We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi, I have tried spin with an agent datasets. As training time increases, the logps become smaller and smaller.
I understand that as the logps, the model becomes increasingly uncertain about its predictions. Am I right?
Have you met this situation during fine tuning with spin?
{'loss': 0.683, 'learning_rate': 1.4492753623188405e-07, 'rewards/chosen': -0.04396624490618706, 'rewards/rejected': -0.06808599829673767, 'rewards/accuracies': 0.668749988079071, 'rewards/margins': 0.024119755253195763, 'logps/rejected': -1.543066382408142, 'logps/chosen': -1.1352736949920654, 'logps/rejected_ref': -1.5335168838500977, 'logps/chosen_ref': -1.1292275190353394, 'logits/rejected': -2.7396950721740723, 'logits/chosen': -2.740943431854248, 'epoch': 0.06} {'loss': 0.6719, 'learning_rate': 1.8115942028985507e-07, 'rewards/chosen': -0.0987342819571495, 'rewards/rejected': -0.14318521320819855, 'rewards/accuracies': 0.675000011920929, 'rewards/margins': 0.04445093870162964, 'logps/rejected': -1.5421949625015259, 'logps/chosen': -1.1360487937927246, 'logps/rejected_ref': -1.5208072662353516, 'logps/chosen_ref': -1.1223704814910889, 'logits/rejected': -2.727785587310791, 'logits/chosen': -2.723764657974243, 'epoch': 0.07} {'loss': 0.6527, 'learning_rate': 2.1739130434782607e-07, 'rewards/chosen': -0.1672864407300949, 'rewards/rejected': -0.2939082682132721, 'rewards/accuracies': 0.7250000238418579, 'rewards/margins': 0.126621812582016, 'logps/rejected': -1.597663164138794, 'logps/chosen': -1.1704113483428955, 'logps/rejected_ref': -1.555121898651123, 'logps/chosen_ref': -1.1455411911010742, 'logits/rejected': -2.6994194984436035, 'logits/chosen': -2.698334217071533, 'epoch': 0.09} {'loss': 0.6357, 'learning_rate': 2.536231884057971e-07, 'rewards/chosen': -0.24780841171741486, 'rewards/rejected': -0.41642823815345764, 'rewards/accuracies': 0.6812499761581421, 'rewards/margins': 0.1686197966337204, 'logps/rejected': -1.5889415740966797, 'logps/chosen': -1.1762551069259644, 'logps/rejected_ref': -1.5331004858016968, 'logps/chosen_ref': -1.1385315656661987, 'logits/rejected': -2.608551263809204, 'logits/chosen': -2.595763683319092, 'epoch': 0.1} {'loss': 0.6215, 'learning_rate': 2.898550724637681e-07, 'rewards/chosen': -0.3489204943180084, 'rewards/rejected': -0.5186128616333008, 'rewards/accuracies': 0.6625000238418579, 'rewards/margins': 0.16969238221645355, 'logps/rejected': -1.4930452108383179, 'logps/chosen': -1.2134768962860107, 'logps/rejected_ref': -1.4123075008392334, 'logps/chosen_ref': -1.1594829559326172, 'logits/rejected': -2.72218656539917, 'logits/chosen': -2.7101638317108154, 'epoch': 0.12} {'loss': 0.5946, 'learning_rate': 3.260869565217391e-07, 'rewards/chosen': -0.5540724396705627, 'rewards/rejected': -0.7824233174324036, 'rewards/accuracies': 0.6625000238418579, 'rewards/margins': 0.22835083305835724, 'logps/rejected': -1.6317428350448608, 'logps/chosen': -1.18325674533844, 'logps/rejected_ref': -1.5138404369354248, 'logps/chosen_ref': -1.1028623580932617, 'logits/rejected': -2.5669362545013428, 'logits/chosen': -2.5608177185058594, 'epoch': 0.13} {'loss': 0.5704, 'learning_rate': 3.6231884057971015e-07, 'rewards/chosen': -0.7594733238220215, 'rewards/rejected': -1.1346296072006226, 'rewards/accuracies': 0.6812499761581421, 'rewards/margins': 0.37515631318092346, 'logps/rejected': -1.6324068307876587, 'logps/chosen': -1.2670494318008423, 'logps/rejected_ref': -1.4673458337783813, 'logps/chosen_ref': -1.1539455652236938, 'logits/rejected': -2.371572971343994, 'logits/chosen': -2.3651740550994873, 'epoch': 0.15} {'loss': 0.5638, 'learning_rate': 3.9855072463768114e-07, 'rewards/chosen': -0.9244664311408997, 'rewards/rejected': -1.3455318212509155, 'rewards/accuracies': 0.6625000238418579, 'rewards/margins': 0.4210655093193054, 'logps/rejected': -1.7487471103668213, 'logps/chosen': -1.3893951177597046, 'logps/rejected_ref': -1.5395921468734741, 'logps/chosen_ref': -1.2470614910125732, 'logits/rejected': -2.358799457550049, 'logits/chosen': -2.351849317550659, 'epoch': 0.16} {'loss': 0.5619, 'learning_rate': 4.3478260869565214e-07, 'rewards/chosen': -0.9872746467590332, 'rewards/rejected': -1.5160770416259766, 'rewards/accuracies': 0.6312500238418579, 'rewards/margins': 0.5288023352622986, 'logps/rejected': -1.579150676727295, 'logps/chosen': -1.2077702283859253, 'logps/rejected_ref': -1.358649492263794, 'logps/chosen_ref': -1.0587767362594604, 'logits/rejected': -2.2918102741241455, 'logits/chosen': -2.295361042022705, 'epoch': 0.17}
The text was updated successfully, but these errors were encountered:
because my original code was modified from trl DPOTrainer.
Sorry, something went wrong.
May I ask why your logs here are 'rewards/chosen' and 'rewards/rejected'? The code should be 'rewards/real' and 'rewards/generated'
but the rewards/chosen corresponds to rewards_real; and rejected corresponds to generated
No branches or pull requests
Hi, I have tried spin with an agent datasets. As training time increases, the logps become smaller and smaller.
I understand that as the logps, the model becomes increasingly uncertain about its predictions. Am I right?
Have you met this situation during fine tuning with spin?
{'loss': 0.683, 'learning_rate': 1.4492753623188405e-07, 'rewards/chosen': -0.04396624490618706, 'rewards/rejected': -0.06808599829673767, 'rewards/accuracies': 0.668749988079071, 'rewards/margins': 0.024119755253195763, 'logps/rejected': -1.543066382408142, 'logps/chosen': -1.1352736949920654, 'logps/rejected_ref': -1.5335168838500977, 'logps/chosen_ref': -1.1292275190353394, 'logits/rejected': -2.7396950721740723, 'logits/chosen': -2.740943431854248, 'epoch': 0.06}
{'loss': 0.6719, 'learning_rate': 1.8115942028985507e-07, 'rewards/chosen': -0.0987342819571495, 'rewards/rejected': -0.14318521320819855, 'rewards/accuracies': 0.675000011920929, 'rewards/margins': 0.04445093870162964, 'logps/rejected': -1.5421949625015259, 'logps/chosen': -1.1360487937927246, 'logps/rejected_ref': -1.5208072662353516, 'logps/chosen_ref': -1.1223704814910889, 'logits/rejected': -2.727785587310791, 'logits/chosen': -2.723764657974243, 'epoch': 0.07}
{'loss': 0.6527, 'learning_rate': 2.1739130434782607e-07, 'rewards/chosen': -0.1672864407300949, 'rewards/rejected': -0.2939082682132721, 'rewards/accuracies': 0.7250000238418579, 'rewards/margins': 0.126621812582016, 'logps/rejected': -1.597663164138794, 'logps/chosen': -1.1704113483428955, 'logps/rejected_ref': -1.555121898651123, 'logps/chosen_ref': -1.1455411911010742, 'logits/rejected': -2.6994194984436035, 'logits/chosen': -2.698334217071533, 'epoch': 0.09}
{'loss': 0.6357, 'learning_rate': 2.536231884057971e-07, 'rewards/chosen': -0.24780841171741486, 'rewards/rejected': -0.41642823815345764, 'rewards/accuracies': 0.6812499761581421, 'rewards/margins': 0.1686197966337204, 'logps/rejected': -1.5889415740966797, 'logps/chosen': -1.1762551069259644, 'logps/rejected_ref': -1.5331004858016968, 'logps/chosen_ref': -1.1385315656661987, 'logits/rejected': -2.608551263809204, 'logits/chosen': -2.595763683319092, 'epoch': 0.1}
{'loss': 0.6215, 'learning_rate': 2.898550724637681e-07, 'rewards/chosen': -0.3489204943180084, 'rewards/rejected': -0.5186128616333008, 'rewards/accuracies': 0.6625000238418579, 'rewards/margins': 0.16969238221645355, 'logps/rejected': -1.4930452108383179, 'logps/chosen': -1.2134768962860107, 'logps/rejected_ref': -1.4123075008392334, 'logps/chosen_ref': -1.1594829559326172, 'logits/rejected': -2.72218656539917, 'logits/chosen': -2.7101638317108154, 'epoch': 0.12}
{'loss': 0.5946, 'learning_rate': 3.260869565217391e-07, 'rewards/chosen': -0.5540724396705627, 'rewards/rejected': -0.7824233174324036, 'rewards/accuracies': 0.6625000238418579, 'rewards/margins': 0.22835083305835724, 'logps/rejected': -1.6317428350448608, 'logps/chosen': -1.18325674533844, 'logps/rejected_ref': -1.5138404369354248, 'logps/chosen_ref': -1.1028623580932617, 'logits/rejected': -2.5669362545013428, 'logits/chosen': -2.5608177185058594, 'epoch': 0.13}
{'loss': 0.5704, 'learning_rate': 3.6231884057971015e-07, 'rewards/chosen': -0.7594733238220215, 'rewards/rejected': -1.1346296072006226, 'rewards/accuracies': 0.6812499761581421, 'rewards/margins': 0.37515631318092346, 'logps/rejected': -1.6324068307876587, 'logps/chosen': -1.2670494318008423, 'logps/rejected_ref': -1.4673458337783813, 'logps/chosen_ref': -1.1539455652236938, 'logits/rejected': -2.371572971343994, 'logits/chosen': -2.3651740550994873, 'epoch': 0.15}
{'loss': 0.5638, 'learning_rate': 3.9855072463768114e-07, 'rewards/chosen': -0.9244664311408997, 'rewards/rejected': -1.3455318212509155, 'rewards/accuracies': 0.6625000238418579, 'rewards/margins': 0.4210655093193054, 'logps/rejected': -1.7487471103668213, 'logps/chosen': -1.3893951177597046, 'logps/rejected_ref': -1.5395921468734741, 'logps/chosen_ref': -1.2470614910125732, 'logits/rejected': -2.358799457550049, 'logits/chosen': -2.351849317550659, 'epoch': 0.16}
{'loss': 0.5619, 'learning_rate': 4.3478260869565214e-07, 'rewards/chosen': -0.9872746467590332, 'rewards/rejected': -1.5160770416259766, 'rewards/accuracies': 0.6312500238418579, 'rewards/margins': 0.5288023352622986, 'logps/rejected': -1.579150676727295, 'logps/chosen': -1.2077702283859253, 'logps/rejected_ref': -1.358649492263794, 'logps/chosen_ref': -1.0587767362594604, 'logits/rejected': -2.2918102741241455, 'logits/chosen': -2.295361042022705, 'epoch': 0.17}
The text was updated successfully, but these errors were encountered: