-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupplementary-contours.WidthCentralityMask.pyt.xml
2029 lines (2029 loc) · 171 KB
/
supplementary-contours.WidthCentralityMask.pyt.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<metadata xml:lang="ru"><Esri><CreaDate>20190629</CreaDate><CreaTime>19273800</CreaTime><ArcGISFormat>1.0</ArcGISFormat><SyncOnce>TRUE</SyncOnce><ModDate>20190704</ModDate><ModTime>15530200</ModTime><scaleRange><minScale>150000000</minScale><maxScale>5000</maxScale></scaleRange><ArcGISProfile>ItemDescription</ArcGISProfile></Esri><tool name="WidthCentralityMask" displayname="Width-centrality mask" toolboxalias="" xmlns=""><arcToolboxHelpPath>c:\program files (x86)\arcgis\desktop10.5\Help\gp</arcToolboxHelpPath><parameters><param name="in_width_raster" displayname="Input region width raster" type="Required" direction="Input" datatype="Raster Layer" expression="in_width_raster"><dialogReference><DIV STYLE="text-align:Left;"><P><SPAN>A raster calculated using </SPAN><SPAN STYLE="font-weight:bold;">Region width </SPAN><SPAN>tool. Supplementary contours placement is constrained by allowable combinations of region width and centrality. See the corresponding parameters of </SPAN><SPAN STYLE="font-weight:bold;">Supplementary contours </SPAN><SPAN>tool.</SPAN></P><P><SPAN>Regular contour lines and the border of the map divide the mapped area into a set of regions. Each region can potentially contain a supplementary contour line. Region width is used to (a) ensure there is enough space to place a supplementary contour and (b) identify excessively wide regions in flat areas where supplementary contour lines are included, even if they are close to the centre of the region. Since a supplementary contour can be located anywhere within a region, an estimate of region width is required for any point within a region</SPAN><SPAN STYLE="font-size:12pt">. </SPAN><SPAN>This is done by </SPAN><SPAN STYLE="font-weight:bold;">Region width </SPAN><SPAN>tool using a raster-based approach (see the description of this tool help for more details).</SPAN></P></DIV></dialogReference></param><param name="in_centrality_raster" displayname="Input centrality raster" type="Required" direction="Input" datatype="Raster Layer" expression="in_centrality_raster"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>A raster calculated using </SPAN><SPAN STYLE="font-weight:bold;">Centrality </SPAN><SPAN>tool. Supplementary contours placement is constrained by allowable combinations of region width and centrality. See the corresponding parameters of the tool.</SPAN></P><P><SPAN>A supplementary contour is generally informative if it is clearly not equidistant to contour lines that define the borders of its region. To estimate this property, we employ the notion of </SPAN><SPAN STYLE="font-style:italic;">centrality</SPAN><SPAN>. Centrality shows if the pixel is close to the middle position between contours (</SPAN><SPAN STYLE="font-style:italic;">C = 1</SPAN><SPAN>), close to one of the contours (</SPAN><SPAN STYLE="font-style:italic;">C = 0</SPAN><SPAN>) or is somewhere in between (</SPAN><SPAN STYLE="font-style:italic;">0 &lt; C &lt; 1</SPAN><SPAN>). Since a supplementary contour can be located anywhere within a region, an estimate of centrality is required for any point within a region</SPAN><SPAN STYLE="font-size:12pt">. </SPAN><SPAN>This is done by </SPAN><SPAN STYLE="font-weight:bold;">Centrality </SPAN><SPAN>tool using a raster-based approach (see the description of this tool for more details).</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="out_raster" displayname="Output width-centrality mask raster" type="Required" direction="Output" datatype="Raster Dataset" expression="out_raster"><dialogReference><DIV STYLE="text-align:Left;"><P><SPAN>Output mask raster with classification of the area into four classes using width (W) and centrality (C) rasters:</SPAN></P><OL><LI><P><SPAN>No contours [</SPAN><SPAN STYLE="font-weight:bold;">all that does not fall into the classes below</SPAN><SPAN>]</SPAN></P></LI><LI><P><SPAN>Class A [</SPAN><SPAN STYLE="font-weight:bold;">Wmin ≤ W &lt; Wopt, C ≤ W * k1 + b1</SPAN><SPAN>], where k1 = (Copt - Cmin) / (Wopt - Wmin), b1 = Cmin - Wmin * k1</SPAN></P></LI><LI><P><SPAN>Class B [</SPAN><SPAN STYLE="font-weight:bold;">Wopt ≤ W &lt; Wmax, C ≤ W * k2 + b2</SPAN><SPAN>], where k2 = (1 - Copt) / (Wmax - Wopt), b2 = copt - wopt * k2</SPAN></P></LI><LI><P><SPAN>All contours [</SPAN><SPAN STYLE="font-weight:bold;">W ≥ Wmax</SPAN><SPAN>]</SPAN></P></LI></OL><P><SPAN>The supplementary contours are drawn in all classes except for the first one (No contours).</SPAN></P></DIV></dialogReference></param><param name="width_min" displayname="Region width (minimal)" type="Required" direction="Input" datatype="Double" expression="width_min"><dialogReference><DIV STYLE="text-align:Left;"><P><SPAN><SPAN>Supplementary contours are prohibited in regions with width smaller than this value.</SPAN></SPAN></P><P><SPAN>Default value is </SPAN><SPAN STYLE="font-weight:bold;">0.25 </SPAN><SPAN>of maximum region width.</SPAN></P></DIV></dialogReference></param><param name="width" displayname="Region width (optimal)" type="Required" direction="Input" datatype="Double" expression="width"><dialogReference><DIV STYLE="text-align:Left;"><P><SPAN>Supplementary contours are placed inside regions smaller than this value, but larger than </SPAN><SPAN STYLE="font-weight:bold;">Region width (minimal)</SPAN><SPAN>, only if their centrality is smaller than linearly interpolated value between </SPAN><SPAN STYLE="font-weight:bold;">Centrality (minimal)</SPAN><SPAN>and </SPAN><SPAN STYLE="font-weight:bold;">Centrality (optimal)</SPAN><SPAN>.</SPAN></P><P><SPAN>Default value is </SPAN><SPAN STYLE="font-weight:bold;">0.5</SPAN><SPAN>of maximum region width.</SPAN></P></DIV></dialogReference></param><param name="width_max" displayname="Region width (maximal)" type="Required" direction="Input" datatype="Double" expression="width_max"><dialogReference><DIV STYLE="text-align:Left;"><P><SPAN>Supplementary contours are placed inside regions smaller than this value, but larger than </SPAN><SPAN STYLE="font-weight:bold;">Region width (optimal)</SPAN><SPAN>, only if their centrality is smaller than linearly interpolated value between </SPAN><SPAN STYLE="font-weight:bold;">Centrality (optimal)</SPAN><SPAN> and </SPAN><SPAN STYLE="font-weight:bold;">1</SPAN><SPAN>.</SPAN></P><P><SPAN>Default value is </SPAN><SPAN STYLE="font-weight:bold;">0.75 </SPAN><SPAN>of maximum region width.</SPAN></P></DIV></dialogReference></param><param name="centrality_min" displayname="Centrality (minimal)" type="Required" direction="Input" datatype="Double" expression="centrality_min"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The maximum allowable centrality for regions, which width is equal to </SPAN><SPAN STYLE="font-weight:bold;">Region width (minimal)</SPAN><SPAN> parameter. For regions with width between </SPAN><SPAN STYLE="font-weight:bold;">Region width (minimal) </SPAN><SPAN>and </SPAN><SPAN STYLE="font-weight:bold;">Region width (optimal)</SPAN><SPAN> the maximum allowable centrality is linearly interpolated between </SPAN><SPAN STYLE="font-weight:bold;">Centrality (minimal)</SPAN><SPAN> and </SPAN><SPAN STYLE="font-weight:bold;">Centrality (optimal)</SPAN><SPAN>.