-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdelaunay2.py
executable file
·348 lines (242 loc) · 9.81 KB
/
delaunay2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#!/usr/bin/env python
# - coding: utf-8 -
# Copyright (C) 2010 Toms Bauģis <toms.baugis at gmail.com>
"""
This one is based on code by Geoff Leach <[email protected]> (29/3/96)
Same delaunay triangulation, just much more efficient.
See here for original source and description:
http://goanna.cs.rmit.edu.au/~gl/research/comp_geom/delaunay/delaunay.html
"""
from gi.repository import Gtk as gtk
from lib import graphics
from contrib.euclid import Point2, Vector2
import math
import itertools
import collections
EPSILON = 0.00001
class Node(graphics.Sprite):
def __init__(self, x, y, point):
graphics.Sprite.__init__(self, x, y, interactive=True, draggable=True)
self.draw_node()
self.point = point
self.connect("on-drag", self.on_drag)
def on_drag(self, sprite, event):
self.point.x = event.x
self.point.y = event.y
self.draw_node()
def draw_node(self):
self.graphics.clear()
self.graphics.set_color("#999")
self.graphics.rectangle(-5,-5, 10, 10, 3)
self.graphics.fill()
class Edge(object):
def __init__(self, point1, point2):
self.point1 = point1
self.point2 = point2
self.left_face = None
self.right_face = None
def update_left_face(self, point1, point2, face):
if set((self.point1, self.point2)) - set((point1, point2)):
return # have been asked to update, but these are not our points
if point1 == self.point1 and self.left_face is None:
self.left_face = face
elif point1 == self.point2 and self.right_face is None:
self.right_face = face
class Circle(Point2):
def __init__(self, x = 0, y = 0, radius = 0):
Point2.__init__(self, x, y)
self.radius = radius
def covers(self, point):
return (self - point).magnitude_squared() < self.radius * self.radius
def circumcircle(self, p1, p2, p3):
v1 = p2 - p1
v2 = p3 - p1
cross = (p2 - p1).product(p3 - p1)
if cross != 0:
p1_sq = p1.magnitude_squared()
p2_sq = p2.magnitude_squared()
p3_sq = p3.magnitude_squared()
num = p1_sq * (p2.y - p3.y) + p2_sq * (p3.y - p1.y) + p3_sq * (p1.y - p2.y)
cx = num / (2.0 * cross)
num = p1_sq * (p3.x - p2.x) + p2_sq * (p1.x - p3.x) + p3_sq * (p2.x - p1.x)
cy = num / (2.0 * cross);
self.x, self.y = cx, cy
self.radius = (self - p1).magnitude()
return self
class Canvas(graphics.Scene):
def __init__(self):
graphics.Scene.__init__(self)
self.nodes = []
self.centres = []
self.edges = []
self.edge_dict = {}
self.points = [] # [Vector2(-10000, -10000), Vector2(10000, -10000), Vector2(0, 10000)]
self.connect("on-enter-frame", self.on_enter_frame)
self.connect("on-click", self.on_mouse_click)
self.connect("on-drag", self.on_node_drag)
self.add_child(graphics.Label("Add some points and observe Delaunay triangulation", x = 5, y = 5, color = "#666"))
self.draw_circles = False
def add_edge(self, p1, p2):
exists = self.edge_dict.get((p1, p2), self.edge_dict.get((p2, p1)))
if not exists:
edge = Edge(p1, p2)
self.edges.append(edge)
self.edge_dict[(p1, p2)] = edge
return edge, True
else:
return exists, False
def find_triangles(self):
# run through edges and detect triangles
for edge in self.edges:
pass
def triangulate(self):
self.edges = []
self.edge_dict = {}
self.centres = []
# find closest neighbours for the seed
neighbours = None
min_distance = None
for p1 in self.points:
for p2 in self.points:
if p1 == p2: continue
d = (p1 - p2).magnitude_squared()
if not min_distance or d < min_distance:
neighbours = p1, p2
min_distance = d
if not neighbours:
return
seed, new = self.add_edge(*neighbours)
edges = collections.deque([seed])
self.face_num = 0
while edges:
current = edges.popleft()
if not current.left_face:
edges.extend(self.check_edge(current, current.point1, current.point2))
if not current.right_face:
edges.extend(self.check_edge(current, current.point2, current.point1))
def check_edge(self, edge, point1, point2):
"""
* Complete a facet by looking for the circle free point to the left
* of the edge. Add the facet to the triangulation.
"""
positive_products = (point for point in self.points if point not in (point1, point2) \
and (point2 - point1).product(point - point1) > 0)
# Find a point on left of edge.
try:
left_point = positive_products.next()
left_point_circumcentre = Circle()
left_point_circumcentre.circumcircle(point1, point2, left_point)
except StopIteration:
edge.update_left_face(point1, point2, 0)
return [] #did not find anything
# now from all the left side points find the one that is circle-free
for point in positive_products:
if left_point_circumcentre.covers(point):
# move centre
left_point_circumcentre.circumcircle(point1, point2, point)
left_point = point
# now that we are done, add our successful candidate to the centres
if left_point_circumcentre not in self.centres:
self.centres.append(left_point_circumcentre)
self.face_num +=1
# Add new triangle or update edge info if s-t is on hull.
# Update face information of edge being completed.
edge.update_left_face(point1, point2, self.face_num)
# connect the dots
res = []
edge1, new = self.add_edge(left_point, point1)
edge1.update_left_face(left_point, point1, self.face_num)
if new: res.append(edge1)
edge2, new = self.add_edge(point2, left_point)
edge2.update_left_face(point2, left_point, self.face_num)
if new: res.append(edge2)
return res
def on_mouse_click(self, area, event, target):
if not target:
point = Vector2(event.x, event.y)
self.points.append(point)
node = Node(event.x, event.y, point)
self.nodes.append(node)
self.add_child(node)
self.centres = []
self.triangulate()
self.redraw()
def on_node_drag(self, scene, node, event):
self.centres = []
self.redraw()
def on_enter_frame(self, scene, context):
g = graphics.Graphics(context)
g.set_line_style(width = 0.5)
self.triangulate()
g.set_color("#666")
for edge in self.edges:
context.move_to(edge.point1.x, edge.point1.y)
context.line_to(edge.point2.x, edge.point2.y)
context.save()
context.translate((edge.point1.x + edge.point2.x) / 2, (edge.point1.y + edge.point2.y) / 2)
context.save()
context.rotate((edge.point2 - edge.point1).heading())
context.move_to(-5, 0)
g.show_label(str(edge.left_face))
context.restore()
context.save()
context.rotate((edge.point1 - edge.point2).heading())
context.move_to(-5, 0)
g.show_label(str(edge.right_face))
context.restore()
context.restore()
context.stroke()
if self.draw_circles:
for centre in self.centres:
g.set_color("#f00", 0.1)
context.arc(centre.x, centre.y, centre.radius, 0, 2.0 * math.pi)
context.fill_preserve()
context.stroke()
g.set_color("#a00")
context.rectangle(centre.x-1, centre.y-1, 2, 2)
context.stroke()
class BasicWindow:
def __init__(self):
window = gtk.Window()
window.set_default_size(600, 500)
window.connect("delete_event", lambda *args: gtk.main_quit())
vbox = gtk.VBox()
window.add(vbox)
box = gtk.HBox()
vbox.pack_start(box, False, False, 0)
self.canvas = Canvas()
vbox.add(self.canvas)
box = gtk.HBox(False, 4)
vbox.pack_start(box, False, False, 0)
button = gtk.Button("Generate points in centers")
def on_click(*args):
for centre in self.canvas.centres:
if abs(centre) < 2000:
point = Vector2(centre.x, centre.y)
self.canvas.points.append(point)
node = Node(point.x, point.y, point)
self.canvas.nodes.append(node)
self.canvas.add_child(node)
self.canvas.centres = []
self.canvas.redraw()
button.connect("clicked", on_click)
box.pack_end(button, False, False, 0)
button = gtk.Button("Clear")
def on_click(*args):
self.canvas.points = []
self.canvas.clear()
self.canvas.redraw()
button.connect("clicked", on_click)
box.pack_end(button, False, False, 0)
button = gtk.CheckButton("show circumcenter")
def on_click(button):
self.canvas.draw_circles = button.get_active()
self.canvas.redraw()
button.connect("clicked", on_click)
box.pack_start(button, False, False, 0)
window.show_all()
if __name__ == "__main__":
example = BasicWindow()
import signal
signal.signal(signal.SIGINT, signal.SIG_DFL) # gtk3 screws up ctrl+c
gtk.main()