-
Notifications
You must be signed in to change notification settings - Fork 15
/
meta.yaml
74 lines (65 loc) · 1.78 KB
/
meta.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#
# This is how to do the build (and some other useful commands)
#
# To build requires access to the conda-forge, pytorchm and anaconda channels
# can be used with --debug flag
# conda build . -c pytorch -c conda-forge -c anaconda -c uncbiag
#
# to upload to the cloud
# anaconda login
# anaconda upload --user uncbiag easyreg
#
# Combined with travis, to auto-create conda packages and upload them to the conda cloud, tag them.
{% set name = "easyreg" %}
package:
name: '{{ name|lower }}'
version: {{ GIT_DESCRIBE_TAG }}
source:
- git_url: .
requirements:
build:
- python ==3.7
- setuptools
- pip
run:
- python ==3.7
- ipython
- numpy >=1.17
- future
- scikit-image
- cffi
- itk
- pytorch
- pynrrd
- torchvision
- pandas
- matplotlib
- scipy
- openpyxl
- sphinx
- progressbar2
- h5py
- SimpleITK
- tensorboardX
- blosc
- ants
- nibabel
- webcolors
- sklearn
- gdown
#test:
# imports:
# - easyreg
about:
home: https://github.com/uncbiag/easyreg
license: Apache 2.0 license
license_family: BSD
license_file: LICENSE
summary: 'Deep-learning-based image registration. Companion package to mermaid.'
description: 'This image registration toolbox provides approaches to train and run deep-learning-based image registration networks based on the transformation models available within mermaid. It is written in pytorch allowing for easy prototyping of new approaches. To install include the conda-forge and the anaconda channels by executing: conda install -c pytorch -c conda-forge -c anaconda -c uncbiag easyreg'
doc_url: 'https://easyreg.readthedocs.io/en/latest/'
dev_url: 'https://github.com/uncbiag/easyreg'
extra:
recipe-maintainers:
- marcniethammer
- hbgtjxzbbx