</SPAN></P><P><SPAN>Default value is </SPAN><SPAN STYLE="font-weight:bold;">0.4</SPAN><SPAN>.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="centrality" displayname="Centrality (optimal)" type="Required" direction="Input" datatype="Double" expression="centrality"><dialogReference><DIV STYLE="text-align:Left;"><P><SPAN>The maximum allowable centrality for regions, which width is equal to </SPAN><SPAN STYLE="font-weight:bold;">Region width (optimal)</SPAN><SPAN>parameter. For regions with width between </SPAN><SPAN STYLE="font-weight:bold;">Region width (optimal)</SPAN><SPAN>and </SPAN><SPAN STYLE="font-weight:bold;">Region width (maximal)</SPAN><SPAN>the maximum allowable centrality is linearly interpolated between </SPAN><SPAN STYLE="font-weight:bold;">Centrality (optimal)</SPAN><SPAN>and </SPAN><SPAN STYLE="font-weight:bold;">1</SPAN><SPAN>.</SPAN></P><P><SPAN>Default value is </SPAN><SPAN STYLE="font-weight:bold;">0.8</SPAN><SPAN>.</SPAN></P></DIV></dialogReference></param><param name="absolute" displayname="Set width parameters in projection units (absolute values)" type="Required" direction="Input" datatype="Boolean" expression="absolute"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Width parameters of this tool are set in relative values by default. Widths are expressed as fractions of the maximum region width for the selected contour interval. This proved to be very convenient for experimental processing of diverse elevation models with different spatial extent and contour interval (otherwise you need to adjust the parameters for each model). </SPAN></P><P><SPAN>If you need to set the exact values of these parameters in projection units, then check this box. For example, it is reasonable for sheet-based topographic map production, where the parameterization must be standardized and should not depend on the properties of each sheet's terrain.</SPAN></P><P><SPAN>Default value is </SPAN><SPAN STYLE="font-weight:bold;">False</SPAN><SPAN>.</SPAN></P></DIV></DIV></DIV></dialogReference></param></parameters><summary><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>This tool generates a raster with classification of the area into four classes using width (W) and centrality (C) rasters:</SPAN></P><OL><LI><P><SPAN>No contours [</SPAN><SPAN STYLE="font-weight:bold;">all that does not fall into the classes below</SPAN><SPAN>]</SPAN></P></LI><LI><P><SPAN>Class A [</SPAN><SPAN STYLE="font-weight:bold;">Wmin ≤ W &lt; Wopt, C ≤ W * k1 + b1</SPAN><SPAN>], where k1 = (Copt - Cmin) / (Wopt - Wmin), b1 = Cmin - Wmin * k1</SPAN></P></LI><LI><P><SPAN>Class B [</SPAN><SPAN STYLE="font-weight:bold;">Wopt ≤ W &lt; Wmax, C ≤ W * k2 + b2</SPAN><SPAN>], where k2 = (1 - Copt) / (Wmax - Wopt), b2 = copt - wopt * k2</SPAN></P></LI><LI><P><SPAN>All contours [</SPAN><SPAN STYLE="font-weight:bold;">W ≥ Wmax</SPAN><SPAN>]</SPAN></P></LI></OL><P><SPAN>The supplementary contours are drawn in all classes except for the first one (No contours).</SPAN></P><P><SPAN>This tool is for illustrative purposes only. </SPAN><SPAN STYLE="font-weight:bold;">Supplementary contours </SPAN><SPAN>and </SPAN><SPAN STYLE="font-weight:bold;">Supplementary contours (full) </SPAN><SPAN>tools calculate the class of each supplementary contour vertex on the fly based on region width and centrality rasters.