-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathinference.py
531 lines (455 loc) · 23.7 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import os
import os.path as osp
join = osp.join
import numpy as np
from glob import glob
import torch
from segment_anything.build_sam3D import sam_model_registry3D
from segment_anything.utils.transforms3D import ResizeLongestSide3D
from segment_anything import sam_model_registry
from tqdm import tqdm
import argparse
import SimpleITK as sitk
import torch.nn.functional as F
from torch.utils.data import DataLoader
import SimpleITK as sitk
import torchio as tio
import numpy as np
from collections import OrderedDict, defaultdict
import json
import pickle
from utils.click_method import get_next_click3D_torch_ritm, get_next_click3D_torch_2
from utils.data_loader import Dataset_Union_ALL_Val
from itertools import product
parser = argparse.ArgumentParser()
parser.add_argument('-tdp', '--test_data_path', type=str, default='./data/validation')
parser.add_argument('-cp', '--checkpoint_path', type=str, default='./ckpt/sam_med3d.pth')
parser.add_argument('--output_dir', type=str, default='./visualization')
parser.add_argument('--task_name', type=str, default='test_amos')
parser.add_argument('--skip_existing_pred', action='store_true', default=False)
parser.add_argument('--save_image_and_gt', action='store_true', default=False)
parser.add_argument('--sliding_window', action='store_true', default=False)
parser.add_argument('--image_size', type=int, default=256)
parser.add_argument('--crop_size', type=int, default=128)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('-mt', '--model_type', type=str, default='vit_b_ori')
parser.add_argument('-nc', '--num_clicks', type=int, default=5)
parser.add_argument('-pm', '--point_method', type=str, default='default')
parser.add_argument('-dt', '--data_type', type=str, default='Ts')
parser.add_argument('--threshold', type=int, default=0)
parser.add_argument('--dim', type=int, default=3)
parser.add_argument('--split_idx', type=int, default=0)
parser.add_argument('--split_num', type=int, default=1)
parser.add_argument('--ft2d', action='store_true', default=False)
parser.add_argument('--seed', type=int, default=2023)
args = parser.parse_args()
''' parse and output_dir and task_name '''
args.output_dir = join(args.output_dir, args.task_name)
args.pred_output_dir = join(args.output_dir, "pred")
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(args.pred_output_dir, exist_ok=True)
args.save_name = join(args.output_dir, "dice.py")
print("output_dir set to", args.output_dir)
SEED = args.seed
print("set seed as", SEED)
torch.manual_seed(SEED)
np.random.seed(SEED)
if torch.cuda.is_available():
torch.cuda.init()
click_methods = {
'default': get_next_click3D_torch_ritm,
'ritm': get_next_click3D_torch_ritm,
'random': get_next_click3D_torch_2,
}
def compute_iou(pred_mask, gt_semantic_seg):
in_mask = np.logical_and(gt_semantic_seg, pred_mask)
out_mask = np.logical_or(gt_semantic_seg, pred_mask)
iou = np.sum(in_mask) / np.sum(out_mask)
return iou
def compute_dice(mask_gt, mask_pred, dtype=np.uint8):
volume_sum = mask_gt.sum() + mask_pred.sum()
if volume_sum == 0:
return np.NaN
volume_intersect = (mask_gt.astype(dtype) & mask_pred.astype(dtype)).sum()
return 2*volume_intersect / volume_sum
def postprocess_masks(low_res_masks, image_size, original_size):
ori_h, ori_w = original_size
masks = F.interpolate(
low_res_masks,
(image_size, image_size),
mode="bilinear",
align_corners=False,
)
if args.ft2d and ori_h < image_size and ori_w < image_size:
top = (image_size - ori_h) // 2
left = (image_size - ori_w) // 2
masks = masks[..., top : ori_h + top, left : ori_w + left]
pad = (top, left)
else:
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
pad = None
return masks, pad
def sam_decoder_inference(target_size, points_coords, points_labels, model, image_embeddings, mask_inputs=None, multimask = False):
with torch.no_grad():
sparse_embeddings, dense_embeddings = model.prompt_encoder(
points=(points_coords.to(model.device), points_labels.to(model.device)),
boxes=None,
masks=mask_inputs,
)
low_res_masks, iou_predictions = model.mask_decoder(
image_embeddings = image_embeddings,
image_pe = model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=multimask,
)
if multimask:
max_values, max_indexs = torch.max(iou_predictions, dim=1)
max_values = max_values.unsqueeze(1)
iou_predictions = max_values
low_res = []
for i, idx in enumerate(max_indexs):
low_res.append(low_res_masks[i:i+1, idx])
low_res_masks = torch.stack(low_res, 0)
masks = F.interpolate(low_res_masks, (target_size, target_size), mode="bilinear", align_corners=False,)
return masks, low_res_masks, iou_predictions
def repixel_value(arr, is_seg=False):
if not is_seg:
min_val = arr.min()
max_val = arr.max()
new_arr = (arr - min_val) / (max_val - min_val + 1e-10) * 255.
