-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmodels.py
311 lines (248 loc) · 11.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy
from numpy.lib import stride_tricks
from utils import overlap_and_add, device
from torch.autograd import Variable
from transformer_improved import TransformerEncoderLayer
EPS = 1e-8
class Encoder(nn.Module):
"""Estimation of the nonnegative mixture weight by a 1-D conv layer.
"""
def __init__(self, W=2, N=64):
super(Encoder, self).__init__()
# Hyper-parameter
self.W, self.N = W, N
# Components
# 50% overlap
self.conv1d_U = nn.Conv1d(1, N, kernel_size=W, stride=W // 2, bias=False)
def forward(self, mixture):
"""
Args:
mixture: [B, T], B is batch size, T is #samples
Returns:
mixture_w: [B, N, L], where L = (T-W)/(W/2)+1 = 2T/W-1
L is the number of time steps
"""
mixture = torch.unsqueeze(mixture, 1) # [B, 1, T]
mixture_w = F.relu(self.conv1d_U(mixture)) # [B, N, L]
return mixture_w
class Decoder(nn.Module):
def __init__(self, E, W):
super(Decoder, self).__init__()
# Hyper-parameter
self.E, self.W = E, W
# Components
self.basis_signals = nn.Linear(E, W, bias=False)
def forward(self, mixture_w, est_mask):
"""
Args:
mixture_w: [B, E, L]
est_mask: [B, C, E, L]
Returns:
est_source: [B, C, T]
"""
# D = W * M
#print(mixture_w.shape)
#print(est_mask.shape)
source_w = torch.unsqueeze(mixture_w, 1) * est_mask # [B, C, E, L]
source_w = torch.transpose(source_w, 2, 3) # [B, C, L, E]
# S = DV
est_source = self.basis_signals(source_w) # [B, C, L, W]
est_source = overlap_and_add(est_source, self.W//2) # B x C x T
return est_source
class SingleTransformer(nn.Module):
"""
Container module for a single Transformer layer.
args: input_size: int, dimension of the input feature. The input should have shape (batch, seq_len, input_size).
"""
def __init__(self, input_size, hidden_size, dropout):
super(SingleTransformer, self).__init__()
self.transformer = TransformerEncoderLayer(d_model=input_size, nhead=4, hidden_size=hidden_size,
dim_feedforward=hidden_size*2, dropout=dropout)
def forward(self, input):
# input shape: batch, seq, dim
output = input
transformer_output = self.transformer(output.permute(1, 0, 2).contiguous()).permute(1, 0, 2).contiguous()
return transformer_output
# dual-path transformer
class DPT(nn.Module):
"""
Deep dual-path transformer.
args:
input_size: int, dimension of the input feature. The input should have shape
(batch, seq_len, input_size).
hidden_size: int, dimension of the hidden state.
output_size: int, dimension of the output size.
num_layers: int, number of stacked Transformer layers. Default is 1.
dropout: float, dropout ratio. Default is 0.
"""
def __init__(self, input_size, hidden_size, output_size, num_layers=1, dropout=0):
super(DPT, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.hidden_size = hidden_size
# dual-path transformer
self.row_transformer = nn.ModuleList([])
self.col_transformer = nn.ModuleList([])
for i in range(num_layers):
self.row_transformer.append(SingleTransformer(input_size, hidden_size, dropout))
self.col_transformer.append(SingleTransformer(input_size, hidden_size, dropout))
# output layer
self.output = nn.Sequential(nn.PReLU(), nn.Conv2d(input_size, output_size, 1))
def forward(self, input):
# input shape: batch, N, dim1, dim2
# apply transformer on dim1 first and then dim2
# output shape: B, output_size, dim1, dim2
#input = input.to(device)
batch_size, _, dim1, dim2 = input.shape
output = input
for i in range(len(self.row_transformer)):
row_input = output.permute(0, 3, 2, 1).contiguous().view(batch_size * dim2, dim1, -1) # B*dim2, dim1, N
row_output = self.row_transformer[i](row_input) # B*dim2, dim1, H
row_output = row_output.view(batch_size, dim2, dim1, -1).permute(0, 3, 2, 1).contiguous() # B, N, dim1, dim2
output = row_output
col_input = output.permute(0, 2, 3, 1).contiguous().view(batch_size * dim1, dim2, -1) # B*dim1, dim2, N
col_output = self.col_transformer[i](col_input) # B*dim1, dim2, H
col_output = col_output.view(batch_size, dim1, dim2, -1).permute(0, 3, 1, 2).contiguous() # B, N, dim1, dim2
output = col_output
output = self.output(output) # B, output_size, dim1, dim2
return output
# base module for deep DPT
class DPT_base(nn.Module):
def __init__(self, input_dim, feature_dim, hidden_dim, num_spk=2, layer=6, segment_size=250):
super(DPT_base, self).__init__()
self.input_dim = input_dim
self.feature_dim = feature_dim
self.hidden_dim = hidden_dim
self.layer = layer
self.segment_size = segment_size
self.num_spk = num_spk
self.eps = 1e-8
# bottleneck
self.BN = nn.Conv1d(self.input_dim, self.feature_dim, 1, bias=False)
# DPT model
self.DPT = DPT(self.feature_dim, self.hidden_dim, self.feature_dim * self.num_spk, num_layers=layer)
def pad_segment(self, input, segment_size):
# input is the features: (B, N, T)
batch_size, dim, seq_len = input.shape
segment_stride = segment_size // 2
rest = segment_size - (segment_stride + seq_len % segment_size) % segment_size
if rest > 0:
pad = Variable(torch.zeros(batch_size, dim, rest)).type(input.type())
