-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathllm_game.py
214 lines (179 loc) · 6.61 KB
/
llm_game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from vizdoom import DoomGame, Mode
import os
from pynput import keyboard
import numpy as np
import json
import openai
from dotenv import load_dotenv, dotenv_values
load_dotenv()
client = openai.OpenAI(
base_url="https://api.fireworks.ai/inference/v1",
api_key=os.getenv("FIREWORKS_API_KEY")
)
# Change this to your model id if you want to use your own model
model_id = "accounts/socter-af4bea/models/doom-mistral-fixed-prompt-lr-assistant-fast-3"
game = DoomGame()
game.load_config("scenarios/basic.cfg")
game.set_window_visible(True)
game.set_mode(Mode.ASYNC_PLAYER)
game.set_labels_buffer_enabled(True)
game.set_render_hud(False)
game.init()
def generate_ascii_grid(bounding_boxes, wall_buffer, floor_buffer, screen_width, screen_height, grid_width=64, grid_height=32):
# Normalize screen dimensions to 32x32 grid
scale_x = 1.0*grid_width / screen_width
scale_y = 1.0*grid_height / screen_height
# Create a 32x32 grid filled with spaces
grid = [[' ' for _ in range(grid_width)] for _ in range(grid_height)]
for i in range(grid_height):
for j in range(grid_width):
x1 = int(j / scale_x)
y1 = int(i / scale_y)
x2 = int((j + 1) / scale_x)
y2 = int((i + 1) / scale_y)
area = (y2 - y1) * (x2 - x1)
if area > 0:
wall_score = sum(wall_buffer[y1:y2, x1:x2].flatten()) / area
floor_score = sum(floor_buffer[y1:y2, x1:x2].flatten()) / area
else:
wall_score = 0
floor_score = 0
if wall_score > 0.5:
grid[i][j] = 'W'
elif floor_score > 0.5:
grid[i][j] = 'F'
# Iterate over the bounding boxes
for x, y, w, h, label in bounding_boxes:
# Normalize coordinates and dimensions to 32x32 grid
x_norm = int(x * scale_x)
y_norm = int(y * scale_y)
w_norm = int(w * scale_x)
h_norm = int(h * scale_y)
# Ensure coordinates and dimensions are within the grid
x_norm = max(0, min(grid_width-1, x_norm))
y_norm = max(0, min(grid_height-1, y_norm))
w_norm = max(0, min(grid_width - x_norm, w_norm))
h_norm = max(0, min(grid_height - y_norm, h_norm))
# Draw the bounding box on the grid
for i in range(h_norm):
for j in range(w_norm):
grid[y_norm + i][x_norm + j] = label
# Convert the grid to a string
ascii_grid = ''
for row in grid:
ascii_grid += ''.join(row) + '\n'
return ascii_grid
def get_object_name_char(object_name):
if object_name == 'DoomPlayer':
return 'P'
else:
return 'E'
def convert_labels_to_representation(labels, wall_buffer, floor_buffer, screen_height=320, screen_width=240):
reps = []
for label in labels:
rep = (label.x, label.y, label.width, label.height,
get_object_name_char(label.object_name))
print(label.object_name)
reps.append(rep)
grid = generate_ascii_grid(
reps, wall_buffer, floor_buffer, screen_height, screen_width)
return grid
def one_hot(i, max_num=7):
arr = [False for _ in range(max_num)]
arr[i] = True
return arr
available_actions = [
'MOVE_FORWARD',
'TURN_LEFT',
'TURN_RIGHT',
'MOVE_BACKWARD',
'MOVE_LEFT',
'MOVE_RIGHT',
'ATTACK'
]
key_mappings = {
keyboard.Key.up: 0,
keyboard.Key.left: 1,
keyboard.Key.right: 2,
keyboard.Key.down: 3,
'a': 4,
'd': 5,
keyboard.Key.space: 6,
# keyboard.Key.esc: 7,
}
action_mappings = {
0: one_hot(0), # Move forward
1: one_hot(1), # Turn left
2: one_hot(2), # Turn right
3: one_hot(3), # Move backward
4: one_hot(4), # Move left
5: one_hot(5), # Move right
6: one_hot(6), # Attack
7: None,
}
pressed_keys = set()
def llm_call(grid):
prompt = '''Youre the DOOM AI, assuming the role of Demon Slayer in a grid environment represented by ASCII characters. Understand each character as follows: E: Enemy, P: Player, B: Bullet, W: Wall, F: Floor, A: Armor Bonus, Z: Zombieman, H: Health Bonus, S: Stimpack. Your task is to interpret the grid and choose an appropriate action from the following options: MOVE_FORWARD, TURN_LEFT, TURN_RIGHT, MOVE_BACKWARD, MOVE_LEFT, MOVE_RIGHT, ATTACK. Your responses must exclusively be your chosen action.'''
prompt += grid
prompt += '\nResponse:'
response = client.chat.completions.create(
model=model_id,
messages=[{
"role": "user",
"content": prompt,
}],
)
print(grid)
print('Sending query to DOOM-Mistral-7B')
action = response.choices[0].message.content
print('LLM Action: ', action)
action_idx = available_actions.index(action)
if action_idx == -1:
return None
return one_hot(action_idx)
episodes = 10
screen_height = 320
screen_width = 240
wall_id = 0
floor_id = 1
for episode in range(episodes):
game.new_episode()
episode_data = []
all_labels = {}
next_action = action_mappings[0]
while not game.is_episode_finished():
state = game.get_state()
try:
action = next_action
wall_buffer = np.zeros_like(state.labels_buffer)
floor_buffer = np.zeros_like(state.labels_buffer)
wall_buffer[state.labels_buffer == wall_id] = 1
floor_buffer[state.labels_buffer == floor_id] = 1
for label in state.labels:
all_labels[label.object_name] = 0
grid = convert_labels_to_representation(
state.labels, wall_buffer, floor_buffer, screen_height=320, screen_width=240)
print(grid)
example = {}
example['grid_height'] = 32
example['grid_width'] = 32
example['screen_width'] = screen_width
example['screen_height'] = screen_height
example['grid'] = grid
example['available_actions'] = available_actions
example['action'] = action
example['killcount'] = state.game_variables[0]
example['health'] = state.game_variables[1]
example['armor'] = state.game_variables[2]
example['ammo2'] = state.game_variables[3]
reward = game.make_action(next_action)
example['reward'] = reward
episode_data.append(example)
next_action = llm_call(grid)
except ValueError:
print("Invalid input. Using random action.")
print(f"State: {state.number}")
fp = open(f'./training_data/episode_{episode}.json', 'w')
json.dump(episode_data, fp, indent=4)
fp.close()
game.close()