forked from thu-coai/ccm
-
Notifications
You must be signed in to change notification settings - Fork 11
/
attention_decoder.py
792 lines (680 loc) · 40.8 KB
/
attention_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib.layers.python.layers import layers
from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import function
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_data_flow_ops
from tensorflow.python.ops import tensor_array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.util import nest
def attention_decoder_fn_train(encoder_state,
attention_keys,
attention_values,
attention_score_fn,
attention_construct_fn,
output_alignments=False,
max_length=None,
name=None):
"""Attentional decoder function for `dynamic_rnn_decoder` during training.
The `attention_decoder_fn_train` is a training function for an
attention-based sequence-to-sequence model. It should be used when
`dynamic_rnn_decoder` is in the training mode.
The `attention_decoder_fn_train` is called with a set of the user arguments
and returns the `decoder_fn`, which can be passed to the
`dynamic_rnn_decoder`, such that
```
dynamic_fn_train = attention_decoder_fn_train(encoder_state)
outputs_train, state_train = dynamic_rnn_decoder(
decoder_fn=dynamic_fn_train, ...)
```
Further usage can be found in the `kernel_tests/seq2seq_test.py`.
Args:
encoder_state: The encoded state to initialize the `dynamic_rnn_decoder`.
attention_keys: to be compared with target states.
attention_values: to be used to construct context vectors.
attention_score_fn: to compute similarity between key and target states.
attention_construct_fn: to build attention states.
name: (default: `None`) NameScope for the decoder function;
defaults to "simple_decoder_fn_train"
Returns:
A decoder function with the required interface of `dynamic_rnn_decoder`
intended for training.
"""
with ops.name_scope(name, "attention_decoder_fn_train", [
encoder_state, attention_keys, attention_values, attention_score_fn,
attention_construct_fn
]):
pass
def decoder_fn(time, cell_state, cell_input, cell_output, context_state):
"""Decoder function used in the `dynamic_rnn_decoder` for training.
Args:
time: positive integer constant reflecting the current timestep.
cell_state: state of RNNCell.
cell_input: input provided by `dynamic_rnn_decoder`.
cell_output: output of RNNCell.
context_state: context state provided by `dynamic_rnn_decoder`.
Returns:
A tuple (done, next state, next input, emit output, next context state)
where:
done: `None`, which is used by the `dynamic_rnn_decoder` to indicate
that `sequence_lengths` in `dynamic_rnn_decoder` should be used.
next state: `cell_state`, this decoder function does not modify the
given state.
next input: `cell_input`, this decoder function does not modify the
given input. The input could be modified when applying e.g. attention.
emit output: `cell_output`, this decoder function does not modify the
given output.
next context state: `context_state`, this decoder function does not
modify the given context state. The context state could be modified when
applying e.g. beam search.
"""
with ops.name_scope(
name, "attention_decoder_fn_train",
[time, cell_state, cell_input, cell_output, context_state]):
if cell_state is None: # first call, return encoder_state
cell_state = encoder_state
# init attention
attention = _init_attention(encoder_state)
if output_alignments:
context_state = tensor_array_ops.TensorArray(dtype=dtypes.float32, tensor_array_name="alignments_ta", size=max_length, dynamic_size=True, infer_shape=False)
else:
# construct attention
#cell_output = tf.Print(cell_output, [context_state.stack()], summarize=1e8)
attention = attention_construct_fn(cell_output, attention_keys, attention_values)
if output_alignments:
attention, alignments = attention
context_state = context_state.write(time-1, alignments)
cell_output = attention
# combine cell_input and attention
next_input = array_ops.concat([cell_input, attention], 1)
return (None, cell_state, next_input, cell_output, context_state)
return decoder_fn
def attention_decoder_fn_inference(output_fn,
encoder_state,
attention_keys,
attention_values,
attention_score_fn,
attention_construct_fn,
embeddings,
start_of_sequence_id,
end_of_sequence_id,
maximum_length,
num_decoder_symbols,
dtype=dtypes.int32,
selector_fn=None,
imem=None,
name=None):
"""Attentional decoder function for `dynamic_rnn_decoder` during inference.
The `attention_decoder_fn_inference` is a simple inference function for a
sequence-to-sequence model. It should be used when `dynamic_rnn_decoder` is
in the inference mode.
The `attention_decoder_fn_inference` is called with user arguments
and returns the `decoder_fn`, which can be passed to the
`dynamic_rnn_decoder`, such that
```
dynamic_fn_inference = attention_decoder_fn_inference(...)
outputs_inference, state_inference = dynamic_rnn_decoder(
decoder_fn=dynamic_fn_inference, ...)
```
Further usage can be found in the `kernel_tests/seq2seq_test.py`.
Args:
output_fn: An output function to project your `cell_output` onto class
logits.
An example of an output function;
```
tf.variable_scope("decoder") as varscope
output_fn = lambda x: layers.linear(x, num_decoder_symbols,
scope=varscope)
outputs_train, state_train = seq2seq.dynamic_rnn_decoder(...)
logits_train = output_fn(outputs_train)
varscope.reuse_variables()
logits_inference, state_inference = seq2seq.dynamic_rnn_decoder(
output_fn=output_fn, ...)
```
If `None` is supplied it will act as an identity function, which
might be wanted when using the RNNCell `OutputProjectionWrapper`.
encoder_state: The encoded state to initialize the `dynamic_rnn_decoder`.
attention_keys: to be compared with target states.
attention_values: to be used to construct context vectors.
attention_score_fn: to compute similarity between key and target states.
attention_construct_fn: to build attention states.
embeddings: The embeddings matrix used for the decoder sized
`[num_decoder_symbols, embedding_size]`.
start_of_sequence_id: The start of sequence ID in the decoder embeddings.
end_of_sequence_id: The end of sequence ID in the decoder embeddings.
maximum_length: The maximum allowed of time steps to decode.
num_decoder_symbols: The number of classes to decode at each time step.
dtype: (default: `dtypes.int32`) The default data type to use when
handling integer objects.
name: (default: `None`) NameScope for the decoder function;
defaults to "attention_decoder_fn_inference"
Returns:
A decoder function with the required interface of `dynamic_rnn_decoder`
intended for inference.
"""
with ops.name_scope(name, "attention_decoder_fn_inference", [
output_fn, encoder_state, attention_keys, attention_values,
attention_score_fn, attention_construct_fn, embeddings, imem,
start_of_sequence_id, end_of_sequence_id, maximum_length,
num_decoder_symbols, dtype
]):
start_of_sequence_id = ops.convert_to_tensor(start_of_sequence_id, dtype)
end_of_sequence_id = ops.convert_to_tensor(end_of_sequence_id, dtype)
maximum_length = ops.convert_to_tensor(maximum_length, dtype)
num_decoder_symbols = ops.convert_to_tensor(num_decoder_symbols, dtype)
encoder_info = nest.flatten(encoder_state)[0]
batch_size = encoder_info.get_shape()[0].value
if output_fn is None:
output_fn = lambda x: x
if batch_size is None:
batch_size = array_ops.shape(encoder_info)[0]
def decoder_fn(time, cell_state, cell_input, cell_output, context_state):
"""Decoder function used in the `dynamic_rnn_decoder` for inference.
The main difference between this decoder function and the `decoder_fn` in
`attention_decoder_fn_train` is how `next_cell_input` is calculated. In
decoder function we calculate the next input by applying an argmax across
the feature dimension of the output from the decoder. This is a
greedy-search approach. (Bahdanau et al., 2014) & (Sutskever et al., 2014)
use beam-search instead.
Args:
time: positive integer constant reflecting the current timestep.
cell_state: state of RNNCell.
cell_input: input provided by `dynamic_rnn_decoder`.
cell_output: output of RNNCell.
context_state: context state provided by `dynamic_rnn_decoder`.