input = torch.cat([input, pad], 2)
pad_aux = Variable(torch.zeros(batch_size, dim, segment_stride)).type(input.type())
input = torch.cat([pad_aux, input, pad_aux], 2)
return input, rest
def split_feature(self, input, segment_size):
# split the feature into chunks of segment size
# input is the features: (B, N, T)
input, rest = self.pad_segment(input, segment_size)
batch_size, dim, seq_len = input.shape
segment_stride = segment_size // 2
segments1 = input[:, :, :-segment_stride].contiguous().view(batch_size, dim, -1, segment_size)
segments2 = input[:, :, segment_stride:].contiguous().view(batch_size, dim, -1, segment_size)
segments = torch.cat([segments1, segments2], 3).view(batch_size, dim, -1, segment_size).transpose(2, 3)
return segments.contiguous(), rest
def merge_feature(self, input, rest):
# merge the splitted features into full utterance
# input is the features: (B, N, L, K)
batch_size, dim, segment_size, _ = input.shape
segment_stride = segment_size // 2
input = input.transpose(2, 3).contiguous().view(batch_size, dim, -1, segment_size * 2) # B, N, K, L
input1 = input[:, :, :, :segment_size].contiguous().view(batch_size, dim, -1)[:, :, segment_stride:]
input2 = input[:, :, :, segment_size:].contiguous().view(batch_size, dim, -1)[:, :, :-segment_stride]
output = input1 + input2
if rest > 0:
output = output[:, :, :-rest]
return output.contiguous() # B, N, T
def forward(self, input):
pass
class BF_module(DPT_base):
def __init__(self, *args, **kwargs):
super(BF_module, self).__init__(*args, **kwargs)
# gated output layer
self.output = nn.Sequential(nn.Conv1d(self.feature_dim, self.feature_dim, 1),
nn.Tanh()
)
self.output_gate = nn.Sequential(nn.Conv1d(self.feature_dim, self.feature_dim, 1),
nn.Sigmoid()
)
def forward(self, input):
#input = input.to(device)
# input: (B, E, T)
batch_size, E, seq_length = input.shape
enc_feature = self.BN(input) # (B, E, L)-->(B, N, L)
# split the encoder output into overlapped, longer segments
enc_segments, enc_rest = self.split_feature(enc_feature, self.segment_size) # B, N, L, K: L is the segment_size
#print('enc_segments.shape {}'.format(enc_segments.shape))
# pass to DPT
output = self.DPT(enc_segments).view(batch_size * self.num_spk, self.feature_dim, self.segment_size, -1) # B*nspk, N, L, K
# overlap-and-add of the outputs
output = self.merge_feature(output, enc_rest) # B*nspk, N, T
# gated output layer for filter generation
bf_filter = self.output(output) * self.output_gate(output) # B*nspk, K, T
bf_filter = bf_filter.transpose(1, 2).contiguous().view(batch_size, self.num_spk, -1, self.feature_dim) # B, nspk, T, N
return bf_filter
# base module for DPTNet_base
class DPTNet_base(nn.Module):
def __init__(self, enc_dim, feature_dim, hidden_dim, layer, segment_size=250, nspk=2, win_len=2):
super(DPTNet_base, self).__init__()
# parameters
self.window = win_len
self.stride = self.window // 2
self.enc_dim = enc_dim
self.feature_dim = feature_dim
self.hidden_dim = hidden_dim
self.segment_size = segment_size
self.layer = layer
self.num_spk = nspk
self.eps = 1e-8
# waveform encoder
self.encoder = Encoder(win_len, enc_dim) # [B T]-->[B N L]
self.enc_LN = nn.GroupNorm(1, self.enc_dim, eps=1e-8) # [B N L]-->[B N L]
self.separator = BF_module(self.enc_dim, self.feature_dim, self.hidden_dim,
self.num_spk, self.layer, self.segment_size)
# [B, N, L] -> [B, E, L]
self.mask_conv1x1 = nn.Conv1d(self.feature_dim, self.enc_dim, 1, bias=False)
self.decoder = Decoder(enc_dim, win_len)
def pad_input(self, input, window):
"""
Zero-padding input according to window/stride size.
"""
batch_size, nsample = input.shape
stride = window // 2
# pad the signals at the end for matching the window/stride size
rest = window - (stride + nsample % window) % window
if rest > 0:
pad = torch.zeros(batch_size, rest).type(input.type())
input = torch.cat([input, pad], 1)
pad_aux = torch.zeros(batch_size, stride).type(input.type())
input = torch.cat([pad_aux, input, pad_aux], 1)
return input, rest
def forward(self, input):
"""
input: shape (batch, T)
"""
# pass to a DPT
#input = input.to(device)
B, _ = input.size()
# mixture, rest = self.pad_input(input, self.window)
#print('mixture.shape {}'.format(mixture.shape))
mixture_w = self.encoder(input) # B, E, L
score_ = self.enc_LN(mixture_w) # B, E, L
#print('mixture_w.shape {}'.format(mixture_w.shape))
score_ = self.separator(score_) # B, nspk, T, N
#print('score_.shape {}'.format(score_.shape))
score_ = score_.view(B*self.num_spk, -1, self.feature_dim).transpose(1, 2).contiguous() # B*nspk, N, T
#print('score_.shape {}'.format(score_.shape))
score = self.mask_conv1x1(score_) # [B*nspk, N, L] -> [B*nspk, E, L]
#print('score.shape {}'.format(score.shape))
score = score.view(B, self.num_spk, self.enc_dim, -1) # [B*nspk, E, L] -> [B, nspk, E, L]
#print('score.shape {}'.format(score.shape))
est_mask = F.relu(score)
est_source = self.decoder(mixture_w, est_mask) # [B, E, L] + [B, nspk, E, L]--> [B, nspk, T]
# if rest > 0:
# est_source = est_source[:, :, :-rest]
return est_source