
au
th

0.
co

m

E
B

O
O

K

The Ultimate Guide
to CSP
by Philippe De Ryck

The Ultimate Guide to CSP2

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Introduction

Chapter 1 - Using CSP as an XSS Defense

 CSP Hashes and Nonces

 CSP Hashes and Nonces

 Bypassing URL-based CSP Policies

 Explicit and Implicit Trust Propagation

 Case Study: Google’s CSP Policy

 Additional details

 Controlling Script Code with CSP Level 3

 Conclusion

Chapter 2 -Controlling Various Resources
and Behaviour with CSP

 Setting a Default Directive

 Controlling Resource Loading with CSP

 Controlling Outgoing Connections with CSP

 Controlling Behavior with CSP

 Case Study: GitHub’s CSP Policy

 Conclusion

04

08

12

17

24

26

29

35

38

39

40

41

43

45

45

47

51

Contents

The Ultimate Guide to CSP3

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Chapter 3 - Securing Single Page Apps with CSP

 Securing Single Page Apps with CSP

 The Challenges with SPAs

 Keep It Simple

 Using ‘strict-dynamic’ with Hashes

 Using ‘strict-dynamic’ with Nonces

 Overview of CSP for SPAs

 Conclusion

Chapter 4 - Developing CSP in practice

 Deploying CSP in practice

 Deploying CSP in Report-Only Mode

 CSP Reporting in Blocking Mode

 Conclusion

52

53

53

55

57

60

63

65

66

66

67

71

75

The Ultimate Guide to CSP4

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Introduction

Welcome, dear reader! You have just opened the door to a wealth
of information on Content Security Policy (CSP), and we are excited
to take you on this journey.

Throughout this ebook, you will learn what CSP is, how to configure
CSP, what it can do for you, and how you use CSP effectively in modern
applications. In this introduction, we will briefly outline the need for CSP
and the history of CSP. At the end of this introduction, you will find
a reader’s guide, helping you navigate this ebook.

So buckle up, settle in, and let’s explore CSP together.

Happy reading!

The Ultimate Guide to CSP5

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

The Need for CSP

Since the discussion of the first cross-site scripting (XSS) vulnerability
around the year 2000, one thing has become abundantly clear: XSS
vulnerabilities are hard to eradicate. Even with secure coding guidelines
and detailed code analysis, these vulnerabilities can still slip through.
They are more common than we would like, and they create opportunities
for attackers to inject harmful code, compromising the application running
in the user’s browser.

Traditional defenses, like context-sensitive output encoding and
sanitization, should be enough to stop XSS. Unfortunately, they aren’t
always applied correctly, creating vulnerabilities in our applications.
That’s where Content Security Policy (CSP) comes in.

The idea behind CSP is that when a vulnerability exists, CSP can stop the
attacker from exploiting it. CSP is like an additional security guard that
keeps a watchful eye over your application, providing an extra layer of
protection to catch and block potential XSS attacks.

Before we get started, note that deploying CSP does not absolve you from
the responsibility of following secure coding guidelines to avoid XSS
vulnerabilities in the first place. CSP only offers a second line of defense
in case something goes wrong.

https://auth0.com/blog/cross-site-scripting-xss/
https://auth0.com/blog/cross-site-scripting-xss/

The Ultimate Guide to CSP6

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

The History Behind CSP

The first version of Content Security Policy (CSP) was implemented in 2010
and discussed in an academic paper authored by people from Mozilla.
The paper described how a developer could define a security policy to tell
the browser exactly which resources can be loaded in a web application.

The idea behind CSP was met with great enthusiasm, but it turns out that
controlling the loading of resources in modern applications is a bit more
complicated than initially thought. Nonetheless, the seed was planted, and
CSP started to grow.

Gradual refinements over more than a decade have increased CSP’s
compatibility with applications and added numerous new features to CSP.
Unfortunately, security research has also uncovered critical bypass attacks
against CSP. However, with the proper guidance, we can avoid and address
these weaknesses so we end up with a solid and secure CSP policy.

This ebook covers it all. We start at the beginning and gradually refine our
advice on building a CSP policy. By the end of this ebook, you will have all
the knowledge to deploy your own CSP and secure your applications.

https://research.sidstamm.com/papers/csp-www2010.pdf

The Ultimate Guide to CSP7

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

A Reader’s Guide to This Ebook

This ebook is written to be valuable to everyone, from first-time CSP users
to seasoned web security experts. Here’s a suggestion for navigating this
ebook based on your level of familiarity with CSP. But remember, this guide
is here to serve as your resource, so feel free to jump around based on your
needs and interests. Happy reading!

CSP First-Timer

If you’re new to CSP, start at the very beginning and progress
chronologically. The different parts will gradually take you further in the
world of CSP. Don’t skip the demos and “Intermezzo: CSP by Example”
in Part 1, as they will give you practical, hands-on experience with CSP.
Our cheat sheets at the end of each part will benefit you, along with the
prioritized deployment guide at the end of this ebook!

CSP Practitioner

If you’re already familiar with the basics of CSP, you might want to skim
through the first part. We recommend ensuring you are entirely up to speed
with the CSP bypass attacks discussed in “Bypassing URL-based CSP
Policies” in Part 1, along with the corresponding best practices. From there,
feel free to move through the rest of the ebook to suit your needs, but take
advantage of the case studies in Parts 1 and 2. They’ll provide a real-world
context for the concepts you’re learning. The “Securing Single Page Apps
with CSP” section in Part 3 will be especially relevant.

Seasoned Web Security Expert

As a seasoned professional, you will be pretty familiar with some of the
concepts discussed in this ebook. You might find the sections on advanced
CSP features, such as “Explicit and Implicit Trust Propagation” in Part 1 and
the guidance on using CSP with SPAs in Part 3, more interesting. The case
studies in parts 1 and 2 will give you a good idea of how CSP is used at
enterprise scale.

Identity and State Management8

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Part 1 :
Using CSP as an XSS
Defense

The Ultimate Guide to CSP9

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Using CSP as an XSS Defense

Part 1 of this ebook focuses on using CSP as a second line of defense
against XSS attacks. This powerful capability is extremely relevant to
protect frontend web applications. Additionally, blocking the execution
of malicious JS code is the essence of CSP and also the area that is most
developed.

In this part, we will take you on a journey into CSP. We start by looking
at how CSP blocks potentially malicious JavaScript from executing. Next,
we dive into advanced features that allow legitimate code to execute
properly. We’ll discuss how to integrate remote components, and how
to build a rock-solid secure CSP policy. By the end of this part, you will be
deeply familiar with the mechanics of CSP and current best practices for
configuring CSP policies.

Blocking Script Execution with CSP

When an application contains an XSS vulnerability, user-provided data is
picked up by the browser as executable code. For example, a malicious
user can change their name to philippe<script>evilCode()</script>.
When another user of the application visits the malicious user’s profile, their
browser will see the malicious code and execute it. That gives the malicious
user control over the application’s execution context in the victim’s browser.

If this short recap of XSS vulnerabilities sounds confusing, I recommend
you check out this in-depth article on XSS first.

For the remainder of this part, we assume that the application contains
an XSS vulnerability that a malicious user can exploit. To exploit such a
vulnerability, the attacker can use a variety of payloads. This code snippet
lists a few different options.

https://auth0.com/blog/cross-site-scripting-xss/

The Ultimate Guide to CSP10

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

CSP aims to prevent the execution of each of these attack vectors.
To achieve that, CSP enforces restrictions on which script code can be
executed. The snippet below shows a CSP response header with a minimal
policy configuration.

Content-Security-Policy: script-src‘self’

<!— Inline code —>

<!— Code block —>

<script>evilCode()</script>

<!— Remote code file —>

<script src=“https://evil.com/code.js”></script>

The Ultimate Guide to CSP11

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

A running example of this setup is provided by the /basics endpoint
of this Express demo application.

Unsurprisingly, such a CSP policy is wildly incompatible with many
applications. Even today, we often rely on inline code blocks to load
JavaScript code into the application.

CSP Level 2 introduces hashes and nonces to address these
incompatibilities.

The server includes this response header on the response that sends an
HTML page to the browser. This policy configuration tells the browser that
this page can only execute scripts coming from its own origin.

Concretely, this means that if the application is running on https://
example.com/app, the browser only executes remote JavaScript code
coming from https://example.com. Anything else is blocked.

Our first attack vector from before relied on inline code to trigger the
execution of malicious code. This code is present in the page, but the
browser has no idea whether this code is supposed to be there. It is not
loaded from https://example.com, so it will not execute.

Similarly, the provenance of inline code blocks is unknown, so they are
not executed.

Finally, the remote code file is loaded from https://evil.com.
Since https://evil.com does not correspond to the application’s origin,
https://example.com, the browser will refuse to load this file.

As you can see, CSP blocks the execution of all potentially dubious
JavaScript code. Well, actually, this CSP policy blocks the execution of all
JavaScript code that is not remotely loaded from the application’s origin.

This means that if the application relies on inline event handlers, such as
onload or onclick, that code will not execute. Similarly, if the application
uses inline code blocks, they will not be executed.

https://github.com/auth0-blog/csp-against-xss-demo

The Ultimate Guide to CSP12

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

CSP Hashes and Nonces

CSP hashes and nonces are two mechanisms that are part of CSP Level 2.
They have been introduced to approve script code in a CSP policy without
having to list a specific URL as the source of the code. Let’s explore both
mechanisms.

CSP script hashes

Many applications rely on inline script blocks to load legitimate JavaScript
code. The snippet below shows a simplified example.

As discussed before, the configuration of a CSP policy prevents this
legitimate code from executing. However, CSP Level 2 allows us to include
the hash of a script block in our policy. The snippet below shows a CSP
policy that allows this code block to execute.

<button id=“hello”>Say Hello!</button>

<script>

document.addEventListener(“DOMContentLoaded”, () => {

 document.getElementById(“hello”)

 .addEventListener(“click”, () => { alert(“Hello!”)});

})

</script>

Content-Security-Policy: script-src ‘sha256-6X6+1K/DKkKDJXeIXoOfaIX+Fzyb

9LaGtutkR5DWpQ=’

The Ultimate Guide to CSP13

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

When the browser loads the page, it encounters the script block. It now
calculates the hash and checks if it is listed in the CSP policy as a legitimate
script block.

A running example of this setup is provided by the /hashes endpoint
of this Express demo application.

The security of this mechanism relies on the underlying properties of
a hashing function. Only this exact piece of code will yield the hash we
included in our policy. Changing a single character, or even adding a single
space, would change the hash of the script code.

In a nutshell, hashes only approve a single script block to execute.
In CSP Level 2, hashes only work for inline code blocks, not for remote
code files. CSP Level 3 brings support for the use of hashes for remote
code files as well. In such a scenario, script code must be loaded with
Subresource Integrity enabled.
 A running example of this setup is provided by the /remotehashes
 endpoint of this Express demo application. Note that at the time of

witing, this feature is only supported by Chromium-based browsers.
Finally, note that you typically do not calculate these hashes manually.
If you load your application in a Chromium-based browser, you can find
the expected hash in the error messages of the developer console,
as shown below.

If you’re confident that the hash shown in the message belongs to your
legitimate code block, you can copy/paste it into the CSP policy.

Refused to execute inline script because it violates the following Content

Security Policy directive: “script-src ‘self’”. Either the ‘unsafe-inline’

keyword, a hash (‘sha256-6X6+1K/DKkKDJXeIXoOfaIX+FzybN9LaGtutkR5DWpQ=’),

or a nonce (‘nonce-...’) is required to enable inline execution.

https://github.com/auth0-blog/csp-against-xss-demo
https://www.w3.org/TR/CSP3/#external-hash
https://www.w3.org/TR/CSP3/#external-hash
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://github.com/auth0-blog/csp-against-xss-demo

The Ultimate Guide to CSP14

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

CSP script nonces

CSP Level 2 introduces a second mechanism to allow the execution
of legitimate JavaScript code: nonces. The snippet below shows the HTML
of a legitimate application using nonces:

As you can see, the script block is now configured with a nonce attribute.
The same nonce value occurs in the CSP policy configuration, as shown
below.

When the browser encounters an inline script block, it compares the value
of the nonce attribute to the value included in the CSP policy. Matching
nonces imply that this code block is a part of the legitimate application
instead of being injected by an attacker.

One crucial requirement for using nonces is that they have to be fresh
on every page load. Nonces should be generated from a cryptographically
secure random source and should never be re-used. Otherwise, an attacker
can predict the nonce and include a valid nonce on injected code blocks.

Contrary to hashes, nonces can also be used on remote code files. The
CSP policy configuration from above does not approve any external sources
for loading JavaScript. In practice, this means that the code file loaded in
the snippet below should be blocked.

<button id=“hello”>Say Hello!</button>

<script nonce=“1f40e4a23493”>

document.addEventListener(“DOMContentLoaded”, () => {

 document.getElementById(“hello”)

 .addEventListener(“click”, () => { alert(“Hello!”)});

})

</script>

Content-Security-Policy: script-src ‘nonce-1f40e4a23493’

The Ultimate Guide to CSP15

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

<script src=“https://analytics.example.com/1.js” nonce=“1f40e4a23493”></script>

However, adding a nonce to the script tag loading a remote file suffices
to tell the browser that this code is legitimate.

A running example of this setup is provided by the /nonces endpoint
of this Express demo application.

Ignoring ‘unsafe-inline’

Now that we have come this far, it’s time for a confession. The statement
that inline code cannot be executed without using nonces or hashes was
not entirely correct. Even before CSP Level 2, there was a way to execute
inline JavaScript code.

CSP supports a special keyword for the script-src directive:
‘unsafe-inline’. This keyword tells the browser to execute all inline
JavaScript. This enables legitimate application code to execute, but also
allows injected code to be executed. As a result, ‘unsafe-inline’
disables the protections offered by CSP.

Surprisingly, CSP policies with ‘unsafe-inline’ enabled are pretty
standard. However, things are not always as they seem. CSP Level 2 states
that if a policy contains a hash or a nonce, the browser should ignore any
occurrence of ‘unsafe-inline’.

This detail will become relevant when discussing the Google case study
later in this part.

Cheat sheet: Hashes and nonces

The following cheat sheet summarizes what you learned about hashes
and nonces:

https://github.com/auth0-blog/csp-against-xss-demo

The Ultimate Guide to CSP16

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

The Ultimate Guide to CSP17

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Intermezzo: CSP by Example

CSP hashes and nonces enable loading inline script blocks, and nonces
and URLs allow the loading of remote code files. That’s all we need to start
building a CSP policy.

Let’s build a CSP policy for a sample app. In our app, we have three relevant
JavaScript features:

• We load custom script code from our own origin

• We load the Bootstrap JavaScript script code from a CDN

• We embed a Twitter timeline into our homepage

You can follow along in the running example. The /twitter-step0 endpoint
of this Express demo application offers a clean starting point without CSP.
A screenshot of the application is shown below.

https://github.com/auth0-blog/csp-against-xss-demo

The Ultimate Guide to CSP18

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Approving the application’s script code

The application needs to load code from its own origin, so let’s start by
adding the following CSP configuration:

You can find this setup in the /twitter-step1 endpoint of the demo.
A screenshot of the application is shown below.

Content-Security-Policy: script-src ‘self’

The Ultimate Guide to CSP19

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Loading JS from a CDN

Next, we want to load the Bootstrap code from the CDN. Let’s update the
policy to allow loading resources from that host.

You can find this setup in the /twitter-step2 endpoint of the demo.
A screenshot of the application is shown below.

Content-Security-Policy: script-src ‘self’ https://cdn.jsdelivr.net

The Ultimate Guide to CSP20

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Loading the Twitter timeline

So far, so good. The only error left to address is loading the Twitter code
that will replace our anchor tag with the timeline. This code is included as in
an inline code block. It is static code, so the easiest way to enable that is by
including the hash of the code block.

You can find this setup in the /twitter-step3 endpoint of the demo.
A screenshot of the application is shown below.

Content-Security-Policy:

 script-src ‘self’ https://cdn.jsdelivr.net

 ‘sha256-sJLd4PYo4s+MAefGQBAz5MPUGAPfv94fjxJBqfrunUA=’

The Ultimate Guide to CSP21

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Reloading the page does not give the expected result. This code block is
trying to load additional resources from https://platform.twitter.com/
widgets.js. We’ll have to adjust our policy to allow that to happen.

