-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtmp_test.py
43 lines (40 loc) · 1.98 KB
/
tmp_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import torch
from sklearn.metrics import f1_score
def overall_ordering_and_checking(pred_output, gt, proportion2=0.1,proportion1 = 0.5):
"""
Overall ordering according to class 2 value. According to proportion given in the parameters, this function will
classify all nodes into different class with fixed proportion.
:param proportion: default is 10% -> class2 10% -> class1 80% -> class 0
:param pred_output: Output of the model it should be converted from tensor to list first
:param gt: ground truth of the label
:return: it will return a list of nodes that belong to class 2, an accuracy only related to class2 and an overall F1
"""
pred_output = pred_output.numpy()
#pred_output_2 = pred_output[:,2]
id_output_dict_2 = {}
id_output_dict_1 = {}
for i ,node_vec in enumerate(pred_output):
id_output_dict_1[i] = id_output_dict_2[i] = node_vec
id_output_dict_2 = sorted(id_output_dict_2.items(), key=lambda x: (x[1][2],x[1][1],x[1][0]), reverse=True)
id_output_dict_1 = sorted(id_output_dict_1.items(), key=lambda x: (x[1][1], x[1][2], x[1][0]), reverse=True)
pred_order = np.zeros(len(pred_output))
cut_off_value2 = int(proportion2 * len(pred_output))
cut_off_value1 = int(proportion1 * len(pred_output))
for i,ele in enumerate(id_output_dict_2):
if i <= cut_off_value2:
pred_order[ele[0]] = 1
#for i,ele in enumerate(id_output_dict_1):
# if i <= cut_off_value1:
# pred_order[ele[0]] = 1
gt = gt.numpy()
#print(pred_order==2)
#print((pred_order == 2) & (gt == 2))
acc_2 = sum((pred_order == 1) & (gt == 1)) / len(gt)
f1 = f1_score(pred_order,gt,average='macro')
print(pred_order,acc_2,f1)
return pred_order,acc_2,f1
if __name__ == '__main__':
pre = torch.tensor(np.array([[0.1,0.2,0.7],[0.2,0.3,0.5],[0.3,0.4,0.3],[0.6,0.1,0.3],[0.1,0.8,0.1],[0.1,0.7,0.2]]))
gt = torch.tensor(np.array([2,2,1,0,1,0]))
overall_ordering_and_checking(pre,gt)