</SPAN></P><P><SPAN>A detailed description of the method can be found in the following paper:</SPAN></P><P><SPAN STYLE="font-style:italic;">Samsonov T., Koshel S, Walther D., Jenny B. </SPAN><SPAN>Automated placement of supplementary contour lines // </SPAN><SPAN STYLE="font-weight:bold;">International Journal of Geographical Information Science</SPAN><SPAN>. — 2019. — Vol. 33. — DOI: 10.1080/13658816.2019.1610965</SPAN></P></DIV></DIV></DIV></summary><usage><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>For detailed information on the tool usage please see the description of its parameters.</SPAN></P></DIV></DIV></DIV></usage></tool><dataIdInfo><idCitation><resTitle>Width-centrality mask</resTitle></idCitation><searchKeys><keyword>supplementary contours</keyword></searchKeys><idCredit>2017-2019, Timofey Samsonov & Dmitry Walther, Lomonosov Moscow State University.</idCredit><idAbs><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>This tool generates a raster with classification of the area into four classes using width (W) and centrality (C) rasters:</SPAN></P><OL><LI><P><SPAN>No contours [</SPAN><SPAN STYLE="font-weight:bold;">all that does not fall into the classes below</SPAN><SPAN>]</SPAN></P></LI><LI><P><SPAN>Class A [</SPAN><SPAN STYLE="font-weight:bold;">Wmin ≤ W &lt; Wopt, C ≤ W * k1 + b1</SPAN><SPAN>], where k1 = (Copt - Cmin) / (Wopt - Wmin), b1 = Cmin - Wmin * k1</SPAN></P></LI><LI><P><SPAN>Class B [</SPAN><SPAN STYLE="font-weight:bold;">Wopt ≤ W &lt; Wmax, C ≤ W * k2 + b2</SPAN><SPAN>], where k2 = (1 - Copt) / (Wmax - Wopt), b2 = copt - wopt * k2</SPAN></P></LI><LI><P><SPAN>All contours [</SPAN><SPAN STYLE="font-weight:bold;">W ≥ Wmax</SPAN><SPAN>]</SPAN></P></LI></OL><P><SPAN>The supplementary contours are drawn in all classes except for the first one (No contours).</SPAN></P><P><SPAN>This tool is for illustrative purposes only. </SPAN><SPAN STYLE="font-weight:bold;">Supplementary contours </SPAN><SPAN>and </SPAN><SPAN STYLE="font-weight:bold;">Supplementary contours (full) </SPAN><SPAN>tools calculate the class of each supplementary contour vertex on the fly based on region width and centrality rasters.</SPAN></P><P><SPAN>A detailed description of the method can be found in the following paper:</SPAN></P><P><SPAN STYLE="font-style:italic;">Samsonov T., Koshel S, Walther D., Jenny B. </SPAN><SPAN>Automated placement of supplementary contour lines // </SPAN><SPAN STYLE="font-weight:bold;">International Journal of Geographical Information Science</SPAN><SPAN>. — 2019. — Vol. 33. — DOI: 10.1080/13658816.2019.1610965</SPAN></P></DIV></DIV></DIV></idAbs></dataIdInfo><distInfo><distributor><distorFormat><formatName>ArcToolbox Tool</formatName></distorFormat></distributor></distInfo><mdHrLv><ScopeCd value="005"/></mdHrLv><mdDateSt Sync="TRUE">20190704</mdDateSt><Binary><Thumbnail><Data EsriPropertyType="PictureX">/9j/4AAQSkZJRgABAQEAkACQAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdC
IFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAA
AADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFj
cHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAA
ABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAAD
TAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJD
AAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5
OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEA
AAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAA
AAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAA
AA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBo
dHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAt
IHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAt
IHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcg
Q29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENv
bmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAA
ABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAA
AAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAK
AA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUA
mgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEy
ATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMC
DAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMh
Ay0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4E
jASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3
BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDII
RghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqY
Cq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUAN
Wg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBh
EH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT
5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReu
F9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9oc
AhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCY
IMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZcl
xyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2
K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIx
SjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDec
N9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+
oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXe
RiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN
3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYP
VlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1f
D19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/
aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfBy
S3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyB
fOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuH
n4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLj
k02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6f
HZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1
q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm4
0blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZG
xsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnU
y9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj
4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozz
GfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////2wBDAAMCAgMC
AgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIU
FRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU
FBQUFBQUFBQUFBQUFBT/wAARCAEfAoYDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAEC
AwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0Kx
wRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1
dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ
2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QA
tREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYk
NOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaH
iImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq
8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2j42fFv4haX8YvGenaX471jStNs7+OG2srWKzMcSfZbdy
AXgZjlnduWPLemAO/wDgV4d+KXxE03+3NY+JviaLS5MpbRpHYKJeeZCRa54IIAB5ySe1aelfAuw8
e/HHx7rWuL9p08auqxWisQrbbO2DF/x4A/Gvo7StKs9D023sNPtorOyt0EcNvCoVEUdAAKAOQtvh
nfxxgTePPFE745bzrZf0EFSy/De7kUhfG/ieIkYDLcW5x78wmu1ooA8R8ffCP4gyabdP4Y+K/iW3
ufKIjjkjsXIbBwRutjnnHWvh/T/jn8edS8Ora/8ACzdU0/xjpN41hq9lewWKQ/aoW2zRMRakxq/D
q4B+V1OCDX6nV8V/tbfCOx8F/E61+JKxvD4b8TNb6P4gaDgWl+WEVlekAdJNwt5Cc/8ALueArGgD
A0Pxj8TbP4e2s+t/FnWp9fSzEl3cWosGh87GWVALUZUH5Rxkj3rG8LfFj4l6tr1pa3HxK8QmKQnc