You can find this setup in the /twitter-step4 endpoint of the demo.
A screenshot of the application is shown below.

Content-Security-Policy:

 script-src ‘self’ https://cdn.jsdelivr.net

 ‘sha256-sJLd4PYo4s+MAefGQBAz5MPUGAPfv94fjxJBqfrunUA=’

 https://platform.twitter.com

The Ultimate Guide to CSP22

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Reloading shows you that the widgets.js file is loaded, but it needs
another code file. This time, the browser is trying to load a file from
https://cdn.syndication.twimg.com. Let’s adjust our policy for that
new location.

You can find this setup in the /twitter-step5 endpoint of the demo.
A screenshot of the application is shown below.

Reloading the page once more should make you happy.
We finally see our jokes!

Content-Security-Policy:

 script-src ‘self’ https://cdn.jsdelivr.net

 ‘sha256-sJLd4PYo4s+MAefGQBAz5MPUGAPfv94fjxJBqfrunUA=’

 https://platform.twitter.com

 https://cdn.syndication.twimg.com

The Ultimate Guide to CSP23

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Wrapping up

You can see the result in the /twitter-step5 endpoint of this Express
 demo application.

As we have shown, building real-world CSP policies can be quite
challenging. It takes several iterations to get things right. Additionally, our
policy is quite fragile. If Twitter decides to change its code tomorrow, our
timeline may not load anymore because of CSP.

In a nutshell, not an ideal scenario. And it gets worse (before it gets better).

https://github.com/auth0-blog/csp-against-xss-demo
https://github.com/auth0-blog/csp-against-xss-demo

The Ultimate Guide to CSP24

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Bypassing URL-based CSP Policies

When Google security engineers looked into real-world complex CSP Level
2 policies, such as the one we built in our example before, they made
a shocking discovery. It turns out that many of these CSP policies could be
bypassed, effectively voiding most of their security benefits. The Google
engineers published their results in a paper dramatically titled CSP is Dead!
Long Live CSP.

So, what is the issue with CSP?

Let’s take a step back here. The goal of CSP was to prevent an injected XSS
payload from executing. This implies that the application under protection
has an XSS vulnerability, which allows an attacker to inject malicious code.

Under that assumption, the attacker can likely inject arbitrary code.
A straight-up XSS payload, such as an inline script block, will be stopped by
most real-world CSP policies. However, a carefully crafted payload may not
be stopped.

One example provided in the paper is abusing a JSONP endpoint hosted
on an approved CDN (See this explanation for more context on JSONP).
We even have that exact vulnerability in our sample application hosting the
Twitter timeline. We approved https://cdn.syndication.twimg.com,
a CDN that contains Twitter code but also contains JSONP endpoints.

As a result, an attacker can inject a payload that uses the JSONP endpoint
to return malicious code. Since this endpoint is hosted by Twitter’s CDN,
our CSP policy does not stop this code from being loaded. In essence,
the policy fails to prevent the attacker from abusing the underlying XSS
vulnerability.

Unfortunately, going deeper into the various bypasses against CSP would
take us too far in this book. The paper and interesting conference talk by
the authors offer more details if you are interested.

https://research.google/pubs/pub45542/
https://research.google/pubs/pub45542/
https://stackoverflow.com/questions/2067472/what-is-jsonp-and-why-was-it-created/2067584#2067584
https://research.google/pubs/pub45542/
https://www.youtube.com/watch?v=uf12a-0AluI
https://www.youtube.com/watch?v=uf12a-0AluI

The Ultimate Guide to CSP25

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

The vital part of this research is the take-away: URL-based CSP policies
are ineffective.

The paper recommends abandoning URL-based policies in favor of hash-
based and nonce-based policies.

To make that work, we need a mechanism to enable cascading JavaScript
loading, as we have in our Twitter timeline. That’s what we discuss next.

Cheat sheet: Policy bypasses

The following cheat sheet summarizes what you learned about
policy bypasses:

The Ultimate Guide to CSP26

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

The Ultimate Guide to CSP27

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Explicit and Implicit Trust Propagation

Building a CSP policy without relying on URLs is a bit more challenging,
but perfectly feasible. Let’s review a couple of scenarios.

First, let’s talk about inline code. Inline code blocks can be enabled using
a hash or a nonce, as introduced by CSP Level 2. Second, remote code files
can be loaded with a nonce (CSP Level 2), or with a hash (CSP Level 3).

But what about legitimate JavaScript code that wishes to load additional
remote code, such as the Twitter timeline example? That’s where trust
propagation comes into play. With trust propagation, a legitimate script can
forward its trust to newly loaded code, making it possible to execute that
code without explicitly mentioning its URL in the CSP policy.

In this section, we discuss both an explicit and implicit trust propagation
mechanism.

Explicit trust propagation with nonces

Explicit trust propagation is also known as nonce propagation. In a nutshell,
it means that a legitimate piece of JavaScript that is approved by a nonce
can choose to forward that nonce to newly loaded script code. Don’t worry,
it sounds a lot more confusing than it is in practice.

The code example below shows an inline code block that is approved by
a nonce. The JS code of this code block creates a new script tag and
appends it to the body of the page. Without a proper nonce, this newly
added code will be blocked by CSP. However, on line 5, you can see the
nonce propagation code. The legitimate JavaScript code gives the newly
added script tag a nonce attribute. The value of the nonce attribute is the
script’s current nonce.

The Ultimate Guide to CSP28

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

<script nonce=”scilNrYrPrQmSo/TtrXvg==”>

 // Legitimate code executing ...

 let newScript = document.createElement(“script”);

 newScript.setAttribute(“src”, “/js/more-legitimate-code.js”);

 newScript.setAttribute(“nonce”, document.currentScript.nonce);

 document.body.appendChild(newScript);

</script>

At first glance, this mechanism may seem horribly insecure. But if you
investigate its security properties, it works remarkably well.

First of all, nonce propagation is only available to legitimate code that is
already allowed to execute. When an attacker abuses an XSS vulnerability
to inject code, it will not carry a valid nonce so it will not execute.
As a result, the attacker does not gain a foothold, preventing them from
abusing the nonce propagation mechanism.

Second, explicit nonce propagation closely resembles the steps we took
before when trying to get the Twitter timeline code to execute. Whenever
the timeline code needed to load additional script code, we updated our
policy to allow it. With nonce propagation, the Twitter code would be able
to handle this process itself, without us needing to update the policy. Note
that the Twitter code does not use nonce propagation, but it could if it
wanted to.

The Ultimate Guide to CSP29

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Implicit trust propagation with ‘strict-dynamic’

There’s a more implicit alternative to explicit nonce propagation. The ‘strict-
dynamic’ keyword, introduced by the Google engineers in their paper and
part of CSP Level 3, allows a script to load additional script code without
the need for explicit trust propagation. This keyword loosely tells the
browser:

In essence, ‘strict-dynamic’ offers an automatic trust propagation
mechanism, where previously trusted scripts are allowed to load additional
resources. This approach may sound insecure but it does nothing more
than mimic the manual process we followed when building the policy to
approve the Twitter timeline. We also added any host Twitter wanted to get
the timeline working. ‘strict-dynamic’ just automates the process.

Since ‘strict-dynamic’ was introduced to counter URL-based bypass
attacks, it is incompatible with URLs. ‘strict-dynamic’ only allows
scripts that have been approved with a nonce or a hash to load additional
resources. In fact, when a browser encounters ‘strict-dynamic’, it will
automatically ignore URL-based expressions.

In practice, this means we can update our Twitter timeline example and
change the policy to the one shown below.

If you encounter a script that was loaded with a hash or a nonce, you can allow
that script to load remote code dependencies by inserting additional script
elements into the page.

Content-Security-Policy: script-src ‘nonce-aQFUZWWi5Xo4YzkEXxg1Xg==’

‘strict-dynamic’

The Ultimate Guide to CSP30

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

This updated policy no longer contains URLs but relies on nonces and
‘strict-dynamic’. As a result, this policy no longer suffers from bypass
attacks that load scripts from approved hosts. Even though ‘strict-
dynamic’ is part of CSP Level 3, it is already supported by every modern
browser.

A running example of this setup is provided by the /strict-dynamic endpoint
of this Express demo application.

