
An introduction to task documents,
schemas, and emmet
Introduction
If you have been running-workflows, you are now starting to generate data. atomate2 stores both
input and output data for every step of its workflows in Task Documents. Task Documents define
a schema or structure for organizing information from different types of calculations, which then
facilitates automatic processing with tools like emmet or maggma . This tutorial will familiarize you
with these basic concepts.

Objectives
Understand how atomate2 stores and organizes calculation data
Expain the meaning of a “Document Model” or schema
Inspect a TaskDoc generated by atomate2

Prerequisites
To complete this tutorial, you need

A working installation of atomate2
(optional) to complete the running workflows tutorial.

How atomate2 stores and organizes data.
As explained in Configure calculation output database, atomate2 stores the results of every Job in
a database. More specifically, atomate2 uses a maggma.Store to interface with a data storage
backend (usually MongoDB). Data is stored in a JSON -like or python dict -like format, which you
can think of as a list of dictionaries, where each dictionary represents one Job . Each dictionary in
the list is called a “document”, so “document” refers to the output data from a single Job .

To facilitate automated processing and analysis, it’s important that every document follows a
consistent format. That’s where schemas (also called “Document Models”) come in.

Document Models
Schema for Job

An introduction to task documents, schemas, and emmet - atomate2 file://///wsl.localhost/Ubuntu/home/ryan/mambaforge/envs/skagit/code...

1 of 11 7/12/2024, 9:05 AM

Schema for Job
Document models define a specific format (i.e., structure and data types) for a given Job or
calculation. atomate2 uses pydantic to define these schemas. If you’d like to learn more about
pydantic , we suggest reading this introduction. In brief, every Document Model in atomate2 is an
instance of pydantic.BaseModel . The BaseModel is then turned into a dict (serialized) before being
inserted into the store.

To understand how this works, we are going to look at the output data from a structural
relaxation for Si. If we examine the docs store after running this Job , we will see something
similar to the following:

This document follows a schema (JobStoreDocument , defined here) that contains information
about the Job , such as:

uuid : a unique identifier for the Job
output : The actual job output (e.g., calculation results). We’ll examine this in the next section.
completed_at : The time the job was completed.
name : The name of the job (in this case “relax” because we did a structure relaxation)
@module , @class , @version : These keys store the specific origin and version of the document
model so that it can be easily re-created from the dict .

Because every atomate2 document is first created as a JobStoreDocument before being inserted
into the database, you can be assured that every Job you run will contain these keys. Document
Models have the additional benefit of validating the data types, so for example, name is
guaranteed to a str , whereas index is guaranteed to be a int .

[

{"uuid":"c2b5eb7d‐838b‐4dee‐896f‐95f21867b62b",

"index":1,

"output":{...},

"completed_at":"2024‐05‐19T17:13:46.400349",

"metadata":{},

"hosts":["dbaebabf‐134d‐426a‐b91c‐15abf799da65"],

"name":"relax",

"@module":"jobflow.core.schemas",

"@class":"JobStoreDocument",

"@version":"0.1.17"

},

]

An introduction to task documents, schemas, and emmet - atomate2 file://///wsl.localhost/Ubuntu/home/ryan/mambaforge/envs/skagit/code...

2 of 11 7/12/2024, 9:05 AM

Schema for output
The output data for the calculation itself (the contents of the Job) are stored in the output key.
The schema of output will vary depending on the type of calculation (e.g., VASP relaxation,
Q-Chem static, etc.), but will always be consistent for a particular Job type. In the case of a
VASP calculation, the schema is called a TaskDoc .

That being said, most Job types have a few features in common, which we will highlight in our
example. If we look at the top-level keys of output from the JobStoreDocument in the previous
section, we see:

Even though we are looking at an example for a VASP calculations, atomate2 uses hierarchichal
or modular Document Models wherever possible. Therefore, the Task Documents generated
for other calculation types have the same general structure (e.g., inputs , outputs , structure
metadata, custodian , orig_inputs , calcs_reversed , etc.)

