TopParser, Pipe, and TopDeparser evaluate as themselves.

145

Figure 14. Evaluation result.

4. The main variable instantiation is evaluated:

(a) The arguments to the constructor are evaluated recursively
(b) TopParser(ck16) is a constructor invocation
(c) Its argument is evaluated recursively; it evaluates to the ck16 object
(d) The constructor itself is evaluated, leading to the instantiation of an object of type TopParser
(e) Similarly, Pipe() and TopDeparser(ck16) are evaluated as constructor calls.
(f) All the arguments of the Switch package constructor have been evaluated (they are an in-

stance of TopParser, an instance of Pipe, and an instance of TopDeparser). Their signatures
are matched with the Switch declaration.

(g) Finally, the Switch constructor canbe evaluated. The result is an instanceof the Switchpack-
age (that contains a TopParser named prs the first parameter of the Switch; a Pipe named
ctrl; and a TopDeparser named dep).

5. The result of the program evaluation is the value of the main variable, which is the above instance
of the Switch package.

Figure 14 shows the result of the evaluation in a graphical form. The result is always a graph of in-
stances. There is only one instance of Checksum16, called ck16, shared between the TopParser and TopDe-

parser. Whether this is possible is architecture-dependent. Specific target compilers may require dis-
tinct checksum units to be used in distinct blocks.

18.3. Control plane names
Every controllable entity exposed in a P4 program must be assigned a unique, fully-qualified name,
which the control planemay use to interact with that entity. The following entities are controllable.

• value sets
• tables
• keys
• actions
• extern instances

A fully qualified name consists of the local name of a controllable entity prependedwith the fully qual-
ified name of its enclosing namespace. Hence, the following program constructs, which enclose con-
trollable entities, must themselves have unique, fully-qualified names.

146

• control instances
• parser instances

Evaluation may create multiple instances from one type, each of which must have a unique, fully-
qualified name.

18.3.1. Computing control-plane names

The fully-qualified name of a construct is derived by concatenating the fully-qualified name of its en-
closing construct with its local name. Constructs with no enclosing namespace, i.e. those defined at
the global scope, have the same local and fully-qualified names. The local names of controllable enti-
ties and enclosing constructs are derived from the syntax of a P4 program as follows.

18.3.1.1. Value sets For each value_set construct, its syntactic name becomes the local name of
the value set. For example:

struct vsk_t {

@match(ternary)

bit<16> port;

}

value_set<vsk_t>(4) pvs;

This value_set's local name is pvs.

18.3.1.2. Tables For each table construct, its syntactic name becomes the local name of the table.
For example:

control c(/* parameters omitted */)() {

table t { /* body omitted */ }

}

This table's local name is t.

18.3.1.3. Keys Syntactically, table keys are expressions. For simple expressions, the local keyname
can be generated from the expression itself; the algorithm by which a compiler derives control-plane
names for complex key expressions is target-dependent.

The spec suggests, but does not mandate, the following algorithm for generating names for some
kinds of key expressions:

Kind Example Name
The isValid()method. h.isValid() "h.isValid()"

Array accesses. header_stack[1] "header_stack[1]"

Constants. 1 "1"

Field projections. data.f1 "data.f1"

Slices. f1[3:0] "f1[3:0]"

Masks. h.src & 0xFFFF "h.src & 0xFFFF"

147

In the following example, the previous algorithmwould derive for table t two keys with names data.f1
and hdrs[3].f2.

table t {

keys = {

data.f1 : exact;

hdrs[3].f2 : exact;

}

actions = { /* body omitted */ }

}

If a compiler cannot generate a name for a key it requires the key expression to be annotated with a
@name annotation (Section 20.3.3), as in the following example:

table t {

keys = {

data.f1 + 1 : exact @name("f1_mask");

}

actions = { /* body omitted */ }

}

Here, the @name("f1_mask") annotation assigns the local name "f1_mask" to this key.

18.3.1.4. Actions For each action construct, its syntactic name is the local name of the action. For
example:

control c(/* parameters omitted */)() {

action a(...) { /* body omitted */ }

}

This action's local name is a.

18.3.1.5. Instances The local names of extern, parser, and control instances are derived based on
how the instance is used. If the instance is bound to a name, that name becomes its local control plane
name. For example, if control C is declared as,

control C(/* parameters omitted */)() { /* body omitted */ }

and instantiated as,

C() c_inst;

then the local name of the instance is c_inst.
Alternatively, if the instance is created as an actual argument, then its local name is the name of the

formal parameter to which it will be bound. For example, if extern E and control C are declared as,

148

extern E { /* body omitted */ }

control C(/* parameters omitted */)(E e_in) { /* body omitted */ }

and instantiated as,

C(E()) c_inst;

then the local name of the extern instance is e_in.
If the construct being instantiated is passed as an argument to a package, the instance name is

derived from theuser-supplied typedefinitionwhenpossible. In the followingexample, the local name
of the instance of MyC is c, and the local name of the extern is e2, not e1.

extern E { /* body omitted */ }

control ArchC(E e1);

package Arch(ArchC c);

control MyC(E e2)() { /* body omitted */ }

Arch(MyC()) main;

Note that in this example, the architecture will supply an instance of the extern when it applies the
instance of MyC passed to the Arch package. The fully-qualified name of that instance is main.c.e2.

Next, consider a larger example that demonstrates name generation when there are multiple in-
stances.

control Callee() {

table t { /* body omitted */ }

apply { t.apply(); }

}

control Caller() {

Callee() c1;

Callee() c2;

apply {

c1.apply();

c2.apply();

}

}

control Simple();

package Top(Simple s);

Top(Caller()) main;

Thecompile-time evaluation of this program produces the structure in Figure 15. Notice that there are
two instances of the table t. These instances must both be exposed to the control plane. To name
an object in this hierarchy, one uses a path composed of the names of containing instances. In this
case, the two tables have names s.c1.t and s.c2.t, where s is the name of the argument to the package
instantiation, which is derived from the name of its corresponding formal parameter.

149

Figure 15. Evaluating a program that has several instantiations of the same component.

18.3.2. Annotations controlling naming

Control plane-related annotations (Section 20.3.3) can alter the names exposed to the control plane in
the following ways.

• The @hidden annotation hides a controllable entity from the control plane. This is the only case in
which a controllable entity is not required to have a unique, fully-qualified name.

• The @name annotationmay be used to change the local name of a controllable entity.

Programs that yield the same fully-qualified name for two different controllable entities are invalid.

18.3.3. Recommendations

The control plane may refer to a controllable entity by a postfix of its fully qualified name when it is
unambiguous in the context in which it is used. Consider the following example.

control c(/* parameters omitted */)() {

action a (/* parameters omitted */) { /* body omitted */ }

table t {

keys = { /* body omitted */ }

actions = { a; } }

}

c() c_inst;

Control plane software may refer to action c_inst.a as a when inserting rules into table c_inst.t, be-
cause it is clear from the definition of the table which action a refers to.

Not all unambiguous postfix shortcuts are recommended. For instance, consider the first example
in Section 18.3. One might be tempted to refer to s.c1 simply as c1, as no other instance named c1

appears in the program. However, this leads to a brittle program since future modifications can never
introduce an instance named c1, or include libraries of P4 code that contain instances with that name.

150

18.4. Dynamic evaluation
The dynamic evaluation of a P4 program is orchestrated by the architecture model. Each architecture
model needs to specify the order and the conditions under which the various P4 component programs
are dynamically executed. For example, in the Simple Switch example from Section 5.1 the execution
flow goes Parser->Pipe->Deparser.

Once a P4 execution block is invoked its execution proceeds until termination according to the
semantics defined in this document.

18.4.1. Concurrency model

A typical packet processing system needs to execute multiple simultaneous logical “threads.” At the
very least there is a thread executing the control plane, which can modify the contents of the tables.
Architecture specifications should describe in detail the interactions between the control-plane and
the data-plane. The data plane can exchange information with the control plane through extern func-
tion andmethod calls. Moreover, high-throughput packet-processing systemsmay be processingmul-
tiple packets simultaneously, e.g., in a pipelined fashion, or concurrently parsing a first packet while
performing match-action operations on a second packet. This section specifies the semantics of P4
programs with respect to such concurrent executions.