Case Study: Google’s CSP Policy

Let’s look at a real-world CSP policy: the policy used by Google on various
of their applications. It is no accident that Google engineers highlighted
issues with URLs in CSP and provided alternatives. Google’s CSP policy
heavily relies on the use of ‘strict-dynamic’.

Before we dive in, it’s important to look at what Google is trying to achieve
with their CSP policy. Their goal is essentially to use CSP as a second line
of defense against XSS in a “set and forget” way. They do not want to use
a fine-grained policy that requires frequent updating. Instead, they want
a policy that offers solid security for the majority of their users. As a trade-
off, they don’t mind offering less strong security benefits to users with
older browsers, but they want to avoid that their applications break in older
browsers because of CSP.

https://caniuse.com/?search=strict-dynamic
https://caniuse.com/?search=strict-dynamic
https://github.com/auth0-blog/csp-against-xss-demo

The Ultimate Guide to CSP31

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

The policy

The snippet below shows the CSP policy Google uses, as observed on
Google Hangouts. Note that the policy is formatted for readability.

A running example of this setup is provided by the /universal-csp endpoint
of this Express demo application.

A lot is going on with this policy, mainly to ensure backward compatibility
with older browsers. Let’s unpack this step by step. First, we will look at
the script-src directive. We discuss the other directives at the end of this
section.

Content-Security-Policy:

 script-src ‘report-sample’ ‘nonce-3YCIqzKGd5cxaIoTibrW/A’ ‘unsafe-inline’

 ‘strict-dynamic’ https: http: ‘unsafe-eval’;

 object-src ‘none’;

 base-uri ‘self’;

 report-uri /webchat/_/cspreport

https://hangouts.google.com
https://github.com/auth0-blog/csp-against-xss-demo

The Ultimate Guide to CSP32

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

What a modern browser sees

Google’s policy is designed to work with modern browsers that support
‘strict-dynamic’, which includes most browsers these days.

The snippet below shows the policy as enforced by a modern browser:

Content-Security-Policy:

 script-src ‘report-sample’ ‘nonce-3YCIqzKGd5cxaIoTibrW/A’

 ‘strict-dynamic’ ‘unsafe-eval’;

That looks quite different than the policy sent by Google.
Here’s what changes:

• A modern browser recognizes the nonce, which causes the
‘unsafe-inline’ keyword to be ignored.

• A modern browser recognizes ‘strict-dynamic’, which causes any
URL-based expressions (i.e., http: https:) to be ignored.

The resulting CSP policy is a nonce-based policy that uses
‘strict-dynamic’ for automatic trust propagation. This is considered
a secure policy that offers an effective second line of defense against XSS.

This policy is supported by all modern browsers, including Chrome
and Chromium-based browsers, Firefox, and Safari.

https://caniuse.com/?search=strict-dynamic

The Ultimate Guide to CSP33

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

What legacy browsers see

Legacy browsers that only support CSP Level 2 (Safari < 15.4), or even
Level 1 (Internet Explorer), will see a different policy.

Content-Security-Policy:

 script-src ‘report-sample’ ‘nonce-3YCIqzKGd5cxaIoTibrW/A’

 https: http: ‘unsafe-eval’;

Here’s what changes in the policy when observed by a CSP Level 2
browser:

• The browser recognizes the nonce, which causes it to ignore
‘unsafe-inline’.

• The browser has no idea what ‘strict-dynamic’ means, so it ignores
that value. Instead, it uses the URL-based expressions
(i.e., http: https:)

Concretely, this means that this CSP policy is no longer effective.
It does not offer any meaningful protection against the exploitation of
an XSS vulnerability in the application.

The only advantage of this policy is that it does not break the application
on Safari. Without the URL-based expressions, Safari would not be able
to load remote code files that are otherwise approved with ‘strict-
dynamic’. In essence, the observed policy is an insecure backward-
compatible version.

The Ultimate Guide to CSP34

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

A similar story holds for Internet Explorer, which only supports CSP Level 1.
That browser sees the following policy.

In essence, this policy offers no protection but also does not cause
the application to break in Internet Explorer.

Content-Security-Policy:

 script-src ‘report-sample’ ‘unsafe-inline’

 https: http: ‘unsafe-eval’;

The Ultimate Guide to CSP35

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Additional details

Below is a copy of Google’s full CSP policy. As you can see, there are
a couple of additional details in Google’s policy that we have not yet
discussed.

The object-src directive

In their research paper, the authors describe a couple of bypasses against
traditional CSP policies. One of these involves the loading of vulnerable
Flash files, which then trigger JavaScript code execution. While Flash is
mostly gone now, it still makes sense to prevent the loading of embedded
content by setting the object-src directive to ‘none’.

Content-Security-Policy:

 script-src ‘report-sample’ ‘nonce-3YCIqzKGd5cxaIoTibrW/A’ ‘unsafe-inline’

 ‘strict-dynamic’ https: http: ‘unsafe-eval’;

 object-src ‘none’;

 base-uri ‘self’;

 report-uri /webchat/_/cspreport

Content-Security-Policy:

 script-src ‘nonce-aQFUZWWi5Xo4YzkEXxg1Xg==’ ‘strict-dynamic’;

 object-src ‘none’

The Ultimate Guide to CSP36

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

The base-uri directive

Every CSP policy should include the base-uri directive. This directive
prevents the injection of a malicious base tag, which can change how
relative URLs are resolved. Such an attack is known as base jumping.

Setting the base-uri directive to ‘self’ instructs the browser only to allow
the application’s origin as the base for relative URL resolution. This is a sane
default for almost any application.

The ‘unsafe-eval’ expression

The script-src directive also includes the ‘unsafe-eval’ keyword.
By default, CSP prevents the use of the eval() function in JavaScript.
eval() evaluates text as code, which is inherently insecure behavior.
However, it turns out that abuses of eval() are not as common as
previously thought.

Additionally, many applications rely on eval() for some more exotic
purposes. That’s why many CSP policies re-enable the use of eval()
by adding ‘unsafe-eval’.

The report-uri directive

This directive instructs the browser to send a report when it encounters a
policy violation. We discuss reporting in more depth later in this book.

Note that the script-src directive also contains the ‘report-sample’
keyword. This instructs the browser to include a piece of a blocked script
when sending a report. We’ll discuss that later when we dive into reporting.

The Ultimate Guide to CSP37

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Final words

In a nutshell, this universal CSP policy discussed here offers a robust
second line of defense against XSS attacks. Only code approved by a
nonce will be executed when the browser parses the initial HTML page.
Once a piece of code is loaded, it can load additional dependencies
because of ‘strict-dynamic’.

The drawback of this policy is the lack of support for older browsers.
To be fair, this drawback is not that significant. Modern browsers all support
‘strict-dynamic’, and building a secure CSP policy for IE 11 is virtually
impossible.

Of course, you are recommended to evaluate which approach to CSP works
best for your specific situation.

The Ultimate Guide to CSP38

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Controlling Script Code with CSP Level 3

CSP Level 3, which is currently under active development, will introduce
even more fine-grained control over which JavaScript is allowed to execute.
Concretely, CSP Level 3 differentiates between script elements (<script>
tags) and script attributes (inline handlers, such as onclick). Doing so
allows developers to re-enable inline event handlers using hashes.

The policy shown below illustrates how to use script-src-elem
and script-src-attr, and how to enable hashes for an inline event
handler.

 A running example of this setup is provided by the /inlinehashes endpoint
 of this Express demo application.

While this new change sounds fundamental, it does not really pack that
much of a punch. The ability to hash inline event handlers is mainly useful
for enabling CSP in legacy applications that still rely on inline event
handlers. To highlight that there are better alternatives, these inline hashes
only work when you also add the ‘unsafe-hashes’ keyword.

For modern applications, there is no need for re-enabling inline event
handlers. Therefore, the CSP guidance provided in this ebook remains
relevant and a best practice.

Content-Security-Policy:

 script-src-elem ‘self’;

 script-src-attr ‘unsafe-hashes’ ‘sha256-iNfncdJVzRQiUdrkc1Sv8Cg1pdqfTV6wIxP9W3/RMrw=’

https://github.com/auth0-blog/csp-against-xss-demo

The Ultimate Guide to CSP39

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Conclusion

That was it! We finished our exploration of CSP’s XSS defenses, starting
all the way in 2010 with CSP Level 1, and finishing in the present with
CSP Level 3 features. We discussed how CSP can act as a second line of
defense against XSS attacks, and provided best practices on various policy
configurations.

In the next part, we look into using CSP to control other types of resources.

Identity and State Management40

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Part 2 :
Controlling Various Resources
and Behavior with CSP

The Ultimate Guide to CSP41

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Controlling Various Resources
and Behavior with CSP

In part 1 of this ebook on CSP, we discussed the intricacies of using CSP as
a second line of defense against XSS. In this part, we dive deeper into all
the available directives for CSP.

Concretely, we will cover the use of a default directive and how to specify
more specific directives for all kinds of resources. We also dive into
controlling outgoing connections and configure security behavior in the
browser. At the end of this part, we use all this knowledge to investigate the
CSP policy used by GitHub.

Setting a Default Directive
Before we start talking about individual directives to control stylesheets,
images, fonts, and other types of resources, let’s take a look at default-
src. This directive can be used as a default configuration for each type
of resource that is not configured with an explicit directive.

No worries, it sounds more complicated than it is. Let’s take a look at
an example.

default-src ‘self’;

 script-src ‘sha256-6X6+1K/DKkKDJXeIXoOfaIX+FzybN9LaGtutkR5DWpQ=’

The Ultimate Guide to CSP42

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

The policy shown above uses default-src as a catchall but also specifies
a script-src directive. So for images, stylesheets, fonts, etc., the browser
applies default-src. In this example, these types of content can be
loaded from the application’s origin. For scripts, there is a more specific
directive (script-src), so the browser uses that instead. Code loaded from
the application’s origin is not allowed, because the browser does not use
default-src for scripts in this policy.

The CSP specification allows an elaborate configuration of default-src,
including the use of hashes and nonces. However, in practice, such
a configuration is not recommended. Instead, default-src should be set
to a sane starting point, which is either ‘none’ or ‘self’. For every type of
resource you would like to load, you can configure specific directives with
the desired expressions.

To summarize, default-src applies to everything that is not explicitly
configured. If a more specific directive is present, only that directive
is considered for that particular type of content.

The Ultimate Guide to CSP43

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Controlling Resource Loading with CSP

So far, we mainly talked about CSP as a second line of defense against
XSS attacks. However, if you look at the CSP specifications, you’ll discover
that CSP can do so much more. This section looks at all the other types of
content you can control with CSP.

Before we dive in, it is important to note that most of the peculiarities of
handling JavaScript do not apply to other types of content. The directives
for other types of content can be configured with simple expressions
pointing to specific hosts, including a CDN, without negatively impacting
the security of the CSP policy. The only exception is CSS code, so let’s
cover that first.

Stylesheets

CSP allows you to control how the browser handles CSS code in the page.
The style-src directive applies to all CSS code, such as <style> blocks,
style attributes, and remote stylesheets.

Like script code, CSS code is considered dangerous dynamic content
since malicious CSS code can change the behavior of the page. Therefore,
setting the style-src attribute enables a couple of default restrictions,
such as blocking all inline CSS code.

To re-enable inline style code, the style-src directive supports the same
mechanisms as we have discussed from script code: ‘unsafe-inline’,
hashes, and nonces. In theory, you are supposed to selectively enable style
code using hashes or nonces. In practice, the story is somewhat different.

Using hashes and nonces should not be that difficult if you completely
control the style code. However, in many real-world applications, styling
is handled in a library that is not under the control of the application
developer. Not enabling inline style code typically breaks the library,
and selectively re-enabling styles is often infeasible.
That’s why a real-world CSP policy that aims to restrict styles is generally
forced to add ‘unsafe-inline’ to make things work.

The Ultimate Guide to CSP44

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

To summarize, restricting styles is a bit less critical than restricting
JavaScript code execution. If you want to configure a style-src directive,
aim to make it as strict as possible. However, if you end up enabling
‘unsafe-inline’, it’s not the end of the world.

Images, fonts, and media

CSP also allows you to control where images, fonts, and media
(audio and video) can be loaded from. The directives for these resources
are, in respective order, img-src, font-src, and media-src.

These directives are typically configured with a list of URL-based locations.
Note that for images, it is not uncommon to include data: as a source
expression or even use the wildcard *.

Embedded content

The object-src directive allows you to define valid sources for embedded
content, typically included using the <object>, <embed>, or <applet>
elements.

Note that these elements are typically used for legacy content, such as
Flash files or Java applets. In modern applications, these are typically
no longer needed. Therefore, it is recommended to set the object-src
directive to the value ‘none’.

Child contexts

A document loaded in the browser can create a new browsing context,
resulting in a parent-child relationship. One example is using an <iframe>,
which creates a nested browsing context. Another example is loading
a web worker, which also instantiates a child context. Both child contexts
are instantiated with a URL, for which the source can be controlled with the
child-src directive.

The recommended default value for the child-src directive is the
value ‘none’. When the application relies on iframes or web workers,
this directive should be configured with the expected sources for these
children.

The Ultimate Guide to CSP45

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Controlling Outgoing Connections with CSP

With CSP, you can control outgoing connections. Concretely, CSP offers
two directives for this purpose: form-action and connect-src.

The form-action directive allows you to choose where forms can be
submitted. This directive is useful to avoid form hijacking in a traditional
web application. For traditional web applications, the value ‘self’ makes
the most sense. Single Page Applications typically do not rely on form
submissions but call APIs from JavaScript code instead. SPAs should set
the form-action directive to the value ‘none’.

The connect-src directive controls outgoing connections, such as XHR or
Fetch requests, but also WebSocket connections and Server-Sent Events.
This directive should be configured with the APIs that your application
consumes. If no outgoing connections are needed, the directive can be set
to the value ‘none’.

Controlling Behavior with CSP
CSP also offers control over behavioral features in the browser.
Let’s look at a few directives that you should definitely know about.

The frame-ancestors directive allows the application to restrict how
it is loaded in a frame. Since many applications are not supposed to be
loaded in a frame anywhere, they configure this directive with the value
‘none’, which is an essential defense against UI redressing attacks. When
selective framing is desired, the application can use ‘self’ or a list of URLs
to enable selective framing. Omitting the directive from a policy allows all
framing, which is the default behavior in all browsers.

https://auth0.com/blog/preventing-clickjacking-attacks/

The Ultimate Guide to CSP46

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

The sandbox directive is the most restrictive directive available in CSP.
It is similar to the sandbox attribute for iframe elements and is intended
to be used on responses serving potentially untrusted content, such as
user-provided documents. Adding the sandbox directive without any
expressions enables all restrictions of the HTML5 sandbox attribute on
the browsing context. A sandbox disables JS execution, form submissions,
plugin content, popups, etc. To re-enable selective restrictions, specific
keywords can be added as values of the sandbox directive (e.g., sandbox
allow-scripts). For more information about the sandbox and its
restrictions, check out this MDN documentation page.

Finally, CSP is also used as the mechanism to enable Trusted Types.
Trusted Types is a new browser-based mechanism to combat DOM-based
XSS attacks. To enable Trusted Types, the following CSP policy needs to
be included with the application: require-trusted-types-for ‘script’.
Diving into details on Trusted Types is out of the scope of this ebook,
but you can find a full write-up on our blog.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe#attr-sandbox
https://auth0.com/blog/securing-spa-with-trusted-types/

The Ultimate Guide to CSP47

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Case Study: GitHub’s CSP Policy

With all this CSP knowledge under our belt, let’s investigate a real-world
CSP policy. The policy below is used by the main GitHub application at the
time of writing.

Content-Security-Policy:

 default-src ‘none’;

 base-uri ‘self’;

 block-all-mixed-content;

 child-src github.com/assets-cdn/worker/ gist.github.com/assets-cdn/worker/;

 connect-src ‘self’ uploads.github.com objects-origin.githubusercontent.com www.githubstatus.com

collector.github.com raw.githubusercontent.com api.github.com github-cloud.s3.amazonaws.com github-

production-repository-file-5c1aeb.s3.amazonaws.com github-production-upload-manifest-file-

7fdce7.s3.amazonaws.com github-production-user-asset-6210df.s3.amazonaws.com cdn.optimizely.com

logx.optimizely.com/v1/events *.actions.githubusercontent.com wss://*.actions.githubusercontent.com

online.visualstudio.com/api/v1/locations github-production-repository-image-32fea6.s3.amazonaws.com github-

production-release-asset-2e65be.s3.amazonaws.com insights.github.com wss://alive.github.com

github.githubassets.com;

 font-src github.githubassets.com;

 form-action ‘self’ github.com gist.github.com objects-origin.githubusercontent.com;

 frame-ancestors ‘none’;

 frame-src viewscreen.githubusercontent.com notebooks.githubusercontent.com;

 img-src ‘self’ data: github.githubassets.com media.githubusercontent.com camo.githubusercontent.com

identicons.github.com avatars.githubusercontent.com github-cloud.s3.amazonaws.com

objects.githubusercontent.com objects-origin.githubusercontent.com secured-user-images.githubusercontent.com/

opengraph.githubassets.com github-production-user-asset-6210df.s3.amazonaws.com customer-stories-

feed.github.com spotlights-feed.github.com *.githubusercontent.com;

 manifest-src ‘self’;

 media-src github.com user-images.githubusercontent.com/ secured-user-images.githubusercontent.com/

github.githubassets.com;

 script-src github.githubassets.com;

 style-src ‘unsafe-inline’ github.githubassets.com;

 worker-src github.com/assets-cdn/worker/ gist.github.com/assets-cdn/worker/

The Ultimate Guide to CSP48

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

First of all, this GitHub is a realistic representation of what a CSP policy
controlling a lot of resources looks like. A lot of thought and reasoning
went into creating this specific configuration, so let’s dive in.

https://github.blog/2016-04-12-githubs-csp-journey/
https://github.blog/2016-04-12-githubs-csp-journey/

The Ultimate Guide to CSP49

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Starting with a secure default

As you can see in the default-src directive, GitHub chooses to block all
content by default. For each type of content that is allowed, a more specific
directive is provided.

Additionally, GitHub sets the base-uri to its own origin, which
is considered a security best practice.

GitHub also prevents framing by setting frame-ancestors to ‘none’,
another security best practice.

Finally, the GitHub policy does not explicitly set an object-src, so the
default-src value of ‘none’ is used here. Blocking unneeded embedded
content is again a security best practice.
However, by relying on default-src the policy creates an implicit
dependency. If the value of default-src ever changes without explicitly
adding object-src ‘none’, embedded content might again be allowed.

Dynamic JS and CSS code

Blocking the execution of malicious JS code is one of the most important
features of CSP. GitHub chooses to set a single host as the allowed source
of scripts: script-src github.githubassets.com.

While this policy is less secure than a nonce-based policy, it is not
automatically insecure. The security of this CSP policy entirely depends on
what resources are hosted on the provided domain. If that host does not
contain potential attack vectors, such as JSONP endpoints, user-uploaded
files, or libraries suffering from template injection, this setting is likely
secure.

Apart from scripts, style code is also considered to be dangerous. GitHub’s
CSP policy highlights the challenges with locking down the style-src
directive: it is really hard to avoid including ‘unsafe-inline’.
This configuration makes the style-src directive mostly irrelevant.

The Ultimate Guide to CSP50

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Controlling resources and connections

As you can see, GitHub offers detailed configurations for all kinds of
resources. If there’s an easy way to identify all these sources, such a policy
makes perfect sense. One noteworthy directive is img-src. The directive
approves quite a few hosts, begging the question of how dangerous an
image really is, and whether a wildcard would suffice. In this case,
GitHub made an active decision to restrict images to avoid data exfiltration
through dangling markup attacks. In doing so, they also ensured that none
of the approved hosts can be used by an attacker to receive requests.

As you can see, GitHub uses both the form-action and connect-src
directives to control outgoing connections. Restricting form submissions
seems straightforward, but the connect-src directive is quite extensive.
Similar to img-src, the goal is to avoid data exfiltration through
a connection to a malicious host. In this case, GitHub would need to ensure
that none of the approved hosts can be controlled by an attacker.
For example, if the attacker can set up an Optimizely account and send
logging info to their account, they could still extract information.
Note that this scenario is hypothetical, and we did not research if this
is in fact possible.

Wrapping up

GitHub deliberately and thoughtfully created an extensive CSP policy
to mitigate a few specific threats. As a result, GitHub’s extensive CSP policy
contains fine-grained directive configurations to control various types of
resources in the application.

Compared to Google’s CSP policy, which we discussed in the previous part,
the difference is quite significant. The main trade-off between both policies
is security vs fragility. While GitHub’s policy may be more secure, it is also
a lot more fragile. In this case, GitHub has decided this trade-off is worth
it, while Google does not.

https://github.blog/2017-01-19-githubs-post-csp-journey/

The Ultimate Guide to CSP51

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Conclusion

By now, you are familiar with the majority of CSP directives, and have seen
two very different real-world approaches to enabling CSP. For further
reading on the available CSP directives, we refer to this extensive CSP
guide on the Mozilla Developer Network.

In the next part, we explore how to deploy effective CSP policies for Single
Page Applications.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

Identity and State Management52

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Part 3 :
Securing Single Page Apps
with CSP

The Ultimate Guide to CSP53

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Securing Single Page Apps with CSP

In the first two parts of this ebook, we discussed the capabilities of
different types of CSP policies. We focused on using CSP as a second line
of defense against XSS but also illustrated how a more elaborate CSP policy
can contribute to the security of your applications.

In this part, we zoom in on the use of CSP in Single Page Applications
(SPAs). We explore how recommended features, such as hashes, nonces,
and ’strict-dynamic’, conflict with the deployment model of SPAs. Next,
we explore three concrete strategies that will help you deploy CSP
in your SPA.

The Challenges with SPAs
Single Page Applications load a single index.html, which then bootstraps
the necessary JavaScript code to launch the application. The code snippet
below shows the index.html page of an Angular application.

<!doctype html>

<html lang=“en”>

<head>

 ...

</head>

<body>

 <app-root></app-root>

 <script src=“runtime.7b63b9fd40098a2e8207.js” defer></script>

 <script src=“polyfills.00096ed7d93ed26ee6df.js” defer></script>

 <script src=“main.8e56a2a77fee2657fb91.js” defer></script>

</body>

</html>

The Ultimate Guide to CSP54

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

To deploy CSP in an SPA, we first have to tell the browser that the
application’s JavaScript bundle is a legitimate resource that can be loaded.
In the snippet above, the bundle consists of three separate JavaScript files.

One way to do that is by approving scripts coming from the application’s
origin (https://example.com). A policy with a script-src https://
example.com directive would allow the loading of these files.

Unfortunately, as we discussed before, such URL-based policies are often
insecure and deprecated. Additionally, URL-based expressions cannot be
used together with ’strict-dynamic’, which prevents the use of automatic
trust propagation.

One alternative is the use of hashes, a CSP Level 2 feature. However, the
application’s JavaScript bundle is hosted as a remote file and hashes only
work on inline code blocks. So CSP hashes are not compatible with SPAs.

CSP Level 2 also supports nonces, which are compatible with the loading
of remote resources. However, nonces must be unique on every page load,
which means that the server has to inject a fresh nonce every time it serves
a page. Doing so is easy for dynamic server-side applications but not very
compatible with serving a static index.html file for an SPA. So nonces are
also not compatible with SPAs.

With both hashes and nonces out, there is no straightforward way for
SPAs to use modern CSP policies. Additionally, they are incapable of using
’strict-dynamic’ for loading additional scripts. The lack of support for
’strict-dynamic’ makes it impossible to reliably incorporate third-party
components such as a Twitter timeline.

Right about now, I’m sure you’re somewhat disappointed with CSP, and
righteously so. But don’t worry. We’re only getting started. Let’s take a look
at three concrete strategies to implement CSP in an SPA.

The Ultimate Guide to CSP55

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Keep It Simple

The first strategy for enabling CSP in SPAs is straightforward. If the SPA
only needs to load its application bundle and no third-party resources,
the following CSP policy could be a very simple solution.

This policy allows the application to load JavaScript files from its own
origin. Such a policy suffices to load all of the additional resources of
an isolated, self-contained application. You will often encounter such
applications in enterprise settings, where the dynamic integration of remote
components is less common.

But what about the challenges we discussed with securing URL-based
policies? Isn’t this policy insecure and easy to bypass?

Generally speaking, yes, but in reality, the answer is a bit more nuanced.
The paper that described numerous bypass attacks against CSP outlines
a few scenarios where approving ’self’ is problematic. For example, CSP
can be bypassed if ...

