forked from cdipaolo/goml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
softmax.go
715 lines (608 loc) · 20.1 KB
/
softmax.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
package linear
import (
"bytes"
"encoding/json"
"fmt"
"io"
"io/ioutil"
"math"
"os"
"github.com/Fabse333/goml/base"
)
// Softmax represents a softmax classification model
// in 'k' demensions. It is generally thought of as
// a generalization of the Logistic Regression model.
// Prediction will return a vector ([]float64) that
// corresponds to the probabilty (where i is the index)
// that the inputted features is 'i'. Softmax classification
// operates assuming the Multinomial probablility
// distribution of data.
//
// TODO: add wikipedia link
//
// Expected results expects an 'integer' (it's still
// passed as a float64) between 0 and k-1. K must be
// passed when creating the model.
type Softmax struct {
// alpha and maxIterations are used only for
// GradientAscent during learning. If maxIterations
// is 0, then GradientAscent will run until the
// algorithm detects convergance.
//
// regularization is used as the regularization
// term to avoid overfitting within regression.
// Having a regularization term of 0 is like having
// _no_ data regularization. The higher the term,
// the greater the bias on the regression
alpha float64
regularization float64
maxIterations int
// k is the dimension of classification (the number
// of possible outcomes)
k int
// method is the optimization method used when training
// the model
method base.OptimizationMethod
// trainingSet and expectedResults are the
// 'x', and 'y' of the data, expressed as
// vectors, that the model can optimize from
trainingSet [][]float64
expectedResults []float64
Parameters [][]float64 `json:"theta"`
// Output is the io.Writer used for logging
// and printing. Defaults to os.Stdout.
Output io.Writer
}
func abs(x float64) float64 {
if x < 0 {
return -1 * x
}
return x
}
// NewSoftmax takes in a learning rate alpha, a regularization
// parameter value (0 means no regularization, higher value
// means higher bias on the model,) the maximum number of
// iterations the data can go through in gradient descent,
// as well as a training set and expected results for that
// training set.
func NewSoftmax(method base.OptimizationMethod, alpha, regularization float64, k, maxIterations int, trainingSet [][]float64, expectedResults []float64, features ...int) *Softmax {
params := make([][]float64, k)
if len(features) != 0 {
for i := range params {
params[i] = make([]float64, features[0]+1)
}
} else if trainingSet == nil || len(trainingSet) == 0 {
for i := range params {
params[i] = []float64{}
}
} else {
for i := range params {
params[i] = make([]float64, len((trainingSet)[0])+1)
}
}
return &Softmax{
alpha: alpha,
regularization: regularization,
maxIterations: maxIterations,
k: k,
method: method,
trainingSet: trainingSet,
expectedResults: expectedResults,
// initialize θ as the zero vector (that is,
// the vector of all zeros)
Parameters: params,
Output: os.Stdout,
}
}
// UpdateTrainingSet takes in a new training set (variable x)
// as well as a new result set (y). This could be useful if
// you want to retrain a model starting with the parameter
// vector of a previous training session, but most of the time
// wouldn't be used.
func (s *Softmax) UpdateTrainingSet(trainingSet [][]float64, expectedResults []float64) error {
if len(trainingSet) == 0 {
return fmt.Errorf("Error: length of given training set is 0! Need data!")
}
if len(expectedResults) == 0 {
return fmt.Errorf("Error: length of given result data set is 0! Need expected results!")
}
s.trainingSet = trainingSet
s.expectedResults = expectedResults
return nil
}
// UpdateLearningRate set's the learning rate of the model
// to the given float64.
func (s *Softmax) UpdateLearningRate(a float64) {
s.alpha = a
}
// LearningRate returns the learning rate α for gradient
// descent to optimize the model. Could vary as a function
// of something else later, potentially.
func (s *Softmax) LearningRate() float64 {
return s.alpha
}
// Examples returns the number of training examples (m)
// that the model currently is training from.
func (s *Softmax) Examples() int {
return len(s.trainingSet)
}
// MaxIterations returns the number of maximum iterations
// the model will go through in GradientAscent, in the
// worst case
func (s *Softmax) MaxIterations() int {
return s.maxIterations
}
// Predict takes in a variable x (an array of floats,) and
// finds the value of the hypothesis function given the
// current parameter vector θ
func (s *Softmax) Predict(x []float64, normalize ...bool) ([]float64, error) {
if len(s.Parameters) != 0 && len(x)+1 != len(s.Parameters[0]) {
return nil, fmt.Errorf("Error: Parameter vector should be 1 longer than input vector!\n\tLength of x given: %v\n\tLength of parameters: %v (len(theta[0]) = %v)\n", len(x), len(s.Parameters), len(s.Parameters[0]))
}
if len(normalize) != 0 && normalize[0] {
base.NormalizePoint(x)
}
result := make([]float64, s.k)
var denom float64
for i := 0; i < s.k; i++ {
// include constant term in sum
sum := s.Parameters[i][0]
for j := range x {
sum += x[j] * s.Parameters[i][j+1]
}
result[i] = math.Exp(sum)
denom += result[i]
}
for i := range result {
result[i] /= denom
}
return result, nil
}
// Learn takes the struct's dataset and expected results and runs
// gradient descent on them, optimizing theta so you can
// predict accurately based on those results
func (s *Softmax) Learn() error {
if s.trainingSet == nil || s.expectedResults == nil {
err := fmt.Errorf("ERROR: Attempting to learn with no training examples!\n")
fmt.Fprintf(s.Output, err.Error())
return err
}
examples := len(s.trainingSet)
if examples == 0 || len(s.trainingSet[0]) == 0 {
err := fmt.Errorf("ERROR: Attempting to learn with no training examples!\n")
fmt.Fprintf(s.Output, err.Error())
return err
}
if len(s.expectedResults) == 0 {
err := fmt.Errorf("ERROR: Attempting to learn with no expected results! This isn't an unsupervised model!! You'll need to include data before you learn :)\n")
fmt.Fprintf(s.Output, err.Error())
return err
}
fmt.Fprintf(s.Output, "Training:\n\tModel: Softmax Classification\n\tOptimization Method: %v\n\tTraining Examples: %v\n\t Classification Dimensions: %v\n\tFeatures: %v\n\tLearning Rate α: %v\n\tRegularization Parameter λ: %v\n...\n\n", s.method, examples, s.k, len(s.trainingSet[0]), s.alpha, s.regularization)
var err error
if s.method == base.BatchGA {
err = func() error {
// if the iterations given is 0, set it to be
// 5000 (seems reasonable base value)
if s.maxIterations == 0 {
s.maxIterations = 5000
}
iter := 0
// Stop iterating if the number of iterations exceeds
// the limit
for ; iter < s.maxIterations; iter++ {
// go over each parameter vector for each
// classification value
newTheta := make([][]float64, len(s.Parameters))
for k, theta := range s.Parameters {
newTheta[k] = make([]float64, len(theta))
dj, err := s.Dj(k)
if err != nil {
return err
}
for j := range theta {
newTheta[k][j] = theta[j] + s.alpha*dj[j]
if math.IsInf(newTheta[k][j], 0) || math.IsNaN(newTheta[k][j]) {
return fmt.Errorf("Sorry dude! Learning diverged. Some value of the parameter vector theta is ±Inf or NaN")
}
}
}
s.Parameters = newTheta
}
fmt.Fprintf(s.Output, "Went through %v iterations.\n", iter)
return nil
}()
} else if s.method == base.StochasticGA {
err = func() error {
// if the iterations given is 0, set it to be
// 5000 (seems reasonable base value)
if s.maxIterations == 0 {
s.maxIterations = 5000
}
iter := 0
// Stop iterating if the number of iterations exceeds
// the limit
for ; iter < s.maxIterations; iter++ {
