forked from thu-coai/ccm
-
Notifications
You must be signed in to change notification settings - Fork 11
/
main.py
387 lines (341 loc) · 17.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import numpy as np
import tensorflow as tf
import json
from tensorflow.python.framework import constant_op
import sys
import math
import os
import time
import random
random.seed(time.time())
from model import Model, _START_VOCAB
tf.app.flags.DEFINE_boolean("is_train", True, "Set to False to inference.")
tf.app.flags.DEFINE_integer("symbols", 30000, "vocabulary size.")
tf.app.flags.DEFINE_integer("num_entities", 21471, "entitiy vocabulary size.")
tf.app.flags.DEFINE_integer("num_relations", 44, "relation size.")
tf.app.flags.DEFINE_integer("embed_units", 300, "Size of word embedding.")
tf.app.flags.DEFINE_integer("trans_units", 100, "Size of trans embedding.")
tf.app.flags.DEFINE_integer("units", 512, "Size of each model layer.")
tf.app.flags.DEFINE_integer("layers", 2, "Number of layers in the model.")
tf.app.flags.DEFINE_integer("batch_size", 100, "Batch size to use during training.")
tf.app.flags.DEFINE_string("data_dir", "./data", "Data directory")
tf.app.flags.DEFINE_string("train_dir", "./train", "Training directory.")
tf.app.flags.DEFINE_integer("per_checkpoint", 1000, "How many steps to do per checkpoint.")
tf.app.flags.DEFINE_integer("inference_version", 0, "The version for inferencing.")
tf.app.flags.DEFINE_boolean("log_parameters", True, "Set to True to show the parameters")
tf.app.flags.DEFINE_string("inference_path", "test", "Set filename of inference")
FLAGS = tf.app.flags.FLAGS
if FLAGS.train_dir[-1] == '/': FLAGS.train_dir = FLAGS.train_dir[:-1]
csk_triples, csk_entities, kb_dict = [], [], []
def prepare_data(path, is_train=True):
global csk_entities, csk_triples, kb_dict
with open('%s/resource.txt' % path) as f:
d = json.loads(f.readline())
csk_triples = d['csk_triples']
csk_entities = d['csk_entities']
raw_vocab = d['vocab_dict']
kb_dict = d['dict_csk']
data_train, data_dev, data_test = [], [], []
if is_train:
with open('%s/trainset.txt' % path) as f:
for idx, line in enumerate(f):
#if idx == 100000: break
if idx % 100000 == 0: print('read train file line %d' % idx)
data_train.append(json.loads(line))
with open('%s/validset.txt' % path) as f:
for line in f:
data_dev.append(json.loads(line))
with open('%s/testset.txt' % path) as f:
for line in f:
data_test.append(json.loads(line))
return raw_vocab, data_train, data_dev, data_test
def build_vocab(path, raw_vocab, trans='transE'):
print("Creating word vocabulary...")
vocab_list = _START_VOCAB + sorted(raw_vocab, key=raw_vocab.get, reverse=True)
if len(vocab_list) > FLAGS.symbols:
vocab_list = vocab_list[:FLAGS.symbols]
print("Creating entity vocabulary...")
entity_list = ['_NONE', '_PAD_H', '_PAD_R', '_PAD_T', '_NAF_H', '_NAF_R', '_NAF_T']
with open('%s/entity.txt' % path) as f:
for i, line in enumerate(f):
e = line.strip()
entity_list.append(e)
print("Creating relation vocabulary...")
relation_list = []
with open('%s/relation.txt' % path) as f:
for i, line in enumerate(f):
r = line.strip()
relation_list.append(r)
print("Loading word vectors...")
vectors = {}
with open('%s/glove.840B.300d.txt' % path) as f:
for i, line in enumerate(f):
if i % 100000 == 0:
print(" processing line %d" % i)
s = line.strip()
word = s[:s.find(' ')]
vector = s[s.find(' ')+1:]
vectors[word] = vector
embed = []
for word in vocab_list:
if word in vectors:
vector = map(float, vectors[word].split())
else:
vector = np.zeros((FLAGS.embed_units), dtype=np.float32)
embed.append(vector)
embed = np.array(embed, dtype=np.float32)
print("Loading entity vectors...")
entity_embed = []
with open('%s/entity_%s.txt' % (path, trans)) as f:
for i, line in enumerate(f):
s = line.strip().split('\t')
entity_embed.append(map(float, s))
print("Loading relation vectors...")
