-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainModel.py
46 lines (35 loc) · 1.28 KB
/
trainModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils
from keras.optimizers import RMSprop
import DataHelper
X, y = DataHelper.imagesToNdarray("To_Train_Data/", binary = 'y')
#Uncomment in case of grayscale images
#X = X.reshape(X.shape + (1,))
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(64, 64,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
'''
filepath="new-model-updated-weights-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
'''
# fit the model
model.fit(X, y, epochs=2, batch_size=12, shuffle = True)
model.save("trainedModel.hdf5")