for j := range s.trainingSet {
newTheta := make([][]float64, len(s.Parameters))
// go over each parameter vector for each
// classification value
for k, theta := range s.Parameters {
newTheta[k] = make([]float64, len(theta))
dj, err := s.Dij(j, k)
if err != nil {
return err
}
// now simultaneously update theta
for j := range theta {
newTheta[k][j] = theta[j] + s.alpha*dj[j]
if math.IsInf(newTheta[k][j], 0) || math.IsNaN(newTheta[k][j]) {
return fmt.Errorf("Sorry dude! Learning diverged. Some value of the parameter vector theta is ±Inf or NaN")
}
}
}
s.Parameters = newTheta
}
}
fmt.Fprintf(s.Output, "Went through %v iterations.\n", iter)
return nil
}()
} else {
err = fmt.Errorf("Chose a training method not implemented for Softmax regression")
}
if err != nil {
fmt.Fprintf(s.Output, "\nERROR: Error while learning –\n\t%v\n\n", err)
return err
}
fmt.Fprintf(s.Output, "Training Completed.\n%v\n\n", s)
return nil
}
// OnlineLearn runs similar to using a fixed dataset with
// Stochastic Gradient Descent, but it handles data by
// passing it as a channal, and returns errors through
// a channel, which lets it run responsive to inputted data
// from outside the model itself (like using data from the
// stock market at timed intervals or using realtime data
// about the weather.)
//
// The onUpdate callback is called whenever the parameter
// vector theta is changed, so you are able to persist the
// model with the most up to date vector at all times (you
// could persist to a database within the callback, for
// example.) Don't worry about it taking too long and blocking,
// because the callback is spawned into another goroutine.
//
// NOTE that this function is suggested to run in it's own
// goroutine, or at least is designed as such.
//
// NOTE part 2: You can pass in an empty dataset, so long
// as it's not nil, and start pushing after.
//
// NOTE part 3: each example is only looked at as it goes
// through the channel, so if you want to have each example
// looked at more than once you must manually pass the data
// yourself.
//
// NOTE part 4: the optional parameter 'normalize' will
// , if true, normalize all data streamed through the
// channel to unit length. This will affect the outcome
// of the hypothesis, though it could be favorable if
// your data comes in drastically different scales.
//
// Example Online Logistic Regression:
//
// // create the channel of data and errors
// stream := make(chan base.Datapoint, 100)
// errors := make(chan error)
//
// // notice how we are adding another integer
// // to the end of the NewSoftmax call. This
// // tells the model to use that number of features
// // (2) in leu of finding that from the dataset
// // like you would with batch/stochastic GD
// //
// // Also – the 'base.StochasticGA' doesn't affect
// // anything. You could put batch or any other model.
// model := NewSoftmax(base.StochasticGA, 5e-5, 0, 3, 0, nil, nil, 2)
//
// go model.OnlineLearn(errors, stream, func(theta [][]float64) {
// // do something with the new theta (persist
// // to database?) in here.
// })
//
// go model.OnlineLearn(errors, stream, func(theta [][]float64) {})
//
// // start passing data to our datastream
// //
// // we could have data already in our channel
// // when we instantiated the Perceptron, though
// go func() {
// for iter := 0; iter < 3; iter++ {
// for i := -2.0; i < 2.0; i += 0.15 {
// for j := -2.0; j < 2.0; j += 0.15 {
//
// if -2*i+j/2-0.5 > 0 && -1*i-j < 0 {
// stream <- base.Datapoint{
// X: []float64{float64(i), float64(j)},
// Y: []float64{2.0},
// }
// } else if -2*i+j/2-0.5 > 0 && -1*i-j > 0 {
// stream <- base.Datapoint{
// X: []float64{float64(i), float64(j)},
// Y: []float64{1.0},
// }
// } else {
// stream <- base.Datapoint{
// X: []float64{float64(i), float64(j)},
// Y: []float64{0.0},
// }
// }
// }
// }
// }
//
// // close the dataset
// close(stream)
// }()
//
// // this will block until the error
// // channel is closed in the learning
// // function (it will, don't worry!)