relation_embed = []
with open('%s/relation_%s.txt' % (path, trans)) as f:
for i, line in enumerate(f):
s = line.strip().split('\t')
relation_embed.append(s)
entity_relation_embed = np.array(entity_embed+relation_embed, dtype=np.float32)
entity_embed = np.array(entity_embed, dtype=np.float32)
relation_embed = np.array(relation_embed, dtype=np.float32)
return vocab_list, embed, entity_list, entity_embed, relation_list, relation_embed, entity_relation_embed
def gen_batched_data(data):
global csk_entities, csk_triples, kb_dict
encoder_len = max([len(item['post']) for item in data])+1
decoder_len = max([len(item['response']) for item in data])+1
triple_num = max([len(item['all_triples']) for item in data])+1
triple_len = max([len(tri) for item in data for tri in item['all_triples']])
max_length = 20
posts, responses, posts_length, responses_length = [], [], [], []
entities, triples, matches, post_triples, response_triples = [], [], [], [], []
match_entities, all_entities = [], []
match_triples, all_triples = [], []
NAF = ['_NAF_H', '_NAF_R', '_NAF_T']
def padding(sent, l):
return sent + ['_EOS'] + ['_PAD'] * (l-len(sent)-1)
def padding_triple(triple, num, l):
newtriple = []
triple = [[NAF]] + triple
for tri in triple:
newtriple.append(tri + [['_PAD_H', '_PAD_R', '_PAD_T']] * (l-len(tri)))
pad_triple = [['_PAD_H', '_PAD_R', '_PAD_T']] * l
return newtriple + [pad_triple] * (num - len(newtriple))
for item in data:
posts.append(padding(item['post'], encoder_len))
responses.append(padding(item['response'], decoder_len))
posts_length.append(len(item['post'])+1)
responses_length.append(len(item['response'])+1)
all_triples.append(padding_triple([[csk_triples[x].split(', ') for x in triple] for triple in item['all_triples']], triple_num, triple_len))
post_triples.append([[x] for x in item['post_triples']] + [[0]] * (encoder_len - len(item['post_triples'])))
response_triples.append([NAF] + [NAF if x == -1 else csk_triples[x].split(', ') for x in item['response_triples']] + [NAF] * (decoder_len - 1 - len(item['response_triples'])))
match_index = []
for idx, x in enumerate(item['match_index']):
_index = [-1] * triple_num
if x[0] == -1 and x[1] == -1:
match_index.append(_index)
else:
_index[x[0]] = x[1]
t = all_triples[-1][x[0]][x[1]]
assert(t == response_triples[-1][idx+1])
match_index.append(_index)
match_triples.append(match_index + [[-1]*triple_num]*(decoder_len-len(match_index)))
if not FLAGS.is_train:
entity = [['_NONE']*triple_len]
for ent in item['all_entities']:
entity.append([csk_entities[x] for x in ent] + ['_NONE'] * (triple_len-len(ent)))
entities.append(entity+[['_NONE']*triple_len]*(triple_num-len(entity)))
batched_data = {'posts': np.array(posts),
'responses': np.array(responses),
'posts_length': posts_length,
'responses_length': responses_length,
'triples': np.array(all_triples),
'entities': np.array(entities),
'posts_triple': np.array(post_triples),
'responses_triple': np.array(response_triples),
'match_triples': np.array(match_triples)}
return batched_data
def train(model, sess, data_train):
batched_data = gen_batched_data(data_train)
outputs = model.step_decoder(sess, batched_data)
return np.sum(outputs[0])
def generate_summary(model, sess, data_train):
selected_data = [random.choice(data_train) for i in range(FLAGS.batch_size)]
batched_data = gen_batched_data(selected_data)
summary = model.step_decoder(sess, batched_data, forward_only=True, summary=True)[-1]
return summary
def evaluate(model, sess, data_dev, summary_writer):
loss = np.zeros((1, ))
st, ed, times = 0, FLAGS.batch_size, 0
while st < len(data_dev):
selected_data = data_dev[st:ed]
batched_data = gen_batched_data(selected_data)
outputs = model.step_decoder(sess, batched_data, forward_only=True)
loss += np.sum(outputs[0])
st, ed = ed, ed+FLAGS.batch_size
times += 1
loss /= len(data_dev)
summary = tf.Summary()
summary.value.add(tag='decoder_loss/dev', simple_value=loss)
summary.value.add(tag='perplexity/dev', simple_value=np.exp(loss))
summary_writer.add_summary(summary, model.global_step.eval())
print(' perplexity on dev set: %.2f' % np.exp(loss))
def get_steps(train_dir):
a = os.walk(train_dir)
for root, dirs, files in a:
if root == train_dir:
filenames = files