FisQeFJ/59qxde+H+oaXK5tY2vbUchkA3r/vD1+lYOl3zaZqVtdp96GQPz+v6UASftI/H34w/BfW
/CGuW/xI8QSeB7u4Njq5NtYM9rI3+rk3fZuFPOc/3QByefcvAd18UvECxGf4leIbmWRVkKoliI4k
PQlhbc5Hp+Fea/tHaLB4o+Afjqze3ju9+kTTQpKAQJEXfGwz0IYAg9iK9h/Y5jVv2Y/htdsTLc3W
h2rzTMcs5CBRk9+lAHoNj4d8Rwx/6V8RPE1zJ3Km0QD2H+j1f/snVv8Aoc/En/f+3/8AjFa9FAGR
/ZGrf9Dn4k/7/wBv/wDGKP7I1b/oc/En/f8At/8A4xWvRQBjPo+sMpA8a+JUP94T2/H/AJArH1jw
74w8tpNN+IniLeBxBMbTB+jfZ+v1rsaKAPEbjxH43tZnhm8deIo5UO1kb7ICD/4D0z/hKvGX/Q++
IfztP/keu4+JmjxtaRakihZUYRSH+8p6fiDXnVAF3/hKvGX/AEPviH87T/5Ho/4Srxl/0PviH87T
/wCR6pUUAXf+Eq8Zf9D74h/O0/8AkesLxH4i+JUdq1xpfxM8RLJGCTA0diQw68E22c1oVkeKPFmi
+DdLmv8AXdVs9Is41Jaa9nWJf1PNAHCf8Lq+KH/RTPEH/fmw/wDkauO+IH7Ynif4YxQN4g+L2v20
s/MVtFbWUkrj12i14HucCvGvE37SVnqlxLpHw60248Y+IJCVjMMLC0gJ6M7nGR+Q45YVrfC/4Oza
DqVz4p8XXUev+M74ZkuGUNFar/zziBHHpnH09wDXuP8Ago9qzWxGn/E3xpqWpM3lw6bBplmJpWJw
AM2uP1z7V6L8L/i/+0Rq2oXHiDx7491bwloDRE2fh3ZYS38zlfkLkWoMaj7xB5JPYDBopawxzLKs
Mayr0kWNQw/HFXY7W61K6YQxS3Mzt/CCxJ9zQB0n/C6vih/0UzxB/wB+bD/5GriviZ8cP2htOtrP
UPB3xG1bUjA2bvSriHT0e4TOf3bm14PYjuDkcjnpJPBmr29jJeXFutrBGMk3DhCfoPX2rDoA4OH/
AIKFePtP3L4l8Q/ETw3LGP3rTabYvCpHUBvswJHvimyft5fF3xZJ9m+H2teNPEcrr/x+3dvYW1rH
77ja8kehxXfshkUhl3r6EZFIse1dqphf7qrgUATfD/4xfHyPR3k8X/FXU5dSlfckFjbWASBMfdLf
ZRvYnknAA4A9T1H/AAur4of9FM8Qf9+bD/5Grj5JUi/1jrH/ALzAfzqCTU7OFcyXlvGPVplH9aAO
3/4XV8UP+imeIP8AvzYf/I1c/wCM/i38dL7T4R4Y+MOqaVfLJl2vtPsZ45Ex0wLcEEHHOfXjoRlR
ahaTqGiuoJB6pKp/rU4+bpz9KAONuvi1+19bt+5+L9teqO/2azhJ+g+xt/Oov+Gk/wBrbQ0Xz9Xv
NfwPm+y3mnIT+dov6V3Oxv7rflSbW/un8qAOGn/bC/abu4WtLSy8U2+osu3zZrnTvJjJH3gTa4OK
9G8C/GT46ReH4j4q+Keqz6w7s7rZW9gscSn7qZ+y/MQOp9TWdJNHD/rJEj/3mArD1T4geF9DZRqP
iTSbFmOALi9jQn8zQB6b/wALq+KH/RTPEH/fmw/+RqP+F1fFD/opniD/AL82H/yNXj3/AAubwS+9
bbxHZ6jKoyYdO3XUh+iRhifwFInxg8M7gLiTUtPXBPmX+kXdvGMervGFH50Aexf8Lp+KH/RTPEH/
AH5sP/kaj/hdXxQ/6KZ4g/782H/yNXMfCvxR4Q8dalJb2+sabq0csZSP7NdKzLJwcDByDg967fUP
hXKsjtZ3i7M/LHOhBHtuFADNG+NvxDj1KE6j8R/EUtnnEirHYg89+LbPFc58UPGn7UWj+IJdZ8Cf
EK68XeGJArxaNjT7e6i+UAr5jWxEgJywOVI4GD1qDVvD9/oshW7t2Re0i/Mh+hFQ2Gq3mlktaXUt
vnk+W3B+o6UAcZa/tzfEfRdeGheP/FvjD4e6w33F1O3sTay+pSb7LjHv05xmvRR+0Z46MaSD4wam
UYZVt+m4I/8AAem6trWneMNHbSfF+hWPibTWx+7uolJBHcZHB9xiuAi+A3wRjlZv+FdZ3HJDXshA
+g3UAejQ/tBfEG4IEXxa1aQnoFOnEn/yXq3/AMLq+KGAf+FmeIMevk2H/wAjV5befs0/APVpMv4T
vdPYD5XtruZRn6K9Ubj9lefTGe5+FfxT1DT7gfMNJ1yT7VbMAOEGRuQE98E/pQB7D/wur4of9FM8
Qf8Afmw/+Rq0fC/xq+JjeMPC8U/xE1y6tp9b063nt5obLZLFJdxJIjYtgcMrMOCDzwQea+ZL/wCK
Pi/4SX8enfFnwpLpNu7bI/Eekgz2Ep9Wxyvbjr/sivX/AADrVh4g8SeDL/TLyC/s5fEGklJ7dw6H
/ToO4oA/UusHx1460L4Z+D9W8U+JtSh0jQdLgNxd3k5O2NBx0HJJJACjJJIABJFb1fGH/BWKK5k/
Zj0t2hu5vDkXivTZPEP2QMcaePM3FsdvNMIH+0V9qAOz+FX7clv8XPFnh+w0n4Q/Eq18O6/MYtO8
VXujLHp0ihWbzWfzPljKoSG5z2GeK+km1Szj1OLTmuoV1CWF7iO1LjzGjRlVnC9SoLoCemWHrXnf
wp/aG+FfxVvl0H4f+LtI8QT2mnpefY9JbcttbZVF3YGIyCVGw4YenFfIfia7+NH/AA9g0XVLTwvM
/hWPQTYxwC9s0aXQhIkdxdsDMfu3k6yBeJWREGzgigD9CqKKKACiiigAooooAKKKKACiiigAoooo
AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDjPh7CI9V8bSfxSa6/PsLa3GP0rs65HwD
/wAf/jH/ALDkn/oiCuuoAKKKKACuf+IPgbSfib4H17wnrtv9q0fWrKWxuoskExyKVJBByCM5BHII
BFdBRQB8DfDe61aPQ7nQfEkgm8UeGryXQ9Wk4BmlhICXBA+758JinAHQS4ycV5zr+nnTNYvbXBAj
kbb/ALp5H6Gvof8Aaa8NnwD8afDnjG1TGk+MIxoOrhekd7ErSWVwR0+ZPOhY9SfIHQV5d8TtFVoY
NUjKhlIil9wfun8On40AUvjDpd941+AXiqw0UeZf3+iSxwxqclzs5T6nBFeo/sP+NdE8bfst/D19
FmVxpelw6TeRfxQ3UCBZVYdiT8w9QwPeuC+GOrefYTaezLvtz5kZ/wBlj/Q/zryW8vtc/Yr+LN34
/wBBS41T4SeJrsN4p0GFC7adMc/6ZCB90A5J7EEqf4CoB+hlFcr8Nvil4U+L3heDxD4P12013SZg
P31s3zRsQDskQ/NG4B5VgCK6qgAooooAKKPxrxb47ftcfD34AsthrGoSav4omAFt4a0VftF/Kxzt
BQcIDg8tjPbNAHf/ABImSPw2yMQGkmQKD3xkmvJ7i5hs499xLHbp/emcIP1rwPXPEX7Rn7RlwL+W
