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Binding the Person-Specific Approach to Modern AI in the Human
Screenome Project: Moving past Generalizability to Transferability

Nilam Rama , Nick Haberb, Thomas N. Robinsonc, and Byron Reevesd

aDepartment of Psychology & Department of Communication, Stanford University; bGraduate School of Education, Stanford University;
cDepartment of Pediatrics, Stanford University; dDepartment of Communication, Stanford University

ABSTRACT
Advances in ability to comprehensively record individuals’ digital lives and in AI modeling
of those data facilitate new possibilities for describing, predicting, and generating a wide
variety of behavioral processes. In this paper, we consider these advances from a person-
specific perspective, including whether the pervasive concerns about generalizability of
results might be productively reframed with respect to transferability of models, and how
self-supervision and new deep neural network architectures that facilitate transfer learning
can be applied in a person-specific way to the super-intensive longitudinal data arriving in
the Human Screenome Project. In developing the possibilities, we suggest Molenaar add a
statement to the person-specific Manifesto – “In short, the concerns about generalizability
commonly leveled at the person-specific paradigm are unfounded and can be fully and
completely replaced with discussion and demonstrations of transferability.”
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When NR arrived at Penn State, Peter Molenaar was
excitedly pushing forward from his recently published
manifesto on the need for scientific study of the individ-
ual and the structure of their intraindividual variability
(Molenaar, 2004). During that period, Peter avoided
and sometimes flatly refused to discuss the topic of
between-person differences. Instead, he deeply explored
how theory and methods are constructed when working
with N¼ 1 cases—one person, one historical record, one
earth (e.g., as is done in study of history and geology).
For the rest of us in the group, psychologists trained on
literature based in study of interindividual differences,
engagement with the N¼ 1 Gedankenexperiment was
both tortuous and truly inspiring!

Person-specific time-series modeling

While we did eventually figure out how to generate
theoretical explanations of psychological phenomena
without reference to second or third individuals, the
theoretical work remains quite difficult! In contrast,
parallel efforts to generate and codify a variety of
N¼ 1 data analysis pipelines for P-technique, dynamic
factor analysis, broader classes of state-space models,
and behavioral landscapes flowed more quickly. These

person-specific methods provided interesting and use-
ful description of how an individual’s or a dyad’s
behavior change over time, prediction of time-varying
outputs, and generation of person-specific dynamic
control strategies (e.g., Molenaar et al., 2009; Molenaar
& Ram, 2010; Ram et al., 2013). The N¼ 1 modeling
work clearly demonstrated the important opportunity
that emerges from the person-specific paradigm—
“each person is a possibly unique system of interacting
dynamic processes, the unfolding of which give rise to
an individual life trajectory in a high-dimensional psy-
chological space” (Molenaar, 2004, p. 202).

After a while, Peter tolerated conversation about
between-person differences, and eventually he actually
integrated between-person differences into the analysis
pipelines. Pure N¼ 1 extensions of state-space models
in the unified structural equation modeling framework
(uSEM; Gates et al., 2010) were expanded into a N ¼
many, group iterative multiple model estimation
(GIMME; Gates & Molenaar, 2012) approach where
the best fitting model of multiple individuals’ time-ser-
ies data was obtained using an iterative model building
algorithm. The “bottom-up” search procedures
embedded into GIMME immediately showed promise
for modeling the abundance of replicated time-series
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data generated in fMRI studies. Those procedures,
when accompanied by network graph representations
of the underlying uSEMs, now generously inform the-
oretical explanations of how neural activations and
cognitive/emotional/interpersonal behaviors unfold in
multi-dimensional space. The wider community of
modelers are now, as indicated by the wealth of work
in this special issue and elsewhere, systematically filling
in a variety of “top-down” versions of these models
(e.g., multilevel and mixture state-space models,
Fischer et al., this issue; Hunter et al., this issue;
Oravecz & Vandekerckhove, this issue).