Each top-level parser or control block is executed as a separate thread when invoked by the archi-
tecture. All the parameters of the block and all local variables are thread-local—i.e., each thread has a
private copy of these resources. This applies to the packet_in and packet_out parameters of parsers and
deparsers.

As long as a P4 block uses only thread-local storage (e.g., metadata, packet headers, local vari-
ables), its behavior in the presence of concurrency is identical with the behavior in isolation, since any
interleaving of statements from different threads must produce the same output.

In contrast, extern blocks instantiated by a P4 program are global, shared across all threads. If ex-
tern blocksmediate access to state (e.g., counters, registers)—i.e., themethods of the extern block read
and write state, these stateful operations are subject to data races. P4 mandates that execution of a
method call on an extern instance is atomic.

Toallowusers to express atomic executionof larger codeblocks, P4provides an @atomic annotation,
which can be applied to block statements, parser states, control blocks, or whole parsers.

Consider the following example:

extern Register { /* body omitted */ }

control Ingress() {

Register() r;

table flowlet { /* read state of r in an action */ }

table new_flowlet { /* write state of r in an action */ }

apply {

@atomic {

flowlet.apply();

if (ingress_metadata.flow_ipg > FLOWLET_INACTIVE_TIMEOUT)

new_flowlet.apply();

}}}

This program accesses an extern object r of type Register in actions invoked from tables flowlet (read-

151

ing) and new_flowlet (writing). Without the @atomic annotation these twooperationswouldnot execute
atomically: a second packet may read the state of r before the first packet had a chance to update it.

Note that evenwithin an actiondefinition, if the actiondoes something like reading a register,mod-
ifying it, and writing it back, in a way that only the modified value should be visible to the next packet,
then, to guarantee correct execution in all cases, that portion of the action definition should be en-
closed within a block annotated with @atomic.

A compiler backend must reject a program containing @atomic blocks if it cannot implement the
atomic execution of the instruction sequence. In such cases, the compiler should provide reasonable
diagnostics.

19. Static assertions
The P4 core library contains two overloaded declarations for a static_assert function, as follows:

/// Static assert evaluates a boolean expression

/// at compilation time. If the expression evaluates to

/// false, compilation is stopped and the corresponding message is printed.

extern bool static_assert(bool check, string message);

/// Like the above but using a default message.

extern bool static_assert(bool check);

These functions both return boolean values. Since the parameters are directionless, these functions
require compile-time known values as arguments, thus they can be used to enforce compile-time in-
variants. Since P4 does not allow statements at the program top-level (outside of apply blocks), these
functions can be used at the top-level by assigning their result to a dummy constant, e.g.:

const bool _check = static_assert(V1MODEL_VERSION > 20180000,

"Expected a v1 model version >= 20180000");

As the comment indicates, if static_assert returns false, it causes the program compilation to be ter-
minated immediately with an error.

20. Annotations
Annotations are a simple mechanism for extending the P4 language to some limited degree without
changing the grammar. Annotations are attached to types, fields, variables, etc. using the @ syntax (as
shownexplicitly in theP4 grammar). Unstructured annotations, or just “annotations,” have anoptional
body; structured annotations have a mandatory body, containing at least a pair of square brackets [].

optAnnotations

: /* empty */

| annotations

;

152

annotations

: annotation

| annotations annotation

;

annotation

: "@" name

| "@" name "(" annotationBody ")"

| "@" name "[" structuredAnnotationBody "]"

;

Structured annotations andunstructured annotations on any one elementmust not use the same name.
Thus, a given name can only be applied to one type of annotation or the other for any one element. An
annotation used on one element does not affect the annotation on another because they have different
scope.

This is legal:

@my_anno(1) table T { /* body omitted */ }

@my_anno[2] table U { /* body omitted */ } // OK - different scope than previous

// use of my_anno

This is illegal:

@my_anno(1)

@my_anno[2] table U { /* body omitted */ } // Error - changed type of anno

// on an element

Multiple unstructured annotations using the same name can appear on a given element; they are cu-
mulative. Each one will be bound to that element. In contrast, only one structured annotation using a
given namemay appear on an element; multiple uses of the same namewill produce an error.

This is legal:

@my_anno(1)

@my_anno(2) table U { /* body omitted */ } // OK - unstructured annos accumulate

This is illegal:

@my_anno[1]

@my_anno[2] table U { /* body omitted */ } // Error - reused the same structured

// anno on an element

20.1. Bodies of Unstructured Annotations
The flexibility of P4 unstructured annotations comes from the minimal structure mandated by the P4
grammar: unstructured annotation bodies may contain any sequence of terminals, so long as paren-
theses are balanced. In the following grammar fragment, the annotationToken non-terminal represents

153

any terminal produced by the lexer, including keywords, identifiers, string and integer literals, and
symbols, but excluding parentheses.

annotationBody

: /* empty */

| annotationBody "(" annotationBody ")"

| annotationBody annotationToken

;

Unstructured annotations may impose additional structure on their bodies, and are not confined to
theP4 language. For example, the P4Runtime specification4 defines a @pkginfo annotation that expects
key-value pairs.

20.2. Bodies of Structured Annotations
Unlike unstructured annotations, structured annotations use square brackets [...] and have a re-
stricted format. They are commonly used to declare custom metadata, consisting of expression lists
or key-value lists but not both. An expressionList may be empty or contain a comma-separated list
of member expressions. A kvList consists of one or more kvPairs, each consisting of a key and a value
expression. Note the syntax for expression is rich, see Appendix G for details.

All expressionswithin a structuredAnnotationBodymustbe compile-timeknownvalueswith a result
type that is either: string, int, or bool. In particular, structured expressions (e.g. an expression contain-
ing an expressionList, a kvList, etc.) are not allowed. Note that P4Runtime information (P4Info) may
stipulate additional restrictions. For example, an integer expressionmight be limited to 64-bit values.

It is illegal to duplicate a keywithin the kvList of a structured annotation.

structuredAnnotationBody

: expressionList optTrailingComma

| kvList optTrailingComma

;

...

expressionList

: /* empty */

| expression

| expressionList "," expression

;

...

kvList

: kvPair

| kvList "," kvPair

;

kvPair

: name "=" expression

4The P4Runtime API is defined as a Google Protocol Buffer .proto file and an accompanying English specification
document here: https://github.com/p4lang/p4runtime

154

https://github.com/p4lang/p4runtime

;

20.2.1. Structured Annotation Examples

Empty Expression List
The following example produces an empty annotation:

@Empty[]

table t {

/* body omitted */

}

Mixed Expression List
The following example will produce an effective expression list as follows:

[1,"hello",true, false, 11]

#define TEXT_CONST "hello"

#define NUM_CONST 6

@MixedExprList[1,TEXT_CONST,true,1==2,5+NUM_CONST]

table t {

/* body omitted */

}

kvList of Strings

@Labels[short="Short Label", hover="My Longer Table Label to appear in hover-help"]

table t {

/* body omitted */

}

kvList of Mixed Expressions
The following example will produce an effective kvList as follows.

[label="text", my_bool=true, int_val=6]

@MixedKV[label="text", my_bool=true, int_val=2*3]

table t {

/* body omitted */

}

Illegal Mixing of kvPair and expressionList

The following example is invalid because the body contains both a kvPair and an expression:

@IllegalMixing[key=4, 5] // illegal mixing

table t {

/* body omitted */

}

155

Illegal Duplicate Key
The following example is invalid because the same key occurs more than once:

@DupKey[k1=4,k1=5] // illegal duplicate key

table t {

/* body omitted */

}

Illegal Duplicate Structured Annotation
The following example is invalid because the annotation name occurs more than once on the same

element, e.g. table t:

@DupAnno[k1=4]

@DupAnno[k2=5] // illegal duplicate name

table t {

/* body omitted */

}

Illegal Simultaneous Use of Both Structured and Unstructured Annotation
The following example is invalid because the annotation name is used by both an unstructured and

structured annotation on the same element table t:

@MixAnno("Anything")

@MixAnno[k2=5] // illegal use in both annotation types

table t {

/* body omitted */

}

20.3. Predefined annotations
Annotation names that start with lowercase letters are reserved for the standard library and architec-
ture. This document pre-defines a set of “standard” annotations in Appendix C. We expect that this
list will grow. We encourage custom architectures to define annotations starting with a manufacturer
prefix: e.g., an organization named X would use annotations named like @X_annotation

20.3.1. Optional parameter annotations

A parameter to a package, parser type, control type, extern method, extern function or extern object
constructor can be annotatedwith @optional to indicate that the user does not need to provide a corre-
sponding argument for that parameter. The meaning of a parameter with no supplied value is target-
dependent.

156

20.3.2. Annotations on the table action list

The following two annotations can be used to give additional information to the compiler and control-
plane about actions in a table. These annotations have no bodies.

• @tableonly: actions with this annotation can only appear within the table, and never as default
action.

• @defaultonly: actionswith this annotation can only appear in the default action, and never in the
table.

table t {

actions = {

a, // can appear anywhere

@tableonly b, // can only appear in the table

@defaultonly c, // can only appear in the default action

}

/* body omitted */

}

20.3.3. Control-plane API annotations

The @name annotation directs the compiler to use a different local name when generating the external
APIs used to manipulate a language element from the control plane. This annotation takes a local
compile-time know value of type string (typically a string literal). In the followigng example, the fully-
qualified name of the table is c_inst.t1.

control c(/* parameters omitted */)() {

@name("t1") table t { /* body omitted */ }

apply { /* body omitted */ }

}

c() c_inst;

The @hidden annotation hides a controllable entity, e.g. a table, key, action, or extern, from the control
plane. This effectively removes its fully-qualified name (Section 18.3). This annotation does not have
a body.

20.3.3.1. Restrictions Each element may be annotated with at most one @name or @hidden anno-
tation, and each control plane name must refer to at most one controllable entity. This is of special
concern when using an absolute @name annotation: if a type containing a @name annotation with an ab-
solute pathname (i.e., one starting with a dot) is instantiatedmore than once, it will result in the same
name referring to two controllable entities.

control noargs();

package top(noargs c1, noargs c2);

control c() {

157

@name(".foo.bar") table t { /* body omitted */ }

apply { /* body omitted */ }

}

top(c(), c()) main;

Without the @nameannotation, thisprogramwouldproduce twocontrollableentitieswith fully-qualified
names main.c1.t and main.c2.t. However, the @name(".foo.bar") annotation renames table t in both
instances to foo.bar, resulting in one name that refers to two controllable entities, which is illegal.

20.3.4. Concurrency control annotations

The @atomic annotation, described in Section 18.4.1 can be used to enforce the atomic execution of a
code block.

20.3.5. Value set annotations

The @match annotation, described in Section 13.6, is used to specify a match_kind value other than the
default match_kind of exact for a field of a value_set.

20.3.6. Extern function/method annotations

Various annotations may appear on extern function and method declarations to describe limitations
on the behavior and interactions of those functions. By default extern functions might have any ef-
fect on the environment of the P4 program and might interact in non-trivial ways (subject to a few
limitations – see section 6.8.1). Since externs are architecture-specific and their behavior is known to
the architecture definition, these annotations are not strictly necessary (an implementation can have
knowledge of how externs interact based on their names built into it), but these annotations provide a
uniform way of describing certain well-defined interactions (or their absence), allowing architecture-
independent analysis of P4 programs.

• @pure - Describes a function that depends solely on its in parameter values, and has no effect
other than returning a value, and copy-out behavior on its out and inout parameters. No hidden
state is recorded between calls, and its value does not depend on any hidden state that may be
changed by other calls. An example is a hash function that computes a deterministic hash of its
arguments, and its return value does not depend upon any control-planewritable seed or initial-
ization vector value. A @pure functionwhose results are unusedmay be safely eliminatedwith no
adverse effects, and multiple calls with identical arguments may be combined into a single call
(subject to the limits imposed by copy-out behavior of out and inout parameters). @pure func-
tions may also be reordered with respect to other computations that are not data dependent.

• @noSideEffects - Weaker than @pure and describes a function that does not change any hidden
state, but may depend on hidden state. One example is a hash function that computes a deter-
ministic hash of its arguments, plus some internal state that can be modified via control plane
API calls such as a seed or initialization vector. Another example is a read of one element of a
register array extern object. Such a functionmaybedead code eliminated, andmaybe reordered
or combined with other @noSideEffects or @pure calls (subject to the limits imposed by copy-out
behavior of out and inoutparameters), but notwithother function calls thatmayhave side effects
that affect the function.

158

20.3.7. Deprecated annotation

The deprecated annotation has a required string argument that is a message that will be printed by a
compilerwhenaprogram is using thedeprecated construct. This ismostly useful for annotating library
constructs, such as externs. The parameter needs to be local compile-time known value of type string.

#define DEPR_V1_2_2 "Deprecated in v1.2.2"

@deprecated("Please use the 'check' function instead." ++ DEPR_V1_2_2)

extern Checker {

/* body omitted */

}

20.3.8. No warnings annotation

The noWarn annotation has a required string argument that indicates a compiler warning that will be
inhibited. For example @noWarn("unused") on a declaration will prevent a compiler warning if that dec-
laration is not used. The parameter needs to be local compile-time known value of type string.

20.4. Target-specific annotations
Each P4 compiler implementation can define additional annotations specific to the target of the com-
piler. The syntax of the annotations should conform to the above description. The semantics of such
annotations is target-specific. They could be used in a similar way to pragmas in other languages.

The P4 compiler should provide:

• Errorswhenannotationsareused incorrectly (e.g., anannotationexpectingaparameterbutused
without arguments, or with arguments of the wrong type

• Warnings for unknown annotations.

A. Appendix: Revision History
A.1. Summary of changes made in version 1.2.4

• Introduceddistinctionbetween local compile-timeknownandcompile-timeknownvalues (Sec-
tion18.1).

• Added header stack expressions (Section 8.19.1).
• Allow casts from a type to itself (Section 8.12).
• Added an invalid header or header union expression {#} (Sections 8.18 and 8.20).
• Added a concept of numeric values (Section 7.4).
• Added a section on operations on extern objects (Section 8.23).
• Added note in sections operations on types for types that support compile-time size determina-

tion.
• Clarified that header stacks are arrays of headers or header unions.
• Added distinctness of fields for types that have fields including error, match kind, struct, header,

and header union.

159

• Clarified types bit<W>, int<W>, and varbit<W> encompass the case where the width is a compile-
time knownexpression evaluating to an appropriate integer (Section 7.1.6.2, Section 7.1.6.3, Sec-
tion 7.1.6.4).

• Clarified restrictions for parameters with default values (Section 6.8.1).
• Added optional trailing commas (Section 6.4.4).
• Clarified the scope of parser namespaces (Section 13.2).
• Specified that algorithmforgeneratingcontrol-planenames forkeys isoptional (Section18.3.1.3).
• Clarified types of expressions that may appear in select (Section 13.6).
• Added description of semantics of the core.p4 match kinds (Section 14.2.1.1).
• Explicitly disallow overloading of parsers, controls, and packages (Section 7.2.10.2).
• Clarified implicit casts present in select expressions (Section 13.6).
• Clarified that slices can be applied to arbitrary-precision integers (Section 8.8).
• Clarified that direct invocation is not possible for objects that have constructor arguments (Sec-

tion 15.1).
• Added comparison for tuples as a legal operation (Section 8.13).
• Clarified the behavior of lookahead on header-typed values (Section 13.8.3).
• Added static_assert function (Section 19).
• Clarified semantics of ranges where the start is bigger than the end (Section 8.16.4).
• Allow ranges to be specified by serializable enums (Section 8.16.4).
• Specified type produced by the *sizeInB*methods (Section 9).
• Added section with operations on match_kind values (Section 8.4).
• Renamed infinite-precision integers to arbitrary-precision integers (Section 7.1.6.5).
• compiler-inserted default_action is not const (Section 14.2).
• Clarified the restrictions on run time for tables with const entries (Section 14.2.1.4).
• renamed list expressions to tuple expressions
• Added list type (Section 7.2.7).
• Defined entries tablepropertywithout const, for entries installedwhen theP4program is loaded,

but the control plane can later change them or add to them (Section 14.2.1.4).
• Clarified behavior of table with no key property, or if its list of keys is empty (Section 14.2.1.1).