return new_arr
def random_point_sampling(mask, get_point = 1):
if isinstance(mask, torch.Tensor):
mask = mask.numpy()
fg_coords = np.argwhere(mask == 1)[:,::-1]
bg_coords = np.argwhere(mask == 0)[:,::-1]
fg_size = len(fg_coords)
bg_size = len(bg_coords)
if get_point == 1:
if fg_size > 0:
index = np.random.randint(fg_size)
fg_coord = fg_coords[index]
label = 1
else:
index = np.random.randint(bg_size)
fg_coord = bg_coords[index]
label = 0
return torch.as_tensor([fg_coord.tolist()], dtype=torch.float), torch.as_tensor([label], dtype=torch.int)
else:
num_fg = get_point // 2
num_bg = get_point - num_fg
fg_indices = np.random.choice(fg_size, size=num_fg, replace=True)
bg_indices = np.random.choice(bg_size, size=num_bg, replace=True)
fg_coords = fg_coords[fg_indices]
bg_coords = bg_coords[bg_indices]
coords = np.concatenate([fg_coords, bg_coords], axis=0)
labels = np.concatenate([np.ones(num_fg), np.zeros(num_bg)]).astype(int)
indices = np.random.permutation(get_point)
coords, labels = torch.as_tensor(coords[indices], dtype=torch.float), torch.as_tensor(labels[indices], dtype=torch.int)
return coords, labels
def finetune_model_predict2D(img3D, gt3D, sam_model_tune, target_size=256, click_method='random', device='cuda', num_clicks=1, prev_masks=None):
pred_list = []
slice_mask_list = defaultdict(list)
img3D = torch.repeat_interleave(img3D, repeats=3, dim=1) # 1 channel -> 3 channel (align to RGB)
click_points = []
click_labels = []
for slice_idx in tqdm(range(img3D.size(-1)), desc="transverse slices", leave=False):
img2D, gt2D = repixel_value(img3D[..., slice_idx]), gt3D[..., slice_idx]
if (gt2D==0).all():
empty_result = torch.zeros(list(gt3D.size()[:-1])+[1]).to(device)
for iter in range(num_clicks):
slice_mask_list[iter].append(empty_result)
continue
img2D = F.interpolate(img2D, (target_size, target_size), mode="bilinear", align_corners=False)
gt2D = F.interpolate(gt2D.float(), (target_size, target_size), mode="nearest").int()
img2D, gt2D = img2D.to(device), gt2D.to(device)
img2D = (img2D - img2D.mean()) / img2D.std()
with torch.no_grad():
image_embeddings = sam_model_tune.image_encoder(img2D.float())
points_co, points_la = torch.zeros(1,0,2).to(device), torch.zeros(1,0).to(device)
low_res_masks = None
gt_semantic_seg = gt2D[0, 0].to(device)
true_masks = (gt_semantic_seg > 0)
for iter in range(num_clicks):
if(low_res_masks==None):
pred_masks = torch.zeros_like(true_masks).to(device)
else:
pred_masks = (prev_masks[0, 0] > 0.0).to(device)
fn_masks = torch.logical_and(true_masks, torch.logical_not(pred_masks))
fp_masks = torch.logical_and(torch.logical_not(true_masks), pred_masks)
mask_to_sample = torch.logical_or(fn_masks, fp_masks)
new_points_co, _ = random_point_sampling(mask_to_sample.cpu(), get_point=1)
new_points_la = torch.Tensor([1]).to(torch.int64) if(true_masks[new_points_co[0,1].int(), new_points_co[0,0].int()]) else torch.Tensor([0]).to(torch.int64)
new_points_co, new_points_la = new_points_co[None].to(device), new_points_la[None].to(device)