// for {
// err, more := <-errors
// if err != nil {
// panic("THERE WAS AN ERROR!!! RUN!!!!")
// }
// if !more {
// break
// }
// }
//
// // Below here all the learning is completed
//
// // predict like usual
// guess, err = model.Predict([]float64{42,6,10,-32})
// if err != nil {
// panic("AAAARGGGH! SHIVER ME TIMBERS! THESE ROTTEN SCOUNDRELS FOUND AN ERROR!!!")
// }
func (s *Softmax) OnlineLearn(errors chan error, dataset chan base.Datapoint, onUpdate func([][]float64), normalize ...bool) {
if errors == nil {
errors = make(chan error)
}
if dataset == nil {
errors <- fmt.Errorf("ERROR: Attempting to learn with a nil data stream!\n")
close(errors)
return
}
fmt.Fprintf(s.Output, "Training:\n\tModel: Softmax Classifier (%v classes)\n\tOptimization Method: Online Stochastic Gradient Descent\n\tFeatures: %v\n\tLearning Rate α: %v\n...\n\n", s.k, len(s.Parameters), s.alpha)
norm := len(normalize) != 0 && normalize[0]
var point base.Datapoint
var more bool
for {
point, more = <-dataset
if more {
if len(point.Y) != 1 {
errors <- fmt.Errorf("ERROR: point.Y must have a length of 1. Point: %v", point)
continue
}
if norm {
base.NormalizePoint(point.X)
}
// go over each parameter vector for each
// classification value
for k, theta := range s.Parameters {
dj, err := func(point base.Datapoint, j int) ([]float64, error) {
grad := make([]float64, len(s.Parameters[0]))
// account for constant term
x := append([]float64{1}, point.X...)
var ident float64
if abs(point.Y[0]-float64(k)) < 1e-3 {
ident = 1
}
var numerator float64
var denom float64
for a := 0; a < s.k; a++ {
var inside float64
// calculate theta * x
for l, val := range s.Parameters[int(k)] {
inside += val * x[l]
}
if a == k {
numerator = math.Exp(inside)
}
denom += math.Exp(inside)
}
for a := range grad {
grad[a] += x[a] * (ident - numerator/denom)
}
// add in the regularization term
// λ*θ[j]
//
// notice that we don't count the
// constant term
for j := range grad {
grad[j] += s.regularization * s.Parameters[k][j]
}
return grad, nil
}(point, k)
if err != nil {
errors <- err
return
}
// now simultaneously update theta
for j := range theta {
newθ := theta[j] + s.alpha*dj[j]
if math.IsInf(newθ, 0) || math.IsNaN(newθ) {
errors <- fmt.Errorf("Sorry dude! Learning diverged. Some value of the parameter vector theta is ±Inf or NaN")
close(errors)
return
}
s.Parameters[k][j] = newθ
}
}
go onUpdate(s.Parameters)
} else {
fmt.Fprintf(s.Output, "Training Completed.\n%v\n\n", s)
close(errors)
return
}
}
}
// String implements the fmt interface for clean printing. Here
// we're using it to print the model as the equation h(θ)=...
// where h is the softmax hypothesis model
func (s *Softmax) String() string {
if len(s.Parameters) == 0 {
fmt.Fprintf(s.Output, "ERROR: Attempting to print model with the 0 vector as it's parameter vector! Train first!\n")
}
var buffer bytes.Buffer
buffer.WriteString(fmt.Sprintf("h(θ,x)[i] = exp(θ[i]x) / Σ exp(θ[j]x)\n\tθ ∊ ℝ^(%v x %v)\n", len(s.Parameters), len(s.Parameters[0])))
return buffer.String()
}
// Dj returns the partial derivative of the cost function J(θ)
// with respect to theta[k] where theta is the parameter vector
// associated with our hypothesis function Predict (upon which
// we are optimizing.