A.2. Summary of changes made in version 1.2.3, released July 11, 2022.
• Extended minSizeInBits and minSizeInBytes to apply to more expressions (Section 9).
• Added support for maxSizeInBits and maxSizeInBytes (Section 9).
• Added support for empty lists of const entries in tables (Section 14.2.1.4).
• Added support for switch statements in actions (Section 14.1).
• Added support for direct invocation of controls and parsers (Section 15).
• Added parser value_set to list of control-plane visible names (Section 18.3).
• Added match_kind as a base type (Section 7.1.3).
• Removedstructure initializers as theyare subsumedbystructure-valuedexpressions (Section8.14).
• Specified operations on values typed as type variables (Section 8.25).
• Clarified semantics of compile-time known values (Section 18.1).
• Clarified semantics of directionless parameters (Section 6.8).
• Clarified semantics of arbitrary precision integers (Section 7.1.6.5).
• Clarified semantics of bit slices, shifts, and concatenation (Section 8.6).
• Clarified semantics of optional parameters (Section 6.8.2).

160

• Clarified restrictions on extern method and function invocation (Section F).
• Clarified semantics of implicit casts (Section 8.12.2).

A.3. Summary of changes made in version 1.2.2, released May 17, 2021
• Added support for accessing tuple fields (Section 8.13).
• Added support for generic structures (Section 7.2.11).
• Added support for integers, enums, and errors in switch statements (Section 12.7).
• Added support for additional enumeration types (Section 7.2.1).
• Added support for abstract methods (Section 1).
• Added support for conditional statements and empty statements in parsers (Section 13.4).
• Added support for casts from int to bool (Section 8.12).
• Added support for 0-width bitstrings and varbits (Section 8.26).
• Clarified that default_action is NoAction if otherwise unspecified (Section 14.2).
• Clarified the types of expressions that may be used as indexes for header stacks (Section 8.19).
• Clarified representation of Booleans in headers (Section 7.2.2).
• Clarified representation of empty types (Section 8.26).
• Clarified that action data can be specified by the control plane, default_action table property, or

const entries table property (Section 14.1).
• Fixed several typos and inconsistencies in grammar (Section G).
• Eliminated annotations on const entries in grammar (Section G).

A.4. Summary of changes made in version 1.2.1, released June 11, 2020
• Added structure-value expressions (Section 8.14).
• Added support for default values (Section 7.3).
• Added support for concatenating signed strings (Section 8.9.1).
• Added key-value and list-structured annotations (Section 20).
• Added @pure and @noSideEffects annotations (Section 20.3.6).
• Added @noWarn annotation (Section 20.3.8).
• Generalized typing for masks to allow serializable enums (Section 8.16.3).
• Restricted the right operands of bit shifts involving arbitrary-precision integers to be constant

and positive (Section 8.8).
• Clarified copy-out behavior for return (Section 12.4) and exit (Section 12.5) statements.
• Clarified semantics of invalid header stacks (Section 8.26).
• Clarified initialization semantics (Section 6.7 and 6.8), especially for headers and local variables.
• Clarified evaluation order for table keys (Section 14.2.3).
• Fixed grammar to clarify parsing of right shift operator (>>), allow empty statements in parser

(Section 13.4), and eliminate annotations on const entries (Section 14.2.1.4).

A.5. Summary of changes made in version 1.2.0, released October 14, 2019
• Added table.apply().miss (Section 14.2.2).
• Added string type (Section 7.1.5).
• Added implicit casts from enum values (Section 8.3).
• Allow 1-bit signed values
• Define the type of bit slices from signed and unsigned values to be unsigned.

161

• Constrain default label position for switch statements.
• Allow empty tuples.
• Added @deprecated annotation.
• Relaxed the structure of annotation bodies.
• Removed the @pkginfo annotation, which is now defined by the P4Runtime specification.
• Added int type (Section 7.1.6.5).
• Added error ParserInvalidArgument (Sections 13.8.2, 13.8.4).
• Clarified the significance of order of entries in const entries (Section 14.2.1.4).
• Addedmethods to calculate header size (Section 8.18).

A.6. Summary of changes made in version 1.1.0, released November 26, 2017.
• Top-level functions (Section 10)

– Functions may be declared at the top-level of a P4 program.

• Optional and named parameters (Section 6.8)

– Parameters may be specified by name, with a default value, or designated as optional.

• enum representations (Section 8.3)

– enum values to be specified with a concrete representation.

• Parser values sets (Section 13.11)

– value_set objects for control-plane programmable select labels.

• Type definitions (Section 7.6)

– New types may be introduced in programs.

• Saturating arithmetic (Section 8.6)

– Saturating arithmetic is supported on some targets.

• Structured annotations (Section 20)

– Annotations may be specified as lists of key-value pairs

• Globalname (Section 18.3.2)

– The reserved globalname annotation has been removed.

• Table size property (Section 14.2.1.5)

– Meaning of optional size property for tables has been defined.

• Invalid headers (Section 8.18)

– Clarified semantics of operations on invalid headers.

• Calling restrictions (Section F)

– Added restrictions on kinds of values that may be passed as arguments to calls.

162

• Bitwise operator precedence (Section G)

– Modified precedence conventions so that bitwise operators & | and ^ have higher prece-
dence than relation operators < > <= >=.

• Computed bitwidths (Section 7.1)

– Added support for specifying widths using expressions in bit and varbit types.

A.7. Initial version 1.0.0, released May 17, 2017

B. Appendix: P4 reserved keywords
The following table shows all P4 reserved keywords. Some identifiers are treated as keywords only in
specific contexts (e.g., the keyword actions).

abstract action apply bit

bool const control default

else enum error extern

exit false header header_union

if in inout int

list match_kind package parser

out return select state

string struct switch table

this transition true tuple

type typedef value_set varbit

verify void

C. Appendix: P4 reserved annotations
The following table shows all P4 reserved annotations.

Annotation Purpose See Section
atomic specify atomic execution 18.4.1
defaultonly action can only appear in the default action 20.3.2
hidden hides a controllable entity from the control plane 18.3.2
match specify match_kind of a field in a value_set 20.3.5
name assign local control-plane name 18.3.2
optional parameter is optional 20.3.1
tableonly action cannot be a default_action 20.3.2
deprecated Construct has been deprecated 20.3.7
pure pure function 20.3.6
noSideEffects function with no side effects 20.3.6
noWarn Has a string argument; inhibits compiler warnings 20.3.8

163

D. Appendix: P4 core library
The P4 core library contains declarations that are useful to most programs.

For example, the core library includes the declarations of the predefined packet_in and packet_out

extern objects, used in parsers and deparsers to access packet data.

/// Standard error codes. New error codes can be declared by users.

error {

NoError, /// No error.

PacketTooShort, /// Not enough bits in packet for 'extract'.

NoMatch, /// 'select' expression has no matches.

StackOutOfBounds, /// Reference to invalid element of a header stack.

HeaderTooShort, /// Extracting too many bits into a varbit field.

ParserTimeout, /// Parser execution time limit exceeded.

ParserInvalidArgument /// Parser operation was called with a value

/// not supported by the implementation.

}

extern packet_in {

/// Read a header from the packet into a fixed-sized header @hdr

/// and advance the cursor.

/// May trigger error PacketTooShort or StackOutOfBounds.

/// @T must be a fixed-size header type

void extract<T>(out T hdr);

/// Read bits from the packet into a variable-sized header @variableSizeHeader

/// and advance the cursor.

/// @T must be a header containing exactly 1 varbit field.

/// May trigger errors PacketTooShort, StackOutOfBounds, or HeaderTooShort.

void extract<T>(out T variableSizeHeader,

in bit<32> variableFieldSizeInBits);

/// Read bits from the packet without advancing the cursor.

/// @returns: the bits read from the packet.

/// T may be an arbitrary fixed-size type.

T lookahead<T>();

/// Advance the packet cursor by the specified number of bits.

void advance(in bit<32> sizeInBits);

/// @return packet length in bytes. This method may be unavailable on

/// some target architectures.

bit<32> length();

}

extern packet_out {

/// Write @data into the output packet, skipping invalid headers

/// and advancing the cursor

/// @T can be a header type, a header stack, a header_union, or a struct

/// containing fields with such types.

void emit<T>(in T data);

}

164

action NoAction() {}

/// Standard match kinds for table key fields.

/// Some architectures may not support all these match kinds.

/// Architectures can declare additional match kinds.

match_kind {

/// Match bits exactly.

exact,

/// Ternary match, using a mask.

ternary,

/// Longest-prefix match.

lpm

}

/// Static assert evaluates a boolean expression

/// at compilation time. If the expression evaluates to

/// false, compilation is stopped and the corresponding message is printed.

/// The function returns a boolean, so that it can be used

/// as a global constant value in a program, e.g.:

/// const version = static_assert(V1MODEL_VERSION > 20180000, "Expected a v1 model version >= 20180000");

extern bool static_assert(bool check, string message);

/// Like the above but using a default message.

extern bool static_assert(bool check);

E. Appendix: Checksums
There are no built-in constructs in P416 formanipulating packet checksums. We expect that checksum
operations can be expressed as extern library objects that are provided in target-specific libraries. The
standard architecture library should provide such checksum units.

For example, one could provide an incremental checksum unit Checksum16 (also described in the
VSS example in Section 5.2.4) for computing 16-bit one's complement using an extern object with a
signature such as:

extern Checksum16 {

Checksum16(); // constructor

void clear(); // prepare unit for computation

void update<T>(in T data); // add data to checksum

void remove<T>(in T data); // remove data from existing checksum

bit<16> get(); // get the checksum for the data added since last clear

}

IP checksum verification could be done in a parser as:

165

ck16.clear(); // prepare checksum unit

ck16.update(h.ipv4); // write header

verify(ck16.get() == 16w0, error.IPv4ChecksumError); // check for 0 checksum

IP checksum generation could be done as:

h.ipv4.hdrChecksum = 16w0;

ck16.clear();

ck16.update(h.ipv4);

h.ipv4.hdrChecksum = ck16.get();

Moreover, some switch architectures do not perform checksum verification, but only update check-
sums incrementally to reflect packetmodifications. This could be achieved as well, as the following P4
program fragments illustrates:

ck16.clear();

ck16.update(h.ipv4.hdrChecksum); // original checksum

ck16.remove({ h.ipv4.ttl, h.ipv4.proto });

h.ipv4.ttl = h.ipv4.ttl - 1;

ck16.update({ h.ipv4.ttl, h.ipv4.proto });

h.ipv4.hdrChecksum = ck16.get();

F. Appendix: Restrictions on compile time and run time calls
This appendix summarizes restrictions on compile time and run time calls that can bemade. Many of
them are described earlier in this document, but are collected here for easy reference.

The stateful types of objects in P416 are packages, parsers, controls, externs, tables, and value-sets.
P416 functions are also considered to be in that group, even if they happen to be pure functions of their
arguments. All other types are referred to as “value types” here.

Some guiding principles:

• Controls are not allowed to call parsers, and vice versa, so there is no use in passing one type to
the other in constructor parameters or run-time parameters.

• At run time, after a control is called, and before that call is complete, there can be no recursive
calls between controls, nor from a control to itself. Similarly for parsers. There can be loops
among states within a single parser.

• Externs are not allowed to call parsers or controls, so there is no use in passing objects of those
types to them.

• Tables are always instantiated directly in their enclosing control, and cannot be instantiated at
the top level. There isnosyntax for specifyingparameters that are tables. Tablesareonly intended
to be used fromwithin the control where they are defined.

• Value-sets can be instantiated in an enclosing parser or at the top level. There is no syntax for
specifying parameters that are value-sets. Value-sets can be shared between the parsers as long
as they are in the scope.

166

A note on recursion: It is expected that some architectures will define capabilities for recirculating a
packet to be processed again as if it were a newly arriving packet, or to make “clones” of packets that
are then processed by parsers and/or control blocks that the original packet has already completed.
This does not change the notes above on recursion that apply while a parser or control is executing.

The first table lists restrictions on what types can be passed as constructor parameters to other
types.

can be a constructor parameter for this type
This type package parser control extern

package yes no no no
parser yes yes no no
control yes no yes no
extern yes yes yes yes
function no no no no
table no no no no
value-set no no no no
value types yes yes yes yes

The next table lists restrictions onwhere onemay perform instantiations (see Section 11.3) of different
types. Theanswer for package is always “no”because there is no “inside apackage”where instantiations
can be written in P416. One can definitely make constructor calls and use instances of stateful types as
parameters when instantiating a package, and restrictions on those types are in the table above.

For externs, one can only specify their interface in P416, not their implementation. Thus there is no
place to instantiate objects within an extern.

Youmay declare variables and constants of any of the value types within a parser, control, or func-
tion (seeSection11.2 formoredetails). Declaringavariableor constant isnot the sameas instantiation,
hence the answer “N/A” (for not applicable) in those table entries. Variables may not be declared at
the top level of your program, but constants may.

can be instantiated in this place
This type top level package parser control extern function

package yes no no no no no
parser no no yes no no no
control no no no yes no no
extern yes no yes yes no no
function yes no no no no no
table no no no yes no no
value-set yes no yes no no no
value types N/A N/A N/A N/A N/A N/A

The next table lists restrictions on what types can be passed as run-time parameters to other callable
things that have run-time parameters: parsers, controls, externs (including methods and extern func-
tions), actions, and functions.

can be a run-time parameter to this callable thing
This type parser control extern action function

167

package no no no no no
parser no no no no no
control no no no no no
extern yes yes yes no no
table no no no no no
value-set no no no no no
action no no no no no
function no no no no no
value types yes yes yes yes yes

Extern method and extern function calls may only return a value that is a value type, or no value at all
(specified by a return type of void).

The next table lists restrictions on what kinds of calls can be made from which places in a P4 pro-
gram. Calling a parser, control, or table means invoking its apply()method. Calling a value-set means
using it in a select expression. The row for extern describes where extern method calls can be made
from.

One way that an extern can be called from the top level of a parser or control is in an initializer
expression for a declared variable, e.g. bit<32> x = rand.get();.

can be called at run time from this place in a P4 program
control parser or

parser apply control
This type state block top level action extern function

package N/A N/A N/A N/A N/A N/A
parser yes no no no no no
control no yes no no no no
extern yes yes yes yes no no
table no yes no no no no
value-set yes no no no no no
action no yes no yes no no
function yes yes no yes no yes
value types N/A N/A N/A N/A N/A N/A

Theremay not be any recursion in calls, neither by a thing calling itself directly, nor mutual recursion.
An extern can never cause any other type of P4 program object to be called. See Section 6.8.1.
Actions may be called directly from a control apply block.
Note that while the extern row shows that extern methods can be called frommany places, partic-

ular externs may have additional restrictions not listed in this table. Any such restrictions should be
documented in the description for each extern, as part of the documentation for the architecture that
defines the extern.

In many cases, the restriction will be “from a parser state only” or “from a control apply block or
action only”, but it may be even more restrictive, e.g. only from a particular kind of control block in-
stantiated in a particular role in an architecture.

168

G. Appendix: P4 grammar
This is the grammar of P416 written using the YACC/bison language. Absent from this grammar is the
precedence of various operations.