points_co = torch.cat([points_co, new_points_co],dim=1)
points_la = torch.cat([points_la, new_points_la],dim=1)
prev_masks, low_res_masks, iou_predictions = sam_decoder_inference(
target_size, points_co, points_la, sam_model_tune, image_embeddings,
mask_inputs = low_res_masks, multimask = True)
click_points.append(new_points_co)
click_labels.append(new_points_la)
slice_mask, _ = postprocess_masks(low_res_masks, target_size, (gt3D.size(2), gt3D.size(3)))
slice_mask_list[iter].append(slice_mask[..., None]) # append (B, C, H, W, 1)
for iter in range(num_clicks):
medsam_seg = torch.cat(slice_mask_list[iter], dim=-1).cpu().numpy().squeeze()
medsam_seg = medsam_seg > sam_model_tune.mask_threshold
medsam_seg = medsam_seg.astype(np.uint8)
pred_list.append(medsam_seg)
return pred_list, click_points, click_labels
def finetune_model_predict3D(img3D, gt3D, sam_model_tune, device='cuda', click_method='random', num_clicks=10, prev_masks=None):
img3D = norm_transform(img3D.squeeze(dim=1)) # (N, C, W, H, D)
img3D = img3D.unsqueeze(dim=1)
click_points = []
click_labels = []
pred_list = []
if prev_masks is None:
prev_masks = torch.zeros_like(gt3D).to(device)
low_res_masks = F.interpolate(prev_masks.float(), size=(args.crop_size//4,args.crop_size//4,args.crop_size//4))
with torch.no_grad():
image_embedding = sam_model_tune.image_encoder(img3D.to(device)) # (1, 384, 16, 16, 16)
for click_idx in range(num_clicks):
with torch.no_grad():
if(click_idx>1):
click_method = "random"
batch_points, batch_labels = click_methods[click_method](prev_masks.to(device), gt3D.to(device))
points_co = torch.cat(batch_points, dim=0).to(device)
points_la = torch.cat(batch_labels, dim=0).to(device)
click_points.append(points_co)
click_labels.append(points_la)
points_input = points_co
labels_input = points_la
sparse_embeddings, dense_embeddings = sam_model_tune.prompt_encoder(
points=[points_input, labels_input],
boxes=None,
masks=low_res_masks.to(device),
)
low_res_masks, _ = sam_model_tune.mask_decoder(
image_embeddings=image_embedding.to(device), # (B, 384, 64, 64, 64)
image_pe=sam_model_tune.prompt_encoder.get_dense_pe(), # (1, 384, 64, 64, 64)
sparse_prompt_embeddings=sparse_embeddings, # (B, 2, 384)
dense_prompt_embeddings=dense_embeddings, # (B, 384, 64, 64, 64)
multimask_output=False,
)
prev_masks = F.interpolate(low_res_masks, size=gt3D.shape[-3:], mode='trilinear', align_corners=False)
medsam_seg_prob = torch.sigmoid(prev_masks) # (B, 1, 64, 64, 64)
# convert prob to mask
medsam_seg_prob = medsam_seg_prob.cpu().numpy().squeeze()
medsam_seg = (medsam_seg_prob > 0.5).astype(np.uint8)
pred_list.append(medsam_seg)
return pred_list, click_points, click_labels
def pad_and_crop_with_sliding_window(img3D, gt3D, crop_transform, offset_mode="center"):
subject = tio.Subject(
image = tio.ScalarImage(tensor=img3D.squeeze(0)),
label = tio.LabelMap(tensor=gt3D.squeeze(0)),
)
padding_params, cropping_params = crop_transform.compute_crop_or_pad(subject)
# cropping_params: (x_start, x_max-(x_start+roi_size), y_start, ...)
# padding_params: (x_left_pad, x_right_pad, y_left_pad, ...)
if(cropping_params is None): cropping_params = (0,0,0,0,0,0)
if(padding_params is None): padding_params = (0,0,0,0,0,0)
roi_shape = crop_transform.target_shape
vol_bound = (0, img3D.shape[2], 0, img3D.shape[3], 0, img3D.shape[4])
center_oob_ori_roi=(
cropping_params[0]-padding_params[0], cropping_params[0]+roi_shape[0]-padding_params[0],
cropping_params[2]-padding_params[2], cropping_params[2]+roi_shape[1]-padding_params[2],
cropping_params[4]-padding_params[4], cropping_params[4]+roi_shape[2]-padding_params[4],
)
window_list = []
offset_dict = {
"rounded": list(product((-32,+32,0), repeat=3)),
"center": [(0,0,0)],
}
for offset in offset_dict[offset_mode]:
# get the position in original volume~(allow out-of-bound) for current offset
oob_ori_roi = (
center_oob_ori_roi[0]+offset[0], center_oob_ori_roi[1]+offset[0],
center_oob_ori_roi[2]+offset[1], center_oob_ori_roi[3]+offset[1],
center_oob_ori_roi[4]+offset[2], center_oob_ori_roi[5]+offset[2],
)
# get corresponing padding params based on `vol_bound`
padding_params = [0 for i in range(6)]
for idx, (ori_pos, bound) in enumerate(zip(oob_ori_roi, vol_bound)):
pad_val = 0
if(idx%2==0 and ori_pos<bound): # left bound
pad_val = bound-ori_pos
if(idx%2==1 and ori_pos>bound):
pad_val = ori_pos-bound
padding_params[idx] = pad_val
# get corresponding crop params after padding
cropping_params = (
oob_ori_roi[0]+padding_params[0], vol_bound[1]-oob_ori_roi[1]+padding_params[1],
oob_ori_roi[2]+padding_params[2], vol_bound[3]-oob_ori_roi[3]+padding_params[3],
oob_ori_roi[4]+padding_params[4], vol_bound[5]-oob_ori_roi[5]+padding_params[5],
)
# pad and crop for the original subject
pad_and_crop = tio.Compose([
tio.Pad(padding_params, padding_mode=crop_transform.padding_mode),
tio.Crop(cropping_params),
])
subject_roi = pad_and_crop(subject)
img3D_roi, gt3D_roi = subject_roi.image.data.clone().detach().unsqueeze(1), subject_roi.label.data.clone().detach().unsqueeze(1)
# collect all position information, and set correct roi for sliding-windows in
# todo: get correct roi window of half because of the sliding
windows_clip = [0 for i in range(6)]
for i in range(3):
if(offset[i]<0):
windows_clip[2*i] = 0
windows_clip[2*i+1] = -(roi_shape[i]+offset[i])
elif(offset[i]>0):
windows_clip[2*i] = roi_shape[i]-offset[i]
windows_clip[2*i+1] = 0
pos3D_roi = dict(
padding_params=padding_params, cropping_params=cropping_params,
ori_roi=(
cropping_params[0]+windows_clip[0], cropping_params[0]+roi_shape[0]-padding_params[0]-padding_params[1]+windows_clip[1],
cropping_params[2]+windows_clip[2], cropping_params[2]+roi_shape[1]-padding_params[2]-padding_params[3]+windows_clip[3],
cropping_params[4]+windows_clip[4], cropping_params[4]+roi_shape[2]-padding_params[4]-padding_params[5]+windows_clip[5],
),
pred_roi=(
padding_params[0]+windows_clip[0], roi_shape[0]-padding_params[1]+windows_clip[1],
padding_params[2]+windows_clip[2], roi_shape[1]-padding_params[3]+windows_clip[3],
padding_params[4]+windows_clip[4], roi_shape[2]-padding_params[5]+windows_clip[5],
))
pred_roi = pos3D_roi["pred_roi"]
#if((gt3D_roi[pred_roi[0]:pred_roi[1],pred_roi[2]:pred_roi[3],pred_roi[4]:pred_roi[5]]==0).all()):
#print("skip empty window with offset", offset)
# continue
window_list.append((img3D_roi, gt3D_roi, pos3D_roi))
return window_list
def save_numpy_to_nifti(in_arr: np.array, out_path, meta_info):
# torchio turn 1xHxWxD -> DxWxH
# so we need to squeeze and transpose back to HxWxD
ori_arr = np.transpose(in_arr.squeeze(), (2, 1, 0))
out = sitk.GetImageFromArray(ori_arr)
sitk_meta_translator = lambda x: [float(i) for i in x]
out.SetOrigin(sitk_meta_translator(meta_info["origin"]))
out.SetDirection(sitk_meta_translator(meta_info["direction"]))
out.SetSpacing(sitk_meta_translator(meta_info["spacing"]))
sitk.WriteImage(out, out_path)
if __name__ == "__main__":
all_dataset_paths = glob(join(args.test_data_path, "*", "*"))
all_dataset_paths = list(filter(osp.isdir, all_dataset_paths))
print("get", len(all_dataset_paths), "datasets")
crop_transform = tio.CropOrPad(
mask_name='label',
target_shape=(args.crop_size, args.crop_size, args.crop_size))
infer_transform = [
tio.ToCanonical(),
]
test_dataset = Dataset_Union_ALL_Val(
paths=all_dataset_paths,
mode="Val",
data_type=args.data_type,
transform=tio.Compose(infer_transform),
threshold=0,
split_num=args.split_num,
split_idx=args.split_idx,
pcc=False,
get_all_meta_info=True,
)
test_dataloader = DataLoader(
dataset=test_dataset,
sampler=None,
batch_size=1,
shuffle=True
)
checkpoint_path = args.checkpoint_path
device = args.device
print("device:", device)
if(args.dim==3):
sam_model_tune = sam_model_registry3D[args.model_type](checkpoint=None).to(device)
if checkpoint_path is not None:
model_dict = torch.load(checkpoint_path, map_location=device)
state_dict = model_dict['model_state_dict']
sam_model_tune.load_state_dict(state_dict)
else:
raise NotImplementedError("this scipts is designed for 3D sliding-window inference, not support other dims")
sam_trans = ResizeLongestSide3D(sam_model_tune.image_encoder.img_size)
norm_transform = tio.ZNormalization(masking_method=lambda x: x > 0)
all_iou_list = []
all_dice_list = []
out_dice = dict()
out_dice_all = OrderedDict()
for batch_data in tqdm(test_dataloader):
image3D, gt3D, meta_info = batch_data
img_name = meta_info["image_path"][0]
modality = osp.basename(osp.dirname(osp.dirname(osp.dirname(img_name))))
dataset = osp.basename(osp.dirname(osp.dirname(img_name)))
vis_root = osp.join(args.pred_output_dir, modality, dataset)
pred_path = osp.join(vis_root, osp.basename(img_name).replace(".nii.gz", f"_pred{args.num_clicks-1}.nii.gz"))
''' inference '''
iou_list, dice_list = [], []
if(args.skip_existing_pred and osp.exists(pred_path)):
pass # if the pred existed, skip the inference
else:
image3D_full, gt3D_full = image3D, gt3D
pred3D_full_dict = {click_idx:torch.zeros_like(gt3D_full).numpy() for click_idx in range(args.num_clicks)}
offset_mode = "center" if(not args.sliding_window) else "rounded"
sliding_window_list = pad_and_crop_with_sliding_window(image3D_full, gt3D_full, crop_transform, offset_mode=offset_mode)
for (image3D, gt3D, pos3D) in sliding_window_list:
seg_mask_list, points, labels = finetune_model_predict3D(
image3D, gt3D, sam_model_tune, device=device,
click_method=args.point_method, num_clicks=args.num_clicks,
prev_masks=None)
ori_roi, pred_roi = pos3D["ori_roi"], pos3D["pred_roi"]
for idx, seg_mask in enumerate(seg_mask_list):
seg_mask_roi = seg_mask[..., pred_roi[0]:pred_roi[1], pred_roi[2]:pred_roi[3], pred_roi[4]:pred_roi[5]]
pred3D_full_dict[idx][..., ori_roi[0]:ori_roi[1], ori_roi[2]:ori_roi[3], ori_roi[4]:ori_roi[5]] = seg_mask_roi
os.makedirs(vis_root, exist_ok=True)
padding_params = sliding_window_list[-1][-1]["padding_params"]
cropping_params = sliding_window_list[-1][-1]["cropping_params"]
# print(padding_params, cropping_params)
point_offset = np.array([cropping_params[0]-padding_params[0], cropping_params[2]-padding_params[2], cropping_params[4]-padding_params[4]])
points = [p.cpu().numpy()+point_offset for p in points]
labels = [l.cpu().numpy() for l in labels]
pt_info = dict(points=points, labels=labels)
# print("save to", osp.join(vis_root, osp.basename(img_name).replace(".nii.gz", "_pred.nii.gz")))
pt_path=osp.join(vis_root, osp.basename(img_name).replace(".nii.gz", "_pt.pkl"))
pickle.dump(pt_info, open(pt_path, "wb"))
if(args.save_image_and_gt):
save_numpy_to_nifti(image3D_full, osp.join(vis_root, osp.basename(img_name).replace(".nii.gz", f"_img.nii.gz")), meta_info)
save_numpy_to_nifti(gt3D_full, osp.join(vis_root, osp.basename(img_name).replace(".nii.gz", f"_gt.nii.gz")), meta_info)
for idx, pred3D_full in pred3D_full_dict.items():
save_numpy_to_nifti(pred3D_full, osp.join(vis_root, osp.basename(img_name).replace(".nii.gz", f"_pred{idx}.nii.gz")), meta_info)
radius = 2
for pt in points[:idx+1]:
pred3D_full[..., pt[0,0,0]-radius:pt[0,0,0]+radius, pt[0,0,1]-radius:pt[0,0,1]+radius, pt[0,0,2]-radius:pt[0,0,2]+radius] = 10
save_numpy_to_nifti(pred3D_full, osp.join(vis_root, osp.basename(img_name).replace(".nii.gz", f"_pred{idx}_wPt.nii.gz")), meta_info)
''' metric computation '''
for click_idx in range(args.num_clicks):
reorient_tensor = lambda in_arr : np.transpose(in_arr.squeeze().detach().cpu().numpy(), (2, 1, 0))
curr_pred_path = osp.join(vis_root, osp.basename(img_name).replace(".nii.gz", f"_pred{click_idx}.nii.gz"))
medsam_seg = sitk.GetArrayFromImage(sitk.ReadImage(curr_pred_path))
iou_list.append(round(compute_iou(medsam_seg, reorient_tensor(gt3D_full)), 4))
dice_list.append(round(compute_dice(reorient_tensor(gt3D_full), medsam_seg), 4))
per_iou = max(iou_list)
all_iou_list.append(per_iou)
all_dice_list.append(max(dice_list))
print(dice_list)
out_dice[img_name] = max(dice_list)
cur_dice_dict = OrderedDict()
for i, dice in enumerate(dice_list):
cur_dice_dict[f'{i}'] = dice
out_dice_all[img_name] = cur_dice_dict
print('Mean IoU : ', sum(all_iou_list)/len(all_iou_list))
print('Mean Dice: ', sum(all_dice_list)/len(all_dice_list))
final_dice_dict = OrderedDict()
for k, v in out_dice_all.items():
organ = k.split('/')[-4]
final_dice_dict[organ] = OrderedDict()
for k, v in out_dice_all.items():
organ = k.split('/')[-4]
final_dice_dict[organ][k] = v
if(args.split_num>1):
args.save_name = args.save_name.replace('.py', f'_s{args.split_num}i{args.split_idx}.py')
print("Save to", args.save_name)
with open(args.save_name, 'w') as f:
f.writelines(f'# mean dice: \t{np.mean(all_dice_list)}\n')
f.writelines('dice_Ts = {')
for k, v in out_dice.items():
f.writelines(f'\'{str(k[0])}\': {v},\n')
f.writelines('}')
with open(args.save_name.replace('.py', '.json'), 'w') as f:
json.dump(final_dice_dict, f, indent=4)
print("Done")