
CHERI+MTE Non-Orthogonal
Composition

2024/06

Wes Filardo, Microsoft Azure

1

1

CHERI Temporal Safety Implementations

Technology Architectural Basis Permits UAF? Invariants

Never free memory Nothing special “No” All objects created immortal

CheriOS
(extended MIPS64)

Capability load instruction
rejects single region of VA

Yes; caps to free AS can
persist arbitrarily

Impossible to hold pointer
into designated VA region

Cornucopia
(MIPS64, RV64, & Morello)

Track & trap on cap flow
per PTE, on stores

Yes; caps to free AS exist
until end of next epoch

Any cap in need of
revocation is on a page
flagged “dirty”

Cornucopia Reloaded
(RV64 & Morello)

Track & trap on cap flow
per PTE, on stores & loads

Yes; caps to free AS exist
until start of next epoch

All valid caps point to objects
live as of epoch start

CHERIoT
(extended RV32)

Load-capability instruction
probes quarantine

No Impossible to hold pointer to
free AS.

Cornucopia Reloaded
with MTE

Extant per-PTE track/trap;
MTE & new MTE authority

No; MTE recolor prevents
access to AS until revoked

All valid caps of right MTE
color point to live objects

2

Let’s quickly survey the emerging landscape of technologies and implementations of
temporal safety atop CHERI.

1. One approach, the simplest, is to never free memory. It’s pretty good: no
architectural requirements, it does not permit UAF (or UAR), and it’s very easy to
explain.

2. The earliest I know of is the implementation in Esswood’s CheriOS. This extended
the CHERI-MIPS64 processor with system registers and comparators on the
capability load path: capabilities pointing into the bounds designated by the
registers would have their tag stripped on load. The allocator and operating
system worked to detect the single largest region of free VA space and would
periodically perform revocation by programming this region into these registers
before subjecting all threads to a context switch and every capability in memory
to a load and conditional atomic store (of itself). This seeming identity function
served to have the side effect of deleting every capability pointing into the
programmed region.

Once revocation began, user programs could not load (and so could not

2

propagate) pointers into the designated region. On the other hand, capabilities to
a particular location of freed address space could persist arbitrarily far into the
future, since that location was not guaranteed to be part of a swept region.

3. Cornucopia was born as a data-structure trick using existing security mechanisms
in CHERI-MIPS64, specifically its ability to designate pages as trapping on
capability stores. Similar, but generally more efficient, mechanisms also exist on
CHERI-RISCV-64 and Morello hardware PTWs. Using this architectural foundation,
Cornucopia tracks the flow of capabilities to pages as they are stored and
maintains the invariant that any capability in potential need of revocation is on a
page considered “capability dirty.” UAF is possible due to the use of a large, batch
quarantine as well as the use of store-based tracking: pointers into quarantine
persist until revocation is finished. On the other hand, revocation is global, so all
of quarantine is made available at once.

4. Cornucopia Reloaded explores extending the architecture with additional
capability flow intercept points, specifically adding the ability to mark a page as
triggering traps when a (tagged) capability is loaded from it. (The store tracking
mechanism of Cornucopia is still present, but it now merely tells us which pages
may contain capabilities and does not participate directly in the revocation sweep
per se.) This allows us to strengthen the invariant of the system: all valid
capabilities observable by userspace point to objects that were live as of the start
of the last revocation “epoch,” and so userspace cannot propagate capabilities
not yet checked for revocation. The use of quarantine, however, still necessitates
distinguishing UAF from UAR.

5. Most recently, these ideas have entered CHERIoT, which avails itself of a relatively
unique design permitted by being a small single-core system. In this approach,
capabilities referencing quarantined address space are invalidated by the
capability load instruction itself, which is able to read the (architectural)
quarantine state. This closes the UAF/UAR distinction: as soon as free() returns, it
is impossible to load a pointer to the freed object. (And because free() is a cross-
compartment function call, all registers are spilled and reloaded or explicitly
updated as part of the call and return sequence, and so the register file also holds
no capabilities to freed memory.)

The purpose of this CHERI+MTE exploration is to get us something with many of the
observable properties of the CHERIoT approach while being feasibly implemented on
a much larger, multi-core machine. Especially, we are after finally closing the
UAF/UAR distinction on these larger machines. We expect to be able to do this in a
way that increases performance relative to the Cornucopia (Reloaded) approaches –

2

making it much closer to the CHERI baseline – while also permitting simplification of
malloc implementations and the use of more clever quarantine strategies.

