diff --git a/train.py b/train.py index 5fbf8b3..260adb9 100644 --- a/train.py +++ b/train.py @@ -4,7 +4,7 @@ # File Name : train.py # Purpose : # Creation Date : 09-12-2017 -# Last Modified : Sun 31 Dec 2017 06:13:27 PM CST +# Last Modified : Fri 19 Jan 2018 10:38:47 AM CST # Created By : Jeasine Ma [jeasinema[at]gmail[dot]com] import glob @@ -43,9 +43,9 @@ def main(_): with tf.Graph().as_default(): global save_model_dir with KittiLoader(object_dir=os.path.join(dataset_dir, 'training'), queue_size=50, require_shuffle=True, - is_testset=False, batch_size=args.single_batch_size * cfg.GPU_USE_COUNT, use_multi_process_num=8, multi_gpu_sum=cfg.GPU_USE_COUNT) as train_loader, \ + is_testset=False, batch_size=args.single_batch_size * cfg.GPU_USE_COUNT, use_multi_process_num=8, multi_gpu_sum=cfg.GPU_USE_COUNT, aug=True) as train_loader, \ KittiLoader(object_dir=os.path.join(dataset_dir, 'testing'), queue_size=50, require_shuffle=True, - is_testset=False, batch_size=args.single_batch_size * cfg.GPU_USE_COUNT, use_multi_process_num=8, multi_gpu_sum=cfg.GPU_USE_COUNT) as valid_loader: + is_testset=False, batch_size=args.single_batch_size * cfg.GPU_USE_COUNT, use_multi_process_num=8, multi_gpu_sum=cfg.GPU_USE_COUNT, aug=False) as valid_loader: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=cfg.GPU_MEMORY_FRACTION, visible_device_list=cfg.GPU_AVAILABLE, @@ -115,12 +115,12 @@ def main(_): if is_summary_image: ret = model.predict_step( - sess, valid_loader.load(), summary=True) + sess, valid_loader.load(), summary=True) summary_writer.add_summary(ret[-1], iter) if is_validate: ret = model.validate_step( - sess, valid_loader.load(), summary=True) + sess, valid_loader.load(), summary=True) summary_writer.add_summary(ret[-1], iter) if check_if_should_pause(args.tag): diff --git a/utils/__init__.py b/utils/__init__.py index 295a305..85bf0bd 100644 --- a/utils/__init__.py +++ b/utils/__init__.py @@ -4,7 +4,7 @@ # File Name : __init__.py # Purpose : # Creation Date : 21-12-2017 -# Last Modified : Thu 21 Dec 2017 11:16:46 PM CST +# Last Modified : Fri 19 Jan 2018 10:15:06 AM CST # Created By : Jeasine Ma [jeasinema[at]gmail[dot]com] from utils.box_overlaps import * @@ -12,3 +12,4 @@ from utils.kitti_loader import * from utils.utils import * from utils.preprocess import * +from utils.data_aug import * diff --git a/data_aug.py b/utils/data_aug.py similarity index 87% rename from data_aug.py rename to utils/data_aug.py index 1c671ed..92d576c 100644 --- a/data_aug.py +++ b/utils/data_aug.py @@ -4,7 +4,7 @@ # File Name : data_aug.py # Purpose : # Creation Date : 21-12-2017 -# Last Modified : Mon 01 Jan 2018 09:26:32 PM CST +# Last Modified : Fri 19 Jan 2018 10:36:19 AM CST # Created By : Jeasine Ma [jeasinema[at]gmail[dot]com] import numpy as np @@ -14,25 +14,20 @@ import argparse import glob -from utils import * +from utils.utils import * +from utils.preprocess import * object_dir = './data/object' -output_path = os.path.join(object_dir, 'training_aug') -parser = argparse.ArgumentParser(description='') -parser.add_argument('-i', '--aug-amount', type=int, nargs='?', default=1000) -parser.add_argument('-n', '--num-workers', type=int, nargs='?', default=10) -args = parser.parse_args() - -def worker(tag): +def aug_data(tag, object_dir): np.random.seed() - rgb = cv2.resize(cv2.imread(os.path.join(object_dir, 'training', + rgb = cv2.resize(cv2.imread(os.path.join(object_dir, 'image_2', tag + '.png')), (cfg.IMAGE_WIDTH, cfg.IMAGE_HEIGHT)) - lidar = np.fromfile(os.path.join(object_dir, 'training', + lidar = np.fromfile(os.path.join(object_dir, 'velodyne', tag + '.bin'), dtype=np.float32).reshape(-1, 4) label = np.array([line for line in open(os.path.join( - object_dir, 'training', 'label_2', tag + '.txt'), 'r').readlines()]) # (N') + object_dir, 'label_2', tag + '.txt'), 'r').readlines()]) # (N') cls = np.array([line.split()[0] for line in label]) # (N') gt_box3d = label_to_gt_box3d(np.array(label)[np.newaxis, :], cls='', coordinate='camera')[ 0] # (N', 7) x, y, z, h, w, l, r @@ -88,7 +83,7 @@ def worker(tag): gt_box3d = lidar_to_camera_box(lidar_center_gt_box3d) newtag = 'aug_{}_1_{}'.format( - tag, np.random.randint(1, args.aug_amount)) + tag, np.random.randint(1, 1024)) elif choice < 7 and choice >= 4: # global rotation angle = np.random.uniform(-np.pi / 4, np.pi / 4) @@ -107,10 +102,17 @@ def worker(tag): newtag = 'aug_{}_3_{:.4f}'.format(tag, factor).replace('.', '_') label = box3d_to_label(gt_box3d[np.newaxis, ...], cls[np.newaxis, ...], coordinate='camera')[0] # (N') + voxel_dict = process_pointcloud(lidar) + return newtag, rgb, lidar, voxel_dict, label + + +def worker(tag): + new_tag, rgb, lidar, voxel_dict, label = aug_data(tag) + output_path = os.path.join(object_dir, 'training_aug') + cv2.imwrite(os.path.join(output_path, 'image_2', newtag + '.png'), rgb) lidar.reshape(-1).tofile(os.path.join(output_path, 'velodyne', newtag + '.bin')) - voxel_dict = process_pointcloud(lidar) np.savez_compressed(os.path.join( output_path, 'voxel' if cfg.DETECT_OBJ == 'Car' else 'voxel_ped', newtag), **voxel_dict) with open(os.path.join(output_path, 'label_2', newtag + '.txt'), 'w+') as f: @@ -131,4 +133,9 @@ def main(): if __name__ == '__main__': + parser = argparse.ArgumentParser(description='') + parser.add_argument('-i', '--aug-amount', type=int, nargs='?', default=1000) + parser.add_argument('-n', '--num-workers', type=int, nargs='?', default=10) + args = parser.parse_args() + main() diff --git a/utils/kitti_loader.py b/utils/kitti_loader.py index ae6e0c3..df44cfb 100644 --- a/utils/kitti_loader.py +++ b/utils/kitti_loader.py @@ -4,7 +4,7 @@ # File Name : kitti_loader.py # Purpose : # Creation Date : 09-12-2017 -# Last Modified : Fri 05 Jan 2018 09:32:43 PM CST +# Last Modified : Fri 19 Jan 2018 10:34:56 AM CST # Created By : Jeasine Ma [jeasinema[at]gmail[dot]com] import cv2 @@ -20,6 +20,7 @@ from multiprocessing import Lock, Process, Queue as Queue, Value, Array, cpu_count from config import cfg +from utils.data_aug import aug_data # for non-raw dataset @@ -35,7 +36,7 @@ class KittiLoader(object): # vox_number # vox_coordinate - def __init__(self, object_dir='.', queue_size=20, require_shuffle=False, is_testset=True, batch_size=1, use_multi_process_num=0, split_file='', multi_gpu_sum=1): + def __init__(self, object_dir='.', queue_size=20, require_shuffle=False, is_testset=True, batch_size=1, use_multi_process_num=0, split_file='', multi_gpu_sum=1, aug=False): assert(use_multi_process_num >= 0) self.object_dir = object_dir self.is_testset = is_testset @@ -44,6 +45,7 @@ def __init__(self, object_dir='.', queue_size=20, require_shuffle=False, is_test self.batch_size = batch_size self.split_file = split_file self.multi_gpu_sum = multi_gpu_sum + self.aug = aug if self.split_file != '': # use split file @@ -129,17 +131,25 @@ def fill_queue(self, batch_size=0): labels, tag, voxel, rgb, raw_lidar = [], [], [], [], [] for _ in range(batch_size): try: - rgb.append(cv2.resize(cv2.imread( - self.f_rgb[load_index]), (cfg.IMAGE_WIDTH, cfg.IMAGE_HEIGHT))) - raw_lidar.append(np.fromfile( - self.f_lidar[load_index], dtype=np.float32).reshape((-1, 4))) - if not self.is_testset: - labels.append([line for line in open( - self.f_label[load_index], 'r').readlines()]) + if self.aug: + ret = aug_data(self.data_tag[load_index], self.object_dir) + tag.append(ret[0]) + rgb.append(ret[1]) + raw_lidar.append(ret[2]) + voxel.append(ret[3]) + labels.append(ret[4]) else: - labels.append(['']) - tag.append(self.data_tag[load_index]) - voxel.append(np.load(self.f_voxel[load_index])) + rgb.append(cv2.resize(cv2.imread( + self.f_rgb[load_index]), (cfg.IMAGE_WIDTH, cfg.IMAGE_HEIGHT))) + raw_lidar.append(np.fromfile( + self.f_lidar[load_index], dtype=np.float32).reshape((-1, 4))) + if not self.is_testset: + labels.append([line for line in open( + self.f_label[load_index], 'r').readlines()]) + else: + labels.append(['']) + tag.append(self.data_tag[load_index]) + voxel.append(np.load(self.f_voxel[load_index])) load_index += 1 except: