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1 Executive Summary

1.1 Introduction

Tox is a peer-to-peer instant-messaging protocol that aims to provide secure messaging without relying on centralised

servers. The Tox project started in 2013. In 2017, Jason A. Donenfeld pointed out that Tox is vulnerable to a key

compromise impersonation attack [1] due to a flaw in the handshake protocol for establishing a shared secret keys

between the peers (see [2] for details).

In order to overcome this, Tobias Buchberger initiated the development of a new hanshake protocol for Tox, beginning

with his master's thesis [2]. This handshake is based on Noise [4], a widely used framework for building secure channel

protocols such as WhatsApp and WireGuard.

In this report, we provide a security analysis of the new Noise-based handshake for Tox [5], targeting the latest version

available at the time of the start of the analysis1 .

1.2 Scope of work

The scope of the analysis was limited to checking the new Noise-based handshake for the Tox protocol, and informally
to discuss the security guarantees provided with this new handshake. The analysis also included an inspection of the

implementation's code.

Note that the analysis was constrained by a time limit of 10 person-days (including reporting).

1commit 4f16bb2d0ace0bd890b4a7553b3986b742625297
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2 Preliminaries

2.1 Terminology

Throughout this report we will be referring to some cryptographic primitives often:

1. Key pair: A Diffie-Hellman key pair consisting of a private key and its corresponding public key.

2. DH(private_key, public_key): Performs a Diffie-Hellman exchange using a private_key and a

public_key, to derive a shared secret common to the party holding private_key, and the party holding the

private key corresponding to public_key.

3. HKDF(ck,ik,nb) : A Key Derivation Function (KDF) based on hash functions, that takes as input two keys ck

and ik, and a parameter nb, and returns nb number of keys.

4. ENC(k; n; p; ad): Performs Authenticated Encryption with Associated Data (AEAD). That is, it takes plaintext

p, and additional data ad, and encrypts it with key k and nonce n to generate an authenticated ciphertext. The

field that takes plaintext p, can also accept a vector of plaintexts.

5. DEC(k; n; c; ad): Performs Authenticated Decryption over the ciphertext c, using key k, nonce n, and

additional data ad.

6. H: A hash function that takes data of arbitrary length, and returns an output of HASHLEN bytes.

We also refer to the empty string by \epsilon, this is used for instance in ENC in the field that takes additional data,

when no additional data is associated to the plaintext being encrypted.

2.2 Tox

Here we provide a high-level description of the Tox protocol, targeting the parts that are relevant for the new handshake.

For more details about the Tox protocol, please refer to the corresponding documentation [3].

Within the Tox network, peers generate session keys using ephemeral keys, which are communicated in an encrypted

form through their respective long-term key pairs. The handshake for deriving session keys incorporates a cookie

mechanism. That is, a Peer A in Tox holds the following keys:

1. (S_A^pub, S_A^priv): A long term static pair of keys.

2. (DHT_A^pub, DHT_A^priv): A pair of keys used to derive the key used to encrypt the cookie request packets.

This pair is renewed every time the Tox instance is closed.

3. K_A^C: The key used to encrypt the cookies generated by Peer A.

Peer A also generates an ephemeral key pair (E_A^pub, E_A^priv) for each session with Peer B.
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The cookie created by Peer B for Peer A is of the form : C_B = N_B^C||ENC(K_B^C; N_B^C;t_B, S_A^pub,

DHT_A^pub; \epsilon) where N_B^C is a random nonce created by Peer B, and t_B is a timestamp marking the

time of the creation of the cookie.

The Tox handshake between Peers A and B starts with a cookie request, where Peer A sends a packet of

the form: DHT_A^pub, N_A^R, and the vector S_A^pub, pad, echoID, encrypted with key K_AB^R =

DH(DHT_A^priv,DHT_B^pub) and nonce N_A^R. pad is a string consisting of the concatenation of 32 bytes of

zeros, and echoID is a random number used to check the validity of the cookie response packets.