9074KeGMZtbJYvtmolCOTIT0J/4AR0x3POXH7Kfw+8yR/HfjHxL8QL5jvaO+1KQIrZ52rGfl+m7i
gD3jWPiz4J8PQGbU/F+h2MQO0tPfxqM+nWvK/GX7bnw28P8Am2uh3V5411jbmKx0K2eQOScD94Rt
Az1xk+3SsO1+DPwe0SPZpvw40yYg/K+qO9x9OGJz9Ca3khsLS1itdN0rStGs4v8AV2+m2iQqvGOo
GelAHmt540+PHxV/eT6np/wt0aRty2lhH9ovin913PQ98jaenFUdP/Zy8OTagNR8T3uqeNtSBOJ9
dumlAz2C9Mexr1cJnowP0zXOeIfiB4e8MTi2vdUibUGG5NOtFa4u3HT5YYwXP1xigDV0rRdP0KzS
102xt9PtlGFhtoljUD0wBVbxF4q0jwnZrdavqENhC7bI/Nb5pX7Iij5nY9lUEmuf/tbxh4oymnaV
F4UsycfbtaKzXJHrHbxsQMju7jHdTWl4e8Aadod82pTzzazrjrtfVtSYST7f7qYAWNeB8qAD8aAM
weLvE2vKDoXhZrS3cjbfeIJ/sylT/GsChpD/ALr7D9K1NP0/xzHG0d18RL6yiZtz2ug2MFrCefWR
ZZORwcMPwrpNo/vr+tU9c1rTfDtrJearqNpplop5nu5REg/FqAMC6+HGl6pIX1W71rW2bBK6lrV1
MhI7+WZNgP0Wmj4U+EAMf2Ban/e3H+tQN8XPDkjqtk2pauGGVk0zSbm4ib6SLHtP50q+ONbvJwll
4E1poWPFxeTW1smMZztMhcf980AI/wAI/DWVNtDf6aynIOn6pc2/57ZADTV+Eeged5ss+uXTelxr
t46n6jzMU99W8d3M2238OaHZw5A8291l2bHc7I4Tn/vqj7D8QuW/trwuN3/LP+zLk7P+Bef835Cg
BT8HvBMm3z/DGnXjL0e8i89vzck1LD8JvBFvny/B+hJnrjTov/iagj0Hx3Nu+0eL9Gh9PsmhsCPx
eY/yp/8AwjfjFOU8a2jn0m0VCP8Ax2QH9aAHXHwh8DXTZl8HaGx6Z+wRg/oKa3wj8H7VWLQoLZVG
FFq8kIH02sKiXR/iGmQPE/hmQHoz6HOCPwFxSpY/EKxDOdV8M6xwcQvYz2WT2+cSScf8BoASb4Q+
HZnDK2sW5AwBb65eRgfgJcU1fg/oG9WkudenCnOybX71lP1Hm8ipYdc8cxybbrwppLpj/WWeuFsn
6PCv86W41zxu7hbXwnpag9XvNc2gfgkLZoAT/hTvgd2DTeFdLupAMeZdQCZ8e7Pkmt3TfC+iaPGI
7DSNPsoxyFt7WNAPyFYH9j+O9WybvxFpGhROvMOlWLXEsZx2mmO0/wDfv8KP+Fc6gygt8QPE3n5y
Zlkthn22eRtA/CgDsVVY/uhV/wB0Afyp+4/3ifxri/8AhAdcjZTF8RtfwpztngspAfr+4FH2Xx/p
Qk8u/wDD3iGP+BbqGawkxn+J0Mik49FFAGxrXgjw94iZH1PRLC+ljO5JZrdfMQ+quBkH3BqO08K3
ekQrHpHi3xVpIQfuwmryXAj+gn8wH6HIqzDH8QFtw83w11G5IUM0mm6nZzRNkZ+QvIjH8VFGieKN
P1y4uLON5LTVLb/j50u+jaC7t+o+eNuccHDDKnsSKANbS/ih4/8ACsa2+qWNj4+04ZDXEDLYajtx
wGjP7mVj3IMQ9quH4w/DO+YjXLDV/B9yF3ytqemzQRR8ZOZ0DQn6hyKq7R/fWgccCQAfU0Aa1j/w
hXiKNJtC8faHfQyEqm28ifJ9OG659q1W+GmptCJLee0uwf8AnlIcfXOMVwOoeFdF1bf9u0rTb3ep
VvtFoj7geoOVrHj+Fvh6x2/2VHdeHSpJX+wdQuLBcnvtidVP4igD0e68D61Z5JsjKB3hYP8A/XrF
mhltZdk0bwyr/C6lWFZVtP470R2k0n4iXtyM/La+ILOG+gUZ6ZVY5enH3z+NbMfxi8RWsYg8X+Cb
bX7TKqb7w1OHf3drafayj2R3PtQBpW/iq4NjNp+oww6zpkylJbO/QSI6nqDn+tcB4Z+AfgTSPiv4
M8ReE7nW/CNwninSZ5tEtbkvYXJN/DkFTyo54GcDAAFdhY+LPhx4uuEtdI8VQ6Nq8nK6TroezuD1
6RTBX7HkZHFaWm6S+k+PvCcLzwTkeINJO63fev8Ax/Q9x3oA/TGobyzt9RtJrW7gjurWZDHLDMgd
JFIwVZTwQR2NTUUAc54P+G/hL4ex3Efhbwvo3hqO4O6ZdI0+K1Eh9WEajP4147qX/KQLw/8A9kx1
H/062VfQtfPWpf8AKQLw/wD9kx1H/wBOtlQB9C0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF
FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlPws8faPqPxM+J/hKPULV9a0zV0uZbFZgZkjktL
Yhimcgc9fevVq/Nn9obR52/aH8X6zo2o3fh7xRp+rxyafremELcwP9itcqcgiSNsANE4KsOo4BH0
1+zx+1hD4+vbLwb47t4fDXxCdD9nUK0dlriqMtLZl+dwAJeAkumCfmXDkA+jKKKKACiimTTJbwvL
I21FGSaAPnb9uqFH+B+o35do30C4s9fEinGwWt3FKx+mxXB9ia8x1nTYta025tGPyTL8rDt3U/yr
3n4n6DafFLwv4j8PanvGm61YT6bKFOGWKWNkJHvhs18w+DfEGoabqs/gXxbEtj410e3UyKuRDqdq
MIl9bE/ejbjcvLRudrcFWYA4bSL+fwvrySyRtvhcpLH0yOhH9RXr1hf2mu6eJoSs9tKCrKwB+qsD
/I1j+LPBsHiCNp4sQ36rhZP4Xx2b/GvO7HUtS8H6pIi5ilQ4lgc5Rvr/AENAGB4n/Z28QfDPxJe+
OvgNrjeDPEEixm68OKANL1JUJOwp0UnJwMY5OChYtXt/wL/bn8GfEgT6F4zki+G3xA09xBf6Frko
gR5MZLQSNw6nk7Thh15BDFPDviq08RQDyyIrkfft2PzD3HqKyvHPwj8F/Eton8UeGdN1uWEbY5rq
EGVB6BxhgPbNAHrmrftRfB/Q5jFffE/wnbyhtpjOrRFgfcA8Vy/i79uj4F+DtJkvp/iNpOphelvo
7m8mcnoAqA/meB3ryqz/AGYfhNYptj+HuguD/wA9rQSn82zW3oXwd+H/AIMujfaT4O0HSLhRk3EF
jGjAf72OKAOG8TftDfGv9pNW074a6FN8JfBcwKzeKNfjzqcynH+oiB+TuMjOQQQ6kVJ4A+DfgP8A
Z7jkvbeCTWvFd0Wkuda1FhNf3Dscu28/cBPJx16nJ5rr/EfxISBmg0sCVxwbhx8o/wB0d/5VwBNx
qV4f9Zc3MzdsszGgDU1/xbf6/IwkkMNtnKwRnA/E9zVDT9HvdVbbZ2sk/uq/KPqeldlpPgaz0exl
1TxFcRW8FuhmkWWQJFEo5LSOeMY/CuJ1r426r4sX7H8PLWHT9EHy/wDCT6hDlJB62dvwZB1xI+1O