steps, metafiles, datafiles, indexfiles = [], [], [], []
for filename in filenames:
if 'meta' in filename:
metafiles.append(filename)
if 'data' in filename:
datafiles.append(filename)
if 'index' in filename:
indexfiles.append(filename)
metafiles.sort()
datafiles.sort()
indexfiles.sort(reverse=True)
for f in indexfiles:
steps.append(int(f[11:-6]))
return steps
def test(sess, saver, data_dev, setnum=5000):
with open('%s/stopwords' % FLAGS.data_dir) as f:
stopwords = json.loads(f.readline())
steps = get_steps(FLAGS.train_dir)
low_step = 00000
high_step = 800000
with open('%s.res' % FLAGS.inference_path, 'w') as resfile, open('%s.log' % FLAGS.inference_path, 'w') as outfile:
for step in [step for step in steps if step > low_step and step < high_step]:
outfile.write('test for model-%d\n' % step)
model_path = '%s/checkpoint-%08d' % (FLAGS.train_dir, step)
print('restore from %s' % model_path)
try:
saver.restore(sess, model_path)
except:
continue
st, ed = 0, FLAGS.batch_size
results = []
loss = []
while st < len(data_dev):
selected_data = data_dev[st:ed]
batched_data = gen_batched_data(selected_data)
responses, ppx_loss = sess.run(['decoder_1/generation:0', 'decoder/ppx_loss:0'], {'enc_inps:0': batched_data['posts'], 'enc_lens:0': batched_data['posts_length'], 'dec_inps:0': batched_data['responses'], 'dec_lens:0': batched_data['responses_length'], 'entities:0': batched_data['entities'], 'triples:0': batched_data['triples'], 'match_triples:0': batched_data['match_triples'], 'enc_triples:0': batched_data['posts_triple'], 'dec_triples:0': batched_data['responses_triple']})
loss += [x for x in ppx_loss]
for response in responses:
result = []
for token in response:
if token != '_EOS':
result.append(token)
else:
break
results.append(result)
st, ed = ed, ed+FLAGS.batch_size
match_entity_sum = [.0] * 4
cnt = 0
for post, response, result, match_triples, triples, entities in zip([data['post'] for data in data_dev], [data['response'] for data in data_dev], results, [data['match_triples'] for data in data_dev], [data['all_triples'] for data in data_dev], [data['all_entities'] for data in data_dev]):
setidx = cnt / setnum
result_matched_entities = []
triples = [csk_triples[tri] for triple in triples for tri in triple]
match_triples = [csk_triples[triple] for triple in match_triples]
entities = [csk_entities[x] for entity in entities for x in entity]
matches = [x for triple in match_triples for x in [triple.split(', ')[0], triple.split(', ')[2]] if x in response]
for word in result:
if word not in stopwords and word in entities:
result_matched_entities.append(word)
outfile.write('post: %s\nresponse: %s\nresult: %s\nmatch_entity: %s\n\n' % (' '.join(post), ' '.join(response), ' '.join(result), ' '.join(result_matched_entities)))
match_entity_sum[setidx] += len(set(result_matched_entities))
cnt += 1
match_entity_sum = [m / setnum for m in match_entity_sum] + [sum(match_entity_sum) / len(data_dev)]
losses = [np.sum(loss[x:x+setnum]) / float(setnum) for x in range(0, setnum*4, setnum)] + [np.sum(loss) / float(setnum*4)]
losses = [np.exp(x) for x in losses]
def show(x):
return ', '.join([str(v) for v in x])
outfile.write('model: %d\n\tperplexity: %s\n\tmatch_entity_rate: %s\n%s\n\n' % (step, show(losses), show(match_entity_sum), '='*50))
resfile.write('model: %d\n\tperplexity: %s\n\tmatch_entity_rate: %s\n\n' % (step, show(losses), show(match_entity_sum)))
outfile.flush()
resfile.flush()
return results
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
if FLAGS.is_train:
raw_vocab, data_train, data_dev, data_test = prepare_data(FLAGS.data_dir)
vocab, embed, entity_vocab, entity_embed, relation_vocab, relation_embed, entity_relation_embed = build_vocab(FLAGS.data_dir, raw_vocab)
FLAGS.num_entities = len(entity_vocab)
print(FLAGS.__flags)
model = Model(
FLAGS.symbols,
FLAGS.embed_units,
FLAGS.units,
FLAGS.layers,
embed,
entity_relation_embed,
num_entities=len(entity_vocab)+len(relation_vocab),
num_trans_units=FLAGS.trans_units)
if tf.train.get_checkpoint_state(FLAGS.train_dir):
print("Reading model parameters from %s" % FLAGS.train_dir)
model.saver.restore(sess, tf.train.latest_checkpoint(FLAGS.train_dir))
else:
print("Created model with fresh parameters.")