Peer B responds with a cookie response packet of the form: N_B^R, and the vector C_B, echoID, encrypted with the

key K_AB^R = DH(DHT_B^priv,DHT_A^pub) and nonce N_B^R. Peer A then creates a handshake packet that

includes C_B and sends it to Peer B. Peer A also includes C_A in the packet, so that Peer B can include it in its response

(if C_A is not sent here, Peer B would have to send a cookie request packet to Peer A).

The two peers proceed with the handshake, where the ephemeral public key of each peer is communicated to the other

peer, encrypted with the shared key generated from applying Diffie-Hellman over the long term static key pairs. The

handshake is terminated if either peer finds the cookie invalid upon verification, or a decryption fails. The cookie check

consists of verifying whether the Timestamp t exceeded the time limit (15 seconds), and verifying whether the static

public key included in the cookie belongs to a friend of the peer receiving the cookie (for more details about this, refer to

[3]). If the handshake completes, the shared key derived by the peers is K_AB^data = DH(E_A^priv, E_B^pub)

= DH(E_B^priv, E_A^pub). As was noted in [2], this handshake is vulnerable to a Key Compromise Impersonation

(KCI) attack. That is, if such an attack succeeds on Peer A, the attacker will be able to impersonate any other Peer B to

A. For more details about the attack, refer to [2].

2.3 Noise handshake

Noise [4] is a framework designed by Trevor Perrin, for establishing secure channel protocols. In Noise, we distinguish

two parties, an Initiator and a Responder. Each of these parties has a long-term static key pair and/or an ephemeral

key pair. At the end of the handshake, these keys are used to derive shared session keys that can be used to encrypt

transport messages. The core of the handshake involves Diffie-Hellman and the usage of a HKDF function.

The framework provides a set of handshake patterns that one can choose while designing an application based on

the Noise framework. A handshake pattern is composed of message patterns, which consist of a sequence of tokens
designated with a direction (Initiator to Responder or Responder to Initiator). These tokens determine which Diffie-

Hellman operations the parties perform, and which messages are exchanged. Messages consist of Diffie-Hellman public

keys, and payloads, whose content is application-specific.

The possible tokens in the Noise framework are:

1. "e" and "s": Indicate transmitting the ephemeral public key (for "e") or the static public key (for "s"), in

accordance with the token's direction, from the sender to the recipient.
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2. "ee", "es", "se", and "ss": Indicate performing a Diffie-Hellman operation, between either the Initiator

static or ephemeral key (determined by the first letter of the token), and the Responder static or ephemeral key

(determined by the second letter of the token).

The instantiation of the cryptographic primitives involved in the exchange is application specific. This includes the Diffie-

Hellman curve, the encryption scheme used to encrypt messages, and the hash function.

Each handshake pattern ensures some security properties for the handshake messages and the transport payloads.

These properties are defined in the Noise documentation as a source property, related to authentication of the sender

provided to the recipient, and a confidentiality property, related to the confidentiality provided to the sender. These

properties, as defined in Noise, can be determined from the tokens involved. Each handshake pattern also ensures

some level of identity hiding for the Initiator and Responder.

Noise handshake patterns have been formally analyzed [6], [7], [8], where more thorough analysis of the security

properties ensured by Noise has been conducted. Protocols using a handshake based on the Noise handshake patterns

have also been formally analyzed, such as the WireGuard protocol [9], [10], [11].

The NoiseIK pattern

Figure 1: The NoiseIK pattern
In the NoiseIK pattern (Figure 1), both the Initiator and the Responder possess static (S_A^pub, S_A^priv) and

ephemeral (E_A^pub, E_A^priv) key pairs. This pattern assumes that the Responder's static key has already been

sent out-of-band to the Initiator, thus the pattern initiates with a pre-message through the "s" token. The first message

from the Initiator to the Responder involves four tokens: "e", "es", "s", and "ss". Following this, the Responder

sends a message involving three tokens: "e", "ee", and "se". Subsequently, the parties can derive the session keys.

A detailed description of this pattern is given in Figure 2 The lines in blue refer to the computation done by both parties

(expressed through how the Initiator does it; the Responder does the same computation using the keys it has access to).
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Figure 2: The NoiseIK description
The fields protocol_name and prologue are application-specific. protocol_name refers to the name of the

NoiseIK instantiation, which is the concatenation of Noise_IK with the names of the Diffie-Hellman curve, the encryption

scheme, and hash function chosen. The concatenations are separated with an underscore (see next section for an

example).

The prologue is a field that can contain arbitrary data agreed upon by the Initiator and Responder, and h_0 is either the

concatenation of the protocol_name with zeros until the size reaches HASHLEN bytes (as described in the Figure 2),

or h_0 is the hash of protocol_name, if the size of this is larger than HASHLEN bytes.

Throughout the handshake, if data received from the other party fails to decrypt, the party failing to decrypt aborts the

protocol. At the end of the handshake, the session keys derived are T_A, T_B (one key for encrypting/decrypting

transport messages of the Initiator, and the other for encrypting/decrypting transport messages of the Responder).

For more details about the NoiseIK pattern, particularly its security guarantees, refer to [6], [7], [8].
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Figure 3: The NoiseIK based Tox handshake

2.4 Noise-based handshake for Tox

As mentioned earlier, the new handshake for Tox is based on NoiseIK. The full description of the handshake is given in

Figure 32 .

As to the cryptographic primitives chosen, the Diffie-Hellman curve chosen was Curve25519. Two encryption schemes

were chosen, one for the handshake messages, ChaChaPoly, and one for the transport messages, XChaChaPoly. 3 .

The hash function chosen was SHA512, which has a HASHLEN of 32 bytes.

The new handshake keeps the same cookie mechanism described in Section 2.2 of the old handshake, followed by

the NoiseIK handshake. For transport messages, the Initiator (resp. the Responder) sets the nonce of a message to

be the nonce of the previous message that they sent, incremented by one (resp. they sent), starting from a base nonce

generated randomly by the Initiator (resp. the Responder)4 .

The prologue is fixed to be the empty string, and h_0 is fixed as the protocol name, appended with zero bytes, until the

size of h_0 becomes that of HASHLEN bytes.

2Note that the protocol described in Figure 3 corresponds to commit 87f9c10942353bf108af483207c8b9cba60f90b, which contained some modifications over

the original commit on which we conducted the analysis; more details about these modifications are given in the report.

3Note that the usage of two encryption schemes happened as of commit d87f9c10942353bf108af483207c8b9cba60f90b, while the original commit contained

the usage of only one encryption scheme.

4For details about transport messages in Tox, refer to the documentation [3]. Analyzing transport messages was out of scope of this report.
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As for the payloads of the handshake messages, the one of the Initiator contains C_B created for it by the Responder,

and the C_A it created for the Responder. The payload also contains the base nonce chosen by the Initiator for the

encryption of the transport data (N_A^T). The payload of the Responder contains C_A that was created by the Initiator

for the Responder, and the base nonce chosen by the Responder for the encryption of transport data (N_B^T).

Also note that the ephemeral keys are generated before the cookie request is sent. However, there is a case where the

Responder generates the ephemeral keys after receiving the first packet of the Noise handshake from the Initiator. For

details about this, refer to [3].

10 Radically Open Security B.V.



3 Security analysis

3.1 The Noise exchange

The protocol described in Figure 3 corresponds to a Noise handshake. That is, the steps from calculating h_0 to

the session keys T_A and T_b, corresponding to the IK pattern of the Noise handshake. However, the Noise-based

handshake of Tox uses an additional encryption scheme for transport messages, XChaChaPoly, which has nonces of

192bits, in contrast to the Noise specifications of using one encryption scheme for both the handshake messages and

transport data, with the size of nonces being 64bits.

The Noise documentation mentions some encryption schemes that can be used which have 96-bit nonces, but specifies

that the first 32 bits of the nonces are encoded as zeros, and only the remaining 64 bits can differ between nonces.

In Tox's Noise-based handshake, the whole 192 bits is used to encode the nonces. This should not affect Noise's

security guarantees. For more details about the design rationales behind fixing the size of nonce in Noise to be 64 bits,

refer to section 15.1 in the Noise documentation.

Another departure from the Noise specifications is that the nonces of transport messages are incremented starting from

the base nonces chosen by the Initiator and Responder, as opposed to the Noise specification where these nonces start

from 0. This difference should also not affect Noise's security guarantees.

Discussion of the content of payload data in the handshake and the cookie mechanism, and how these may affect

Noise's security guarantees appears in the following sections.

3.2 A Noise-based handshake

While the bulk of the new handshake is the NoiseIK as described in the previous section, the exchange related to the

cookie mechanism should also be treated as part of the handshake. That is, the cookie mechanism cannot be treated

separately from the handshake, as it is a mandatory part of the handshake. Specifically, the Initiator and the Responder

cannot have a successful handshake if they do not include cookies that were generated in the cookie exchange in the

handshake payloads that precede the Noise exchange.

This does have implications for the Noise handshake's guarantees, as we will see in the next sections, and in fact, any

formal analysis of the handshake has to include the cookie exchange in the analysis, as well as all the keys that were

introduced in the handshake due to Tox, namely the DHT keys, K_AB^R, K_A^C, and K_B^C. For instance, the new

handshake sends the static key S_A, encrypted with the key K_AB^R, which is generated as a raw Diffie-Hellman key

between the DHT keys of peers (it is worth mentioning that the DHT keys of a peer are renewed after every logout).

Some of the formal analysis conducted on the Noise handshake used automated tools, such as ProVerif [7] , CryptoVerif

[11], and Tamarin [8], [9], where roughly speaking, the tool models the protocol to be analyzed as well as its security

guarantees, then obtains results over the security guarantees. Now that the handshake consists of a modified flow of

data, involving not only the Noise related keys, but also new keys that were added to the handshake, the modeling of the

handshake has to be adjusted to accommodate these changes in order to analyze the new handshake formally.
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This was the case, for instance, with WireGuard, which uses a Noise-based handshake. Specifically, WireGuard adds

two Message Authentication Codes (MACs) and a cookie mechanism to the Noise handshake. Due to these changes in

the Noise handshake, WireGuard has also been formally analyzed.

3.3 Clashes with NoiseIK due to the cookie mechanism

As explained earlier, the cookie mechanism adopted in the Noise-based handshake is the same as the one used in

the old handshake, where the cookie exchange involves the Noise static keys. Besides that, these static keys are also

included in the handshake's payloads.

This resulted in, for instance, that S_A is sent four times in total, encrypted (in some cases) with keys that are not related

to the Noise handshake. That is, S_A is encrypted (1) with K_AB^R which is a key that is derived from the DHT keys, in

the exchange that precedes the Noise handshake, (2) with the key K_B^C before the resulting encryption is encrypted

with K_AB^R, in the exchange that precedes the Noise handshake, (3) with K_B^C when the resulting encryption is

encrypted with k_1 as payload data, (4) with k_0, which corresponds to the only case in the Noise handshake where

the encryption of S_A is sent.

Similarly, S_B is sent twice, encrypted (1) with K_A^C then the resulting encryption is encrypted with k_1 as payload

data, and encrypted (2) with K_A^C then the resulting encryption is encrypted with k_3 as payload data. In the

original Noise handshake, it is not sent during the handshake (it is assumed to be sent as a pre-message before the

handshake).

3.4 Implications of clashes in the security guarantees

While the initial purpose for adopting the Noise handshake for Tox has been achieved, i.e. resistance against a KCI

attack, which is achieved once the Initiator and Responder reach the stage when they start sending transport messages

(See 7.7 from the Noise documentation). Other Noise guarantees are affected by the cookie mechanism.

For instance, the Identity Hiding guarantee, which in the Noise documentation is limited (while being analyzed) to the

leakage that might happen to the static public keys of the Initiator and Responder during the handshake. That is, Noise

gives a ranking from 0 to 9, to reflect to which level the identities of the parties are hidden (see 7.8 from the Noise

documentation for more details). For the case of NoiseIK, this ranking is 4 for the Initiator and 3 for the Responder. In the

Noise-based handshake for Tox, these rankings are no longer valid because of the clashes with the cookie mechanism.

Besides, the remaining keys have to go through a similar analysis, as the identity hiding property is related to them as

well.

Besides this, the security guarantees that were defined in works that formally analyzed Noise or Noise-based

handshakes might be affected as well due to the same clashes. For instance, in [8] the guarantee RSNotSetTwice

reflects the fact that only one remote static key is being used by a party. This might be violated in the Noise-based

handshake for Tox because the static public keys are sent more than once.
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3.5 On supporting backward compatibility

In order to ensure backward compatibility, it is necessary for users that support the new handshake to be able to support

the old handshake as well, which can induce the cookie mechanism clashes we mentioned earlier, including for instance

having to send S_B during the handshake, or the redundancy in sending S_A.

We distinguish between two types of users: users that support the new handshake (to whom we refer as Noise users),

and users that only support the old one (to whom we refer as non-Noise users). This distinction gives rise to three

categories of communication between these types of users:

1. non-Noise user with non-Noise user

2. non-Noise user with Noise user

3. Noise user with Noise user

Backward compatibility means that a non-Noise user can still communicate with a Noise user via the protocol that the

non-Noise user can follow. While this implies generating the cookie as described in Figure 3, one could edit the cookie

so that it does not contain the static keys for the third category of communication (Noise user with Noise user).

In the old handshake, the static key of Peer A was communicated to Peer B through the cookie, but now the parties that

support the new handshake can communicate this key by just following the NoiseIK specifications, so including this key

in the cookie is no longer necessary for this type of user.

Therefore, supporting backward compatibility does not imply using the same cookie mechanism that was adopted for the

old handshake for communication between two parties that both support the new handshake.

3.6 Code inspection

We performed a code inspection, on the branch where the new handshake is implemented [5]5 .

The specific files we inspected were crypto_core.h, crypto_core.c, net_crypto.h, and net_crypto.c,

which are the files that contain the implementation of the new handshake.

3.6.1 Exchange of an unnecessary cookie

The code creates a cookie that is not necessary and not used. That is, this cookie was created by the Responder

and included in the payload of c_2. This cookie was sent in a step after which the shared session key can be already

established, and the parties will already start accepting messages from each other. This cookie was removed by Tobias6 .

5In commit 4f16bb2d0ace0bd890b4a7553b3986b742625297.

6Removed in commit 190c0384a57a7369904a6a9e5621a88b6e37c095
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3.6.2 Variable being used instead of another one

In some lines of the code, the variable CRYPTO_PUBLIC_KEY_SIZE, is used instead of CRYPTO_SECRET_KEY_SIZE.

These two variables are intended to set the size of the public key, and the private key respectively, taken from the curve

being used for the encryption scheme.

By chance, this has no security implications as both keys are the same size, because the Curve25519 curve used in the

handshake is able to use public keys of the same size as secret keys. The misplaced CRYPTO_PUBLIC_KEY_SIZE

occurrences were corrected by Tobias7 .

3.6.3 Missing step from the Noise handshake.

During the analysis of Tox's Noise-based handshake Tobias discovered that the step of calculating h_1 = H(h_0,

prologue) is missing from the implementation.

7Corrected in commit 2201b8c0384ff5dfa69b9577bf9e870f20b181ee
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4 Conclusion and recommendations

The Noise-based handshake for Tox is composed of the Noise handshake, plus a cookie a mechanism that involves

exchanging packets before the Noise handshake, and sets some data that has to be sent as payload data in the

handshake. While the KCI attack is prevented thanks to the Noise handshake deployment, other Noise security

guarantees are affected by this cookie mechanism.

As such, we strongly recommend performing a formal analysis of the new handshake, including transport messages, and

covering the cookie exchange and all the keys that are being used in the new handshake. This can be done using one of

the tools that have been used in analyzing other Noise or Noise-based handshakes.

We also strongly recommend replacing the cookie mechanism, with another one that minimally impacts the guarantees

of the Noise handshake, if the goal is to adopt the Noise handshake. The design choices that lead to the current cookie

mechanism no longer hold, given the integration of the Noise handshake which takes care of how the parties can

communicate their static keys to each other.

Finally, it's possible to add extra features to the handshake, as mentioned in [2], such as session rekeying and the use

of a pre-shared symmetric key between the Initiator and Responder. The implementation of transport messages, beyond

the scope of this report, can also be inspected, along with all the other parts of Tox.
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