Person-specific machine learning

Parallel to the N¼ 1 to N ¼ many modeling exten-
sions, we also demonstrated how traditional machine
learning (ML) models could be used, in accordance
with the person-specific paradigm, to model the inten-
sive longitudinal data arriving from smartphone-based
experience sampling studies (Tuarob et al., 2017).
Engaging a pure N¼ 1 approach, the relatively long
(T¼ 425þ) multivariate time-series data from each of
150 participants in an experience sampling study
(wherein individuals completed short questionnaires
7þ times per day for up to 9 wk, Ram et al., 2014)
were modeled separately using a variety of supervised
learning models. Each individual’s data were split into
training/test data and modeled using regression (e.g.,
Vector Auto-Regression, VAR), function based (e.g.,
support vector machines, multi-layer preceptrons),
tree based (M5), and lazy learning based (K-nearest
neighbor, locally weighted learning) methods.
Generally, the two best performing prediction models
were person-specific random forests and person-spe-
cific radial basis function neural networks (with
Gaussian kernels), each of which has known advan-
tages for obtaining interpretable explanations of the
data (e.g., via probing of feature importance; see e.g.,
Brick et al., 2017) or adjusting online dynamic control
(see e.g., Yu et al., 2011). The N¼ 1 deployments
highlighted how person-specific ML paradigms can
support clinicians’ efforts to obtain personalized pre-
diction models and deliver precision interventions.

Although we demonstrated that person-specific ML
methods could locate hints of signal in what many
consider to be extremely noisy data, two things were
obvious. First, the volume, velocity, veracity of experi-
ence sampling and ecological momentary assessment
paradigms would never support entry into the “big
data” space. Any real attempts to combine the person-
specific paradigm with the exciting innovations in ML

and AI would require a lot more data than any person
would ever provide via the intrusive experience sam-
pling methods. We needed a different way to get data.
Second, the perennial idiographic vs. nomothetic
debate could not be avoided by switching to ML and
AI. The same familiar set of conceptual and practical
questions emerges even when we prioritize prediction
(over explanation) and even when there are lots of
data. Why on earth would we only ingest N¼ 1 data
when we can ingest the N¼many data? And, seriously,
what about generalization?

In the remainder of this paper, we attempt to
answer these questions while outlining an agenda and
infrastructure for deploying person-specific AI on the
big data collected in the Human Screenome Project
(HSP; Reeves et al., 2020). While surfacing the possi-
bilities, we point toward a possible resolution of “the
generalizability problem”—or at least a re-considered
position and a promising way forward.

The generalizability problem

A pervasive concern with the person-specific para-
digm is that the models and findings obtained
through analysis of N¼ 1 data will not generalize—
that is, a person-specific model will not provide accur-
ate representations or predictions when applied to
other data (other persons, other variables, other stim-
uli, or other occasions). Some researchers think this
deems the person-specific paradigm useless—because
the person-specific distribution is viewed as a local-
ized, non-representative subset of a larger population
distribution. Findings derived from an individual’s
idiosyncratic distribution will, at best, provide a biased
representation of the population model, and at worst
will be so far out-of-distribution that knowledge of the
behavioral processes for any one person is counter-
productive for science (e.g., as in the practice of
removing outliers). Other researchers view this “lack
of generalizability” as the very reason the person-spe-
cific paradigm is useful. When individuals are unique
dynamic systems, the patterns of behavior they pro-
duce will be idiosyncratic. Other individuals’ data and
behavior are, by definition, out-of-distribution. Each
person is unique. When the model for Person A is
used to deploy interventions for Person B, we likely
did them a disservice. For example, when the individ-
ual development plan (IDP) organizing the average
child’s education is used without edit to direct a spe-
cific child’s education, that child’s development was
almost certainly compromised. Every child you know
is not the average child. They are unique and deserve
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better! Our recent engagement with AI foundation
models (i.e, large language models; LLMs) suggests
that there may be a way around “the generalizability
problem”—to a world where diversity and uniqueness
are celebrated and acknowledged.