The grammar is actually ambiguous, so the lexer and the parser must collaborate for parsing the
language. In particular, the lexer must be able to distinguish two kinds of identifiers:

• Type names previously introduced (TYPE_IDENTIFIER tokens)
• Regular identifiers (IDENTIFIER token)

The parser has to use a symbol table to indicate to the lexer how to parse subsequent appearances of
identifiers. For example, given the following program fragment:

typedef bit<4> t;

struct s { /* body omitted */}

t x;

parser p(bit<8> b) { /* body omitted */ }

The lexer has to return the following terminal kinds:

t - TYPE_IDENTIFIER

s - TYPE_IDENTIFIER

x - IDENTIFIER

p - TYPE_IDENTIFIER

b - IDENTIFIER

This grammar has been heavily influenced by limitations of the Bison parser generator tool.
The STRING_LITERAL tokencorresponds toa string literal enclosedwithindoublequotes, asdescribed

in Section 6.4.3.3.
All other terminals are uppercase spellings of the corresponding keywords. For example, RETURN is

the terminal returned by the lexer when parsing the keyword return.

p4program

: /* empty */

| p4program declaration

| p4program ";" /* empty declaration */

;

declaration

: constantDeclaration

| externDeclaration

| actionDeclaration

| parserDeclaration

| typeDeclaration

| controlDeclaration

| instantiation

| errorDeclaration

169

| matchKindDeclaration

| functionDeclaration

;

nonTypeName

: IDENTIFIER

| APPLY

| KEY

| ACTIONS

| STATE

| ENTRIES

| TYPE

| PRIORITY

;

name

: nonTypeName

| LIST

| TYPE_IDENTIFIER

;

nonTableKwName

: IDENTIFIER

| TYPE_IDENTIFIER

| APPLY

| STATE

| TYPE

| PRIORITY

;

optCONST

: /* empty */

| CONST

;

optAnnotations

: /* empty */

| annotations

;

annotations

: annotation

| annotations annotation

;

annotation

170

: "@" name

| "@" name "(" annotationBody ")"

| "@" name "[" structuredAnnotationBody "]"

;

annotationBody

: /* empty */

| annotationBody "(" annotationBody ")"

| annotationBody annotationToken

;

annotationToken

: UNEXPECTED_TOKEN

| ABSTRACT

| ACTION

| ACTIONS

| APPLY

| BOOL

| BIT

| CONST

| CONTROL

| DEFAULT

| ELSE

| ENTRIES

| ENUM

| ERROR

| EXIT

| EXTERN

| FALSE

| HEADER

| HEADER_UNION

| IF

| IN

| INOUT

| INT

| KEY

| MATCH_KIND

| TYPE

| OUT

| PARSER

| PACKAGE

| PRAGMA

| RETURN

| SELECT

| STATE

| STRING

171

| STRUCT

| SWITCH

| TABLE

| THIS

| TRANSITION

| TRUE

| TUPLE

| TYPEDEF

| VARBIT

| VALUESET

| LIST

| VOID

| "_"

| IDENTIFIER

| TYPE_IDENTIFIER

| STRING_LITERAL

| INTEGER

| "&&&"

| ".."

| "<<"

| "&&"

| "||"

| "=="

| "!="

| ">="

| "<="

| "++"

| "+"

| "|+|"

| "-"

| "|-|"

| "*"

| "/"

| "%"

| "|"

| "&"

| "^"

| "~"

| "["

| "]"

| "{"

| "}"

| "<"

| ">"

| "!"

| ":"

172

| ","

| "?"

| "."

| "="

| ";"

| "@"

;

kvList

: kvPair

| kvList "," kvPair

;

kvPair

: name "=" expression

;

parameterList

: /* empty */

| nonEmptyParameterList

;

nonEmptyParameterList

: parameter

| nonEmptyParameterList "," parameter

;

parameter

: optAnnotations direction typeRef name

| optAnnotations direction typeRef name "=" expression

;

direction

: IN

| OUT

| INOUT

| /* empty */

;

packageTypeDeclaration

: optAnnotations PACKAGE name optTypeParameters

"(" parameterList ")"

;

instantiation

: annotations typeRef "(" argumentList ")" name ";"

173

| typeRef "(" argumentList ")" name ";"

| annotations typeRef "(" argumentList ")" name "=" objInitializer ";"

| typeRef "(" argumentList ")" name "=" objInitializer ";"

;

objInitializer

: "{" objDeclarations "}"

;

objDeclarations

: /* empty */

| objDeclarations objDeclaration

;

objDeclaration

: functionDeclaration

| instantiation

;

optConstructorParameters

: /* empty */

| "(" parameterList ")"

;

dotPrefix

: "."

;

/**************************** PARSER ******************************/

parserDeclaration

: parserTypeDeclaration optConstructorParameters

"{" parserLocalElements parserStates "}"

;

parserLocalElements

: /* empty */

| parserLocalElements parserLocalElement

;

parserLocalElement

: constantDeclaration

| instantiation

| variableDeclaration

| valueSetDeclaration

;

174

parserTypeDeclaration

: optAnnotations PARSER name optTypeParameters

"(" parameterList ")"

;

parserStates

: parserState

| parserStates parserState

;

parserState

: optAnnotations STATE name

"{" parserStatements transitionStatement "}"

;

parserStatements

: /* empty */

| parserStatements parserStatement

;

parserStatement

: assignmentOrMethodCallStatement

| directApplication

| emptyStatement

| variableDeclaration

| constantDeclaration

| parserBlockStatement

| conditionalStatement

;

parserBlockStatement

: optAnnotations "{" parserStatements "}"

;

transitionStatement

: /* empty */

| TRANSITION stateExpression

;

stateExpression

: name ";"

| selectExpression

;

selectExpression

175

: SELECT "(" expressionList ")" "{" selectCaseList "}"

;

selectCaseList

: /* empty */

| selectCaseList selectCase

;

selectCase

: keysetExpression ":" name ";"

;

keysetExpression

: tupleKeysetExpression

| simpleKeysetExpression

;

tupleKeysetExpression

: "(" simpleKeysetExpression "," simpleExpressionList ")"

| "(" reducedSimpleKeysetExpression ")"

;

optTrailingComma

: /* empty */

| ","

;

simpleExpressionList

: simpleKeysetExpression

| simpleExpressionList "," simpleKeysetExpression

;

reducedSimpleKeysetExpression

: expression "&&&" expression

| expression ".." expression

| DEFAULT

| "_"

;

simpleKeysetExpression

: expression

| expression "&&&" expression

| expression ".." expression

| DEFAULT

| "_"

;

176

valueSetDeclaration

: optAnnotations

VALUESET "<" baseType ">" "(" expression ")" name ";"

| optAnnotations

VALUESET "<" tupleType ">" "(" expression ")" name ";"

| optAnnotations

VALUESET "<" typeName ">" "(" expression ")" name ";"

;

/*************************** CONTROL ************************/

controlDeclaration

: controlTypeDeclaration optConstructorParameters

/* controlTypeDeclaration cannot contain type parameters */

"{" controlLocalDeclarations APPLY controlBody "}"

;

controlTypeDeclaration

: optAnnotations CONTROL name optTypeParameters

"(" parameterList ")"

;

controlLocalDeclarations

: /* empty */

| controlLocalDeclarations controlLocalDeclaration

;

controlLocalDeclaration

: constantDeclaration

| actionDeclaration

| tableDeclaration

| instantiation

| variableDeclaration

;

controlBody

: blockStatement

;

/*************************** EXTERN *************************/

externDeclaration

: optAnnotations EXTERN nonTypeName optTypeParameters "{" methodPrototypes "}"

| optAnnotations EXTERN functionPrototype ";"

;

177

methodPrototypes

: /* empty */

| methodPrototypes methodPrototype

;

functionPrototype

: typeOrVoid name optTypeParameters "(" parameterList ")"

;

methodPrototype

: optAnnotations functionPrototype ";"

| optAnnotations TYPE_IDENTIFIER "(" parameterList ")" ";"

;

/************************** TYPES ****************************/

typeRef

: baseType

| typeName

| specializedType

| headerStackType

| p4listType

| tupleType

;

namedType

: typeName

| specializedType

;

prefixedType

: TYPE_IDENTIFIER

| dotPrefix TYPE_IDENTIFIER

;

typeName

: prefixedType

;

p4listType

: LIST "<" typeArg ">"

;

tupleType

: TUPLE "<" typeArgumentList ">"

178

;

headerStackType

: typeName "[" expression "]"

| specializedType "[" expression "]"

;

specializedType

: typeName "<" typeArgumentList ">"

;

baseType

: BOOL

| MATCH_KIND

| ERROR

| BIT

| STRING

| INT

| BIT "<" INTEGER ">"

| INT "<" INTEGER ">"

| VARBIT "<" INTEGER ">"

| BIT "<" "(" expression ")" ">"

| INT "<" "(" expression ")" ">"

| VARBIT "<" "(" expression ")" ">"

