-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmydataset.py
179 lines (157 loc) · 7.03 KB
/
mydataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
from typing import Union, List, Tuple
import numpy as np
import torch
from torch_geometric.data import Data, Dataset
from tqdm import tqdm
import Lower_bound_a_star_utils
from graph_generate import read_graph
from utils import feature_matrix_extraction, boundary_node_detection
import torch_geometric.transforms as T
class RoadNetworkDataset(Dataset):
def __init__(self, root, raw_dir='graph', test=False, transform=None, pre_transform=None, proportion=0.1):
"""
root = Where the dataset should be stored. This folder is split
into raw_dir (downloaded dataset) and processed_dir (processed data).
"""
self.test = test
self.proportion = proportion
self.store_dir = root
self.graph_dir = raw_dir
graph_dir = self.graph_dir
root, dirs, files = next(os.walk(graph_dir, topdown=True))
self.files = files
#print('kkk', (files))
self.length = len(files)
self.mean_degree = 0
super(RoadNetworkDataset, self).__init__(root, transform, pre_transform)
# shutil.rmtree(os.path.join(graph_dir, 'processed'))
# shutil.rmtree(os.path.join(graph_dir, 'raw'))
@property
def raw_file_names(self) -> Union[str, List[str], Tuple]:
""" If this file exists in raw_dir, the download is not triggered.
(The download func. is not implemented here)
These files' content is separated with ',' which is similar to csv files
"""
return self.files
@property
def processed_file_names(self) -> Union[str, List[str], Tuple]:
# return 'road.pt'
# print('processed', [f'data_{i.split(".")[0]}.pt' for i in list(self.files)])
#print('self', self.files)
# print(len([f'data_{i}.pt' for i in range(1271)]))
#print('lllll', len(self))
return [f'data_{i}.pt' for i in range(self.length)]
def download(self):
"""
self made data, no url to download
"""
# raise Exception('Please check the raw data folder and make sure there is no missing files')
pass
def process(self):
"""
Load corresponding files, and convert information into Data format, which could be used in network training
"""
graph_dir = self.graph_dir
data_list = []
root, dirs, files = next(os.walk(graph_dir, topdown=True))
for index, file in tqdm(enumerate(files), total=len(files)):
# print('wyr',file,files)
adj, spa = read_graph(file)
mean_degree = 0
degree_list = []
# initial definition, our graphs do not have node feature, so initialize all node features with '1',
# which could be regarded as a placeholder
x = []
edge_index_list = [i for i in range(len(adj))]
for row in adj:
degree = (row != 0).sum()
x.append(degree)
degree_list.append(degree)
#print('max degree',max_degree)
mean_degree = np.mean(degree_list)
self.mean_degree = mean_degree
x = np.asarray(x)
#x = x/max_degree
x = torch.from_numpy(x)
from_list = []
to_list = []
edge_attr = []
for ele in spa:
# the spare matrix form only contain a -> b (where id_a <= id_b), which requires to repeat twice
# because edge_index regard edges as directed.
from_list.extend([int(ele[0]), int(ele[1])])
to_list.extend([int(ele[1]), int(ele[0])])
edge_attr.extend([[float(ele[2])], [float(ele[2])]])
edge_index = np.asarray([from_list, to_list])
edge_index = torch.tensor(edge_index, dtype=torch.long)
# Note that normally the GAT layer does not take edge weight into convolution because it calculates
# a dynamic distance between two nodes. We put the distance into node attribute as a naive conversion
# on this problem.
edge_attr = np.asarray(edge_attr)
edge_attr = torch.tensor(edge_attr)
#print(edge_index_list)
#print(self.mean_degree)
feature_dict = feature_matrix_extraction(adj_matrix=adj,
boundary_nodes=edge_index_list)
#print(feature_dict)
landmark_score = Lower_bound_a_star_utils.scoring_with_ordering(feature_dict)
landmark_score = sorted(landmark_score.items(), key=lambda x: x[1], reverse=True)
#print(landmark_score)
y = np.zeros(len(adj))
cut_off_index = int(self.proportion * len(landmark_score))
#print(cut_off_index)
# print('len', len(landmark_score),'cut',cut_off_index)
for ele in landmark_score:
# label = 2 indicates good landmark, 1 ~ bad landmarks, 0 ~ normal node
if cut_off_index >= 0:
y[ele[0]] = 1
cut_off_index -= 1
#print(y)
y = torch.tensor(y)
graph = Data(x=x, edge_attr=edge_attr, edge_index=edge_index, y=y)
graph.x = graph.x.to(torch.float)
graph.x = (graph.x - graph.x.mean()) / graph.x.std()
#print(graph.x)
if self.pre_filter is not None:
graph = self.pre_filter(graph)
if self.pre_transform is not None:
graph = self.pre_transform(graph)
# print('the file', file)
torch.save(graph,
os.path.join(self.processed_dir,
f'data_{index+(0)}.pt'))
def len(self) -> int:
return self.length
def get(self, idx):
""" - Equivalent to __getitem__ in pytorch
- Is not needed for PyG's InMemoryDataset
"""
# print(os.path.join(self.processed_dir,
# f'data_{idx}.pt'))
data = torch.load(os.path.join(self.processed_dir,
f'data_{idx}.pt'))
return data
if __name__ == '__main__':
dataset = RoadNetworkDataset(root="data/", raw_dir='t1',pre_transform=T.OneHotDegree(max_degree=190,cat=True))
dataset = RoadNetworkDataset(root="data/", raw_dir='testing', pre_transform=T.OneHotDegree(max_degree=190, cat=True))
#dataset = RoadNetworkDataset(root="data/", raw_dir='training', pre_transform=T.OneHotDegree(max_degree=190, cat=True))
sample = torch.load(os.path.join('t1//processed',
f'data_0.pt'))
#print(sample.x[0][27])
#print(len(sample.x[0]))
sample2 = torch.load(os.path.join('t1//processed',
f'data_2.pt'))
for ele in sample.x:
ele = ele.numpy()
for ele2 in ele:
if ele2 != 0:
print(ele2)
print(sample.x == sample2.x)
b = sample.x == sample2.x
b = b.numpy()
print((b==1).sum())
print((sample.x == 1).sum())
c = sample2.y
d = torch.tensor([])
f = torch.cat((c,d))