diff --git a/.gitignore b/.gitignore index 523b7c4a7..1770047cd 100644 --- a/.gitignore +++ b/.gitignore @@ -15,7 +15,7 @@ mitiq.egg-info/ dist/ build/ jupyter_execute/ - +.mypy_cache/ # Coverage reports coverage.xml .coverage diff --git a/docs/source/apidoc.md b/docs/source/apidoc.md index 9a3fbf10f..e9e5fe65a 100644 --- a/docs/source/apidoc.md +++ b/docs/source/apidoc.md @@ -89,6 +89,11 @@ See Ref. {cite}`Czarnik_2021_Quantum` for more details on these methods. ### Layerwise Richardson Extrapolation +```{eval-rst} +.. automodule:: mitiq.lre.lre + :members: +``` + ```{eval-rst} .. automodule:: mitiq.lre.multivariate_scaling.layerwise_folding :members: diff --git a/mitiq/lre/__init__.py b/mitiq/lre/__init__.py index 71e51c78e..353568cdd 100644 --- a/mitiq/lre/__init__.py +++ b/mitiq/lre/__init__.py @@ -10,4 +10,6 @@ from mitiq.lre.inference.multivariate_richardson import ( multivariate_richardson_coefficients, sample_matrix, -) \ No newline at end of file +) + +from mitiq.lre.lre import execute_with_lre, mitigate_executor, lre_decorator \ No newline at end of file diff --git a/mitiq/lre/lre.py b/mitiq/lre/lre.py new file mode 100644 index 000000000..c2fd7b52a --- /dev/null +++ b/mitiq/lre/lre.py @@ -0,0 +1,170 @@ +# Copyright (C) Unitary Fund +# +# This source code is licensed under the GPL license (v3) found in the +# LICENSE file in the root directory of this source tree. + +"""Extrapolation methods for Layerwise Richardson Extrapolation (LRE)""" + +from functools import wraps +from typing import Any, Callable, Optional, Union + +import numpy as np +from cirq import Circuit + +from mitiq import QPROGRAM +from mitiq.lre import ( + multivariate_layer_scaling, + multivariate_richardson_coefficients, +) +from mitiq.zne.scaling import fold_gates_at_random + + +def execute_with_lre( + input_circuit: Circuit, + executor: Callable[[Circuit], float], + degree: int, + fold_multiplier: int, + folding_method: Callable[ + [QPROGRAM, float], QPROGRAM + ] = fold_gates_at_random, # type: ignore [has-type] + num_chunks: Optional[int] = None, +) -> float: + r""" + Defines the executor required for Layerwise Richardson + Extrapolation as defined in :cite:`Russo_2024_LRE`. + + Note that this method only works for the multivariate extrapolation + methods. It does not allows a user to choose which layers in the input + circuit will be scaled. + + .. seealso:: + + If you would prefer to choose the layers for unitary + folding, use :func:`mitiq.zne.scaling.layer_scaling.get_layer_folding` + instead. + + Args: + input_circuit: Circuit to be scaled. + executor: Executes a circuit and returns a `float` + degree: Degree of the multivariate polynomial. + fold_multiplier: Scaling gap value required for unitary folding which + is used to generate the scale factor vectors. + folding_method: Unitary folding method. Default is + :func:`fold_gates_at_random`. + num_chunks: Number of desired approximately equal chunks. When the + number of chunks is the same as the layers in the input circuit, + the input circuit is unchanged. + + + Returns: + Error-mitigated expectation value + + """ + noise_scaled_circuits = multivariate_layer_scaling( + input_circuit, degree, fold_multiplier, num_chunks, folding_method + ) + + linear_combination_coeffs = multivariate_richardson_coefficients( + input_circuit, degree, fold_multiplier, num_chunks + ) + + # verify the linear combination coefficients and the calculated expectation + # values have the same length + if len(noise_scaled_circuits) != len( # pragma: no cover + linear_combination_coeffs + ): + raise AssertionError( + "The number of expectation values are not equal " + + "to the number of coefficients required for " + + "multivariate extrapolation." + ) + + lre_exp_values = [] + for scaled_circuit in noise_scaled_circuits: + circ_exp_val = executor(scaled_circuit) + lre_exp_values.append(circ_exp_val) + + return np.dot(lre_exp_values, linear_combination_coeffs) + + +def mitigate_executor( + executor: Callable[[Circuit], float], + degree: int, + fold_multiplier: int, + folding_method: Callable[ + [Union[Any], float], Union[Any] + ] = fold_gates_at_random, + num_chunks: Optional[int] = None, +) -> Callable[[Circuit], float]: + """Returns a modified version of the input `executor` which is + error-mitigated with layerwise richardson extrapolation (LRE). + + Args: + input_circuit: Circuit to be scaled. + executor: Executes a circuit and returns a `float` + degree: Degree of the multivariate polynomial. + fold_multiplier Scaling gap value required for unitary folding which + is used to generate the scale factor vectors. + folding_method: Unitary folding method. Default is + :func:`fold_gates_at_random`. + num_chunks: Number of desired approximately equal chunks. When the + number of chunks is the same as the layers in the input circuit, + the input circuit is unchanged. + + + Returns: + Error-mitigated version of the circuit executor. + """ + + @wraps(executor) + def new_executor(input_circuit: Circuit) -> float: + return execute_with_lre( + input_circuit, + executor, + degree, + fold_multiplier, + folding_method, + num_chunks, + ) + + return new_executor + + +def lre_decorator( + degree: int, + fold_multiplier: int, + folding_method: Callable[[Circuit, float], Circuit] = fold_gates_at_random, + num_chunks: Optional[int] = None, +) -> Callable[[Callable[[Circuit], float]], Callable[[Circuit], float]]: + """Decorator which adds an error-mitigation layer based on + layerwise richardson extrapolation (LRE). + + Args: + input_circuit: Circuit to be scaled. + executor: Executes a circuit and returns a `float` + degree: Degree of the multivariate polynomial. + fold_multiplier Scaling gap value required for unitary folding which + is used to generate the scale factor vectors. + folding_method: Unitary folding method. Default is + :func:`fold_gates_at_random`. + num_chunks: Number of desired approximately equal chunks. When the + number of chunks is the same as the layers in the input circuit, + the input circuit is unchanged. + + + Returns: + Error-mitigated decorator. + """ + + def decorator( + executor: Callable[[Circuit], float], + ) -> Callable[[Circuit], float]: + return mitigate_executor( + executor, + degree, + fold_multiplier, + folding_method, + num_chunks, + ) + + return decorator diff --git a/mitiq/lre/tests/test_lre.py b/mitiq/lre/tests/test_lre.py new file mode 100644 index 000000000..4679e746a --- /dev/null +++ b/mitiq/lre/tests/test_lre.py @@ -0,0 +1,129 @@ +"""Unit tests for the LRE extrapolation methods.""" + +import re + +import pytest +from cirq import DensityMatrixSimulator, depolarize + +from mitiq import benchmarks +from mitiq.lre import execute_with_lre, lre_decorator, mitigate_executor +from mitiq.zne.scaling import fold_all, fold_global + +# default circuit for all unit tests +test_cirq = benchmarks.generate_rb_circuits( + n_qubits=1, + num_cliffords=2, +)[0] + + +# default execute function for all unit tests +def execute(circuit, noise_level=0.025): + """Default executor for all unit tests.""" + noisy_circuit = circuit.with_noise(depolarize(p=noise_level)) + rho = DensityMatrixSimulator().simulate(noisy_circuit).final_density_matrix + return rho[0, 0].real + + +noisy_val = execute(test_cirq) +ideal_val = execute(test_cirq, noise_level=0) + + +@pytest.mark.parametrize("degree, fold_multiplier", [(2, 2), (2, 3), (3, 4)]) +def test_lre_exp_value(degree, fold_multiplier): + """Verify LRE executors work as expected.""" + lre_exp_val = execute_with_lre( + test_cirq, + execute, + degree=degree, + fold_multiplier=fold_multiplier, + ) + assert abs(lre_exp_val - ideal_val) <= abs(noisy_val - ideal_val) + + +@pytest.mark.parametrize("degree, fold_multiplier", [(2, 2), (2, 3), (3, 4)]) +def test_lre_exp_value_decorator(degree, fold_multiplier): + """Verify LRE mitigated executor work as expected.""" + mitigated_executor = mitigate_executor( + execute, degree=2, fold_multiplier=2 + ) + exp_val_from_mitigate_executor = mitigated_executor(test_cirq) + assert abs(exp_val_from_mitigate_executor - ideal_val) <= abs( + noisy_val - ideal_val + ) + + +def test_lre_decorator(): + """Verify LRE decorators work as expected.""" + + @lre_decorator(degree=2, fold_multiplier=2) + def execute(circuit, noise_level=0.025): + noisy_circuit = circuit.with_noise(depolarize(p=noise_level)) + rho = ( + DensityMatrixSimulator() + .simulate(noisy_circuit) + .final_density_matrix + ) + return rho[0, 0].real + + assert abs(execute(test_cirq) - ideal_val) <= abs(noisy_val - ideal_val) + + +def test_lre_decorator_raised_error(): + """Verify an error is raised when the required parameters for the decorator + are not specified.""" + with pytest.raises(TypeError, match=re.escape("lre_decorator() missing")): + + @lre_decorator() + def execute(circuit, noise_level=0.025): + noisy_circuit = circuit.with_noise(depolarize(p=noise_level)) + rho = ( + DensityMatrixSimulator() + .simulate(noisy_circuit) + .final_density_matrix + ) + return rho[0, 0].real + + assert abs(execute(test_cirq) - ideal_val) <= abs( + noisy_val - ideal_val + ) + + +def test_lre_executor_with_chunking(): + """Verify the executor works as expected for chunking a large circuit into + a smaller circuit.""" + # define a larger circuit + test_cirq = benchmarks.generate_rb_circuits(n_qubits=1, num_cliffords=12)[ + 0 + ] + lre_exp_val = execute_with_lre( + test_cirq, execute, degree=2, fold_multiplier=2, num_chunks=14 + ) + assert abs(lre_exp_val - ideal_val) <= abs(noisy_val - ideal_val) + + +@pytest.mark.parametrize("num_chunks", [(1), (2), (3), (4), (5), (6), (7)]) +def test_large_circuit_with_small_chunks_poor_performance(num_chunks): + """Verify chunking performs poorly when a large number of layers are + chunked into a smaller number of circuit chunks.""" + # define a larger circuit + test_cirq = benchmarks.generate_rb_circuits(n_qubits=1, num_cliffords=15)[ + 0 + ] + lre_exp_val = execute_with_lre( + test_cirq, execute, degree=2, fold_multiplier=2, num_chunks=num_chunks + ) + assert abs(lre_exp_val - ideal_val) >= abs(noisy_val - ideal_val) + + +@pytest.mark.parametrize("input_method", [(fold_global), (fold_all)]) +def test_lre_executor_with_different_folding_methods(input_method): + """Verify the executor works as expected for using non-default unitary + folding methods.""" + lre_exp_val = execute_with_lre( + test_cirq, + execute, + degree=2, + fold_multiplier=2, + folding_method=input_method, + ) + assert abs(lre_exp_val - ideal_val) <= abs(noisy_val - ideal_val)