2

CHERI+MTE In One Slide

• MSR is pursuing a non-orthogonal composition of CHERI and MTE (not just CHERI w/ TBI addresses for MTE)

• “Lock and key” memory story, now with ability to destroy the key (CHERI) or change the lock (MTE)

• MTE colors still physical (one per physical address granule, no additional indirection visible to EL0/1/2)

• Extends CHERI provenance and monotonic authority model onto MTE colors themselves

• Dedicated instructions for manipulating MTE colors in RAM and caps

• Promising consequences to both uarch and software:

• Relieves MTE of spatial concerns; simplifies CHERI’s temporal concerns

• MTE color values can now be fully public without loss of security

• New light-weight semi-synchronous trapping mode justified by C language semantics

3

3

Caveats

• Proposal here emerged from heap temporal safety work; other use cases much less explored

• Assumes Cornucopia-style revocation available

• Unclear exactly where is the right place to steal bits in a CHERI cap for MTE bits.
• Unclear implications for capability encoding and capability getter / setter instructions

• Tracking discussion for CGetAddr vs CToPtr vs as integer alias vs CGetLow (github.com)

4

4

https://github.com/CTSRD-CHERI/cheri-specification/wiki/Tracking-discussion-for-CGetAddr-vs-CToPtr-vs-as-integer-alias-vs-CGetLow

Heap Allocator Use Case

5

Capability (allocator-owned)

Shared HeapCapability color

Memory granule color

Allocator (TCB)

Client (untrusted)

Capability (allocated object)

Capability (allocated object)

Capability (freed object)

Recolor-on-
free to close
UAF window

CHERI makes
same-color

neighbors OK

MTE augments each pointer and memory granule with a “color”. In CHERI, color bits
are part of the capability metadata, and so protected against corruption.

1) On allocation, allocator derives bounded, colored capability to heap memory and
grants this to the client.
The distinguished “rainbow” color value is allowed to derive capabilities of any
color and change the color of memory.
Other colors can only produce the same color progeny and cannot change
memory’s color.

2) The client is then free to use the derived capability, and eventually frees it.

3) The allocator uses its elevated authority to recolor memory, preventing the
client’s valid capability from reaching memory. (Can zero memory itself with
little/no additional cost at the same time.)

4) Recolor-on-free closes UAF window, which gives a better debugging story, and
enables secure in-band metadata, simplifying allocator design. (More on that in a
moment.)

5

5) CHERI handles the spatial safety concerns, so adjacent heap objects can have the
same color without loss of security.

6) Re-allocation proceeds as last time, with the allocator constructing a new
capability of the right color for the client. (Any in-band metadata cleared before
return.)

7) Clients cannot change the color of their capabilities, nor can they recolor memory.

• Mismatching loads trap; data dependence may delay retirement of subsequent
independent instructions, but no other costs.
Mismatching stores can fizzle: can retire immediately and will be dropped from the
store buffer rather than updating in L1. Some complexity around store-to-load
forwarding (wait, don’t trap, if colors mismatch?), but should hide latency of fetch
for color comparison.

• A purpose-built atomic compare-and-decrement-color instruction catches would-
be double-frees and handles concurrent interaction with the revocation.

• Even 1-bit “scaled down” MTE has useful security properties (closes UAF window)
and simplifies software design (allows in-band metadata) but loses performance
win of delayed revocation

5

Extending CHERI Authority to MTE

CHERI capabilities represent the authority to perform some action. MTE impacts:

1. Constructing capabilities must obey a new “colors stick” rule:
• Monochromatic caps have only equal-color descendants
• Any progeny of rainbow caps may be either rainbow or monochromatic

2. Load/store of colors from/to memory requires a rainbow authority capability

3. Load/store of data must also satisfy either:
• Rainbow authorizing cap
• Equal colors in authorizing cap and memory

6

CHERI capabilities represent authority to perform actions. This hybridization of CHERI
and MTE has introduced new things upon which actions may be performed, and so
must extend CHERI’s notion of authority to these things.

1. When building a new capability from another, we have to say how the progeny’s
color field can be changed relative to its parent. We introduce a “colors stick”
rule, which says that any progeny of a monochromatic capability must inherit
their color from their parent, while rainbow capabilities may give rise to either
rainbow or monochromatic capabilities.

2. When attempting to access the MTE colors for a granule of memory, the authority
capability must be a rainbow capability, in addition to satisfying all the other
CHERI and system requirements for dereferencing that granule.

3. When attempting an ordinary data dereference, the authorizing capability must
either be a rainbow capability or have color matching the granule’s current color,
with the color comparison being interpreted the same way as value comparison in
atomic CAS.

6

Quarantined

Colouring & Revocation

7

Free

AllocatedRecolour
last colour

malloc

free

reuse

revoke

Putting everything together, CHERI and memory colouring let us give out spatially-
bounded pointers to heap objects at particular colours.

1. When those objects are freed, we can recolour their backing memory, invalidating
pointers to the freed object.

2. If we have not exhausted the colour space, memory can be queued for reuse
immediately, including in-band metadata (more in a slide)!

3. When we have exhausted the colour space for a given piece of memory, it is
instead unmapped, if possible, and the address space held in quarantine.

4. Only when we are close to exhausting address space or when mapped memory is
sufficiently fragmented must we run the revoker, which then makes address space
safe for reuse.

Therefore, address space enters quarantine at a significantly reduced rate: 1/(ncolor-
1) of the rate without MTE. A 4-bit MTE scheme lets us accumulate quarantine at a
15th the pace, and so with the same quarantine size, we need to revoke a 15th as

7

often, or we could have a 15th the quarantine and revoke at the current pace, or
some other tradeoff.

7

CHERI+MTE Allocator Optimization

• Unforgeability of colors in capabilities => security can depend on MTE

• Allocators like to use free space for free lists
• Requires active defenses: OOB metadata or obfuscation of in-band metadata

• Recolor-on-free closing UAF window => removes need for defenses!

8

1) Now that MTE colors are part of the protected CHERI capability metadata, we can
rely on them for system security.

2) Using free space for free lists makes a great deal of sense; however, by turning
free into a tacit reallocation, it opens the door to UAF/UAR attacks on the
allocator itself, frequently giving rise to very powerful “write what where”
primitives.
Thus, “hardening” allocators often means moving metadata out of band entirely
or engaging in some kind of secret-based, checkable obfuscation of in-band
metadata, all of which requires cycles and/or risks the existence of a disclosure
vulnerability or suitable gadget.

3) But recoloring on free means that our implicit reallocation is just as protected
from tampering as an actual allocation would be, so we are free to go back to
using un-obfuscated, in-band metadata, so long as we remove it before exposing
the memory to the client again.
There is, of course, cost to recoloring, but it is probably equivalent to the cost of
zeroing, another thing we should be doing in hardened allocators.

8

These security benefits of CHERI+MTE exist for any positive number of bits; additional
bits just slow the rate at which address space enters quarantine. If convenient for
uarch, could imagine CHERI+MTE as 1+3 bits per physical granule, for example.

8

Relaxed MTE Behavior

• C object model: Assume every pointer from malloc() is to distinct memory.

• Heap reuse model: MTE mismatch permanent not ephemeral; mismatches fatal.

• Proposed MTE behavior: “mismatched loads trap, mismatched stores fizzle”
• Loads act like poisoned ECC (& limited imprecision?)

• Stores to mis-colored memory are silently discarded
• CPU pipeline able to fire-and-forget stores after translation: no post-translation store fault.

• Some subtlety for store-load forwarding

• A little more state in caches to hide latency

9

1) The C object model lets us get away with revocation because not only is the use
of a free pointer UB, the value of a freed pointer is also undefined. Every return
from malloc() can be, and is, magically, assumed to not alias with any other
return.

2) In order to enforce that lack of aliasing, Cornucopia imposed quarantine on free
pointers until revocation. Here, we’re using MTE colors to defer revocation,
effectively quarantining (virtual address, color) pairs and only quarantining the VA
once the colors are exhausted. That is, MTE mismatch is permanent until
revocation, and mismatching dereferences are always fatal. Contrast translation
faults, which are caught and routinely suppressed by system software.

3) Putting all that together, we propose the a “loads trap, stores fizzle” mode for
MTE:

• Loads, which wait for the memory subsystem anyway, now might trap
later, but this is already available in some uarch-es apparently without a
huge amount of pain, in the guise of poisoned ECC results.

• Since software cannot load through the pointer obtained from malloc to
see the consequence of any store, we let mismatching stores proceed and

9

fizzle in the memory hierarchy.
• Store buffer or caches hide fetch-and-compare latency
• Store buffer must not unconditionally forward stored data or write

to L1$ until colors are confirmed to match memory (unless
forwarded-to instructions also check colors or unless auth cap was
rainbow, in which case the stores can be forwarded and write-
allocate as usual).

9

Revoker Page Sweep w/ MTE

10

…

4K page being swept

…

Load cap, get trusted MTE value & trusted base

Load MTE value at base, CAS NULL if mismatch

Process VA
Data MTE

• Intended software policy
• any capability with mismatching, non-rainbow MTE color might get its tag cleared at any moment.
• non-rainbow caps to unmapped addresses (no associated MTE color) also revoked.

• All (heap) temporal safety state is now architectural!

Rather than needing a bitmap to articulate quarantine (as in Cornucopia and
Cornucopia Reloaded), we can use the MTE bits themselves.