Returns:
A tuple (done, next state, next input, emit output, next context state)
where:
done: A boolean vector to indicate which sentences has reached a
`end_of_sequence_id`. This is used for early stopping by the
`dynamic_rnn_decoder`. When `time>=maximum_length` a boolean vector with
all elements as `true` is returned.
next state: `cell_state`, this decoder function does not modify the
given state.
next input: The embedding from argmax of the `cell_output` is used as
`next_input`.
emit output: If `output_fn is None` the supplied `cell_output` is
returned, else the `output_fn` is used to update the `cell_output`
before calculating `next_input` and returning `cell_output`.
next context state: `context_state`, this decoder function does not
modify the given context state. The context state could be modified when
applying e.g. beam search.
Raises:
ValueError: if cell_input is not None.
"""
with ops.name_scope(
name, "attention_decoder_fn_inference",
[time, cell_state, cell_input, cell_output, context_state]):
if cell_input is not None:
raise ValueError("Expected cell_input to be None, but saw: %s" %
cell_input)
if cell_output is None:
# invariant that this is time == 0
next_input_id = array_ops.ones(
[batch_size,], dtype=dtype) * (start_of_sequence_id)
done = array_ops.zeros([batch_size,], dtype=dtypes.bool)
cell_state = encoder_state
cell_output = array_ops.zeros(
[num_decoder_symbols], dtype=dtypes.float32)
word_input = array_ops.gather(embeddings, next_input_id)
naf_triple_id = array_ops.zeros([batch_size, 2], dtype=dtype)
triple_input = array_ops.gather_nd(imem[1], naf_triple_id)
cell_input = array_ops.concat([word_input, triple_input], axis=1)
# init attention
attention = _init_attention(encoder_state)
if imem is not None:
context_state = tensor_array_ops.TensorArray(dtype=dtypes.int32, tensor_array_name="output_ids_ta", size=maximum_length, dynamic_size=True, infer_shape=False)
else:
# construct attention
attention = attention_construct_fn(cell_output, attention_keys,
attention_values)
if type(attention) is tuple:
attention, alignment = attention
cell_output = attention
alignment = tf.reshape(alignment, [batch_size, -1])
selector = selector_fn(cell_output)
logit = output_fn(cell_output)
word_prob = nn_ops.softmax(logit) * (1 - selector)
entity_prob = alignment * selector
mask = array_ops.reshape(math_ops.cast(math_ops.greater(tf.reduce_max(word_prob, 1), tf.reduce_max(entity_prob, 1)), dtype=dtypes.float32), [-1,1])
word_input = mask * array_ops.gather(embeddings, math_ops.cast(math_ops.argmax(word_prob, 1), dtype=dtype)) + (1 - mask) * array_ops.gather_nd(imem[0], array_ops.concat([array_ops.reshape(math_ops.range(batch_size, dtype=dtype), [-1,1]), array_ops.reshape(math_ops.cast(math_ops.argmax(entity_prob, 1), dtype=dtype), [-1,1])], axis=1))
indices = array_ops.concat([array_ops.reshape(math_ops.range(batch_size, dtype=dtype), [-1,1]), math_ops.cast(1-mask, dtype=dtype) * tf.reshape(math_ops.cast(math_ops.argmax(alignment, 1), dtype=dtype), [-1, 1])], axis=1)
triple_input = array_ops.gather_nd(imem[1], indices)
cell_input = array_ops.concat([word_input, triple_input], axis=1)
mask = array_ops.reshape(math_ops.cast(mask, dtype=dtype), [-1])
input_id = mask * math_ops.cast(math_ops.argmax(word_prob, 1), dtype=dtype) + (mask - 1) * math_ops.cast(math_ops.argmax(entity_prob, 1), dtype=dtype)
context_state = context_state.write(time-1, input_id)
done = array_ops.reshape(math_ops.equal(input_id, end_of_sequence_id), [-1])
cell_output = logit
else:
cell_output = attention
# argmax decoder
cell_output = output_fn(cell_output) # logits
next_input_id = math_ops.cast(
math_ops.argmax(cell_output, 1), dtype=dtype)
done = math_ops.equal(next_input_id, end_of_sequence_id)
cell_input = array_ops.gather(embeddings, next_input_id)
# combine cell_input and attention
next_input = array_ops.concat([cell_input, attention], 1)
# if time > maxlen, return all true vector
done = control_flow_ops.cond(
math_ops.greater(time, maximum_length),
lambda: array_ops.ones([batch_size,], dtype=dtypes.bool),
lambda: done)
return (done, cell_state, next_input, cell_output, context_state)
return decoder_fn
def attention_decoder_fn_beam_inference(output_fn,
encoder_state,
attention_keys,
attention_values,
attention_score_fn,
attention_construct_fn,
embeddings,
start_of_sequence_id,
end_of_sequence_id,
maximum_length,
num_decoder_symbols,
beam_size,
remove_unk=False,
d_rate=0.0,
dtype=dtypes.int32,
name=None):
"""Attentional decoder function for `dynamic_rnn_decoder` during inference.
The `attention_decoder_fn_inference` is a simple inference function for a
sequence-to-sequence model. It should be used when `dynamic_rnn_decoder` is
in the inference mode.
The `attention_decoder_fn_inference` is called with user arguments
and returns the `decoder_fn`, which can be passed to the
`dynamic_rnn_decoder`, such that
```
dynamic_fn_inference = attention_decoder_fn_inference(...)
outputs_inference, state_inference = dynamic_rnn_decoder(
decoder_fn=dynamic_fn_inference, ...)
```
Further usage can be found in the `kernel_tests/seq2seq_test.py`.
Args:
output_fn: An output function to project your `cell_output` onto class
logits.
An example of an output function;
```
tf.variable_scope("decoder") as varscope
output_fn = lambda x: layers.linear(x, num_decoder_symbols,
scope=varscope)
outputs_train, state_train = seq2seq.dynamic_rnn_decoder(...)
logits_train = output_fn(outputs_train)
varscope.reuse_variables()
logits_inference, state_inference = seq2seq.dynamic_rnn_decoder(
output_fn=output_fn, ...)
```
If `None` is supplied it will act as an identity function, which
might be wanted when using the RNNCell `OutputProjectionWrapper`.
encoder_state: The encoded state to initialize the `dynamic_rnn_decoder`.
attention_keys: to be compared with target states.
attention_values: to be used to construct context vectors.
attention_score_fn: to compute similarity between key and target states.
attention_construct_fn: to build attention states.
embeddings: The embeddings matrix used for the decoder sized
`[num_decoder_symbols, embedding_size]`.
start_of_sequence_id: The start of sequence ID in the decoder embeddings.
end_of_sequence_id: The end of sequence ID in the decoder embeddings.
maximum_length: The maximum allowed of time steps to decode.
num_decoder_symbols: The number of classes to decode at each time step.
dtype: (default: `dtypes.int32`) The default data type to use when
handling integer objects.
name: (default: `None`) NameScope for the decoder function;
defaults to "attention_decoder_fn_inference"
Returns:
A decoder function with the required interface of `dynamic_rnn_decoder`
intended for inference.
"""
with ops.name_scope(name, "attention_decoder_fn_inference", [
output_fn, encoder_state, attention_keys, attention_values,
attention_score_fn, attention_construct_fn, embeddings,
start_of_sequence_id, end_of_sequence_id, maximum_length,
num_decoder_symbols, dtype
]):
state_size = int(encoder_state[0].get_shape().with_rank(2)[1])
state = []
for s in encoder_state:
state.append(array_ops.reshape(array_ops.concat([array_ops.reshape(s, [-1, 1, state_size])]*beam_size, 1), [-1, state_size]))
encoder_state = tuple(state)
origin_batch = array_ops.shape(attention_values)[0]
attn_length = array_ops.shape(attention_values)[1]
attention_values = array_ops.reshape(array_ops.concat([array_ops.reshape(attention_values, [-1, 1, attn_length, state_size])]*beam_size, 1), [-1, attn_length, state_size])
attn_size = array_ops.shape(attention_keys)[2]
attention_keys = array_ops.reshape(array_ops.concat([array_ops.reshape(attention_keys, [-1, 1, attn_length, attn_size])]*beam_size, 1), [-1, attn_length, attn_size])
start_of_sequence_id = ops.convert_to_tensor(start_of_sequence_id, dtype)
end_of_sequence_id = ops.convert_to_tensor(end_of_sequence_id, dtype)
maximum_length = ops.convert_to_tensor(maximum_length, dtype)
num_decoder_symbols = ops.convert_to_tensor(num_decoder_symbols, dtype)
encoder_info = nest.flatten(encoder_state)[0]
batch_size = encoder_info.get_shape()[0].value
if output_fn is None:
output_fn = lambda x: x
if batch_size is None:
batch_size = array_ops.shape(encoder_info)[0]
#beam_size = ops.convert_to_tensor(beam_size, dtype)
def decoder_fn(time, cell_state, cell_input, cell_output, context_state):
"""Decoder function used in the `dynamic_rnn_decoder` for inference.