• The application’s origin also hosts vulnerable libraries

• The application’s origin also hosts JSONP endpoints

• The application’s origin hosts untrusted files uploaded by users

script-src ‘self’

https://research.google/pubs/pub45542/

The Ultimate Guide to CSP56

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

However, these threats are not an issue if the application’s origin contains
nothing else but the statically deployed application bundle. And if there are
no bypasses, this policy is still considered secure.

To summarize, if you’re building an isolated SPA with nothing else running
in the same origin, this policy is a straightforward way to deploy CSP.

However, if you rely on third-party components, you will likely need to
support ’strict-dynamic’. In that case, you can rely on one of the
following two strategies.

The Ultimate Guide to CSP57

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Using ‘strict-dynamic’ with Hashes

When a policy is configured with ’strict-dynamic’, all script code
approved by a hash or a nonce is allowed to load additional dependencies.
This mechanism is extremely useful to allow a third-party component
to load additional code or to enable the lazy loading of application
components.

Unfortunately, ’strict-dynamic’ causes browsers to ignore URL-based
entries, so it cannot be used in conjunction with ’self’. This means that
when we enable ’strict-dynamic’, we have to find a different way to
allow the loading of the application’s bundle.

Loading the bundle with hashes is not an option because hashes cannot be
used with remote code files. Instead, we can modify the index.html file to
include an inline code block, which we can approve with a hash. This inline
code block contains a script loader, which uses proper DOM APIs to load
additional script code. This behavior is automatically approved by having
’strict-dynamic’ in the policy.

The code snippets below show the modified index.html of an Angular
application and the corresponding CSP policy. The HTML page contains
two code blocks: the script loader and the code for loading a Twitter
timeline. The corresponding CSP policy approves both blocks with a hash.

The Ultimate Guide to CSP58

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

<!doctype html>

<html lang=“en”>

<head>

 ...

</head>

<body>

 <app-root></app-root>

 <script>

 let scripts = [“runtime.7b63b9fd40098a2e8207.js”, “polyfills.00096ed-

7d93ed26ee6df.js”, “main.8e56a2a77fee2657fb91.js”];

 scripts.forEach(function(scriptUrl) {

 var s = document.createElement(‘script’);

 s.src = scriptUrl;

 s.async = false; // preserve execution order.

 document.body.appendChild(s);

 });

 </script>

 <script>

 window.twttr = (function(d, s, id) {

 ...

 }(document, “script”, “twitter-wjs”));

 </script>

</body>

</html>

Content-Security-Policy: script-src

 ‘sha256-qaOxCJong9pt6ICami7oNScwNCv2sn3HUTzbEaQ3vrU=‘

 ‘sha256-BYW1ZgvEbfyQi82B604a0EdxK+Od5iqb/I2hgknBhiw=‘

 ‘strict-dynamic’

The Ultimate Guide to CSP59

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

This workaround is not pretty but quite effective: it enables a modern CSP
policy on a statically deployed SPA. At the time of writing, the strict-csp
package offers experimental support for transforming any HTML file to use
a script loader, as described here. This package is also available as
a webpack plugin. Of course, you can also perform this task in a more
manual fashion.

To summarize, adding an inline script loader enables the use of hashes
and ’strict-dynamic’.

Finally, note that CSP Level 3 may support the use of hashes for remote
code files. However, at the time of writing, (widespread) support for that
feature is not yet available.

https://www.npmjs.com/package/strict-csp
https://www.npmjs.com/package/strict-csp

The Ultimate Guide to CSP60

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Using ‘strict-dynamic’ with Nonces

Nonces are a more flexible alternative to hashes, as they can also be used
on remote script files. Nonces are also quite compatible with ’strict-
dynamic’ but must be unique on every page load. Unfortunately, that
requirement clashes with a statically deployed index.html.

To enable the use of nonces in an SPA, we have to serve our index.html
dynamically to insert a fresh nonce in each response. This process sounds
complicated but is not that difficult in practice.

The code example below shows a minimal NodeJS Express server that
dynamically serves our main Angular application file. The Express server
uses the express-csp-header middleware to configure a policy and handle
nonce generation. The nonce is passed along to the view rendering engine,
which inserts it into the page. The modified index.html, now stored as
index.ejs, is included below.

https://www.npmjs.com/package/express-csp-header

The Ultimate Guide to CSP61

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

const express = require(“express”);

const { expressCspHeader, NONCE } = require(‘express-csp-header’);

const app = express();

const port = 3000;

app.set(‘view engine’, ‘ejs’);

 app.use(expressCspHeader({

 directives: {

 “script-src”: [NONCE, “’strict-dynamic’”]

 }

}));

// Rewrite index.html

app.get(“/“, (req, res) => {

 res.render(`views/index`, { nonce: req.nonce });

})

app.listen(port, () => {});

The Ultimate Guide to CSP62

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

<!doctype html>

<html lang=“en”>

<head>

 ...

</head>

<body>

 <app-root></app-root>

 <script nonce=“<%= nonce %>” src=“runtime.7b63b9fd40098a2e8207.js” defer></script>

 <script nonce=“<%= nonce %>” src=“polyfills.00096ed7d93ed26ee6df.js” defer></

script>

 <script nonce=“<%= nonce %>” src=“main.8e56a2a77fee2657fb91.js” defer></script>

 <!— Bootstrap the Twitter code according to https://developer.twitter.com/en/docs/

twitter-for-websites/javascript-api/guides/set-up-twitter-for-websites —>

 <script nonce=“<%= nonce %>”>

 window.twttr = (function(d, s, id) {

 ...

 }(document, “script”, “twitter-wjs”));

 </script>

</body>

</html>

At first glance, running a dynamic server for serving an SPA seems quite
complicated. However, if you take a closer look, the Express server is quite
simple. Additionally, it is completely stateless, making it easy to deploy as
a stateless function on various cloud platforms.

Note that only the main HTML file needs to be served dynamically. All other
resources, such as JS or CSS files, can still be served statically.

To summarize, serving index.html dynamically enables the use
of nonces and ’strict-dynamic’.

The Ultimate Guide to CSP63

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Overview of CSP for SPAs

In a nutshell, deploying modern CSP policies with SPAs is perfectly feasible,
albeit with a bit more effort than you would expect.

In this chapter, we covered two scenarios: isolated applications and
more complex applications with dynamic code loading. We recap our
recommendations for both scenarios below.

Isolated applications without third-party components

Use a simple ’self’ policy that approves the application’s origin. Note that
this policy is only secure if nothing else is hosted in the application’s origin.

Applications relying on third-party components

To enable the use of ’strict-dynamic’, initial scripts must be approved
with a hash or a nonce. To use hashes, the SPA’s main page has to be
rewritten at build time but can be served statically. To use nonces, the
SPA’s main page requires slight modifications at build time and has to be
dynamically served by a web server.

Cheat sheet: Enabling CSP for SPAs

The following cheat sheet summarizes what you learned about enabling
CSP for SPAs:

The Ultimate Guide to CSP64

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

The Ultimate Guide to CSP65

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Conclusion

To conclude, deploying CSP in SPAs sounds daunting but is not that
complicated. Once the main application bundle has been approved by
a hash or a nonce, ’strict-dynamic’ handles all of the heavy lifting, even
when using typical SPA features such as lazy loading.

Using a hash or a nonce takes a bit of effort in picking the most appropriate
deployment model for your type of application. Both options we discussed
in this part are valid and viable options and are used in practice by
applications serving millions of customers.

In the next part, we dive into practical considerations for deploying CSP,
such as reporting and report-only policies.

Part 4 :
Deploying CSP in Practice

The Ultimate Guide to CSP67

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Deploying CSP in Practice

In the previous parts of this ebook, we dove deep into the world of CSP.
We discussed what you can do with CSP, analyzed two real-world CSP
policies, and discussed challenges and solutions for deploying CSP
in Single Page Applications.

In this final part, we explore practical guidelines to deploy CSP in practice,
starting from nothing. We discuss how to use the powerful reporting
feature. We conclude this part (and this ebook) with a prioritized CSP
deployment guide, helping you focus on the right things to deploy your
first CSP policy.

Deploying CSP in Report-Only Mode
Imagine this. You have used the guidance in this ebook to set up a CSP
policy for your application. It all seems to work on your machine. But what
happens if you deploy this CSP policy in production? Will it work on your
user’s machines? Will it work on every browser? And more importantly,
what happens if it doesn’t work?

In essence, a lot of uncertainty with potentially disastrous consequences.
A misconfigured CSP policy will likely break the entire application,
potentially for many users. With that picture in mind, we’re ready to talk
about one of the remarkable features of CSP: running a policy
in report-only mode.

The Ultimate Guide to CSP68

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Using CSP’s Report-only mode

You can tell a browser to run a CSP policy in report-only mode. This means
that the browser will take your CSP policy, process it, and ensure that all
application features are compatible with the policy. If the browser finds
a violation, it will raise the necessary warnings and errors. However, unlike
the examples we covered in the previous chapters, the browser only
reports the problem. The actual violation is not blocked.

Concretely, if the browser finds an unauthorized script block or script file,
it will generate a warning, but it will not prevent the code from loading
or executing.

To configure a report-only policy, the server sends the browser a CSP
policy using the Content-Security-Policy-Report-Only header instead
of the Content-Security-Policy header. The snippet below illustrates
this configuration.

Report-only mode is the perfect way to test a policy without breaking
the application. However, we still need a piece of the puzzle. Generating
warnings and errors in the developer tools is helpful for local development,
but how can you learn about errors generated in the user’s browser? That’s
where the report-uri directive comes in.

Content-Security-Policy-Report-Only:

 script-src ‘self’;

 object-src ‘none’;

 base-uri ‘self’;

 report-uri /reporting/csp

The Ultimate Guide to CSP69

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

CSP reporting in detail

You may have noticed that the earlier sample policy contained
a report-uri directive. This directive includes a URL that identifies
an endpoint where the browser can send reports about policy violations.
The snippet below shows a sample report from one of our demo
applications.

As you can see, the browser compiles a report in JSON format. The report
contains information about the location of the violation, the policy that
triggered the violation, and the type of violation. These reports are sent
automatically when report-uri is enabled.

{

 “csp-report”:{

 “document-uri”:”https://example.com”,

 “referrer”:””,

 “violated-directive”:”script-src-elem”,

 “effective-directive”:”script-src-elem”,

 “original-policy”:”script-src ‘self’; object-src ‘none’; base-uri

‘self’; report-uri /reporting/csp”,

 “disposition”:”report”,

 “blocked-uri”:”inline”,

 “line-number”:10,

 “source-file”:”https://example.com”,

 “status-code”:200,

 “script-sample”:””

 }

}

The Ultimate Guide to CSP70

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

The reporting endpoint for handling CSP reports is straightforward.
It accepts an incoming POST request with a JSON body and handles
the data as desired. Typically, reports are logged in a data store for later
consumption. Consumption of reports can be manual (e.g., through
a dashboard) or automatic (e.g., analysis scripts). Note that most security
information products have built-in support for CSP endpoints.

A final interesting tidbit about reporting is asking the browser to include
a sample of the inline code block that caused the violation.

When ‘report-sample’ is added to the script-src directive, the browser
will include the first 40 characters of the code block. This helps perform a
n investigation into the cause of the violation. If you can find the inline code
block that matches the snippet, you know exactly where it came from.
If it is legitimate, it should be authorized to load. Otherwise, CSP has likely
stopped an attack, and you should investigate this further.

Summary

Report-only mode is the best way to try out your first CSP policy in
the real world without causing any disruptions for your users. You can
keep tweaking your policy in report-only mode until you’re happy. Once
everything looks good, you can deploy the policy in blocking mode using
the regular Content-Security-Policy header.

The Ultimate Guide to CSP71

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

CSP Reporting in Blocking Mode

A CSP policy that is running in blocking mode can still trigger violations.
For example, when an attacker tries to exploit an XSS vulnerability, the
policy is supposed to raise an error and stop the script from executing.

Note that all of this happens behind the scenes in the user’s browser.
But with CSP reporting, you can instruct the user’s browser to send you
a report about the violation. This way, you can learn about the violation
and investigate the potential cause, such as a misconfiguration or an actual
XSS vulnerability.

The snippet below shows a CSP policy in blocking mode,
with reporting enabled.

CSP reporting is a great way to gain insights into the behavior of your
application in the user’s browser. However, you should not go on a wild
goose chase when you see a single violation report. Reporting is valuable
but not necessarily very accurate.

For example, browser extensions often modify content on a page, which
can trigger a violation of your CSP policy. Unfortunately, adjusting a CSP
policy to allow arbitrary extension behavior is not feasible. In fact, browser
extensions often modify CSP policies, in which case the violation is caused
by a policy that’s not yours. This blog post by Dropbox gives a bit more
insight into the challenges of running a CSP reporting endpoint
in the real world.

Content-Security-Policy:

 script-src ‘self’ ‘report-sample’;

 object-src ‘none’;

 base-uri ‘self’;

 report-uri /reporting/csp

https://dropbox.tech/security/on-csp-reporting-and-filtering

The Ultimate Guide to CSP72

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Finally, the CSP reporting endpoint is unauthenticated and publicly
accessible. An attacker could easily supply fake CSP reports to the
endpoint to confuse the security team.

As a consequence, we recommend enabling CSP reporting and monitoring
incoming reports. However, following up on reports is likely only warranted
when many users produce the same report or if the report can be traced
back to a potential attack vector in the application. Filtering and finetuning
are essential to reduce the noise in the feed.

The Ultimate Guide to CSP73

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

A Prioritized CSP Deployment Guide

We’re reaching the end of this ebook on CSP, and what a journey
it has been.

We started by discussing CSP’s ability to act as a second line of defense
against cross-site scripting. After that, we explored how to use CSP to
control various other types of content and behavior. Our Google and GitHub
case studies illustrated two very different types of CSP policies, each with
its pros and cons. Next, we looked into using CSP in modern Single Page
Apps. And in this final part, we investigated CSP reporting and the powerful
report-only mode.

But where does that leave you? How do you even get started with CSP?
What should you focus on first?

All good questions that we’ll answer in this final section, where we provide
you with a prioritized CSP deployment guide. This guide helps you get
started with deploying CSP for a modern application. Of course, your
mileage may vary depending on your needs.

It’s mostly about XSS

The most important capability of CSP is stopping or limiting the exploitation
of an XSS vulnerability. That’s precisely what Google’s CSP policy focuses
on. So, if you’re starting with CSP, forget about all the other types
of content. You can always handle them later.

Your first CSP policy should configure script-src to fit your application.
You also need to add base-uri and object-src, which can likely
be configured with respectively ‘self’ and ‘none’ values.

The Ultimate Guide to CSP74

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Try it out

You can easily try out a CSP policy on a development version of the
application. However, if you want to see your policy in action, deploy it as
a report-only policy. This will give you a good idea of what you can expect.

Flip the switch to blocking mode

When you are happy with your report-only policy, you can consider
transforming it into a blocking policy by changing the name of the response
header. No worries if you get something wrong. You can easily remove
or modify the CSP header afterward.

Congratulate yourself

If you succeeded in deploying a strict CSP policy in blocking mode without
causing any side effects, you did great. You have now successfully
deployed a second line of defense against XSS, which is no small feat.

Add additional defenses

Frontend applications are supposed to have protections against UI
redressing attacks in place. The easiest way to enable these is by adding
a frame-ancestors directive to your CSP policy.

Further finetune your CSP policy

If you prefer, you can keep finetuning your CSP policy to cover other types
of content as well. To be honest, the benefits of doing so are quite limited
compared to the secondary defense against XSS attacks. Additionally,
it will make the policy a lot more fragile, so be careful when you go down
this path.

The Ultimate Guide to CSP75

au
th

0.
co

m

 |
 ©

 A
ut

h0
 2

02
3

Conclusion

We’ve reached the end of this ebook, and there’s not much left to say.
The most important piece of advice we can give you now is to go out and
get your hands dirty with CSP. Try it out and see how it can work for you.
CSP has much to offer, and the key is to figure out what pieces work for
you. You can be Google, GitHub, or somewhere in between.

Finally, if this ebook has helped you understand CSP and deploy CSP in
your applications, don’t hesitate to give us a shout-out. We’re stoked to see
folks taking app security seriously, and we can’t wait to hear from you!