Modern artificial intelligence and foundation
models

Deep neural network models, as a class of models used
in modern AI, extend from familiar models. Similar to
many structural equation models, inputs (predictor
variables X) are connected to outputs (outcome varia-
bles Y) through a series of “hidden” layers that consist
of relations among latent variables that capture specific
features of the multivariate input vectors and provide
optimal prediction of the output vector. For instance,
raw images (pixel arrays) of animals might be con-
nected to ground-truth content labels (e.g., cat, not-
cat) through linear and nonlinear relations among
latent variables that capture visual features like the
pointiness of ears and the roundness of eyes that were
learned directly from the data. Notably, when deep
neural network models were being developed, the con-
tent and interpretability of the latent variables was pur-
posively deprioritized in favor of prediction accuracy.
The modeling enterprise is singularly focused on doing
prediction really well, without any need to explain how
or why the inputs are connected to the outputs. This
approach sits in stark contrast to how latent variable
models are typically used in the social sciences—where
the models are considered and evaluated as diagram-
matic representations of the hypothesized causal proc-
esses that produced the observed data. The need for
theoretical explanation keeps the models relatively
small and simple, and almost exclusively comprised of
linear relations. In contrast, because deep neural net-
work models are unburdened from the need to provide
parsimonious and theoretically-meaningful explan-
ation, these models can capture complex nonlinear
mappings of the inputs and outputs using millions, or
in some cases, many billions (Brown et al., 2020) or
trillions of parameters.

In the last decade, advances in computational hard-
ware (e.g., graphical processing units, GPUs, capable
of doing matrix operations quickly) supported experi-
ments with deep neural network model architectures
that simply abandoned all notions of parsimony.
Massive model expansions obtained when motivated
modelers got access to bigger computational resources
led to the discovery that models with billions of
parameters are tractable and actually perform better

than the asymptotic limits on performance implied by
traditional statistical theory about model parsimony-
accuracy tradeoffs (Belkin et al., 2019). In the last few
years, availability of large-scale training data (e.g.,
everything on the internet) and access to the super-
massive computational resources needed to bind the
models to the data, has spurred progression of deep
neural network architectures. Particularly exciting is
discovery of the transformer architecture (Vaswani
et al., 2017)—where initially obtained embeddings
(i.e., latent representations) of input sequences (e.g.,
words) are supplemented with self-attention vectors
that aggregate information from all of the surrounding
data (surrounding words and sentences) to generate
enriched representations that are informed by context.

The transformer architecture’s ability to capture
long-range dependencies (e.g., word meanings that fol-
low from prior sentences), and the possibility to train
the models on broad data using self-supervision (super-
vision where the output variables “come for free” with
the data, as opposed to supervision where production
of the output variables requires intensive human label-
ing, e.g. image classification) has prompted a full-on
paradigm shift into what are now being referred to as
foundation models and large language models
(Bommasani et al., 2021). For example, self-supervised
learning in the language domain—where models are
trained to “fill in” missing words from sentences where
one or more words have been masked (i.e., to predict
text from previous, next, or surrounding text)—has
facilitated rich encoding of the English language (and
many other languages too). Foundation models such
as Bidirectional Encoder Representations from
Transformers (BERT; Devlin et al., 2018) and
Generative Pre-trained Transformer 3 (GPT-3; Brown
et al., 2020) that were trained on minimally-curated
data (e.g. the massive amounts of text that can be
found on the internet) now facilitate AI systems that
are able to summarize text, make predictions from
text, and generate text in real-time conversation.
Similar advances follow from models trained on hun-
dreds of millions of image-text pairs collected from the
Internet. For example, Contrastive Language-Image
Pre-training (CLIP; Radford et al., 2021) maps images
and text into a high-dimensional embedding space,
providing locations of specific texts and images that
facilitate quick retrieval of images via text query; and
DALL-E 2 (Ramesh et al., 2022) can generate new
photo-realistic images from user-provided text
prompts (e.g., “photo of an avocado chair”). Following
these innovations, research domains with an abun-
dance of large-scale training data and access to massive

MULTIVARIATE BEHAVIORAL RESEARCH 3



computation resources are leveraging transformer
model architectures and self-supervision to make
speedy progress on problems that were previously con-
sidered decades away or impossible (Economist, 2022).

Moving past generalizability to transferability

Foundation models are, by definition, models that are
trained on massive amounts of unlabeled data (using
self-supervised learning) and can be easily adapted to
perform a wide range of downstream tasks they were
not explicitly trained for (Bommasani et al., 2021).
These models are replacing task-specific models by
pre-training an “over-parameterized” general-purpose
model architecture on a broad array of data to obtain
a rich latent embedding of the input data. The big
excitement for AI stems from unexpected speed and
range of transfer to new tasks—specifically, the possi-
bility for “zero-shot or few-shot learning” where state-
of-the art performance on new tasks is available
immediately or is obtained quickly with relatively little
training data. For example, the pre-trained foundation
model in IBM’s Watson NLP learns to score emo-
tional sentiment of sentences in new languages using
only a few thousand sentences of training data (orders
of magnitude less data than was needed with previous
models). In contrast to the psychological literature,
where discussions of generalization are primarily con-
cerned with whether results obtained from a specific
sample of persons or stimuli will generalize to a popu-
lation of persons or stimuli (e.g., Judd et al., 2012;
Yarkoni, 2020 and associated commentaries), discus-
sions in the AI literature are currently focused on
how foundation models support speedy transfer to a
broad range of tasks.

In brief, transfer learning occurs when a model that
was trained on one task or type of data is then used
to accomplish another task or analyze a new type of
data. Consider a scenario where we (pre-) train a
model M0 to obtain a rich (latent) representation of
dataset A, and use that representation (i.e., high-
dimensional embedding) to describe, predict, and gen-
erate data in accordance with the distribution of A.
We then engage transfer by fine-tuning specific parts
of model M0 to accommodate additional embeddings
needed to represent dataset B and use the resulting
model M1 for description, prediction, and generation
tasks with distribution B. Again, we can engage trans-
fer by fine-tuning specific parts of model M1 (or M0)
to accommodate additional embeddings needed to
represent dataset C. All along the way we keep track
of how much fine-tuning is needed—measures of

transferability include the number of parameters that
were updated, how much they changed, how many
new instances of data or update iterations were
needed to achieve good fit. When there are no add-
itional data and/or no fine-tuning is needed, we have
zero-shot generalization (Palatucci et al., 2009). This is
equivalent to the classic notion of generalization used
in psychology, where it is expected that Model M0
can be used, as is, for datasets B and C, without ever
even looking at those data. When some fine-tuning is
needed but it is relatively quick, we have one-shot or
few-shot learning. Models M1 and M2 can be trained
to accuracy by drawing just a few instances from data-
sets B and C. In the many-shot learning case (i.e., clas-
sic transfer learning), more than a few instances from
datasets B and C are needed for the fine-tuning pro-
cess. Consideration of these three types of transfer
learning informs our new perspective on how person-
specific analyses should be structured.

Acknowledging there is not yet good theory about
how transferability of foundation models is actually
structured, let us assume that transferability is related
to both how far out-of-distribution B and C are rela-
tive to A and how useful the learned representations
of M0 are for M1 and M2. When distributions B and
C are redundant with distribution A, the transfer
learning task is wholly uninteresting (although it may
be somewhat interesting to consider how redundancy
expectations may contribute to the replication crisis in
social science). Are there data collection or validity
threat scenarios (a la Campbell & Stanley) where new
data B and C are truly expected to be redundant with
data A?

When distributions B and C are not redundant
with distribution A, zero-shot and few-shot learning
might emerge when the representations of M0 provide
the possibility to “impute” or “interpolate” relations
that exist in gaps/holes that are inside or are just out-
side the boundaries of distribution A. Outside a few
simplistic scenarios, more expressive and flexible
models generally fill in the gaps better than parsimo-
nious and rigid models. Indeed, much of the current
work on zero- and few-shot learning explores how to
ensure that the embeddings obtained by M0 sustain
transfer beyond dataset A. We speculate that when
the latent representations are especially rich, M0
might be able to stretch the distance to out-of-distri-
bution datasets B and C to achieve zero-shot general-
ization, or at least support fast and easy fine-tuning of
M1 and M2 with few-shot learning. As the distances
to datasets B and C increase, fine-tuning requires
more iterations and data, and eventually turns into a
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major re-engineering that might even include chang-
ing the architecture of the model. At the extreme,
many-shot transfer learning extends to the case where
M2 is simply trained directly from all the data AþB
þ C (or via cross-validation procedures that iterate
through random subsets of the combined data).

The implications of our short consideration of
transferability are twofold. First, the concerns about
generalizability often leveled at N¼ 1 person-specific
analyses are limited in scope. As noted above, the
classical notion of generalizability is simply a special
case of a larger concern about transferability of mod-
els. Pushing beyond the zero-shot learning case, the
on-going discussions and work on transferability pro-
vide a cohesive framework for organizing modeling
goals. We boldly suggest that, even beyond our inter-
est in transfer and fine-tuning of person-specific mod-
els, the field might progress faster when replication
and reproducibility are reconsidered in terms of
transferability.

Second, zero-shot generalization is rare, even for
humans. When it does emerge, for example in
humans or AI that can identify category instances
(e.g., pictures of cats) even when they have never been
exposed to that category, the new category is usually
in a nearby domain (e.g., the training data included
pictures of other mammals). Molenaar’s expositions
on ergodicity, the third source of developmental dif-
ferences, and dynamic systems suggest extreme het-
erogeneity in both the content and structure of
individuals’ behavior (Molenaar, 2004; Molenaar et al.,
1993). That heterogeneity might be accommodated
using transfer and fine-tuning. Molenaar and col-
leagues’ GIMME approach, where a relatively flexible
and expressive modeling architecture—uSEM—is
trained using all the replicated multivariate time-series
collected in an fMRI or experience sampling study, is
already moving in this direction. Without going into
the technical details, iterative model fitting procedures
are used to obtain a “group model” that applies to
everyone’s data and “person-specific variants” that
accommodate idiosyncratic features of any given indi-
vidual’s data. In transferability terms, the group model
might be considered the general-purpose model that
is transferred to and fine-tuned for each individual.

When better transferability is an explicit modeling
goal, a simple next step in the existing modeling
approaches (e.g., GIMME) might be to check whether
all the data are actually needed when fine-tuning the
person-specific models, and figure out how to reduce
the amount of individual data needed for fine-tuning.
Our initial hunch extends from the work on

transportability of models and data fusion; that is, the
piecing together of multiple datasets collected under
heterogeneous conditions (e.g., different individuals,
tasks, occasions) in the structured causal model frame-
work (Bareinboim & Pearl, 2016; Pearl & Bareinboim,
2014). We propose that creative re-ordering and titra-
tion of how much of each participant’s data are used
during estimation and absolution from the parsimony-
based model selection criteria used in the iterative
model fitting will produce a more transferable model.
Paralleling that work, our goal is to leverage the flex-
ible and expressive modeling architectures of AI foun-
dation models to obtain models that support
description, prediction, and generation of human
behavior. We forward the Human Screenome Project
as an exemplar forum for exploring these possibilities.

Human Screenome Project and AI foundation
models

Inspired by Molenaar’s (2004) call for N¼ 1 study of
individuals as unique complex systems, we use the pos-
sibility to passively collect rich behavioral data from
smartphones into a big data repository that we think
has enough volume, velocity, and veracity for a merg-
ing of the person-specific paradigm with the exciting
innovations emerging from AI foundation models.
Specifically, the Human Screenome Project passively
records and analyzes everything study participants see
and do on their screens. Screenshots of individuals’
smartphones and laptops are obtained continuously (at
5 s intervals) as they go about their daily lives (see
Reeves et al., 2021 for general overview). The 400þ US
adults and adolescents participating in the most
recently completed and on-going studies have and are
providing recordings of their in situ smartphone
behavior for up to a full year. These long and “super-
intensive” longitudinal data track with great precision,
alongside fortnightly self-reports of mental/physical
states, the full spectrum of human behaviors that each
individual engages as they interact with an unbounded
(and completely idiosyncratic) digital environment.

Models for description

Similar to how a larger number of manifest variables
are projected onto a smaller number of latent factors
within structural equation models, foundation models
(i.e., LLMs) have leveraged self-supervised learning on
massive amounts of data (e.g., all the words and pic-
tures on the internet) to obtain richly descriptive
high-dimensional embedding spaces. For example, the

MULTIVARIATE BEHAVIORAL RESEARCH 5



currently quintessential RoBERTa model projects
English language text into a 768-dimensional space
(Liu et al., 2019). Similarly, the CLIP model projects
multimodal data (text and pictures) into a 1024-
dimensional embedding space (Radford et al., 2021).
Following from our discussion of transferability, these
models can be applied to the HSP data in a variety of
ways.

When using zero-shot generalization, the founda-
tion models are used in an off-the-shelf manner to
map each screenshot into the high-dimensional space
that was learned by the model. As is done when cal-
culating principal component scores on new data, the
parameters of the model are used to calculate vectors
that indicate where each screenshot is located in rela-
tion to the many “sign-posts” attached to the textual
and graphical content that were ingested during
model training. With CLIP, for instance, text queries
such as “photo of a cat,” “picture of mountains,” or
“expression of joy” return screenshots that are located
near any of the many topics, objects, concepts and
locations that were baked into the embedding space.
The collection of vectors attached to one individual’s
screenshot sequence supports richly detailed descrip-
tions of intraindividual change—the digital life trajec-
tory that unfolds as an individual moves through a
1024-dimensional space. For example, we can describe
when and how often individuals move toward and
away from images of cats and people, topics related to
climate change or music, content that they typically
visit or new content, as well as how all these various
changes in content are sequenced with respect to
clock-time and each other. In sum, application of AI
foundation models in accordance with zero-shot gen-
eralization immediately supports rich descriptions of
complex (i.e., nonlinear) person-specific trajectories.

Models for prediction

The embeddings obtained from the foundation mod-
els’ (i.e., LLMs’) expressive and efficient architectures
also provide a useful, compact starting point for a
wide range of tasks. When using few-shot learning, the
expensive ground truth data required to train new
end-to-end prediction models is no longer needed.
Rather, only small amounts of ground truth data are
needed to fine tune the outputs derived from the
high-dimensional representations for the new predic-
tion task (i.e., only retraining the last few layers of the
network). For example, following from how IBM’s
Watson NLP learns to score emotional sentiment of
sentences in new languages, we can fine-tune image-

text embeddings derived from CLIP into predictions
of each screenshot’s emotional valence using ground-
truth data from just a few thousand hand-coded
images (orders of magnitude less data than needed to
train end-to-end models). In this way, propagation of
new content labels speeds up and costs less. In the
HSP, this means that any type of digital content and
behavior of interest can be identified and studied in
detail relatively quickly. Researchers simply need to
produce relatively small batches of manually labeled
screenshots and leverage transfer of all the implicit
“knowledge” that was baked into the foundation mod-
el’s embeddings during training. Now, rather than
being constrained to the somewhat arbitrarily selected
set of features that were of interest early on in HSP,
new research questions about any specific domain or
content can be identified and studied relatively
quickly—with much lower cost than anticipated.
Similarly, person-specific research questions about
idiosyncratic expressions of behavior or content can
be identified and studied at relatively low cost. For
example, when an individual adopts a new social
media platform, knowledge about their patterns of
social media use can be transferred quickly to the new
context. Researchers only need to identify and code a
few instances of the new pattern. In sum, application
of AI foundation models (i.e., LLMs) in accordance
with few-shot learning greatly expands the range of
predictable behaviors that can be examined using HSP
data and the speed at which prediction models can be
adapted to new content and new individuals.

Models for generation

Foundation models (i.e., LLMs) are deemed as foun-
dational in part because the many-shot learning done
during self-supervised training encodes the joint dis-
tribution, both P(YjX) and P(X), into the latent mani-
fold of embeddings. Thus, the models are generative
models that can be used to produce and simulate new
data that looks very much like the training data
(Dube, 2021). Employed within the context of the
HSP, the flexibilities inherent in foundation model
architectures open opportunities to obtain rich and
expressive embeddings that both represent the multi-
dimensional and multi-timescale complexity of indi-
viduals’ digital lives and can be used to generate new
human-like data that is similarly distributed and simi-
larly complex.

In biology, newly trained transformer models are
already being used to generate new molecules that
may be useful for medical intervention (e.g., Dollar

6 N. RAM ET AL.



et al., 2021; Yang et al., 2021). In brief, a generative
model trained on large databases of existing molecules
is integrated with a reinforcement learning model
trained on data-based benchmarks that indicate which
molecules are likely to be useful for a particular pur-
pose (e.g., bind to specific proteins). In essence, the
reward structure becomes part of the latent embed-
dings (e.g., Decision Transformer; Chen et al., 2021),
and can be used to fine-tune the generative model
toward production of the most promising new mole-
cules. The models thus provide a sandbox for drug
discovery that puts many less humans at risk.

Analogously, the hundreds of millions of unstruc-
tured pixel arrays in the HSP data constitute a large
library of humans’ action possibilities—detailed obser-
vations of how individuals engage in a diverse array
of complex tasks, how they switch among tasks, and
how they simultaneously manage and mismanage
multiple competing goals. Viewed as such, the data
serve as an ideal platform for deriving benchmarks of
actual human behavior (Raji et al., 2021) that might
provide an aspirational standard for design of AI
agents that mimic humans’ ability to navigate through
a nearly unbounded multimodal (textþ imageþ icon)
digital environment while balancing multiple compet-
ing goals and managing multiple interruptions and
distractions. For example, a foundation model trained
on HSP data (N¼ 1 or N ¼ many) could drive behav-
ior of an autonomous AI agent that mimics how an
individual with specific characteristics faces new “out-
of-distribution” situations. Experiments with the AI
agent might then lead to discovery of the specific con-
straints and interventions that might help individuals
optimize their digital lives. In sum, the generative
modeling capabilities that emerge when foundation
models (LLMs) are trained on HSP data (in accord-
ance with many-shot learning) can push forward
development of dynamic, “just-in-time” interventions
that can productively augment individuals’ digital lives
in real-time.

Cautions

First, all collections and uses of Screenome dataþAI
raise and require engagement with ethical issues and
concerns. The data, and the models derived from
them, are immensely personal. Thus, all the data
inquires and modeling innovations are purposively
directed through ethical frameworks that surface not
only the privacy, respect, and beneficence issues, but
also the fairness, representativeness and justice impli-
cations that inform and guide inclusion practices,

algorithm development, and the actions that should
be taken to mitigate potential dual use of AI augmen-
tations in individuals’ lives (Martinez-Martin et al.,
2021). Second, we underscore that research on how
the transformer architecture and foundation models
work, when they fail, and how they can and should
be applied is in a discovery mode. These models have
challenged and are requiring revision of statistical
theory and practice. For example, many deep learning
models are not uniquely identified—meaning that dif-
ferent parameter values and perhaps even qualitatively
different parameters might be obtained on re-fitting
the model to the same data (see e.g., Khemakhem
et al., 2020; Roeder, et al., 2021). Two instantiations
of the same model might produce the same result—
predictions—with vastly different model structures.
This is both exciting and frightening. We are excited
that these new models embody a reality parallel to
how individuals (as unique dynamic systems) can
solve the same problem using different neural struc-
tures. However, we are also somewhat frightened that
the reproducibility and interpretability of model
parameters that we often rely on for scientific explan-
ations is being exchanged for black-box models that
more accurately reproduce predictions and replicate
human behavior (note, however, the recent resur-
gence of “explainable AI”). The main thesis of this
paper is that in such cases, the model that has better
transferability should be the preferred model, whether
it is interpretable or not. Exciting directions forward
might follow from recent advances in computational
neuroscience where sophisticated measures for the
predictivity of artificial to real human neural activity
are being developed (Schrimpf et al., 2020; Yamins
et al., 2014). While being buoyed by the opportunity
to approach our data and science in new ways—pri-
oritizing transferability over generalizability—we
should remain somewhat cautious about how the
models might be used to intervene in individuals’
actual lives. Psychologists using these new models
should develop precise goals regarding when iterative
model formulations should maintain absolute consist-
ency in internal structure and when they should
maintain consistency in prediction performance and
causal effect.

Conclusion

Comprehensive recordings of individuals’ digital lives
now facilitate description and modeling of a wide var-
iety of behavioral processes. In this paper, we for-
warded the Human Screenome Project as an
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instantiation of Molenaar’s (2004) person-specific
paradigm and outlined how these data, when com-
bined with recent advances in AI, are facilitating a
variety of descriptive, predictive, and generative tasks
that provide better understanding of individuals’
digital lives and design of AI agents that might even-
tually productively augment individuals lives. We con-
sidered how AI foundation models might be
integrated into and support a robust person-specific
paradigm that stays true to its N¼ 1 roots. In devel-
oping that possibility, we suggest Molenaar add a
statement to the Manifesto—“In short, the concerns
about generalizability commonly leveled at the person-
specific paradigm are unfounded and can be fully and
completely replaced with discussion and demonstra-
tions of transferability.” We are convinced that focus
on transferability will speed description and prediction
of individual behavior, and the development of per-
sonalized interventions that augment and optimize
individuals’ digital lives, health and well-being. We
are excited to push forward!
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