The main difference between this decoder function and the `decoder_fn` in
`attention_decoder_fn_train` is how `next_cell_input` is calculated. In
decoder function we calculate the next input by applying an argmax across
the feature dimension of the output from the decoder. This is a
greedy-search approach. (Bahdanau et al., 2014) & (Sutskever et al., 2014)
use beam-search instead.
Args:
time: positive integer constant reflecting the current timestep.
cell_state: state of RNNCell.
cell_input: input provided by `dynamic_rnn_decoder`.
cell_output: output of RNNCell.
context_state: context state provided by `dynamic_rnn_decoder`.
Returns:
A tuple (done, next state, next input, emit output, next context state)
where:
done: A boolean vector to indicate which sentences has reached a
`end_of_sequence_id`. This is used for early stopping by the
`dynamic_rnn_decoder`. When `time>=maximum_length` a boolean vector with
all elements as `true` is returned.
next state: `cell_state`, this decoder function does not modify the
given state.
next input: The embedding from argmax of the `cell_output` is used as
`next_input`.
emit output: If `output_fn is None` the supplied `cell_output` is
returned, else the `output_fn` is used to update the `cell_output`
before calculating `next_input` and returning `cell_output`.
next context state: `context_state`, this decoder function does not
modify the given context state. The context state could be modified when
applying e.g. beam search.
Raises:
ValueError: if cell_input is not None.
"""
with ops.name_scope(
name, "attention_decoder_fn_inference",
[time, cell_state, cell_input, cell_output, context_state]):
if cell_input is not None:
raise ValueError("Expected cell_input to be None, but saw: %s" %
cell_input)
if cell_output is None:
# invariant that this is time == 0
next_input_id = array_ops.ones(
[batch_size,], dtype=dtype) * (start_of_sequence_id)
done = array_ops.zeros([batch_size,], dtype=dtypes.bool)
cell_state = encoder_state
cell_output = array_ops.zeros(
[num_decoder_symbols], dtype=dtypes.float32)
cell_input = array_ops.gather(embeddings, next_input_id)
# init attention
attention = _init_attention(encoder_state)
# init context state
log_beam_probs = tensor_array_ops.TensorArray(dtype=dtypes.float32, tensor_array_name="log_beam_probs", size=maximum_length, dynamic_size=True, infer_shape=False)
beam_parents = tensor_array_ops.TensorArray(dtype=dtypes.int32, tensor_array_name="beam_parents", size=maximum_length, dynamic_size=True, infer_shape=False)
beam_symbols = tensor_array_ops.TensorArray(dtype=dtypes.int32, tensor_array_name="beam_symbols", size=maximum_length, dynamic_size=True, infer_shape=False)
result_probs = tensor_array_ops.TensorArray(dtype=dtypes.float32, tensor_array_name="result_probs", size=maximum_length, dynamic_size=True, infer_shape=False)
result_parents = tensor_array_ops.TensorArray(dtype=dtypes.int32, tensor_array_name="result_parents", size=maximum_length, dynamic_size=True, infer_shape=False)
result_symbols = tensor_array_ops.TensorArray(dtype=dtypes.int32, tensor_array_name="result_symbols", size=maximum_length, dynamic_size=True, infer_shape=False)
context_state = (log_beam_probs, beam_parents, beam_symbols, result_probs, result_parents, result_symbols)
else:
# construct attention
attention = attention_construct_fn(cell_output, attention_keys,
attention_values)
cell_output = attention
# beam search decoder
(log_beam_probs, beam_parents, beam_symbols, result_probs, result_parents, result_symbols) = context_state
cell_output = output_fn(cell_output) # logits
cell_output = nn_ops.softmax(cell_output)
cell_output = array_ops.split(cell_output, [2, num_decoder_symbols-2], 1)[1]
tmp_output = array_ops.gather(cell_output, math_ops.range(origin_batch)*beam_size)
probs = control_flow_ops.cond(
math_ops.equal(time, ops.convert_to_tensor(1, dtype)),
lambda: math_ops.log(tmp_output+ops.convert_to_tensor(1e-20, dtypes.float32)),
lambda: math_ops.log(cell_output+ops.convert_to_tensor(1e-20, dtypes.float32)) + array_ops.reshape(log_beam_probs.read(time-2), [-1, 1]))
probs = array_ops.reshape(probs, [origin_batch, -1])
best_probs, indices = nn_ops.top_k(probs, beam_size * 2)
#indices = array_ops.reshape(indices, [-1])
indices_flatten = array_ops.reshape(indices, [-1]) + array_ops.reshape(array_ops.concat([array_ops.reshape(math_ops.range(origin_batch)*((num_decoder_symbols-2)*beam_size), [-1, 1])]*(beam_size*2), 1), [origin_batch*beam_size*2])
best_probs_flatten = array_ops.reshape(best_probs, [-1])
symbols = indices_flatten % (num_decoder_symbols - 2)
symbols = symbols + 2
parents = indices_flatten // (num_decoder_symbols - 2)
probs_wo_eos = best_probs + 1e5*math_ops.cast(math_ops.cast((indices%(num_decoder_symbols-2)+2)-end_of_sequence_id, dtypes.bool), dtypes.float32)
best_probs_wo_eos, indices_wo_eos = nn_ops.top_k(probs_wo_eos, beam_size)
indices_wo_eos = array_ops.reshape(indices_wo_eos, [-1]) + array_ops.reshape(array_ops.concat([array_ops.reshape(math_ops.range(origin_batch)*(beam_size*2), [-1, 1])]*beam_size, 1), [origin_batch*beam_size])
_probs = array_ops.gather(best_probs_flatten, indices_wo_eos)
_symbols = array_ops.gather(symbols, indices_wo_eos)
_parents = array_ops.gather(parents, indices_wo_eos)
log_beam_probs = log_beam_probs.write(time-1, _probs)
beam_symbols = beam_symbols.write(time-1, _symbols)
beam_parents = beam_parents.write(time-1, _parents)
result_probs = result_probs.write(time-1, best_probs_flatten)
result_symbols = result_symbols.write(time-1, symbols)
result_parents = result_parents.write(time-1, parents)
next_input_id = array_ops.reshape(_symbols, [batch_size])
state_size = int(cell_state[0].get_shape().with_rank(2)[1])
attn_size = int(attention.get_shape().with_rank(2)[1])
state = []
for j in cell_state:
state.append(array_ops.reshape(array_ops.gather(j, _parents), [-1, state_size]))
cell_state = tuple(state)
attention = array_ops.reshape(array_ops.gather(attention, _parents), [-1, attn_size])
done = math_ops.equal(next_input_id, end_of_sequence_id)
cell_input = array_ops.gather(embeddings, next_input_id)
# combine cell_input and attention
next_input = array_ops.concat([cell_input, attention], 1)
# if time > maxlen, return all true vector
done = control_flow_ops.cond(
math_ops.greater(time, maximum_length),
lambda: array_ops.ones([batch_size,], dtype=dtypes.bool),
lambda: array_ops.zeros([batch_size,], dtype=dtypes.bool))
return (done, cell_state, next_input, cell_output, (log_beam_probs, beam_parents, beam_symbols, result_probs, result_parents, result_symbols))#context_state)
return decoder_fn
## Helper functions ##
def prepare_attention(attention_states,
attention_option,
num_units,
imem=None,
output_alignments=False,
reuse=False):
"""Prepare keys/values/functions for attention.
Args:
attention_states: hidden states to attend over.
attention_option: how to compute attention, either "luong" or "bahdanau".
num_units: hidden state dimension.
reuse: whether to reuse variable scope.
Returns:
attention_keys: to be compared with target states.
attention_values: to be used to construct context vectors.
attention_score_fn: to compute similarity between key and target states.
attention_construct_fn: to build attention states.
"""
# Prepare attention keys / values from attention_states
with variable_scope.variable_scope("attention_keys", reuse=reuse) as scope:
attention_keys = layers.linear(
attention_states, num_units, biases_initializer=None, scope=scope)
attention_values = attention_states
if imem is not None:
if type(imem) is tuple:
with variable_scope.variable_scope("imem_graph", reuse=reuse) as scope:
attention_keys2, attention_states2 = array_ops.split(layers.linear(
imem[0], num_units*2, biases_initializer=None, scope=scope), [num_units, num_units], axis=2)
with variable_scope.variable_scope("imem_triple", reuse=reuse) as scope:
attention_keys3, attention_states3 = array_ops.split(layers.linear(
imem[1], num_units*2, biases_initializer=None, scope=scope), [num_units, num_units], axis=3)
attention_keys = (attention_keys, attention_keys2, attention_keys3)
attention_values = (attention_states, attention_states2, attention_states3)
else:
with variable_scope.variable_scope("imem", reuse=reuse) as scope:
attention_keys2, attention_states2 = array_ops.split(layers.linear(
imem, num_units*2, biases_initializer=None, scope=scope), [num_units, num_units], axis=2)
attention_keys = (attention_keys, attention_keys2)
attention_values = (attention_states, attention_states2)
# Attention score function
if imem is None:
attention_score_fn = _create_attention_score_fn("attention_score", num_units,
attention_option, reuse)
else:
attention_score_fn = (_create_attention_score_fn("attention_score", num_units,
attention_option, reuse),
_create_attention_score_fn("imem_score", num_units,
"luong", reuse, output_alignments=output_alignments))
# Attention construction function
attention_construct_fn = _create_attention_construct_fn("attention_construct",
num_units,
attention_score_fn,
reuse)
return (attention_keys, attention_values, attention_score_fn,
attention_construct_fn)
def _init_attention(encoder_state):
"""Initialize attention. Handling both LSTM and GRU.
Args:
encoder_state: The encoded state to initialize the `dynamic_rnn_decoder`.
Returns:
attn: initial zero attention vector.
"""
# Multi- vs single-layer
# TODO(thangluong): is this the best way to check?
if isinstance(encoder_state, tuple):
top_state = encoder_state[-1]
else:
top_state = encoder_state
# LSTM vs GRU
if isinstance(top_state, rnn_cell_impl.LSTMStateTuple):
attn = array_ops.zeros_like(top_state.h)
else:
attn = array_ops.zeros_like(top_state)
return attn
def _create_attention_construct_fn(name, num_units, attention_score_fn, reuse):
"""Function to compute attention vectors.
Args:
name: to label variables.
num_units: hidden state dimension.
attention_score_fn: to compute similarity between key and target states.
reuse: whether to reuse variable scope.
Returns:
attention_construct_fn: to build attention states.
