-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
384 lines (316 loc) · 14.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import gc
import time
import argparse
import torch
import random
import numpy as np
from mylog import mylog
from parallel import DataParallelModel, DataParallelCriterion
from model_bert import myBertForMaskedLM
from model_roberta import myRobertaForMaskedLM
from loss import KLDivLoss
from transformers import AdamW
from transformers import get_linear_schedule_with_warmup
from utility import prepare_data_new, save_check_point, saveToPKL, loadFromJson, mapping_tokenize, detokenize
from data_process import myDataSet_pretrained as Dataset
from data_process import myTokenizer
from searcher import newSearcher
# Setup Random Seeds
seed = 19940609
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Setup LOG File
LOG = mylog(reset=True)
def argLoader():
parser = argparse.ArgumentParser()
# Actions
parser.add_argument('--do_train', action='store_true', help="Whether to run training")
parser.add_argument('--do_test', action='store_true', help="Whether to run test")
# Options Setting
parser.add_argument('--dataset', type=str, default='gigaword')
parser.add_argument('--part', type=str, default='train')
# Model Saving Setting
parser.add_argument('--save_path', type=str, default='./model')
# Pre-training Model
parser.add_argument('--pre_training_model', type=str, default='roberta-base')
# Device Parameters
parser.add_argument('--parallel', action='store_true')
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--dataLoader_workers', type=int, default=1)
# Optimization Parameters
parser.add_argument('--learning_rate', type=float, default=1e-4)
parser.add_argument('--weight_decay', type=float, default=0.01)
parser.add_argument('--adam_epsilon', type=float, default=1e-8)
parser.add_argument('--warmup_steps', type=int, default=10000)
# newsroom settings warmup_steps 1000
parser.add_argument('--batch_size', type=int, default=128)
# Loss Parameters
parser.add_argument('--label_smoothing', type=float, default=0.1)
# Corruption Parameters
parser.add_argument('--corruption_schedule', type=str, default='linear')
# can be constant, linear, triangle
# for constant
parser.add_argument('--corruption_source', type=float, default=0.1)
parser.add_argument('--corruption_target', type=float, default=0.9)
# for both linear and triangle
parser.add_argument('--corruption_source_start', type=float, default=0.1)
parser.add_argument('--corruption_source_end', type=float, default=0.0)
parser.add_argument('--corruption_target_start', type=float, default=0.9)
parser.add_argument('--corruption_target_end', type=float, default=0.6)
# for both linear and triangle
# newsroom setting 1454 * 20 = 29080
parser.add_argument('--corruption_source_period', type=int, default=482460)
parser.add_argument('--corruption_target_period', type=int, default=482460)
parser.add_argument('--corruption_mask_rates', type=float, default=0.8)
parser.add_argument('--corruption_random_rates', type=float, default=0.1)
# Training Parameters
parser.add_argument('--max_epoch', type=int, default=20)
parser.add_argument('--checkPoint_Min', type=int, default=0)
parser.add_argument('--checkPoint_Freq', type=int, default=1000)
#newsroom settings 200
parser.add_argument('--reduce_bound', type=int, default=100000000)
parser.add_argument('--padding', type=str, default="none")
parser.add_argument('--save_each_epoch', action="store_true")
# Testting Parameters
parser.add_argument('--model', type=str, default='./model/model_best_gen.pth.tar')
parser.add_argument('--input', type=str, default='../../dataset/gigaword/test4.Ndocument')
parser.add_argument('--standard', type=str, default='../../dataset/gigaword/test4.Nsummary')
parser.add_argument('--search_method', type=str, default='lengthBeam')
parser.add_argument('--rerank_method', type=str, default='smooth_bound_reward')
parser.add_argument('--beam_size', type=int, default=20)
parser.add_argument('--cands_limit', type=int, default=1000000)
parser.add_argument('--answer_size', type=int, default=1)
parser.add_argument('--gen_min_len', type=int, default=9)
parser.add_argument('--gen_max_len', type=int, default=11)
parser.add_argument('--gamma_value', type=float, default=14.0)
parser.add_argument('--beta_value', type=float, default=0.5)
parser.add_argument('--reward', type=float, default=0.25)
parser.add_argument('--no_biGramTrick', action='store_true', help='Wheter do not biGramTrick')
parser.add_argument('--no_triGramTrick', action='store_true', help='Wheter do not triGramTrick')
args = parser.parse_args()
if args.pre_training_model == "bert-base-uncased":
args.PAD = 0
args.UNK = 100
args.CLS = 101
args.SEP = 102
args.MASK = 103
args.n_vocab = 30522
elif args.pre_training_model == "roberta-base":
args.PAD = 1
args.UNK = 3
args.CLS = 0
args.SEP = 2
args.MASK = 50264
args.n_vocab = 50265
if args.padding == "none":
args.padding_end = -1
elif args.padding == "pad":
args.padding_end = args.PAD
elif args.padding == "unk":
args.padding_end = args.UNK
elif args.padding == "sep":
args.padding_end = args.SEP
elif args.padding == "cls":
args.padding_end = args.CLS
if args.do_train:
args.dataOptions = loadFromJson("settings/dataset/" + str(args.dataset) + ".json")
elif args.do_test:
args.biGramTrick = not args.no_biGramTrick
args.triGramTrick = not args.no_triGramTrick
print(args)
return args
def train(config):
# Model
net = None
if config.pre_training_model == "bert-base-uncased":
net = myBertForMaskedLM.from_pretrained(config.pre_training_model)
elif config.pre_training_model == "roberta-base":
net = myRobertaForMaskedLM.from_pretrained(config.pre_training_model)
lossFunc = KLDivLoss(config)
if torch.cuda.is_available():
net = net.cuda(config.device)
lossFunc = lossFunc.cuda(config.device)
if config.parallel:
net = DataParallelModel(net)
lossFunc = DataParallelCriterion(lossFunc)
# Data options
Tokenizer = myTokenizer(config)
trainSet = Dataset(config.part, config.batch_size, lambda x: len(x[0]) + len(x[1]), Tokenizer, config.dataOptions, LOG, 'train')
validSet = Dataset('valid', config.batch_size, lambda x: len(x[0]) + len(x[1]), Tokenizer, config.dataOptions, LOG, 'valid')
# Learning Parameters
num_batches_per_epoch = len(trainSet)
learning_rate = config.learning_rate
# Optimizer
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in net.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": config.weight_decay,
},
{"params": [p for n, p in net.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate, eps=config.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=config.warmup_steps, num_training_steps=num_batches_per_epoch * config.max_epoch
)
optimizer.zero_grad()
ticks = 0
Q = []
best_vloss = 1e99
counter = 0
LOG.log("There are %d batches per epoch" % (len(trainSet)))
for epoch_idx in range(config.max_epoch):
trainSet.batchShuffle()
LOG.log("Batch Shuffled")
for batch_idx, batch_data in enumerate(trainSet):
# release memory
if (ticks + 1) % 1000 == 0:
gc.collect()
start_time = time.time()
ticks += 1
srcs, tgts = batch_data
inputs, positions, token_types, labels, masks = prepare_data_new(srcs, tgts, ticks, config)
n_token = int((labels.data != config.PAD).data.sum())
net.train()
predicts = net(inputs, positions, token_types, masks)
loss = lossFunc(predicts, labels, n_token).sum()
Q.append(float(loss))
if len(Q) > 200:
Q.pop(0)
loss_avg = sum(Q) / len(Q)
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
LOG.log('Epoch %2d, Batch %6d, Loss %9.6f, Average Loss %9.6f, Time %9.6f' %
(epoch_idx + 1, batch_idx + 1, loss, loss_avg, time.time() - start_time))
loss = None
# check points
if (ticks >= config.checkPoint_Min) and (ticks % config.checkPoint_Freq == 0):
gc.collect()
vloss = 0
nv_token = 0
for bid, batch_data in enumerate(validSet):
srcs, tgts = batch_data
inputs, positions, token_types, labels, masks = prepare_data_new(srcs, tgts, -1, config)
n_token = int((labels.data != config.PAD).data.sum())
nv_token += n_token
with torch.no_grad():
net.eval()
predicts = net(inputs, positions, token_types, masks)
vloss += float(lossFunc(predicts, labels).sum())
vloss /= nv_token
is_best = vloss < best_vloss
best_vloss = min(vloss, best_vloss)
LOG.log('CheckPoint: Validation Loss %11.8f, Best Loss %11.8f' % (vloss, best_vloss))
vloss = None
if is_best:
LOG.log('Best Model Updated')
save_check_point({
'epoch': epoch_idx + 1,
'batch': batch_idx + 1,
'config': config,
'state_dict': net.state_dict(),
'best_vloss': best_vloss},
is_best,
path=config.save_path,
fileName='latest.pth.tar'
)
counter = 0
else:
counter += config.checkPoint_Freq
if counter >= config.reduce_bound:
counter = 0
for idx, base_lr in enumerate(scheduler.base_lrs):
scheduler.base_lrs[idx] = base_lr * 0.55
LOG.log('Reduce Base Learning Rate from %11.8f to %11.8f' % (base_lr, base_lr * 0.55))
LOG.log('Current Counter = %d' % (counter))
if config.save_each_epoch:
LOG.log('Saving Model after %d-th Epoch.' % (epoch_idx + 1))
save_check_point({
'epoch': epoch_idx + 1,
'batch': batch_idx + 1,
'config': config,
'state_dict': net.state_dict(),
'optimizer':optimizer.state_dict(),
'scheduler':scheduler.state_dict(),
'best_vloss': 1e99},
False,
path=config.save_path,
fileName='checkpoint_Epoch' + str(epoch_idx + 1) + '.pth.tar'
)
LOG.log('Epoch Finished.')
gc.collect()
def test(config):
best_model = torch.load(config.model)
Tokenizer = myTokenizer(config)
net = None
if config.pre_training_model == "bert-base-uncased":
net = myBertForMaskedLM.from_pretrained(config.pre_training_model)
elif config.pre_training_model == "roberta-base":
net = myRobertaForMaskedLM.from_pretrained(config.pre_training_model)
if torch.cuda.is_available():
net = net.cuda(config.device)
if config.parallel:
net = DataParallelModel(net)
net.load_state_dict(best_model["state_dict"])
net.eval()
mySearcher = newSearcher(net, config)
f_in = open(config.input, 'r')
output_files = {}
order_files = {}
for l in range(config.gen_min_len, config.gen_max_len + 1):
output_files[l] = open("summary_" + str(l) + ".txt", "w")
order_files[l] = open("order_" + str(l) + ".txt", "w")
decoded = []
for idx, line in enumerate(f_in):
source_ = line.strip().split()
source = Tokenizer.tokenize(line.strip())
mapping = mapping_tokenize(source_, source)
source = Tokenizer.encode(line.strip())
print(idx)
print(Tokenizer.decode(source))
para = {}
if config.search_method == "lengthBeam":
para = {
"minL": config.gen_min_len,
"maxL": config.gen_max_len,
}
Answers = mySearcher.search(source, **para)
decoded.append(Answers)
for l in range(config.gen_min_len, config.gen_max_len + 1):
for Ans in Answers:
if len(Ans[1]) == l:
text = Tokenizer.decode(Ans[1], mapping)
tokens = Ans[1]
orders = Ans[2]
print(Ans)
print(text)
print(text, file=output_files[l])
print(tokens, file=order_files[l])
print(orders, file=order_files[l])
saveToPKL("decoded.pkl", decoded)
f_in.close()
for f in output_files.values():
f.close()
for f in order_files.values():
f.close()
def main():
args = argLoader()
print("Totally", torch.cuda.device_count(), "GPUs are available.")
if args.parallel:
print("Using data parallel.")
for device in range(torch.cuda.device_count()):
print("Using #", device, "named", torch.cuda.get_device_name(device), "with", (torch.cuda.get_device_properties(device).total_memory-torch.cuda.memory_allocated(device)) // 1000 // 1000 / 1000, "GB Memory available.")
else:
torch.cuda.set_device(args.device)
print("Using #", args.device , "named", torch.cuda.get_device_name(args.device), (torch.cuda.get_device_properties(args.device).total_memory-torch.cuda.memory_allocated(args.device)) // 1000 // 1000 / 1000, "GB Memory available.")
if args.do_train:
train(args)
elif args.do_test:
test(args)
if __name__ == '__main__':
main()