;

typeOrVoid

: typeRef

| VOID

| IDENTIFIER // may be a type variable

;

optTypeParameters

: /* empty */

| typeParameters

;

typeParameters

: "<" typeParameterList ">"

;

typeParameterList

: name

| typeParameterList "," name

;

179

typeArg

: typeRef

| nonTypeName

| VOID

| "_"

;

typeArgumentList

: /* empty */

| typeArg

| typeArgumentList "," typeArg

;

realTypeArg

: typeRef

| VOID

| "_"

;

realTypeArgumentList

: realTypeArg

| realTypeArgumentList "," typeArg

;

typeDeclaration

: derivedTypeDeclaration

| typedefDeclaration ";"

| parserTypeDeclaration ";"

| controlTypeDeclaration ";"

| packageTypeDeclaration ";"

;

derivedTypeDeclaration

: headerTypeDeclaration

| headerUnionDeclaration

| structTypeDeclaration

| enumDeclaration

;

headerTypeDeclaration

: optAnnotations HEADER name optTypeParameters "{" structFieldList "}"

;

structTypeDeclaration

: optAnnotations STRUCT name optTypeParameters "{" structFieldList "}"

;

180

headerUnionDeclaration

: optAnnotations HEADER_UNION name optTypeParameters "{" structFieldList "}"

;

structFieldList

: /* empty */

| structFieldList structField

;

structField

: optAnnotations typeRef name ";"

;

enumDeclaration

: optAnnotations ENUM name "{" identifierList optTrailingComma "}"

| optAnnotations ENUM typeRef name "{"

specifiedIdentifierList optTrailingComma "}"

;

specifiedIdentifierList

: specifiedIdentifier

| specifiedIdentifierList "," specifiedIdentifier

;

specifiedIdentifier

: name "=" initializer

;

errorDeclaration

: ERROR "{" identifierList "}"

;

matchKindDeclaration

: MATCH_KIND "{" identifierList optTrailingComma "}"

;

identifierList

: name

| identifierList "," name

;

typedefDeclaration

: optAnnotations TYPEDEF typeRef name

| optAnnotations TYPEDEF derivedTypeDeclaration name

| optAnnotations TYPE typeRef name

181

;

/*************************** STATEMENTS *************************/

assignmentOrMethodCallStatement

: lvalue "(" argumentList ")" ";"

| lvalue "<" typeArgumentList ">" "(" argumentList ")" ";"

| lvalue "=" expression ";"

;

emptyStatement

: ";"

;

exitStatement

: EXIT ";"

;

returnStatement

: RETURN ";"

| RETURN expression ";"

;

conditionalStatement

: IF "(" expression ")" statement

| IF "(" expression ")" statement ELSE statement

;

// To support direct invocation of a control or parser without instantiation

directApplication

: typeName "." APPLY "(" argumentList ")" ";"

| specializedType "." APPLY "(" argumentList ")" ";"

;

statement

: assignmentOrMethodCallStatement

| directApplication

| conditionalStatement

| emptyStatement

| blockStatement

| returnStatement

| exitStatement

| switchStatement

;

blockStatement

182

: optAnnotations "{" statOrDeclList "}"

;

statOrDeclList

: /* empty */

| statOrDeclList statementOrDeclaration

;

switchStatement

: SWITCH "(" expression ")" "{" switchCases "}"

;

switchCases

: /* empty */

| switchCases switchCase

;

switchCase

: switchLabel ":" blockStatement

| switchLabel ":" // fall-through

;

switchLabel

: DEFAULT

| nonBraceExpression

;

statementOrDeclaration

: variableDeclaration

| constantDeclaration

| statement

;

/************************* TABLE *********************************/

tableDeclaration

: optAnnotations TABLE name "{" tablePropertyList "}"

;

tablePropertyList

: tableProperty

| tablePropertyList tableProperty

;

tableProperty

: KEY "=" "{" keyElementList "}"

183

| ACTIONS "=" "{" actionList "}"

| optAnnotations optCONST ENTRIES "=" "{" entriesList "}"

| optAnnotations optCONST nonTableKwName "=" initializer ";"

;

keyElementList

: /* empty */

| keyElementList keyElement

;

keyElement

: expression ":" name optAnnotations ";"

;

actionList

: /* empty */

| actionList optAnnotations actionRef ";"

;

actionRef

: prefixedNonTypeName

| prefixedNonTypeName "(" argumentList ")"

;

entry

: optCONST entryPriority keysetExpression ':' actionRef optAnnotations ';'

| optCONST keysetExpression ':' actionRef optAnnotations ';'

;

entryPriority

: PRIORITY '=' INTEGER ":"

| PRIORITY '=' '(' expression ')' ":"

;

entriesList

: /* empty */

| entriesList entry

;

/************************* ACTION ********************************/

actionDeclaration

: optAnnotations ACTION name "(" parameterList ")" blockStatement

;

/************************* VARIABLES *****************************/

184

variableDeclaration

: annotations typeRef name optInitializer ";"

| typeRef name optInitializer ";"

;

constantDeclaration

: optAnnotations CONST typeRef name "=" initializer ";"

;

optInitializer

: /* empty */

| "=" initializer

;

initializer

: expression

;

/**************** Expressions ****************/

functionDeclaration

: annotations functionPrototype blockStatement

| functionPrototype blockStatement

;

argumentList

: /* empty */

| nonEmptyArgList

;

nonEmptyArgList

: argument

| nonEmptyArgList "," argument

;

argument

: expression /* positional argument */

| name "=" expression /* named argument */

| "_"

| name "=" "_"

;

expressionList

: /* empty */

| expression

185

| expressionList "," expression

;

structuredAnnotationBody

: expressionList optTrailingComma

| kvList optTrailingComma

;

member

: name

;

prefixedNonTypeName

: nonTypeName

| dotPrefix nonTypeName

;

lvalue

: prefixedNonTypeName

| THIS

| lvalue "." member

| lvalue "[" expression "]"

| lvalue "[" expression ":" expression "]"

| "(" lvalue ")"

;

%left ","

%nonassoc "?"

%nonassoc ":"

%left "||"

%left "&&"

%left "==" "!="

%left "<" ">" "<=" ">="

%left "|"

%left "^"

%left "&"

%left "<<" ">>"

%left "++" "+" "-" "|+|" "|-|"

%left "*" "/" "%"

%right PREFIX

%nonassoc "]" "(" "["

%left "."

// Additional precedences need to be specified

expression

186

: INTEGER

| DOTS

| STRING_LITERAL

| TRUE

| FALSE

| THIS

| prefixedNonTypeName

| expression "[" expression "]"

| expression "[" expression ":" expression "]"

| "{" expressionList optTrailingComma "}"

| "{#}"

| "{" kvList optTrailingComma "}"

| "{" kvList "," DOTS optTrailingComma "}"

| "(" expression ")"

| "!" expression %prec PREFIX

| "~" expression %prec PREFIX

| "-" expression %prec PREFIX

| "+" expression %prec PREFIX

| typeName "." member

| ERROR "." member

| expression "." member

| expression "*" expression

| expression "/" expression

| expression "%" expression

| expression "+" expression

| expression "-" expression

| expression "|+|" expression

| expression "|-|" expression

| expression "<<" expression

| expression ">>" expression

| expression "<=" expression

| expression ">=" expression

| expression "<" expression

| expression ">" expression

| expression "!=" expression

| expression "==" expression

| expression "&" expression

| expression "^" expression

| expression "|" expression

| expression "++" expression

| expression "&&" expression

| expression "||" expression

| expression "?" expression ":" expression

| expression "<" realTypeArgumentList ">" "(" argumentList ")"

| expression "(" argumentList ")"

| namedType "(" argumentList ")"

187

| "(" typeRef ")" expression

;

nonBraceExpression

: INTEGER

| STRING_LITERAL

| TRUE

| FALSE

| THIS

| prefixedNonTypeName

| nonBraceExpression "[" expression "]"

| nonBraceExpression "[" expression ":" expression "]"

| "(" expression ")"

| "!" expression %prec PREFIX

| "~" expression %prec PREFIX

| "-" expression %prec PREFIX

| "+" expression %prec PREFIX

| typeName "." member

| ERROR "." member

| nonBraceExpression "." member

| nonBraceExpression "*" expression

| nonBraceExpression "/" expression

| nonBraceExpression "%" expression

| nonBraceExpression "+" expression

| nonBraceExpression "-" expression

| nonBraceExpression "|+|" expression

| nonBraceExpression "|-|" expression

| nonBraceExpression "<<" expression

| nonBraceExpression ">>" expression

| nonBraceExpression "<=" expression

| nonBraceExpression ">=" expression

| nonBraceExpression "<" expression

| nonBraceExpression ">" expression

| nonBraceExpression "!=" expression

| nonBraceExpression "==" expression

| nonBraceExpression "&" expression

| nonBraceExpression "^" expression

| nonBraceExpression "|" expression

| nonBraceExpression "++" expression

| nonBraceExpression "&&" expression

| nonBraceExpression "||" expression

| nonBraceExpression "?" expression ":" expression

| nonBraceExpression "<" realTypeArgumentList ">" "(" argumentList ")"

| nonBraceExpression "(" argumentList ")"

| namedType "(" argumentList ")"

| "(" typeRef ")" expression

188

;

189

	1. Scope
	2. Terms, definitions, and symbols
	3. Overview
	3.1. Benefits of P4
	3.2. P4 language evolution: comparison to previous versions (P4 v1.0/v1.1)

	4. Architecture Model
	4.1. Standard architectures
	4.2. Data plane interfaces
	4.3. Extern objects and functions

	5. Example: A very simple switch
	5.1. Very Simple Switch Architecture
	5.2. Very Simple Switch Architecture Description
	5.2.1. Arbiter block
	5.2.2. Parser runtime block
	5.2.3. Demux block
	5.2.4. Available extern blocks

	5.3. A complete Very Simple Switch program

	6. P4 language definition
	6.1. Syntax and semantics
	6.1.1. Grammar
	6.1.2. Semantics and the P4 abstract machines

	6.2. Preprocessing
	6.3. P4 core library
	6.4. Lexical constructs
	6.4.1. Identifiers
	6.4.2. Comments
	6.4.3. Literal constants
	6.4.4. Optional trailing commas

	6.5. Naming conventions
	6.6. P4 programs
	6.6.1. Scopes
	6.6.2. Stateful elements

	6.7. L-values
	6.8. Calling convention: call by copy in/copy out
	6.8.1. Justification
	6.8.2. Optional parameters

	6.9. Name resolution
	6.10. Visibility

	7. P4 data types
	7.1. Base types
	7.1.1. The void type
	7.1.2. The error type
	7.1.3. The match kind type
	7.1.4. The Boolean type
	7.1.5. Strings
	7.1.6. Integers (signed and unsigned)

	7.2. Derived types
	7.2.1. Enumeration types
	7.2.2. Header types
	7.2.3. Header stacks
	7.2.4. Header unions
	7.2.5. Struct types
	7.2.6. Tuple types
	7.2.7. List types
	7.2.8. Type nesting rules
	7.2.9. Synthesized data types
	7.2.10. Extern types
	7.2.11. Type specialization
	7.2.12. Parser and control blocks types
	7.2.13. Package types
	7.2.14. Don't care types

	7.3. Default values
	7.4. Numeric types
	7.5. typedef
	7.6. Introducing new types

	8. Expressions
	8.1. Expression evaluation order
	8.2. Operations on =-1LuxiMono navyerror types
	8.3. Operations on =-1LuxiMono navyenum types
	8.4. Operations on =-1LuxiMono navymatch_kind types
	8.5. Expressions on Booleans
	8.5.1. Conditional operator

	8.6. Operations on fixed-width bit types (unsigned integers)
	8.7. Operations on fixed-width signed integers
	8.8. Operations on arbitrary-precision integers
	8.9. Concatenation and shifts
	8.9.1. Concatenation
	8.9.2. A note about shifts

	8.10. Operations on variable-size bit types
	8.11. Operations on Strings
	8.12. Casts
	8.12.1. Explicit casts
	8.12.2. Implicit casts
	8.12.3. Illegal arithmetic expressions

	8.13. Operations on tuple expressions
	8.14. Operations on structure-valued expressions
	8.15. Operations on lists
	8.16. Operations on sets
	8.16.1. Singleton sets
	8.16.2. The universal set
	8.16.3. Masks
	8.16.4. Ranges
	8.16.5. Products

	8.17. Operations on struct types
	8.18. Operations on headers
	8.19. Operations on header stacks
	8.19.1. Header stack expressions

	8.20. Operations on header unions
	8.21. Method invocations and function calls
	8.22. Constructor invocations
	8.23. Operations on =-1LuxiMono navyextern objects
	8.24. Operations on types introduced by =-1LuxiMono navytype
	8.25. Operations on types that are type variables
	8.26. Reading uninitialized values and writing fields of invalid headers
	8.27. Initializing with default values

	9. Compile-time size determination
	10. Function declarations
	11. Constants and variable declarations
	11.1. Constants
	11.2. Variables
	11.3. Instantiations
	11.3.1. Instantiating objects with abstract methods
	11.3.2. Restrictions on top-level instantiations

	12. Statements
	12.1. Assignment statement
	12.2. Empty statement
	12.3. Block statement
	12.4. Return statement
	12.5. Exit statement
	12.6. Conditional statement
	12.7. Switch statement
	12.7.1. Switch statement with =-1LuxiMono action_run expression
	12.7.2. Switch statement with integer or enumerated type expression
	12.7.3. Notes common to all switch statements

	13. Packet parsing
	13.1. Parser states
	13.2. Parser declarations
	13.3. The Parser abstract machine
	13.4. Parser states
	13.5. Transition statements
	13.6. Select expressions
	13.7. verify
	13.8. Data extraction
	13.8.1. Fixed-width extraction
	13.8.2. Variable-width extraction
	13.8.3. Lookahead
	13.8.4. Skipping bits

	13.9. Header stacks
	13.10. Sub-parsers
	13.11. Parser Value Sets

	14. Control blocks
	14.1. Actions
	14.1.1. Invoking actions

	14.2. Tables
	14.2.1. Table properties
	14.2.2. Match-action unit invocation
	14.2.3. Match-action unit execution semantics

	14.3. The Match-Action Pipeline Abstract Machine
	14.4. Invoking controls

	15. Parameterization
	15.1. Direct type invocation

	16. Deparsing
	16.1. Data insertion into packets

	17. Architecture description
	17.1. Example architecture description
	17.2. Example architecture program
	17.3. A Packet Filter Model

	18. P4 abstract machine: Evaluation
	18.1. Compile-time known and local compile-time known values
	18.2. Compile-time Evaluation
	18.3. Control plane names
	18.3.1. Computing control-plane names
	18.3.2. Annotations controlling naming
	18.3.3. Recommendations

	18.4. Dynamic evaluation
	18.4.1. Concurrency model

	19. Static assertions
	20. Annotations
	20.1. Bodies of Unstructured Annotations
	20.2. Bodies of Structured Annotations
	20.2.1. Structured Annotation Examples

	20.3. Predefined annotations
	20.3.1. Optional parameter annotations
	20.3.2. Annotations on the table action list
	20.3.3. Control-plane API annotations
	20.3.4. Concurrency control annotations
	20.3.5. Value set annotations
	20.3.6. Extern function/method annotations
	20.3.7. Deprecated annotation
	20.3.8. No warnings annotation

	20.4. Target-specific annotations

	A. Appendix: Revision History
	A.1. Summary of changes made in version 1.2.4
	A.2. Summary of changes made in version 1.2.3, released July 11, 2022.
	A.3. Summary of changes made in version 1.2.2, released May 17, 2021
	A.4. Summary of changes made in version 1.2.1, released June 11, 2020
	A.5. Summary of changes made in version 1.2.0, released October 14, 2019
	A.6. Summary of changes made in version 1.1.0, released November 26, 2017.
	A.7. Initial version 1.0.0, released May 17, 2017

	B. Appendix: P4 reserved keywords
	C. Appendix: P4 reserved annotations
	D. Appendix: P4 core library
	E. Appendix: Checksums
	F. Appendix: Restrictions on compile time and run time calls
	G. Appendix: P4 grammar

