From d9302247552b820f03303a0632ad7bbb1f2ae5a4 Mon Sep 17 00:00:00 2001 From: TSikes <50559900+tsikes@users.noreply.github.com> Date: Thu, 24 Jun 2021 10:33:31 -0500 Subject: [PATCH] Semi working Troe is working, but need to implement constraints on Fcent fitting. Should be working for Plog -> Troe after implementing those constraints --- src/calculate/optimize/fit_coeffs.py | 95 ++++++++++++++++--------- src/calculate/optimize/mech_optimize.py | 20 ++++-- 2 files changed, 77 insertions(+), 38 deletions(-) diff --git a/src/calculate/optimize/fit_coeffs.py b/src/calculate/optimize/fit_coeffs.py index 1b120bc..ad1bfd2 100644 --- a/src/calculate/optimize/fit_coeffs.py +++ b/src/calculate/optimize/fit_coeffs.py @@ -576,33 +576,42 @@ def ln_Troe(M, *x): return ln_k_calc return ln_Troe - def fit_Fcent_decorator(Fcent, jac=False): - def Fcent_calc(T, *x): + def fit_ln_Fcent_decorator(Fcent, jac=False): + def set_coeffs(x): A = x[0] - [T3, T1, T2] = np.exp(x[1:]) + T3, T1 = 1000/np.exp(x[1]), 1000/np.exp(x[2]) + T2 = 100*np.exp(x[3]) - res = (1-A)*np.exp(-T/T3) + A*np.exp(-T/T1) + np.exp(-T2/T) + #A = np.log(x[0]) + #T3, T1 = 1000/x[1], 1000/x[2] + #T2 = x[3]*100 - return res + return [A, T3, T1, T2] - def Fcent_calc_jac(T, *x): - A = x[0] - [T3, T1, T2] = np.exp(x[1:]) + def ln_Fcent_calc(T, *x): + [A, T3, T1, T2] = set_coeffs(x) + + Fcent_fit = (1-A)*np.exp(-T/T3) + A*np.exp(-T/T1) + np.exp(-T2/T) + + return np.log(Fcent_fit) + + def ln_Fcent_calc_jac(T, *x): # Not for ln(Fcent) need to redo if using + [A, T3, T1, T2] = set_coeffs(x) jac = [] - jac.append(np.exp(-T/T1) - np.exp(-T/T3)) # dFcent/dA - jac.append((1-A)*T/(T3**2)*np.exp(-T/T3)) # dFcent/dT3 - jac.append(A*T/(T1**2)*np.exp(-T/T1)) # dFcent/dT1 - jac.append(-1/T*np.exp(-T2/T)) # dFcent/dT2 + jac.append(1/A*(np.exp(-T/T1) - np.exp(-T/T3))) # dln_Fcent/dA + jac.append((1-A)*T/(T3**3)*np.exp(-T/T3)) # dln_Fcent/dT3 + jac.append(A*T/(T1**3)*np.exp(-T/T1)) # dln_Fcent/dT1 + jac.append(-1/(T2*T)*np.exp(-T2/T)) # dln_Fcent/dT2 jac = np.vstack(jac).T return jac if not jac: - return Fcent_calc + return ln_Fcent_calc elif jac: - return Fcent_calc_jac + return ln_Fcent_calc_jac def calc_s(grad): x = np.abs(grad) @@ -673,9 +682,9 @@ def obj_fcn(x, grad=np.array([])): if len(res) == 0: p0 = [27, 14, -0.5] # ln(k_0), ln(k_inf), ln(Fcent) else: - p0 = np.log10(res[-1][1:]) + p0 = np.log(res[-1][1:]) - p_bnds = [[-27.631, -27.631, -18.421], [69.078, 69.078, 0]] # ln(k_0), ln(k_inf), ln(Fcent) + p_bnds = np.log([[1E-12, 1E-12, 1E-8], [1E30, 1E30, 1]]) # ln(k_0), ln(k_inf), ln(Fcent) x_fit, _ = curve_fit(fit_func, M[idx], ln_k[idx], p0=p0, method='trf', bounds=p_bnds, # dogbox #jac=fit_func_jac, x_scale='jac', max_nfev=len(p0)*1000) @@ -697,27 +706,33 @@ def obj_fcn(x, grad=np.array([])): x[idx] = fit_arrhenius(res[:, res_idx+1], res[:,0], bnds=[bnds[0][idx], bnds[1][idx]], loss='huber') # 'soft_l1', 'huber', 'cauchy', 'arctan' T = res[:,0] - cmp = np.array([10000/T, np.ln(res[:, res_idx+1]), np.ln(x[idx[1]]*T**x[idx[2]]*np.exp(-x[idx[0]]/Ru/T))]).T + cmp = np.array([10000/T, np.log(res[:, res_idx+1]), np.log(x[idx[1]]*T**x[idx[2]]*np.exp(-x[idx[0]]/Ru/T))]).T for entry in cmp: print(*entry) print('') # Fit falloff idx = alter_idx['falloff_parameters'] - fit_func = fit_Fcent_decorator(res[:,3]) - fit_func_jac = fit_Fcent_decorator(res[:,3], jac=True) - p0 = [0.6, 5.3, 6.2, 6.7] - p_bnds = [[-100, 3.4, 3.4, 3.4], [1, 69.078, 69.078, 69.078]] + fit_func = fit_ln_Fcent_decorator(res[:,3]) + fit_func_jac = fit_ln_Fcent_decorator(res[:,3], jac=True) + p0 = [0.6, np.log(1000/200), np.log(1000/600), np.log(1200/100)] + p_bnds = [[-10, np.log(1E-37), np.log(1E-37), np.log(30/100)], + [1, np.log(1000/30), np.log(1000/30), np.log(1E38)]] + + #p0 = [np.exp(0.6), 1000/200, 1000/600, 1200/100] + #p_bnds = [[np.exp(-100), 1E-37, 1E-37, 30/100], [np.exp(1), 1000/30, 1000/30, 1E38]] - x_fit, _ = curve_fit(fit_func, res[:,0], res[:,3], p0=p0, method='trf', bounds=p_bnds, # dogbox + x_fit, _ = curve_fit(fit_func, res[:,0], np.log(res[:,3]), p0=p0, method='trf', bounds=p_bnds, # dogbox #jac=fit_func_jac, x_scale='jac', max_nfev=len(p0)*1000) jac='2-point', x_scale='jac', max_nfev=len(p0)*1000, loss='huber') - cmp = np.array([res[:,0], res[:,3], fit_func(res[:,0], *x_fit)]).T + cmp = np.array([res[:,0], res[:,3], np.exp(fit_func(res[:,0], *x_fit))]).T for entry in cmp: print(*entry) - x[idx] = [x_fit[0], *np.exp(x_fit[1:])] + x[idx] = [x_fit[0], 1000/np.exp(x_fit[1]), 1000/np.exp(x_fit[2]), 100*np.exp(x_fit[3])] + + #x[idx] = [np.log(x_fit[0]), 1000/x_fit[1], 1000/x_fit[2], 100*x_fit[3]] else: # only valid initial guesses @@ -744,11 +759,11 @@ def obj_fcn(x, grad=np.array([])): #fit_func = lambda x: (fit_const_T_decorator(ln_k[idx], T[idx])(M[idx], [ln_k_0[idx], ln_k_inf[idx], x[0]]) - ln_k[idx])**2 # only fitting Fcent fit_func = lambda M, x: fit_const_T_decorator(ln_k[idx], T[idx])(M, [ln_k_0[idx], ln_k_inf[idx], x]) if len(res) == 0: - p0 = [-0.5] # log(k_0), log(k_inf), log(Fcent) + p0 = [-0.5] # ln(k_0), ln(k_inf), ln(Fcent) else: p0 = np.log(res[-1][1:]) - p_bnds = [[-18.421], [0]] # ln(k_0), ln(k_inf), ln(Fcent) not sure if lower Fcent bnd should be -2 or -1 + p_bnds = [[np.log(1E-8)], [0]] # ln(Fcent) with warnings.catch_warnings(): warnings.simplefilter('ignore', OptimizeWarning) @@ -760,29 +775,41 @@ def obj_fcn(x, grad=np.array([])): res.append([T[idx], *np.exp(x_fit)]) + #cmp = np.array([T[idx], M[idx], ln_k[idx], fit_func(M[idx], *x_fit)]) + #print(*cmp) + res = np.array(res) # Fit falloff idx = alter_idx['falloff_parameters'] - fit_func = fit_Fcent_decorator(res[:,1]) - fit_func_jac = fit_Fcent_decorator(res[:,1], jac=True) - p0 = [0.6, 5.3, 6.2, 6.7] - p_bnds = [[-100, 3.4, 3.4, 3.4], [1, 69.078, 69.078, 69.078]] + fit_func = fit_ln_Fcent_decorator(res[:,1]) + fit_func_jac = fit_ln_Fcent_decorator(res[:,1], jac=True) + p0 = [0.6, np.log(1000/200), np.log(1000/600), np.log(1200/100)] + p_bnds = [[-10, np.log(1E-37), np.log(1E-37), np.log(30/100)], + [1, np.log(1000/30), np.log(1000/30), np.log(1E38)]] + + #p0 = [np.exp(0.6), 1000/200, 1000/600, 1200/100] + #p_bnds = [[np.exp(-100), 1E-37, 1E-37, 30/100], [np.exp(1), 1000/30, 1000/30, 1E38]] with warnings.catch_warnings(): warnings.simplefilter('ignore', OptimizeWarning) - x_fit, _ = curve_fit(fit_func, res[:,0], res[:,1], p0=p0, method='trf', bounds=p_bnds, # dogbox + x_fit, _ = curve_fit(fit_func, res[:,0], np.log(res[:,1]), p0=p0, method='trf', bounds=p_bnds, # dogbox #jac=fit_func_jac, x_scale='jac', max_nfev=len(p0)*1000) jac='2-point', x_scale='jac', max_nfev=len(p0)*1000, loss='huber') #cmp = np.array([res[:,0], res[:,1], fit_func(res[:,0], *x_fit)]).T #for entry in cmp: # print(*entry) + #print('') + + x[idx] = [x_fit[0], 1000/np.exp(x_fit[1]), 1000/np.exp(x_fit[2]), 100*np.exp(x_fit[3])] + + #x[idx] = [np.log(x_fit[0]), 1000/x_fit[1], 1000/x_fit[2], 100*x_fit[3]] - x[idx] = [x_fit[0], *np.exp(x_fit[1:])] + #Fcent = (1-A)*np.exp(-T/T3) + A*np.exp(-T/T1) + np.exp(-T2/T) + #fit_func = lambda M, x: fit_const_T_decorator(ln_k[idx], T[idx])(M, [ln_k_0[idx], ln_k_inf[idx], Fcent]) - Fcent = (1-A)*np.exp(-T/T3) + A*np.exp(-T/T1) + np.exp(-T2/T) - fit_func = lambda M, x: fit_const_T_decorator(ln_k[idx], T[idx])(M, [ln_k_0[idx], ln_k_inf[idx], Fcent]) + print(x[-4:]) return x diff --git a/src/calculate/optimize/mech_optimize.py b/src/calculate/optimize/mech_optimize.py index b21e3dc..ec0779e 100644 --- a/src/calculate/optimize/mech_optimize.py +++ b/src/calculate/optimize/mech_optimize.py @@ -16,7 +16,7 @@ from calculate.optimize.misc_fcns import rates, set_bnds from calculate.optimize.fit_coeffs import fit_Troe - +Ru = ct.gas_constant default_arrhenius_coefNames = ['activation_energy', 'pre_exponential_factor', 'temperature_exponent'] class Multithread_Optimize: @@ -295,12 +295,24 @@ def _set_rxn_rate_opt(self): i = 0 for rxn_coef in self.rxn_coef_opt: # LB and UB are off for troe arrhenius parts rxnIdx = rxn_coef['rxnIdx'] + rxn = mech.gas.reaction(rxnIdx) rate_bnds_val = mech.rate_bnds[rxnIdx]['value'] rate_bnds_type = mech.rate_bnds[rxnIdx]['type'] - for T, P in zip(rxn_coef['T'], rxn_coef['P']): - bnds = mech.rate_bnds[rxnIdx]['limits'](np.exp(rxn_rate_opt['x0'][i])) + for n, (T, P) in enumerate(zip(rxn_coef['T'], rxn_coef['P'])): + if type(rxn) is ct.FalloffReaction: # if falloff, change arrhenius rates to LPL/HPL + coefName = rxn_coef['coefName'][n] + if coefName in default_arrhenius_coefNames: + key = rxn_coef['key'][n] + x = [] + for ArrheniusCoefName in default_arrhenius_coefNames: + x.append(mech.coeffs_bnds[rxnIdx][key['coeffs_bnds']][ArrheniusCoefName]['resetVal']) + + rxn_rate_opt['x0'][i] = np.log(x[1]) + x[2]*np.log(T) - x[0]/(Ru*T) + + ln_rate = rxn_rate_opt['x0'][i] + bnds = mech.rate_bnds[rxnIdx]['limits'](np.exp(ln_rate)) bnds = np.sort(np.log(bnds)) # operate on ln and scale - scaled_bnds = np.sort(bnds/rxn_rate_opt['x0'][i]) + scaled_bnds = np.sort(bnds/ln_rate) lb.append(scaled_bnds[0]) ub.append(scaled_bnds[1])