tf.global_variables_initializer().run()
op_in = model.symbol2index.insert(constant_op.constant(vocab),
constant_op.constant(range(FLAGS.symbols), dtype=tf.int64))
sess.run(op_in)
op_out = model.index2symbol.insert(constant_op.constant(
range(FLAGS.symbols), dtype=tf.int64), constant_op.constant(vocab))
sess.run(op_out)
op_in = model.entity2index.insert(constant_op.constant(entity_vocab+relation_vocab),
constant_op.constant(range(len(entity_vocab)+len(relation_vocab)), dtype=tf.int64))
sess.run(op_in)
op_out = model.index2entity.insert(constant_op.constant(
range(len(entity_vocab)+len(relation_vocab)), dtype=tf.int64), constant_op.constant(entity_vocab+relation_vocab))
sess.run(op_out)
if FLAGS.log_parameters:
model.print_parameters()
summary_writer = tf.summary.FileWriter('%s/log' % FLAGS.train_dir, sess.graph)
loss_step, time_step = np.zeros((1, )), .0
previous_losses = [1e18]*3
train_len = len(data_train)
while True:
st, ed = 0, FLAGS.batch_size * FLAGS.per_checkpoint
random.shuffle(data_train)
while st < train_len:
start_time = time.time()
for batch in range(st, ed, FLAGS.batch_size):
loss_step += train(model, sess, data_train[batch:batch+FLAGS.batch_size]) / (ed - st)
show = lambda a: '[%s]' % (' '.join(['%.2f' % x for x in a]))
print("global step %d learning rate %.4f step-time %.2f loss %f perplexity %s"
% (model.global_step.eval(), model.lr,
(time.time() - start_time) / ((ed - st) / FLAGS.batch_size), loss_step, show(np.exp(loss_step))))
model.saver.save(sess, '%s/checkpoint' % FLAGS.train_dir,
global_step=model.global_step)
summary = tf.Summary()
summary.value.add(tag='decoder_loss/train', simple_value=loss_step)
summary.value.add(tag='perplexity/train', simple_value=np.exp(loss_step))
summary_writer.add_summary(summary, model.global_step.eval())
summary_model = generate_summary(model, sess, data_train)
summary_writer.add_summary(summary_model, model.global_step.eval())
evaluate(model, sess, data_dev, summary_writer)
previous_losses = previous_losses[1:]+[np.sum(loss_step)]
loss_step, time_step = np.zeros((1, )), .0
st, ed = ed, min(train_len, ed + FLAGS.batch_size * FLAGS.per_checkpoint)
model.saver_epoch.save(sess, '%s/epoch/checkpoint' % FLAGS.train_dir, global_step=model.global_step)
else:
model = Model(
FLAGS.symbols,
FLAGS.embed_units,
FLAGS.units,
FLAGS.layers,
embed=None,
num_entities=FLAGS.num_entities+FLAGS.num_relations,
num_trans_units=FLAGS.trans_units)
if FLAGS.inference_version == 0:
model_path = tf.train.latest_checkpoint(FLAGS.train_dir)
else:
model_path = '%s/checkpoint-%08d' % (FLAGS.train_dir, FLAGS.inference_version)
print('restore from %s' % model_path)
model.saver.restore(sess, model_path)
saver = model.saver
raw_vocab, data_train, data_dev, data_test = prepare_data(FLAGS.data_dir, is_train=False)
test(sess, saver, data_test, setnum=5000)