(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *) (* *) (* This file has been automatically generated by FeynRules. *) (* *) (* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *) FR$ModelInformation={ ModelName->"Top_philic_ALP", Authors -> {"S. Tentori"}, Version -> "2.0", Date -> "15. 06. 2023", Institutions -> {"UCLouvain, CP3"}, Emails -> {"simone.tentori@uclouvain.be", "simone.tentori98@gmail.com"}}; FR$ClassesTranslation={A -> V[1], Z -> V[2], W -> V[3], G -> V[4], ghA -> U[1], ghZ -> U[2], ghWp -> U[3], ghWm -> U[4], ghG -> U[5], ve -> F[1], vm -> F[2], vt -> F[3], e -> F[4], mu -> F[5], ta -> F[6], u -> F[7], c -> F[8], t -> F[9], d -> F[10], s -> F[11], b -> F[12], H -> S[1], G0 -> S[2], GP -> S[3], ax -> S[4]}; FR$InteractionOrderPerturbativeExpansion={{NP, 0}, {QCD, 0}, {QED, 0}}; FR$GoldstoneList={S[2], S[3]}; (* Declared indices *) IndexRange[ Index[Gluon] ] = NoUnfold[ Range[ 8 ] ] IndexRange[ Index[SU2W] ] = Range[ 3 ] IndexRange[ Index[Generation] ] = Range[ 3 ] IndexRange[ Index[Colour] ] = NoUnfold[ Range[ 3 ] ] IndexRange[ Index[SU2D] ] = Range[ 2 ] (* Declared particles *) M$ClassesDescription = { V[1] == { SelfConjugate -> True, PropagatorType -> Sine, PropagatorArrow -> None, Mass -> 0, Indices -> {}, PropagatorLabel -> "A" }, V[2] == { SelfConjugate -> True, PropagatorType -> Sine, PropagatorArrow -> None, Mass -> MZ, Indices -> {}, PropagatorLabel -> "Z" }, V[3] == { SelfConjugate -> False, QuantumNumbers -> {Q}, PropagatorType -> Sine, PropagatorArrow -> Forward, Mass -> MW, Indices -> {}, PropagatorLabel -> "W" }, V[4] == { SelfConjugate -> True, PropagatorType -> Cycles, PropagatorArrow -> None, Mass -> 0, Indices -> {Index[Gluon]}, PropagatorLabel -> "G" }, U[1] == { SelfConjugate -> False, QuantumNumbers -> {GhostNumber}, PropagatorType -> GhostDash, PropagatorArrow -> Forward, Mass -> 0, Indices -> {}, PropagatorLabel -> "ghA" }, U[2] == { SelfConjugate -> False, QuantumNumbers -> {GhostNumber}, PropagatorType -> GhostDash, PropagatorArrow -> Forward, Mass -> MZ, Indices -> {}, PropagatorLabel -> "ghZ" }, U[3] == { SelfConjugate -> False, QuantumNumbers -> {GhostNumber, Q}, PropagatorType -> GhostDash, PropagatorArrow -> Forward, Mass -> MW, Indices -> {}, PropagatorLabel -> "ghWp" }, U[4] == { SelfConjugate -> False, QuantumNumbers -> {GhostNumber, -Q}, PropagatorType -> GhostDash, PropagatorArrow -> Forward, Mass -> MW, Indices -> {}, PropagatorLabel -> "ghWm" }, U[5] == { SelfConjugate -> False, QuantumNumbers -> {GhostNumber}, PropagatorType -> GhostDash, PropagatorArrow -> Forward, Mass -> 0, Indices -> {Index[Gluon]}, PropagatorLabel -> "ghG" }, F[1] == { SelfConjugate -> False, QuantumNumbers -> {LeptonNumber}, PropagatorType -> Straight, PropagatorArrow -> Forward, Mass -> 0, Indices -> {}, PropagatorLabel -> "ve" }, F[2] == { SelfConjugate -> False, QuantumNumbers -> {LeptonNumber}, PropagatorType -> Straight, PropagatorArrow -> Forward, Mass -> 0, Indices -> {}, PropagatorLabel -> "vm" }, F[3] == { SelfConjugate -> False, QuantumNumbers -> {LeptonNumber}, PropagatorType -> Straight, PropagatorArrow -> Forward, Mass -> 0, Indices -> {}, PropagatorLabel -> "vt" }, F[4] == { SelfConjugate -> False, QuantumNumbers -> {-Q, LeptonNumber}, PropagatorType -> Straight, PropagatorArrow -> Forward, Mass -> Me, Indices -> {}, PropagatorLabel -> "e" }, F[5] == { SelfConjugate -> False, QuantumNumbers -> {-Q, LeptonNumber}, PropagatorType -> Straight, PropagatorArrow -> Forward, Mass -> MMU, Indices -> {}, PropagatorLabel -> "mu" }, F[6] == { SelfConjugate -> False, QuantumNumbers -> {-Q, LeptonNumber}, PropagatorType -> Straight, PropagatorArrow -> Forward, Mass -> MTA, Indices -> {}, PropagatorLabel -> "ta" }, F[7] == { SelfConjugate -> False, QuantumNumbers -> {(2*Q)/3}, PropagatorType -> Straight, PropagatorArrow -> Forward, Mass -> MU, Indices -> {Index[Colour]}, PropagatorLabel -> "u" }, F[8] == { SelfConjugate -> False, QuantumNumbers -> {(2*Q)/3}, PropagatorType -> Straight, PropagatorArrow -> Forward, Mass -> MC, Indices -> {Index[Colour]}, PropagatorLabel -> "c" }, F[9] == { SelfConjugate -> False, QuantumNumbers -> {(2*Q)/3}, PropagatorType -> Straight, PropagatorArrow -> Forward, Mass -> MT, Indices -> {Index[Colour]}, PropagatorLabel -> "t" }, F[10] == { SelfConjugate -> False, QuantumNumbers -> {-Q/3}, PropagatorType -> Straight, PropagatorArrow -> Forward, Mass -> MD, Indices -> {Index[Colour]}, PropagatorLabel -> "d" }, F[11] == { SelfConjugate -> False, QuantumNumbers -> {-Q/3}, PropagatorType -> Straight, PropagatorArrow -> Forward, Mass -> MS, Indices -> {Index[Colour]}, PropagatorLabel -> "s" }, F[12] == { SelfConjugate -> False, QuantumNumbers -> {-Q/3}, PropagatorType -> Straight, PropagatorArrow -> Forward, Mass -> MB, Indices -> {Index[Colour]}, PropagatorLabel -> "b" }, S[1] == { SelfConjugate -> True, PropagatorType -> ScalarDash, PropagatorArrow -> None, Mass -> MH, Indices -> {}, PropagatorLabel -> "H" }, S[2] == { SelfConjugate -> True, PropagatorType -> ScalarDash, PropagatorArrow -> None, Mass -> MZ, Indices -> {}, PropagatorLabel -> "G0" }, S[3] == { SelfConjugate -> False, QuantumNumbers -> {Q}, PropagatorType -> ScalarDash, PropagatorArrow -> None, Mass -> MW, Indices -> {}, PropagatorLabel -> "GP" }, S[4] == { SelfConjugate -> True, PropagatorType -> ScalarDash, PropagatorArrow -> None, Mass -> Ma, Indices -> {}, PropagatorLabel -> "ax" } } (* Definitions *) GaugeXi[ V[1] ] = GaugeXi[A]; GaugeXi[ V[2] ] = GaugeXi[Z]; GaugeXi[ V[3] ] = GaugeXi[W]; GaugeXi[ V[4] ] = GaugeXi[G]; GaugeXi[ U[1] ] = GaugeXi[A]; GaugeXi[ U[2] ] = GaugeXi[Z]; GaugeXi[ U[3] ] = GaugeXi[W]; GaugeXi[ U[4] ] = GaugeXi[W]; GaugeXi[ U[5] ] = GaugeXi[G]; GaugeXi[ S[1] ] = 1; GaugeXi[ S[2] ] = GaugeXi[Z]; GaugeXi[ S[3] ] = GaugeXi[W]; GaugeXi[ S[4] ] = GaugeXi[S[100]]; MZ[ ___ ] := MZ; MW[ ___ ] := MW; Me[ ___ ] := Me; MMU[ ___ ] := MMU; MTA[ ___ ] := MTA; MU[ ___ ] := MU; MC[ ___ ] := MC; MT[ ___ ] := MT; MD[ ___ ] := MD; MS[ ___ ] := MS; MB[ ___ ] := MB; MH[ ___ ] := MH; Ma[ ___ ] := Ma; TheLabel[ V[4, {__}] ] := TheLabel[V[4]]; TheLabel[ U[5, {__}] ] := TheLabel[U[5]]; TheLabel[ F[7, {__}] ] := TheLabel[F[7]]; TheLabel[ F[8, {__}] ] := TheLabel[F[8]]; TheLabel[ F[9, {__}] ] := TheLabel[F[9]]; TheLabel[ F[10, {__}] ] := TheLabel[F[10]]; TheLabel[ F[11, {__}] ] := TheLabel[F[11]]; TheLabel[ F[12, {__}] ] := TheLabel[F[12]]; (* Couplings (calculated by FeynRules) *) M$CouplingMatrices = { C[ S[2] , S[2] , S[2] , S[2] ] == {{(-6*I)*lam, 0}}, C[ S[2] , S[2] , S[3] , -S[3] ] == {{(-2*I)*lam, 0}}, C[ S[3] , S[3] , -S[3] , -S[3] ] == {{(-4*I)*lam, 0}}, C[ S[2] , S[2] , S[1] , S[1] ] == {{(-2*I)*lam, 0}}, C[ S[3] , -S[3] , S[1] , S[1] ] == {{(-2*I)*lam, 0}}, C[ S[1] , S[1] , S[1] , S[1] ] == {{(-6*I)*lam, 0}}, C[ S[2] , S[2] , S[1] ] == {{(-2*I)*lam*vev, 0}}, C[ S[3] , -S[3] , S[1] ] == {{(-2*I)*lam*vev, 0}}, C[ S[1] , S[1] , S[1] ] == {{(-6*I)*lam*vev, 0}}, C[ S[3] , -S[3] , V[1] , V[1] ] == {{(2*I)*EL^2, 0}}, C[ S[3] , -S[3] , V[1] ] == {{(-I)*gc11, 0}, {I*gc11, 0}}, C[ -U[1] , U[4] , V[3] ] == {{I*gc12, 0}, {I*gc12, 0}, {0, 0}}, C[ -U[1] , U[3] , -V[3] ] == {{I*gc13, 0}, {I*gc13, 0}, {0, 0}}, C[ -S[3] , -U[4] , U[1] ] == {{(EL^2*vev)/(2*sw), 0}}, C[ -U[4] , U[1] , -V[3] ] == {{I*gc15, 0}, {I*gc15, 0}, {0, 0}}, C[ S[2] , -U[4] , U[4] ] == {{-(EL^2*vev)/(4*sw^2), 0}}, C[ S[1] , -U[4] , U[4] ] == {{((-I/4)*EL^2*vev)/sw^2, 0}}, C[ -U[4] , U[4] , V[1] ] == {{I*gc18, 0}, {I*gc18, 0}, {0, 0}}, C[ -U[4] , U[4] , V[2] ] == {{I*gc19, 0}, {I*gc19, 0}, {0, 0}}, C[ -S[3] , -U[4] , U[2] ] == {{(EL^2*(cw - sw)*(cw + sw)*vev)/(4*cw*sw^2), 0}}, C[ -U[4] , U[2] , -V[3] ] == {{I*gc21, 0}, {I*gc21, 0}, {0, 0}}, C[ S[3] , -U[3] , U[1] ] == {{-(EL^2*vev)/(2*sw), 0}}, C[ -U[3] , U[1] , V[3] ] == {{I*gc23, 0}, {I*gc23, 0}, {0, 0}}, C[ S[2] , -U[3] , U[3] ] == {{(EL^2*vev)/(4*sw^2), 0}}, C[ S[1] , -U[3] , U[3] ] == {{((-I/4)*EL^2*vev)/sw^2, 0}}, C[ -U[3] , U[3] , V[1] ] == {{I*gc26, 0}, {I*gc26, 0}, {0, 0}}, C[ -U[3] , U[3] , V[2] ] == {{I*gc27, 0}, {I*gc27, 0}, {0, 0}}, C[ S[3] , -U[3] , U[2] ] == {{-(EL^2*(cw - sw)*(cw + sw)*vev)/(4*cw*sw^2), 0}}, C[ -U[3] , U[2] , V[3] ] == {{I*gc29, 0}, {I*gc29, 0}, {0, 0}}, C[ S[3] , -U[2] , U[4] ] == {{(EL^2*(cw^2 + sw^2)*vev)/(4*cw*sw^2), 0}}, C[ -U[2] , U[4] , V[3] ] == {{I*gc31, 0}, {I*gc31, 0}, {0, 0}}, C[ -S[3] , -U[2] , U[3] ] == {{-(EL^2*(cw^2 + sw^2)*vev)/(4*cw*sw^2), 0}}, C[ -U[2] , U[3] , -V[3] ] == {{I*gc33, 0}, {I*gc33, 0}, {0, 0}}, C[ S[1] , -U[2] , U[2] ] == {{((-I/4)*EL^2*(cw^2 + sw^2)^2*vev)/(cw^2*sw^2), 0}}, C[ -U[5, {e1x1}] , U[5, {e2x1}] , V[4, {e3x2}] ] == {{gc35*SUNF[e3x2, e1x1, e2x1], 0}, {gc35*SUNF[e3x2, e1x1, e2x1], 0}, {0, 0}}, C[ V[4, {e1x2}] , V[4, {e2x2}] , V[4, {e3x2}] ] == {{-(gc36*SUNF[e1x2, e2x2, e3x2]), 0}, {gc36*SUNF[e1x2, e2x2, e3x2], 0}, {gc36*SUNF[e1x2, e2x2, e3x2], 0}, {-(gc36*SUNF[e1x2, e2x2, e3x2]), 0}, {-(gc36*SUNF[e1x2, e2x2, e3x2]), 0}, {gc36*SUNF[e1x2, e2x2, e3x2], 0}}, C[ V[4, {e1x2}] , V[4, {e2x2}] , V[4, {e3x2}] , V[4, {e4x2}] ] == {{(-I)*gc37*(SUNF[e1x2, e2x2, e3x2, e4x2] + SUNF[e1x2, e3x2, e2x2, e4x2]), 0}, {I*gc37*(SUNF[e1x2, e2x2, e3x2, e4x2] - SUNF[e1x2, e4x2, e2x2, e3x2]), 0}, {I*gc37*(SUNF[e1x2, e3x2, e2x2, e4x2] + SUNF[e1x2, e4x2, e2x2, e3x2]), 0}}, C[ -F[12, {e1x2}] , F[9, {e2x2}] , -S[3] ] == {{gc38L*IndexDelta[e1x2, e2x2], 0}, {gc38R*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[10, {e1x2}] , F[7, {e2x2}] , -S[3] ] == {{gc39L*IndexDelta[e1x2, e2x2], 0}, {gc39R*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[11, {e1x2}] , F[8, {e2x2}] , -S[3] ] == {{gc40L*IndexDelta[e1x2, e2x2], 0}, {gc40R*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[12, {e1x2}] , F[12, {e2x2}] , S[2] ] == {{gc41L*IndexDelta[e1x2, e2x2], 0}, {gc41R*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[10, {e1x2}] , F[10, {e2x2}] , S[2] ] == {{gc42L*IndexDelta[e1x2, e2x2], 0}, {gc42R*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[11, {e1x2}] , F[11, {e2x2}] , S[2] ] == {{gc43L*IndexDelta[e1x2, e2x2], 0}, {gc43R*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[12, {e1x2}] , F[12, {e2x2}] , S[1] ] == {{I*gc44*IndexDelta[e1x2, e2x2], 0}, {I*gc44*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[10, {e1x2}] , F[10, {e2x2}] , S[1] ] == {{I*gc45*IndexDelta[e1x2, e2x2], 0}, {I*gc45*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[11, {e1x2}] , F[11, {e2x2}] , S[1] ] == {{I*gc46*IndexDelta[e1x2, e2x2], 0}, {I*gc46*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[4] , F[1] , -S[3] ] == {{gc47, 0}, {0, 0}, {0, 0}, {0, 0}}, C[ -F[5] , F[2] , -S[3] ] == {{gc48, 0}, {0, 0}, {0, 0}, {0, 0}}, C[ -F[6] , F[3] , -S[3] ] == {{gc49, 0}, {0, 0}, {0, 0}, {0, 0}}, C[ -F[4] , F[4] , S[2] ] == {{gc50L, 0}, {gc50R, 0}, {0, 0}, {0, 0}}, C[ -F[5] , F[5] , S[2] ] == {{gc51L, 