-
Notifications
You must be signed in to change notification settings - Fork 23
/
imagenet_experiment.py
203 lines (163 loc) · 11.9 KB
/
imagenet_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import torch
import json
import os
from image_classification_experiments.REMINDModel import REMINDModel
from image_classification_experiments.imagenet_base_initialization import *
torch.multiprocessing.set_sharing_strategy('file_system')
def get_data_loader(images_dir, label_dir, split, min_class, max_class, batch_size=128, return_item_ix=False):
data_loader = utils_imagenet.get_imagenet_data_loader(images_dir + '/' + split, label_dir, split,
batch_size=batch_size, shuffle=False, min_class=min_class,
max_class=max_class, return_item_ix=return_item_ix)
return data_loader
def compute_accuracies(loader, remind, pq):
_, probas, y_test_init = remind.predict(loader, pq)
top1, top5 = utils.accuracy(probas, y_test_init, topk=(1, 5))
return probas, top1, top5
def update_accuracies(args, curr_max_class, remind, pq, accuracies):
base_test_loader = get_data_loader(args.images_dir, args.label_dir, 'val', min_class=args.min_class,
max_class=args.base_init_classes)
base_probas, base_top1, base_top5 = compute_accuracies(base_test_loader, remind, pq)
print('\nBase Init Classes (%d-%d): top1=%0.2f%% -- top5=%0.2f%%' % (
args.min_class, args.base_init_classes - 1, base_top1, base_top5))
non_base_classes_test_loader = get_data_loader(args.images_dir, args.label_dir, 'val', args.base_init_classes,
curr_max_class)
non_base_probas, non_base_top1, non_base_top5 = compute_accuracies(non_base_classes_test_loader, remind, pq)
print('Non-Base Init Classes (%d-%d): top1=%0.2f%% -- top5=%0.2f%%' % (
args.base_init_classes, curr_max_class - 1, non_base_top1, non_base_top5))
seen_classes_test_loader = get_data_loader(args.images_dir, args.label_dir, 'val', args.min_class, curr_max_class)
seen_probas, seen_top1, seen_top5 = compute_accuracies(seen_classes_test_loader, remind, pq)
print('All Seen Classes (%d-%d): top1=%0.2f%% -- top5=%0.2f%%' % (
args.min_class, curr_max_class - 1, seen_top1, seen_top5))
accuracies['base_classes_top1'].append(float(base_top1))
accuracies['base_classes_top5'].append(float(base_top5))
accuracies['non_base_classes_top1'].append(float(non_base_top1))
accuracies['non_base_classes_top5'].append(float(non_base_top5))
accuracies['seen_classes_top1'].append(float(seen_top1))
accuracies['seen_classes_top5'].append(float(seen_top5))
utils.save_accuracies(accuracies, min_class_trained=args.min_class, max_class_trained=curr_max_class,
save_path=args.save_dir)
utils.save_predictions(seen_probas, args.min_class, curr_max_class, args.save_dir)
def streaming(args, remind):
accuracies = {'base_classes_top1': [], 'non_base_classes_top1': [], 'seen_classes_top1': [],
'base_classes_top5': [], 'non_base_classes_top5': [], 'seen_classes_top5': []}
counter = utils.Counter()
if args.resume_full_path is not None:
# load in previous model to continue training
state, latent_dict, rehearsal_ixs, class_id_to_item_ix_dict, pq = remind.resume(args.streaming_min_class,
args.resume_full_path)
# validate performance from previous increment
print('Previous model loaded...computing previous accuracy as sanity check...')
test_loader = get_data_loader(args.images_dir, args.label_dir, 'val', args.min_class, args.streaming_min_class,
batch_size=args.batch_size)
_, probas, y_test = remind.predict(test_loader, pq)
update_accuracies(args, curr_max_class=args.streaming_min_class, remind=remind, pq=pq, accuracies=accuracies)
else:
print('\nPerforming base initialization...')
feat_data, label_data, item_ix_data = extract_base_init_features(args.images_dir, args.label_dir,
args.extract_features_from,
args.classifier_ckpt,
args.base_arch, args.base_init_classes,
args.num_channels,
args.spatial_feat_dim)
pq, latent_dict, rehearsal_ixs, class_id_to_item_ix_dict = fit_pq(feat_data, label_data, item_ix_data,
args.num_channels,
args.spatial_feat_dim, args.num_codebooks,
args.codebook_size, counter=counter)
initial_test_loader = get_data_loader(args.images_dir, args.label_dir, 'val', min_class=args.min_class,
max_class=args.base_init_classes)
print('\nComputing base accuracies...')
base_probas, base_top1, base_top5 = compute_accuracies(initial_test_loader, remind, pq)
print('\nInitial Test: top1=%0.2f%% -- top5=%0.2f%%' % (base_top1, base_top5))
utils.save_predictions(base_probas, args.min_class, args.base_init_classes, args.save_dir)
accuracies['base_classes_top1'].append(float(base_top1))
accuracies['base_classes_top5'].append(float(base_top5))
accuracies['seen_classes_top1'].append(float(base_top1))
accuracies['seen_classes_top5'].append(float(base_top5))
print('\nBeginning streaming training...')
for class_ix in range(args.streaming_min_class, args.streaming_max_class, args.class_increment):
max_class = class_ix + args.class_increment
print('\nTraining classes {}-{}.'.format(class_ix, max_class))
train_loader_curr = get_data_loader(args.images_dir, args.label_dir, 'train', class_ix, max_class,
batch_size=args.batch_size,
return_item_ix=True)
# fit model with rehearsal
remind.fit_incremental_batch(train_loader_curr, latent_dict, pq, rehearsal_ixs=rehearsal_ixs,
class_id_to_item_ix_dict=class_id_to_item_ix_dict,
counter=counter)
# save remind model out
save_full_path = os.path.join(args.save_dir, 'remind_model/')
remind.save(max_class, save_full_path, rehearsal_ixs, latent_dict, class_id_to_item_ix_dict, pq)
# perform inference
test_loader = get_data_loader(args.images_dir, args.label_dir, 'val', args.min_class, max_class,
batch_size=args.batch_size)
_, probas, y_test = remind.predict(test_loader, pq)
update_accuracies(args, curr_max_class=max_class, remind=remind, pq=pq, accuracies=accuracies)
# final accuracy
test_loader = get_data_loader(args.images_dir, args.label_dir, 'val', args.min_class, args.streaming_max_class,
batch_size=args.batch_size)
_, probas, y_test = remind.predict(test_loader, pq)
top1, top5 = utils.accuracy(probas, y_test, topk=(1, 5))
print('\nFinal: top1=%0.2f%% -- top5=%0.2f%%' % (top1, top5))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# directories and names
parser.add_argument('--expt_name', type=str) # name of the experiment
parser.add_argument('--label_dir', type=str, default=None) # directory for numpy label files
parser.add_argument('--images_dir', type=str, default=None) # directory for ImageNet train/val folders
parser.add_argument('--save_dir', type=str, required=False) # directory for saving results
parser.add_argument('--resume_full_path', type=str, default=None) # directory of previous model to load
# network parameters
parser.add_argument('--base_arch', type=str, default='ResNet18ClassifyAfterLayer4_1') # architecture for G
parser.add_argument('--classifier', type=str, default='ResNet18_StartAt_Layer4_1') # architecture for F
parser.add_argument('--classifier_ckpt', type=str, required=True) # base initialization ckpt
parser.add_argument('--extract_features_from', type=str,
default='model.layer4.0') # name of the layer to extract features
parser.add_argument('--num_channels', type=int, default=512) # number of channels where features are extracted
parser.add_argument('--spatial_feat_dim', type=int, default=7) # spatial dimension of features being extracted
parser.add_argument('--weight_decay', type=float, default=1e-5) # weight decay for network
parser.add_argument('--batch_size', type=int, default=128) # testing batch size
# pq parameters
parser.add_argument('--num_codebooks', type=int, default=32)
parser.add_argument('--codebook_size', type=int, default=256)
# replay buffer parameters
parser.add_argument('--rehearsal_samples', type=int, default=50) # number of replay samples
parser.add_argument('--max_buffer_size', type=int, default=None) # maximum number of samples in buffer
# learning rate parameters
parser.add_argument('--lr_mode', type=str, choices=['step_lr_per_class'],
default='step_lr_per_class') # decay the lr per class
parser.add_argument('--lr_step_size', type=int, default=100)
parser.add_argument('--start_lr', type=float, default=0.1) # starting lr for class
parser.add_argument('--end_lr', type=float, default=0.001) # ending lr for class
# augmentation parameters
parser.add_argument('--use_random_resized_crops', action='store_true')
parser.add_argument('--use_mixup', action='store_true')
parser.add_argument('--mixup_alpha', type=float, default=0.1)
# streaming setup
parser.add_argument('--num_classes', type=int, default=1000) # total number of classes
parser.add_argument('--min_class', type=int, default=0) # overall minimum class
parser.add_argument('--base_init_classes', type=int, default=100) # number of base init classes
parser.add_argument('--class_increment', type=int, default=100) # how often to evaluate
parser.add_argument('--streaming_min_class', type=int, default=100) # class to begin stream training
parser.add_argument('--streaming_max_class', type=int, default=1000) # class to end stream training
# get arguments and print them out and make any necessary directories
args = parser.parse_args()
if args.save_dir is None:
args.save_dir = 'streaming_experiments/' + args.expt_name
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
if args.lr_mode == 'step_lr_per_class':
args.lr_gamma = np.exp(args.lr_step_size * np.log(args.end_lr / args.start_lr) / 1300)
print("Arguments {}".format(json.dumps(vars(args), indent=4, sort_keys=True)))
# make model and begin stream training
remind = REMINDModel(num_classes=args.num_classes, classifier_G=args.base_arch,
extract_features_from=args.extract_features_from, classifier_F=args.classifier,
classifier_ckpt=args.classifier_ckpt,
weight_decay=args.weight_decay, lr_mode=args.lr_mode, lr_step_size=args.lr_step_size,
start_lr=args.start_lr, end_lr=args.end_lr, lr_gamma=args.lr_gamma,
num_samples=args.rehearsal_samples, use_mixup=args.use_mixup, mixup_alpha=args.mixup_alpha,
grad_clip=None, num_channels=args.num_channels, num_feats=args.spatial_feat_dim,
num_codebooks=args.num_codebooks, codebook_size=args.codebook_size,
use_random_resize_crops=args.use_random_resized_crops,
max_buffer_size=args.max_buffer_size)
streaming(args, remind)