-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_ft.sh
29 lines (29 loc) · 898 Bytes
/
run_ft.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
K=20
H=512
pooling_method=attention1d
# your fine-tuning dataset
dataset_dir=data/finetune_example/PDBSol
pdb_dir_name=esmfold_pdb
# where to save your fine-tuned model
output_model_dir=result/PDBSol/protssn_k"$K"_h"$H"
output_model_name=protssn_"$pooling_method".pt
CUDA_VISIBLE_DEVICES=0 python run_ft.py \
--gnn_hidden_dim $H \
--gnn_model_path model/protssn_k"$K"_h"$H".pt \
--pooling_method $pooling_method \
--output_model_dir $output_model_dir \
--output_model_name $output_model_name \
--num_labels 2 \
--supv_dataset $dataset_dir \
--pdb_dir_name $pdb_dir_name \
--train_file train.csv \
--valid_file valid.csv \
--test_file test.csv \
--metrics acc,mcc \
--monitor valid/acc \
--monitor_mode max \
--c_alpha_max_neighbors $K \
--learning_rate 1e-4 \
--num_train_epochs 10 \
--batch_token_num 12000 \
--patience 5