-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathflowModel.py
106 lines (81 loc) · 3 KB
/
flowModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import sys
from numpy import *
from numpy.random import *
sys.path.append("/home/cbarnes/dev/cuda-sim-area/cuda-sim/trunk/")
import cudasim
import cudasim.EulerMaruyama as EulerMaruyama
import cudasim.Gillespie as Gillespie
import cudasim.Lsoda as Lsoda
class model:
def __init__(self, cudaFile, nspecies, nparams, background):
self.cudaFile = cudaFile
self.nspecies = nspecies
self.nparams = nparams
self.logp = False
self.modelInstance = 0
self.background = background
def create_model_instance(self, beta, timepoints):
self.beta = beta
self.timepoints = timepoints
self.ntimes = len(timepoints)
del self.modelInstance
self.modelInstance = Gillespie.Gillespie(self.timepoints, self.cudaFile, self.beta)
def get_model_info(self):
return [self.nspecies, self.nparams]
# can handle single FP
def convert_to_intensity(self, nFP, mu, sigma, mu_b, sigma_b):
# Normally distributed background
signal = normal(mu_b,sigma_b)
# Addition of normals
if nFP > 0:
signal = signal + normal(nFP*mu, sqrt(nFP*sigma*sigma))
return signal
def simulate(self, n, pars, inits, fps, intMus, intSgs):
print "\tflowModel: calling cuda-sim"
species = zeros([n, self.nspecies])
pp = zeros([n, self.nparams])
for i in range(n):
species[i, :] = inits[i, :]
if self.logp == False:
pp[i, :] = pars[i, :]
else:
pp[i, :] = power(10, pars[i])
simRaw = self.modelInstance.run(pp, species)
# Fluorescence model: convert the number of FPs into intensity
print "\tflowModel: calculating intensity"
simInt = simRaw.astype(float)
for i in range(n):
for j in range(self.beta):
for k in range(self.ntimes):
for l in range(len(fps)):
simInt[i, j, k, fps[l]] = self.convert_to_intensity(simRaw[i, j, k, fps[l]], intMus[i, l], intSgs[i, l], self.background[l][0], self.background[l][1])
return simInt
# Return the results of cuda-sim as a list of dictionaries of the same form as we read the data
#def create_dict(sims, timePoints):
#
# n = len(sims[:,0,0,0])
# ntimePoints = len(timePoints)
# #print "create_dict: ", n, timePoints, ntimePoints
#
# ret = []
#
# for j in range(n):
# retDict = {}
# for nt in range(ntimePoints):
# retDict[ timePoints[nt] ] = sims[j,:,nt,:]
#
# ret.append( retDict )
#
# return ret
def create_dict(sims, timePoints):
n = len(sims[:,0,0,0])
ntimePoints = len(timePoints)
#print "create_dict: ", n, timePoints, ntimePoints
ret = []
retDict = {}
for nt in range(ntimePoints):
retDict[ timePoints[nt] ] = []
for j in range(n):
for nt in range(ntimePoints):
retDict[ timePoints[nt] ].append(sims[j,:,nt,:])
return retDict