Revocation now eliminates all capabilities whose color mismatches the memory color
at their base. We rely on the non-TCB’s inability to change memory colors and
monotonicity of the base (if the capability has non-zero range, then the base is
somewhere within the original allocation). If the page being pointed to has been
unmapped, the load either will soft fault in a zero page of some color, if the page is
released but the AS reservation remains, or will hard fault, if the reservation has been
torn down; in the latter case, capabilities will be revoked regardless of color.

Slightly wasteful with the “always quarantine after N colors” policy: concurrent
revocation may have cleared more colors that could be used. However, doing better
seems like it would be expensive, requiring snapshots of color state as of the start of
the most recent revocation? If that could be done, address space could enter
quarantine at an even slower pace, as each revocation sweep could buy back some
colors even in non-quarantined regions.

10

Proposed Instructions

Mnemonic Synopsis

CGetMTE rd, cs Copy color of cap in cs into rd

CSetMTE cd, cs, rs Derive a rs-colored cap into cd from rainbow cap in cs

CLoadMTE rd, cs Load color from *cs to rd
Requirements: cs tagged, unsealed, load-bearing, MTE-aligned, rainbow

CStoreMTEAndZero rs, cs Recolor *cs to rs and zero *cs data
Requirements: cs tagged, unsealed, store-bearing, MTE-aligned, rainbow

CAMOCDecMTE rd, cs1, cs2 Atomic Conditional Decrement color of *cs1 (details on next slide)

11

Mnemonic Synopsis Uses

CStoreMTE rs, cs Recolor *cs to rs w/o altering data Inter-compartment move elision

CLoadMTEAsUser rd, cs EL1/2 accessing EL0 ignoring PAN Revoker probe of colors

Minimal core:

Extras:

There is no “random tag except for these” selection instruction or such, because we
rely on CHERI spatial safety to isolate adjacent objects and on revocation to
determinize the use of colors.

For CStoreMTE, CStoreMTEAndZero, and any other “store MTE color” opcodes we
want, David has made a cute observation:
• Since (MTE granule size in bytes) >= (MTE colors available), we can store MTE

colors in the low bits of addresses of authorizing capabilities.
• That is, “CStoreMTE rs, cs” could be encoded as “CIncOffset cs, cs, rs; CStoreMTE

cs” (assuming sufficient alignment of cs.address at the start.

11

Atomic Conditional Decrement??

• free(p) needs to guard against double free, concurrent free, and concurrent revocation

• Allocator maps p to rainbow capability r to a heap object by rederiving from heap root(s).
• r may have different address from p, if free accepts interior pointers; r points to first word of allocation.

• Atomically, test that p is tagged (& permissive) and has the same color as memory *r…

• If p is a UAF from a free in a previous revocation epoch, it will be untagged.

• If p is a UAF and its memory is not yet de-quarantined, the colors will not match.

• … and, if so, recolor granule at *r to lower color.

• Rules out subsequent and concurrent attempts to free p (or any other address within this object).

• Allocator will next recolor and zero the rest of the object (using non-atomic CStoreMTEAndZero).

12

1) Added challenge for snmalloc: without taking locks.

2) Presently we map offset-0 and interior pointers p for a given object all to the
same r, so that we don’t have to worry about accidental recoloring of
intermediate words.

3) The instruction performs “just enough” testing on p to know that it hasn’t been
revoked; in particular, the bounds of p are not checked, only those of r.

4) Because we’re using every color once, we don’t need to specify the target color as
an input operand; instead, we just let the instruction decrement the color.
We use 0 as the concrete rainbow value, too, so decrement has a very natural feel
to it: colors count down until quarantine.

12

Open Questions

• Is this generalizable outside the heap?

• Overheads orthogonal between CHERI and MTE? How cheap is both?
• Is “loads traps, stores fizzle” as viable as it seems?

• PTE bit? “Store MTE” permission?
• Expedient for prototyping, but maybe that’s all it’s for.

• Capability encoding: 60-bit address field?

• …?

13

13

	Slide 1: CHERI+MTE Non-Orthogonal Composition
	Slide 2: CHERI Temporal Safety Implementations
	Slide 3: CHERI+MTE In One Slide
	Slide 4: Caveats
	Slide 5: Heap Allocator Use Case
	Slide 6: Extending CHERI Authority to MTE
	Slide 7: Colouring & Revocation
	Slide 8: CHERI+MTE Allocator Optimization
	Slide 9: Relaxed MTE Behavior
	Slide 10: Revoker Page Sweep w/ MTE
	Slide 11: Proposed Instructions
	Slide 12: Atomic Conditional Decrement??
	Slide 13: Open Questions