{

"builder_meta": {...}

"nsites": 2,

"elements": ["Si"],

"nelements": 1,

"composition": {"Si": 2},

"composition_reduced": {"Si": 1},

"formula_pretty": "Si",

"formula_anonymous": "A",

"chemsys": "Si",

"volume": 40.163300666862035,

"density": 2.3223723738160613,

"density_atomic": 20.081650333431018,

"symmetry": {...},

"tags": null,

"dir_name": "/scratch/gpfs/.../job_2024‐05‐19‐21‐13‐15‐058677‐64911",

"state": "successful",

"calcs_reversed": [...],

"structure": {...},

"task_type": "Structure Optimization",

"task_id": null,

"orig_inputs": {...},

"input": {...},

"output": {...},

"@module": "emmet.core.tasks",

"@class": "TaskDoc",

"@version": null

}

An introduction to task documents, schemas, and emmet - atomate2 file://///wsl.localhost/Ubuntu/home/ryan/mambaforge/envs/skagit/code...

3 of 11 7/12/2024, 9:05 AM

We describe many of these top-level keys in more detail in the following subsections.

Structure Metadata
The root level of the TaskDoc has keys containing basic structural information including:

nsites : The number of sites
composition : Full composition for the material.
elements : List of elements in the material.
formula_pretty : Cleaned representation of the formula.
chemsys : dash-delimited string of elements in the material.

And more. These keys illustrate another principle of Document Models – they are hierarchical.
Specifically, the structure metadata keys are populated by another pydantic schema called
StructureMetadata defined in emmet . So the TaskDoc schema comprises several subsidiary models
that organize different types of information, as discussed further below.

structure

The structure key contains the final output structure of the calculation as a serialized
pymatgen.Structure object.

builder_meta

The builder_meta key contains information about the software used to generate the data in the
TaskDoc . Here is the example from our structure relaxation:

"structure": {

"@module": "pymatgen.core.structure",

"@class": "Structure",

"charge": 0,

"lattice": {...},

"properties": {},

"sites": [...]

}

"builder meta": {

An introduction to task documents, schemas, and emmet - atomate2 file://///wsl.localhost/Ubuntu/home/ryan/mambaforge/envs/skagit/code...

4 of 11 7/12/2024, 9:05 AM

Calculation metadata: dir_name , run_stats , task_label , and task_type
task_label : A user-definable label for the specific calculation
task_type : A standardized label specifying the specific type of calculation being performed.
dir_name : The path of the directory in which input/output files were written
run_stats : Information about the walltime, cpu time, and computational resources utilized.

Calculation Inputs
atomate2 stores a record of not just the outputs of a calculation, but also the inputs, and any
modifications that were made to those inputs.

The input key contains the complete, final input data for the calculation. It’s schema is
defined by InputDoc and includes everything one needs to specify a VASP calculation: a
Structure object, INCAR settings, Pseudopotential specifications, etc. Let’s just look at the top-
level keys of our input section:

builder_meta : {

"emmet_version": "0.83.0",

"pymatgen_version": "2024.4.13",

"pull_request": null,

"database_version": null,

"build_date": "2024‐05‐19T21:13:45.541000",

"license": null

}

"task_type": "Structure Optimization",

"task_label": "relax",

"dir_name": "della‐r3c1n3:/scratch/gpfs/ab6989/MPScanRelaxSet/atomate2/Ca_Mg_runs/job_2024‐05‐1

"run_stats": {

"average_memory": 0,

"max_memory": 241584,

"elapsed_time": 18.833,

"system_time": 1.114,

"user_time": 16.166,

"total_time": 17.28,

"cores": 40

}

"input": {

"structure": {...},

"parameters": {...},

"pseudo_potentials": {...},

"potcar_spec": [...],

"xc_override": "PS",

"is_lasph": true,

An introduction to task documents, schemas, and emmet - atomate2 file://///wsl.localhost/Ubuntu/home/ryan/mambaforge/envs/skagit/code...

5 of 11 7/12/2024, 9:05 AM

Calculation Outputs
Much like input , the output key is populated by a nested schema called OutputDoc . OutputDoc
captures key summary information about the final result of a VASP calculation, including the
Structure , final energy, energy_per_atom , and bandgap . In our example:

_ p

"is_hubbard": false,

"hubbards": {},

"magnetic_moments": [

0.6,

0.6

]

},

"output": {

"structure": {...},

"density": 2.3223723738160613,

"energy": ‐11.48288783,

"forces": [

[

0,

0,

0

],

[

0,

0,

0

]

],

"stress": [

[

0.04088458,

0,

0

],

[

0,

0.04088458,

0

],

[

0,

0,

0.04088458

]

],

"energy_per_atom": ‐5.741443915,

An introduction to task documents, schemas, and emmet - atomate2 file://///wsl.localhost/Ubuntu/home/ryan/mambaforge/envs/skagit/code...

6 of 11 7/12/2024, 9:05 AM

custodian and orig_inputs
There is also a key called orig_inputs that contains the original inputs given by the user when
the calculation was launched. It is possible for input and orig_inputs to differ if custodian is
invoked to apply some adjustment to the calculation settings. orig_inputs is retained to provide
100% transparent provenance in such cases.

In addition, there is a custodian key that will capture and list any corrections or changes made by
custodian during the calculation, as well as additional metadata. In our case, the
custodian.corrections list is empty, which means that no modifications or restarts were made.

calcs_reversed

Most Task Documents also contain a key called calcs_reversed which, as the name implies,
contains calculation inputs and outputs in reverse order. These are stored as a list , so index
[0] corresponds to the last (most recent) calculation, whereas index [‐1] is the first calculation.

"bandgap": 0.45999999999999996

},

"custodian": [

{

"corrections": [],

"job": {

"@module": "custodian.vasp.jobs",

"@class": "VaspJob",

"@version": "2024.4.18",

"vasp_cmd": [

"srun",

"/scratch/gpfs/ab6989/MPScanRelaxSet/atomate2/vasp_std"

],

"output_file": "vasp.out",

"stderr_file": "std_err.txt",

"suffix": "",

"final": true,

"backup": true,

"auto_npar": false,

"auto_gamma": true,

"settings_override": null,

"gamma_vasp_cmd": [

"vasp_gam"

],

"copy_magmom": false,

"auto_continue": false

}

}

],

An introduction to task documents, schemas, and emmet - atomate2 file://///wsl.localhost/Ubuntu/home/ryan/mambaforge/envs/skagit/code...

7 of 11 7/12/2024, 9:05 AM

[0] corresponds to the last (most recent) calculation, whereas index [1] is the first calculation.
Each element in the list contains input , output , dir_name , and other keys that give a complete
specification of that calculation step.

In this example, there is only one element in calcs_reversed , because we just did a one-step Job .
However, more complex workflows that contain multiple individual calculations would have an
entry for each step.

"calcs_reversed": [

{ "dir_name": "/scratch/gpfs/.../job_2024‐05‐19‐21‐13‐15‐058677‐64911",

"vasp_version": "6.4.2",

"has_vasp_completed": "successful",

"input": {

"incar": {...},

"kpoints": {...},

"nkpoints": 20,

"potcar": ["PAW_PBE"],

"potcar_spec": [...],

"potcar_type": ["PAW_PBE"],

"parameters": {...},

"lattice_rec": {...},

"structure": {...},

"is_hubbard": false,

"hubbards": {}

},

"output": {

"energy": ‐11.48288783,

"energy_per_atom": ‐5.741443915,

"structure": { },

"efermi": 5.96853235,

"is_metal": false,

"bandgap": 0.45999999999999996,

"cbm": 6.2225,

"vbm": 5.7625,

"is_gap_direct": false,

"direct_gap": 2.5146000000000006,

"transition": "(0.000,0.000,0.000)‐(0.429,0.429,‐0.000)",

"mag_density": ‐1.2698159551931228e‐7,

"epsilon_static": null,

"epsilon_static_wolfe": null,

"epsilon_ionic": null,

"frequency_dependent_dielectric": {

"real": null,

"imaginary": null,

"energy": null

},

"ionic_steps": [...],

"force_constants": null,

"normalmode frequencies": null,

An introduction to task documents, schemas, and emmet - atomate2 file://///wsl.localhost/Ubuntu/home/ryan/mambaforge/envs/skagit/code...

8 of 11 7/12/2024, 9:05 AM

There is some redundancy in the information stored in input , output , and calcs_reversed , but
this is by design. input and output capture summary information about the first and last steps of
the Job , whereas calcs_reversed records practically every detail of all the intermediate steps.

emmet

_ q ,

"normalmode_eigenvals": null,

"normalmode_eigenvecs": null,

"elph_displaced_structures": {

"temperatures": null,

"structures": null

},

"dos_properties": {...},

"run_stats": {

"average_memory": 0,

"max_memory": 241584,

"elapsed_time": 18.833,

"system_time": 1.114,

"user_time": 16.166,

"total_time": 17.28,

"cores": 40

}

},

"completed_at": "2024‐05‐19 17:13:34.897366",

"task_name": "standard",

"output_file_paths": {

"chgcar": "CHGCAR",

"aeccar0": "AECCAR0",

"aeccar1": "AECCAR1",

"aeccar2": "AECCAR2"

},

"bader": null,

"ddec6": null,

"run_type": "PBESol",

"task_type": "Structure Optimization",

"calc_type": "PBESol Structure Optimization"

},

]

An introduction to task documents, schemas, and emmet - atomate2 file://///wsl.localhost/Ubuntu/home/ryan/mambaforge/envs/skagit/code...

9 of 11 7/12/2024, 9:05 AM

Materials Project and Community document models
Most document models used by atomate2 “live” in a separate package called emmet (or more
specifically, emmet‐core), which is installed by default as a dependency of atomate2 . In general,
mature document models that are used in the Materials Project website or database are
developed in emmet , whereas some document models that are more niche or are in earlier stages
of development may exist in atomate2 itself.

Here is a partial listing of the codes and calculation types currently supported in emmet‐core :

VASP Structure optimization, static calculation,

Code-agnostic document models for analysis
So far, we have introduced Document Models as a way of parsing input and output data from a
specific calculation software (VASP). However, document models are also useful for capturing
data from “downstream” analysis that is not dependent on the specific code used to generate the
data. Hence, many document models in emmet‐core are agnostic or independent of the
specific software used in the initial calculation.

To take a simple example, emmet‐core contains a schema called ElectronicStructureSummaryData
that stores the band_gap , conduction band minimum (cbm), valence band maximum (vbm), and
Fermi level (e_fermi):

Clearly, this simple document model could be used to store output from any periodic DFT code.

Builders

class ElectronicStructureBaseData(BaseModel):

task_id: MPID = Field(

...,

description="The source calculation (task) ID for the electronic structure data. "

"This has the same form as a Materials Project ID.",

)

band_gap: float = Field(..., description="Band gap energy in eV.")

cbm: Optional[Union[float, Dict]] = Field(

None, description="Conduction band minimum data."

)

vbm: Optional[Union[float, Dict]] = Field(

None, description="Valence band maximum data."

)

efermi: Optional[float] = Field(None, description="Fermi energy in eV.")

An introduction to task documents, schemas, and emmet - atomate2 file://///wsl.localhost/Ubuntu/home/ryan/mambaforge/envs/skagit/code...

10 of 11 7/12/2024, 9:05 AM

Builders
emmet‐core also defines Builder classes, which take raw calculation results (e.g., the TaskDoc)
from our example, perform some analysis or transformation, and then create new document
models in additional Store . This paradigm makes it possible to construct automated data
processing pipelines, and is the basis for how the Materials Project database. For more about
how builders and stores work together, see the maggma documentation.

Conclusion
In this tutorial, you learned

To see what workflows can be run, see the List of VASP workflows. They can be set up and run in
the same way as in this tutorial.

At this point, you might:

Learn how to chain workflows together: Chaining workflows.
Learn how to customise VASP input settings: Modifying input sets.
Configure atomate2 with FireWorks to manage and execute many workflows at once: Using
atomate2 with FireWorks.

Copyright © 2023, materialsproject
Made with Furo

An introduction to task documents, schemas, and emmet - atomate2 file://///wsl.localhost/Ubuntu/home/ryan/mambaforge/envs/skagit/code...

11 of 11 7/12/2024, 9:05 AM