"""
with variable_scope.variable_scope(name, reuse=reuse) as scope:
def construct_fn(attention_query, attention_keys, attention_values):
alignments = None
if type(attention_score_fn) is tuple:
context0 = attention_score_fn[0](attention_query, attention_keys[0],
attention_values[0])
if len(attention_keys) == 2:
context1 = attention_score_fn[1](attention_query, attention_keys[1],
attention_values[1])
elif len(attention_keys) == 3:
context1 = attention_score_fn[1](attention_query, attention_keys[1:],
attention_values[1:])
if type(context1) is tuple:
if len(context1) == 2:
context1, alignments = context1
concat_input = array_ops.concat([attention_query, context0, context1], 1)
elif len(context1) == 3:
context1, context2, alignments = context1
concat_input = array_ops.concat([attention_query, context0, context1, context2], 1)
else:
concat_input = array_ops.concat([attention_query, context0, context1], 1)
else:
context = attention_score_fn(attention_query, attention_keys,
attention_values)
concat_input = array_ops.concat([attention_query, context], 1)
attention = layers.linear(
concat_input, num_units, biases_initializer=None, scope=scope)
if alignments is None:
return attention
else:
return attention, alignments
return construct_fn
# keys: [batch_size, attention_length, attn_size]
# query: [batch_size, 1, attn_size]
# return weights [batch_size, attention_length]
@function.Defun(func_name="attn_add_fun", noinline=True)
def _attn_add_fun(v, keys, query):
return math_ops.reduce_sum(v * math_ops.tanh(keys + query), [2])
@function.Defun(func_name="attn_mul_fun", noinline=True)
def _attn_mul_fun(keys, query):
return math_ops.reduce_sum(keys * query, [2])
def _create_attention_score_fn(name,
num_units,
attention_option,
reuse,
output_alignments=False,
dtype=dtypes.float32):
"""Different ways to compute attention scores.
Args:
name: to label variables.
num_units: hidden state dimension.
attention_option: how to compute attention, either "luong" or "bahdanau".
"bahdanau": additive (Bahdanau et al., ICLR'2015)
"luong": multiplicative (Luong et al., EMNLP'2015)
reuse: whether to reuse variable scope.
dtype: (default: `dtypes.float32`) data type to use.
Returns:
attention_score_fn: to compute similarity between key and target states.
"""
with variable_scope.variable_scope(name, reuse=reuse):
if attention_option == "bahdanau":
query_w = variable_scope.get_variable(
"attnW", [num_units, num_units], dtype=dtype)
score_v = variable_scope.get_variable("attnV", [num_units], dtype=dtype)
def attention_score_fn(query, keys, values):
"""Put attention masks on attention_values using attention_keys and query.
Args:
query: A Tensor of shape [batch_size, num_units].
keys: A Tensor of shape [batch_size, attention_length, num_units].
values: A Tensor of shape [batch_size, attention_length, num_units].
Returns:
context_vector: A Tensor of shape [batch_size, num_units].
Raises:
ValueError: if attention_option is neither "luong" or "bahdanau".
"""
triple_keys, triple_values = None, None
if type(keys) is tuple:
keys, triple_keys = keys
values, triple_values = values
if attention_option == "bahdanau":
# transform query
query = math_ops.matmul(query, query_w)
# reshape query: [batch_size, 1, num_units]
query = array_ops.reshape(query, [-1, 1, num_units])
# attn_fun
scores = _attn_add_fun(score_v, keys, query)
elif attention_option == "luong":
# reshape query: [batch_size, 1, num_units]
query = array_ops.reshape(query, [-1, 1, num_units])
# attn_fun
scores = _attn_mul_fun(keys, query)
else:
raise ValueError("Unknown attention option %s!" % attention_option)
# Compute alignment weights
# scores: [batch_size, length]
# alignments: [batch_size, length]
# TODO(thangluong): not normalize over padding positions.
alignments = nn_ops.softmax(scores)
#alignments = tf.Print(alignments, [alignments], summarize=1000)
# Now calculate the attention-weighted vector.
new_alignments = array_ops.expand_dims(alignments, 2)
context_vector = math_ops.reduce_sum(new_alignments * values, [1])
context_vector.set_shape([None, num_units])
if triple_values is not None:
triple_scores = math_ops.reduce_sum(triple_keys * array_ops.reshape(query, [-1, 1, 1, num_units]), [3])
triple_alignments = nn_ops.softmax(triple_scores)
context_triples = math_ops.reduce_sum(array_ops.expand_dims(triple_alignments, 3) * triple_values, [2])
context_graph_triples = math_ops.reduce_sum(new_alignments * context_triples, [1])
context_graph_triples.set_shape([None, num_units])
final_alignments = new_alignments * triple_alignments
#final_alignments = tf.Print(final_alignments, ['graph', new_alignments, 'triple', final_alignments], summarize=1e6)
return context_vector, context_graph_triples, final_alignments
else:
if output_alignments:
return context_vector, alignments
else:
return context_vector
return attention_score_fn