//
// k is the classification value you are finding the gradient
// for (because the parameter vactor is actually a vector _of_
// vectors!)
func (s *Softmax) Dj(k int) ([]float64, error) {
if k > s.k || k < 0 {
return nil, fmt.Errorf("Given k (%v) is not valid with respect to the model", k)
}
sum := make([]float64, len(s.Parameters[0]))
for i := range s.trainingSet {
// account for constant term
x := append([]float64{1}, s.trainingSet[i]...)
var ident float64
// 1{y == k}
if int(s.expectedResults[i]) == k {
ident = 1
}
var numerator float64
var denom float64
for a := 0; a < s.k; a++ {
var inside float64
// calculate theta * x
for l := range s.Parameters[k] {
inside += s.Parameters[k][l] * x[l]
}
if a == k {
numerator = math.Exp(inside)
}
denom += math.Exp(inside)
}
c := ident - numerator/denom
for a := range sum {
sum[a] += x[a] * c
}
}
// add in the regularization term
// λ*θ[j]
//
// notice that we don't count the
// constant term
for j := range sum {
sum[j] += s.regularization * s.Parameters[k][j]
}
return sum, nil
}
// Dij returns the derivative of the cost function
// J(θ) with respect to the j-th parameter of
// the hypothesis, θ[j], for the training example
// x[i]. Used in Stochastic Gradient Descent.
//
// assumes that i,j is within the bounds of the
// data they are looking up! (because this is getting
// called so much, it needs to be efficient with
// comparisons)
func (s *Softmax) Dij(i, k int) ([]float64, error) {
if k > s.k || k < 0 {
return nil, fmt.Errorf("Given k (%v) is not valid with respect to the model", k)
}
grad := make([]float64, len(s.Parameters[0]))
// account for constant term
x := append([]float64{1}, s.trainingSet[i]...)
var ident float64
if abs(s.expectedResults[i]-float64(k)) < 1e-3 {
ident = 1
}
var numerator float64
var denom float64
for a := 0; a < s.k; a++ {
var inside float64
// calculate theta * x
for l, val := range s.Parameters[int(k)] {
inside += val * x[l]
}
if a == k {
numerator = math.Exp(inside)
}
denom += math.Exp(inside)
}
for a := range grad {
grad[a] += x[a] * (ident - numerator/denom)
}
// add in the regularization term
// λ*θ[j]
//
// notice that we don't count the
// constant term
for j := range grad {
grad[j] += s.regularization * s.Parameters[k][j]
}
return grad, nil
}
// Theta returns the parameter vector θ for use in persisting
// the model, and optimizing the model through gradient descent
// ( or other methods like Newton's Method)
func (s *Softmax) Theta() [][]float64 {
return s.Parameters
}
// PersistToFile takes in an absolute filepath and saves the
// parameter vector θ to the file, which can be restored later.
// The function will take paths from the current directory, but
// functions
//
// The data is stored as JSON because it's one of the most
// efficient storage method (you only need one comma extra
// per feature + two brackets, total!) And it's extendable.
func (s *Softmax) PersistToFile(path string) error {
if path == "" {
return fmt.Errorf("ERROR: you just tried to persist your model to a file with no path!! That's a no-no. Try it with a valid filepath")
}
bytes, err := json.Marshal(s.Parameters)
if err != nil {
return err
}
err = ioutil.WriteFile(path, bytes, os.ModePerm)
if err != nil {
return err
}
return nil
}
// RestoreFromFile takes in a path to a parameter vector theta
// and assigns the model it's operating on's parameter vector
// to that.
//
// The path must ba an absolute path or a path from the current
// directory
//
// This would be useful in persisting data between running
// a model on data, or for graphing a dataset with a fit in
// another framework like Julia/Gadfly.
func (s *Softmax) RestoreFromFile(path string) error {
if path == "" {
return fmt.Errorf("ERROR: you just tried to restore your model from a file with no path! That's a no-no. Try it with a valid filepath")
}
bytes, err := ioutil.ReadFile(path)
if err != nil {
return err
}
err = json.Unmarshal(bytes, &s.Parameters)
if err != nil {
return err
}
return nil
}