0}, {gc51R, 0}, {0, 0}, {0, 0}}, C[ -F[6] , F[6] , S[2] ] == {{gc52L, 0}, {gc52R, 0}, {0, 0}, {0, 0}}, C[ -F[4] , F[4] , S[1] ] == {{I*gc53, 0}, {I*gc53, 0}, {0, 0}, {0, 0}}, C[ -F[5] , F[5] , S[1] ] == {{I*gc54, 0}, {I*gc54, 0}, {0, 0}, {0, 0}}, C[ -F[6] , F[6] , S[1] ] == {{I*gc55, 0}, {I*gc55, 0}, {0, 0}, {0, 0}}, C[ -F[8, {e1x2}] , F[11, {e2x2}] , S[3] ] == {{gc56L*IndexDelta[e1x2, e2x2], 0}, {gc56R*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[9, {e1x2}] , F[12, {e2x2}] , S[3] ] == {{gc57L*IndexDelta[e1x2, e2x2], 0}, {gc57R*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[7, {e1x2}] , F[10, {e2x2}] , S[3] ] == {{gc58L*IndexDelta[e1x2, e2x2], 0}, {gc58R*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[8, {e1x2}] , F[8, {e2x2}] , S[2] ] == {{gc59L*IndexDelta[e1x2, e2x2], 0}, {gc59R*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[9, {e1x2}] , F[9, {e2x2}] , S[2] ] == {{gc60L*IndexDelta[e1x2, e2x2], 0}, {gc60R*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[7, {e1x2}] , F[7, {e2x2}] , S[2] ] == {{gc61L*IndexDelta[e1x2, e2x2], 0}, {gc61R*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[8, {e1x2}] , F[8, {e2x2}] , S[1] ] == {{I*gc62*IndexDelta[e1x2, e2x2], 0}, {I*gc62*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[9, {e1x2}] , F[9, {e2x2}] , S[1] ] == {{I*gc63*IndexDelta[e1x2, e2x2], 0}, {I*gc63*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ -F[7, {e1x2}] , F[7, {e2x2}] , S[1] ] == {{I*gc64*IndexDelta[e1x2, e2x2], 0}, {I*gc64*IndexDelta[e1x2, e2x2], 0}, {0, 0}, {0, 0}}, C[ S[2] , -S[3] , V[1] , V[3] ] == {{((-I/2)*EL^2)/sw, 0}}, C[ -S[3] , S[1] , V[1] , V[3] ] == {{-EL^2/(2*sw), 0}}, C[ -S[3] , V[1] , V[3] ] == {{-(EL^2*vev)/(2*sw), 0}}, C[ S[2] , -S[3] , V[3] ] == {{(-I)*gc68, 0}, {I*gc68, 0}}, C[ -S[3] , S[1] , V[3] ] == {{-gc69, 0}, {gc69, 0}}, C[ V[1] , V[3] , -V[3] ] == {{(-I)*gc70, 0}, {I*gc70, 0}, {I*gc70, 0}, {(-I)*gc70, 0}, {(-I)*gc70, 0}, {I*gc70, 0}}, C[ S[2] , S[3] , V[1] , -V[3] ] == {{((-I/2)*EL^2)/sw, 0}}, C[ S[3] , S[1] , V[1] , -V[3] ] == {{EL^2/(2*sw), 0}}, C[ S[3] , V[1] , -V[3] ] == {{(EL^2*vev)/(2*sw), 0}}, C[ S[2] , S[3] , -V[3] ] == {{(-I)*gc74, 0}, {I*gc74, 0}}, C[ S[3] , S[1] , -V[3] ] == {{-gc75, 0}, {gc75, 0}}, C[ S[2] , S[2] , V[3] , -V[3] ] == {{((I/2)*EL^2)/sw^2, 0}}, C[ S[3] , -S[3] , V[3] , -V[3] ] == {{((I/2)*EL^2)/sw^2, 0}}, C[ S[1] , S[1] , V[3] , -V[3] ] == {{((I/2)*EL^2)/sw^2, 0}}, C[ S[1] , V[3] , -V[3] ] == {{((I/2)*EL^2*vev)/sw^2, 0}}, C[ V[1] , V[1] , V[3] , -V[3] ] == {{(-I)*gc80, 0}, {(-I)*gc80, 0}, {(2*I)*gc80, 0}}, C[ V[3] , -V[3] , V[2] ] == {{(-I)*gc81, 0}, {I*gc81, 0}, {I*gc81, 0}, {(-I)*gc81, 0}, {(-I)*gc81, 0}, {I*gc81, 0}}, C[ V[3] , V[3] , -V[3] , -V[3] ] == {{(-I)*gc82, 0}, {(-I)*gc82, 0}, {(2*I)*gc82, 0}}, C[ -F[1] , F[4] , S[3] ] == {{0, 0}, {gc83R, 0}, {0, 0}, {0, 0}}, C[ -F[2] , F[5] , S[3] ] == {{0, 0}, {gc84R, 0}, {0, 0}, {0, 0}}, C[ -F[3] , F[6] , S[3] ] == {{0, 0}, {gc85R, 0}, {0, 0}, {0, 0}}, C[ S[3] , -S[3] , V[1] , V[2] ] == {{(I*EL^2*(cw - sw)*(cw + sw))/(cw*sw), 0}}, C[ S[2] , S[1] , V[2] ] == {{-gc87, 0}, {gc87, 0}}, C[ S[3] , -S[3] , V[2] ] == {{(-I)*gc88, 0}, {I*gc88, 0}}, C[ S[2] , -S[3] , V[3] , V[2] ] == {{((I/2)*EL^2)/cw, 0}}, C[ -S[3] , S[1] , V[3] , V[2] ] == {{EL^2/(2*cw), 0}}, C[ -S[3] , V[3] , V[2] ] == {{(EL^2*vev)/(2*cw), 0}}, C[ S[2] , S[3] , -V[3] , V[2] ] == {{((I/2)*EL^2)/cw, 0}}, C[ S[3] , S[1] , -V[3] , V[2] ] == {{-EL^2/(2*cw), 0}}, C[ S[3] , -V[3] , V[2] ] == {{-(EL^2*vev)/(2*cw), 0}}, C[ V[1] , V[3] , -V[3] , V[2] ] == {{(-2*I)*gc95, 0}, {I*gc95, 0}, {I*gc95, 0}}, C[ S[2] , S[2] , V[2] , V[2] ] == {{((I/2)*EL^2*(cw^2 + sw^2)^2)/(cw^2*sw^2), 0}}, C[ S[3] , -S[3] , V[2] , V[2] ] == {{((I/2)*EL^2*(cw - sw)^2*(cw + sw)^2)/(cw^2*sw^2), 0}}, C[ S[1] , S[1] , V[2] , V[2] ] == {{((I/2)*EL^2*(cw^2 + sw^2)^2)/(cw^2*sw^2), 0}}, C[ S[1] , V[2] , V[2] ] == {{((I/2)*EL^2*(cw^2 + sw^2)^2*vev)/(cw^2*sw^2), 0}}, C[ V[3] , -V[3] , V[2] , V[2] ] == {{(-I)*gc100, 0}, {(-I)*gc100, 0}, {(2*I)*gc100, 0}}, C[ -F[12, {e1x2}] , F[12, {e2x2}] , S[4] ] == {{0, 0}, {0, 0}, {-(cb*IndexDelta[e1x2, e2x2])/(2*fa), 0}, {(cb*IndexDelta[e1x2, e2x2])/(2*fa), 0}}, C[ -F[9, {e1x2}] , F[9, {e2x2}] , S[4] ] == {{0, 0}, {0, 0}, {-(ct*IndexDelta[e1x2, e2x2])/(2*fa), 0}, {(ct*IndexDelta[e1x2, e2x2])/(2*fa), 0}}, C[ -F[4] , F[4] , V[1] ] == {{I*gc103, 0}, {I*gc103, 0}}, C[ -F[5] , F[5] , V[1] ] == {{I*gc104, 0}, {I*gc104, 0}}, C[ -F[6] , F[6] , V[1] ] == {{I*gc105, 0}, {I*gc105, 0}}, C[ -F[8, {e1x2}] , F[8, {e2x2}] , V[1] ] == {{I*gc106*IndexDelta[e1x2, e2x2], 0}, {I*gc106*IndexDelta[e1x2, e2x2], 0}}, C[ -F[9, {e1x2}] , F[9, {e2x2}] , V[1] ] == {{I*gc107*IndexDelta[e1x2, e2x2], 0}, {I*gc107*IndexDelta[e1x2, e2x2], 0}}, C[ -F[7, {e1x2}] , F[7, {e2x2}] , V[1] ] == {{I*gc108*IndexDelta[e1x2, e2x2], 0}, {I*gc108*IndexDelta[e1x2, e2x2], 0}}, C[ -F[12, {e1x2}] , F[12, {e2x2}] , V[1] ] == {{I*gc109*IndexDelta[e1x2, e2x2], 0}, {I*gc109*IndexDelta[e1x2, e2x2], 0}}, C[ -F[10, {e1x2}] , F[10, {e2x2}] , V[1] ] == {{I*gc110*IndexDelta[e1x2, e2x2], 0}, {I*gc110*IndexDelta[e1x2, e2x2], 0}}, C[ -F[11, {e1x2}] , F[11, {e2x2}] , V[1] ] == {{I*gc111*IndexDelta[e1x2, e2x2], 0}, {I*gc111*IndexDelta[e1x2, e2x2], 0}}, C[ -F[8, {e1x2}] , F[8, {e2x2}] , V[4, {e3x2}] ] == {{I*gc112*SUNT[e3x2, e1x2, e2x2], 0}, {I*gc112*SUNT[e3x2, e1x2, e2x2], 0}}, C[ -F[9, {e1x2}] , F[9, {e2x2}] , V[4, {e3x2}] ] == {{I*gc113*SUNT[e3x2, e1x2, e2x2], 0}, {I*gc113*SUNT[e3x2, e1x2, e2x2], 0}}, C[ -F[7, {e1x2}] , F[7, {e2x2}] , V[4, {e3x2}] ] == {{I*gc114*SUNT[e3x2, e1x2, e2x2], 0}, {I*gc114*SUNT[e3x2, e1x2, e2x2], 0}}, C[ -F[12, {e1x2}] , F[12, {e2x2}] , V[4, {e3x2}] ] == {{I*gc115*SUNT[e3x2, e1x2, e2x2], 0}, {I*gc115*SUNT[e3x2, e1x2, e2x2], 0}}, C[ -F[10, {e1x2}] , F[10, {e2x2}] , V[4, {e3x2}] ] == {{I*gc116*SUNT[e3x2, e1x2, e2x2], 0}, {I*gc116*SUNT[e3x2, e1x2, e2x2], 0}}, C[ -F[11, {e1x2}] , F[11, {e2x2}] , V[4, {e3x2}] ] == {{I*gc117*SUNT[e3x2, e1x2, e2x2], 0}, {I*gc117*SUNT[e3x2, e1x2, e2x2], 0}}, C[ -F[8, {e1x2}] , F[11, {e2x2}] , V[3] ] == {{I*gc118*IndexDelta[e1x2, e2x2], 0}, {0, 0}}, C[ -F[9, {e1x2}] , F[12, {e2x2}] , V[3] ] == {{I*gc119*IndexDelta[e1x2, e2x2], 0}, {0, 0}}, C[ -F[7, {e1x2}] , F[10, {e2x2}] , V[3] ] == {{I*gc120*IndexDelta[e1x2, e2x2], 0}, {0, 0}}, C[ -F[12, {e1x2}] , F[9, {e2x2}] , -V[3] ] == {{I*gc121*IndexDelta[e1x2, e2x2], 0}, {0, 0}}, C[ -F[10, {e1x2}] , F[7, {e2x2}] , -V[3] ] == {{I*gc122*IndexDelta[e1x2, e2x2], 0}, {0, 0}}, C[ -F[11, {e1x2}] , F[8, {e2x2}] , -V[3] ] == {{I*gc123*IndexDelta[e1x2, e2x2], 0}, {0, 0}}, C[ -F[1] , F[4] , V[3] ] == {{I*gc124, 0}, {0, 0}}, C[ -F[2] , F[5] , V[3] ] == {{I*gc125, 0}, {0, 0}}, C[ -F[3] , F[6] , V[3] ] == {{I*gc126, 0}, {0, 0}}, C[ -F[4] , F[1] , -V[3] ] == {{I*gc127, 0}, {0, 0}}, C[ -F[5] , F[2] , -V[3] ] == {{I*gc128, 0}, {0, 0}}, C[ -F[6] , F[3] , -V[3] ] == {{I*gc129, 0}, {0, 0}}, C[ -F[8, {e1x2}] , F[8, {e2x2}] , V[2] ] == {{I*gc130L*IndexDelta[e1x2, e2x2], 0}, {I*gc130R*IndexDelta[e1x2, e2x2], 0}}, C[ -F[9, {e1x2}] , F[9, {e2x2}] , V[2] ] == {{I*gc131L*IndexDelta[e1x2, e2x2], 0}, {I*gc131R*IndexDelta[e1x2, e2x2], 0}}, C[ -F[7, {e1x2}] , F[7, {e2x2}] , V[2] ] == {{I*gc132L*IndexDelta[e1x2, e2x2], 0}, {I*gc132R*IndexDelta[e1x2, e2x2], 0}}, C[ -F[12, {e1x2}] , F[12, {e2x2}] , V[2] ] == {{I*gc133L*IndexDelta[e1x2, e2x2], 0}, {I*gc133R*IndexDelta[e1x2, e2x2], 0}}, C[ -F[10, {e1x2}] , F[10, {e2x2}] , V[2] ] == {{I*gc134L*IndexDelta[e1x2, e2x2], 0}, {I*gc134R*IndexDelta[e1x2, e2x2], 0}}, C[ -F[11, {e1x2}] , F[11, {e2x2}] , V[2] ] == {{I*gc135L*IndexDelta[e1x2, e2x2], 0}, {I*gc135R*IndexDelta[e1x2, e2x2], 0}}, C[ -F[1] , F[1] , V[2] ] == {{I*gc136, 0}, {0, 0}}, C[ -F[2] , F[2] , V[2] ] == {{I*gc137, 0}, {0, 0}}, C[ -F[3] , F[3] , V[2] ] == {{I*gc138, 0}, {0, 0}}, C[ -F[4] , F[4] , V[2] ] == {{I*gc139L, 0}, {I*gc139R, 0}}, C[ -F[5] , F[5] , V[2] ] == {{I*gc140L, 0}, {I*gc140R, 0}}, C[ -F[6] , F[6] , V[2] ] == {{I*gc141L, 0}, {I*gc141R, 0}} } (* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *) (* Parameter replacement lists (These lists were created by FeynRules) *) (* FA Couplings *) M$FACouplings = { gc11 -> -EL, gc12 -> EL, gc13 -> -EL, gc15 -> EL, gc18 -> -EL, gc19 -> -((cw*EL)/sw), gc21 -> (cw*EL)/sw, gc23 -> -EL, gc26 -> EL, gc27 -> (cw*EL)/sw, gc29 -> -((cw*EL)/sw), gc31 -> (cw*EL)/sw, gc33 -> -((cw*EL)/sw), gc35 -> GS, gc36 -> -GS, gc37 -> -GS^2, gc38L -> yb, gc38R -> -yt, gc39L -> ydo, gc39R -> -yup, gc40L -> ys, gc40R -> -yc, gc41L -> -(yb/Sqrt[2]), gc41R -> yb/Sqrt[2], gc42L -> -(ydo/Sqrt[2]), gc42R -> ydo/Sqrt[2], gc43L -> -(ys/Sqrt[2]), gc43R -> ys/Sqrt[2], gc44 -> -(yb/Sqrt[2]), gc45 -> -(ydo/Sqrt[2]), gc46 -> -(ys/Sqrt[2]), gc47 -> ye, gc48 -> ym, gc49 -> ytau, gc50L -> -(ye/Sqrt[2]), gc50R -> ye/Sqrt[2], gc51L -> -(ym/Sqrt[2]), gc51R -> ym/Sqrt[2], gc52L -> -(ytau/Sqrt[2]), gc52R -> ytau/Sqrt[2], gc53 -> -(ye/Sqrt[2]), gc54 -> -(ym/Sqrt[2]), gc55 -> -(ytau/Sqrt[2]), gc56L -> yc, gc56R -> -ys, gc57L -> yt, gc57R -> -yb, gc58L -> yup, gc58R -> -ydo, gc59L -> yc/Sqrt[2], gc59R -> -(yc/Sqrt[2]), gc60L -> yt/Sqrt[2], gc60R -> -(yt/Sqrt[2]), gc61L -> yup/Sqrt[2], gc61R -> -(yup/Sqrt[2]), gc62 -> -(yc/Sqrt[2]), gc63 -> -(yt/Sqrt[2]), gc64 -> -(yup/Sqrt[2]), gc68 -> EL/(2*sw), gc69 -> -EL/(2*sw), gc70 -> EL, gc74 -> -EL/(2*sw), gc75 -> -EL/(2*sw), gc80 -> -EL^2, gc81 -> (cw*EL)/sw, gc82 -> EL^2/sw^2, gc83R -> -ye, gc84R -> -ym, gc85R -> -ytau, gc87 -> -(EL*(cw^2 + sw^2))/(2*cw*sw), gc88 -> -(cw*EL)/(2*sw) + (EL*sw)/(2*cw), gc95 -> (cw*EL^2)/sw, gc100 -> -((cw^2*EL^2)/sw^2), gc103 -> -EL, gc104 -> -EL, gc105 -> -EL, gc106 -> (2*EL)/3, gc107 -> (2*EL)/3, gc108 -> (2*EL)/3, gc109 -> -EL/3, gc110 -> -EL/3, gc111 -> -EL/3, gc112 -> GS, gc113 -> GS, gc114 -> GS, gc115 -> GS, gc116 -> GS, gc117 -> GS, gc118 -> EL/(Sqrt[2]*sw), gc119 -> EL/(Sqrt[2]*sw), gc120 -> EL/(Sqrt[2]*sw), gc121 -> EL/(Sqrt[2]*sw), gc122 -> EL/(Sqrt[2]*sw), gc123 -> EL/(Sqrt[2]*sw), gc124 -> EL/(Sqrt[2]*sw), gc125 -> EL/(Sqrt[2]*sw), gc126 -> EL/(Sqrt[2]*sw), gc127 -> EL/(Sqrt[2]*sw), gc128 -> EL/(Sqrt[2]*sw), gc129 -> EL/(Sqrt[2]*sw), gc130L -> (cw*EL)/(2*sw) - (EL*sw)/(6*cw), gc130R -> (-2*EL*sw)/(3*cw), gc131L -> (cw*EL)/(2*sw) - (EL*sw)/(6*cw), gc131R -> (-2*EL*sw)/(3*cw), gc132L -> (cw*EL)/(2*sw) - (EL*sw)/(6*cw), gc132R -> (-2*EL*sw)/(3*cw), gc133L -> -(EL*(3*cw^2 + sw^2))/(6*cw*sw), gc133R -> (EL*sw)/(3*cw), gc134L -> -(EL*(3*cw^2 + sw^2))/(6*cw*sw), gc134R -> (EL*sw)/(3*cw), gc135L -> -(EL*(3*cw^2 + sw^2))/(6*cw*sw), gc135R -> (EL*sw)/(3*cw), gc136 -> (EL*(cw^2 + sw^2))/(2*cw*sw), gc137 -> (EL*(cw^2 + sw^2))/(2*cw*sw), gc138 -> (EL*(cw^2 + sw^2))/(2*cw*sw), gc139L -> -(EL*(cw^2 - sw^2))/(2*cw*sw), gc139R -> (EL*sw)/cw, gc140L -> -(EL*(cw^2 - sw^2))/(2*cw*sw), gc140R -> (EL*sw)/cw, gc141L -> -(EL*(cw^2 - sw^2))/(2*cw*sw), gc141R -> (EL*sw)/cw};