QVDigDoL3wSmg6dLqOv6zYaLp8Kl5bi4lCoijqSzEDpXE3fxI8OvBJF4I0q/8a6kUxHqNxG1ppUZ
I4kMzqPMX/rkH/DrWTH4B0y51KPVNaa48T6yh3LqGuS/aZEb1jQ/u4vpGqiul60AcPH8ObjWtsvi
vX77WpOG+w2jtZWMZHYRxkM4/wCujt+FdH4f8K6N4Tt2g0XSrPSomO5ltIVj3H1JHJP1q3qWpWej
Wcl1qF3BY2salnmuZFjRQOpJJrkW+Itx4i/deDtJl1vdx/al1uttOQf3vMI3S8dPLVge5HWgDtzh
VJPCjqT0FcdqHxGjudSl0rwzZN4m1SLImMEoS0tT6TXGCqt0+Rdz85245qJPhnFrRE/jC+k8UTn/
AJdZAYbCP2S3Bww95Cze9ddp2m2mk2cVnYWsNnaQjbHb20YREHoFAwKAOS/sHxnrzA6r4it9BtiQ
xtPD8G6XpyrXEwOR7qin3q9pPwx8OaLfi9WyfUNRQnbfarPJezrkYO15SxX6LgVLfePNLt9Xk0i0
W91vV48ebYaLZy3ssOcbfN8sFYs548wrxk9Aa39J+Gfj/wAcTB9QkX4eaOedkZivNWl9jw0EH/kU
kH+E0ASKxPAJ+gqtfahaaXCZ725gs4R/y0uJFjX82Irrrf8AZw0WRIotY8R+KNehjYN5NzqX2dXP
+19nWMsP9knHtW9pHwJ+Huh3yXtt4R0t72MYjubqH7RJGPRWkLFevagDxG6+K3g20kaI+J9LnuRw
LW1uluJ2OOAscZZmJ9ACauWPiTU9a2to3gnxZq1vna066Z9kVeh6XLRMw56qDX0naaPp9i4e1sLW
2cdGhgRD+YFVdc8T2GhJm6m3Sn7sKfM5/Dt+NAHg8Og/EzVY1msfAtrp8ecGPX9bjt5vqFhSYY/4
Fn2qw3g34pWx3S+FvD11HtyVsvED7wfTD26g/nXba78SLu9zFp6myhI5c4Mh/HtXOW+uahayF4r6
4Ryck+YTkn1zQBy91qXijSVeXVfhz4osrSPIluoEt7xFx3CQytIw/wB1CeelZ0HxU8JySLFPrdvp
lwwJW31cNYTEeoScIxHB5Ar1jSfiRqdnNm623sRPIwEYfQj+teq+B9HsPisrOYYpbW3P777VAsjR
n+6AQeSO9AHzvb3lveW4uILiGeAjIljkVkI9cg4qSSZIrdrh3VIFG5pWYBAPUt0r6sj/AGRPg7ql
8pf4XeF728kcs0s2mRszserMcYP412ui/sXfBnSJYZR8PtFby5VuFsxC32FZR0cWufK3D+8VzQB+
fEfxR8JXU0cFj4i0/V7yVtsVjpEwvrqZv7scMO93PsAfWvRtD+Cfxp8XQG8034eQ6Lp+3MbeK9TN
ncTcZBEEMcxRTx98q3XKjHP6Paf4Z0jSZRLY6VZWcgG0Pb26RnHpkCtKgD8w9W+GXxb8Nws2o/DG
71EqSGPhvVba8AA77ZTC36ZrB0LVE8Qa/c6BFb3ll4ht4mnl0fU7Z7O8WMHBkEUgBdM8b1ypPQ1+
p9/pdtqUZWaME9nHDD6GvEPjd8C9J+IlhBb6kZLPVrNjPo/iGzAW806bGA8benZozlXUkMCDQB8c
2WoX2g3m6CSS1mQ/NGwI/BlNdTqnhnwp8bNLgi16xX+17QEw3drK0F5bE9XgmQh1BxyAcY4IIq9p
PneIrzV/CvjOwis/GegOkd4bUFI7mJwTDe25PJhlAPBztdZEJJTJ43WNJu/DWp+W5eNlbdDMvG4f
3gaAK/8AwpHx1pc7Raf400vV9PGfLbXNLcXY9N8kDqj455CKemeeTDJ8KvibZwySJqXhLVZB923M
N1Z5/wC2m6TH/fNdPb/ErVoYURlt5mUY8yRDuP1waY3xI1pmJV7dAeiiHOP1oA4S6i8baGyLq/w/
1KRP47vQ7mG/gX8NySn8I6yI/ib4eFxHBfXc+hXEjBI4dds5tOZ2PRV89VDH2UmvU4/iTrMZJY28
mRxmLGPfg1Xv/HF7q9rNa6la2GpWko2tb3VsHQg9Rg9eOKAObjkSaMSRsskZ6MhDD8xTq42T4R+G
oZzPpFrN4Yn3Fg2g3L2i5Pcxqdj9vvKaj/snxzoK5sNasfE8Cji31qH7LcHn/nvCNvT1i/GgDrNU
0qy1u0e11Gzt9QtXGGhuollQj0IYGs3wR8LfDei/EXwTeaXZS6S0PiTSXW30+7mgtmP2+H70Kt5b
de61nN48m0eAS+KPDeseGYOf9PntjcWJA6t9oi3Ki+8myuz8C6pZa14n8G3mnXlvf2kniDSSk9rK
siMPt0HQg4oA/UiiiigAr561L/lIF4f/AOyY6j/6dbKvoWvnrUv+UgXh/wD7JjqP/p1sqAPoWiii
gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+JPFF
vay/Hz4lSPGGu49SiKM38Kmyts4Hr71W8U+F9N8ZaS2narAZ4N6yxyJI0csEqnKSxSKQ0cikAq6k
EEAg1R8dagLL9pzxgkt0tpbz6vHDJJKcRqGsrUAt7A4/Ovf9H8E6XYwoXjW+lZeZZcMp+g6YoA5P
4J/tHX3h3WLHwB8TL1rnUbhjFoPitkVI9YUDPkThcLHeKAcgALKBvQA7kX6OXxBpzLn7XGOMkHg1
4x4u+GPhfx14evNE1vRba7066UK6KDG6kEFXR1IZHVgGV1IZSAQQRXnWj+P9e+B95DoHxNvf7R8L
NItvpHxAkwqtk4jt9UUALBNyFWcfu5T18tiFIB9TXHinT4B8shmbHSMf1rz/AF/x1OupSRas0dlp
kjZtbgNti7fu5Sej56Hoc8ciplfcAQcgjII6EetVtW0y21vTbrT72IT2lzGYpYz/ABKetAFmvPfj
T8HbH4ueH7dVuW0bxPpUjXeha9Am6bT7nBGcZG+Jx8skROHUkcHBHm2sap4x+AmsQoLqTWvDEjML
aK5csm3shbGUcD8D6V7J4E+I+kfEDT/tGnzbLiPAmtJcCSNsZPH8Q/2hxQB88fDnx3J4qgv9M1eC
HS/F+iy/ZtY0qNyRE/O2aPIBaCQDcj49VOGVgNjxF4WtPEUJ8xRFcqPknUcj6+o9qofEj4eWnjW/
XU7O8l0HxNYu50/XrFVM0ALZMbAjEsLfxRvkHqMMARz/AIf+LjaTqFt4c+IEUXhnxK3yQ3RBXTNU
OcB7advlDN18hyJF5+8oDEA5/VPDeqeHbje8UgVDlbmDJX6gjp+NX7L4javaQ7HeG69HmX5vpxiv
WtxKg5yrDg8YNZ76Dpsjs7afaszHJJiHNAHl1x461y+IRbsoTxtt0AJ/mag/sfXtWYFrW9uNwyGl
3Yx/wLivYLaxtrPAgt4YccDy4wDWb4q8caF4HsDe+Idas9Hts4DXkyoWJ6BV6sT2AGTQBx+kfDG5
mbdqMy2yf884iGc/j0FaPibxR4R+DOjx3epS/Znmby7eCGJri9vH/uRRqC7n6DAGScAE1xOtfHzW
fE0Zg8DaJLawOMf294kt3t4l68xWpxLIf9/y15zk1yWi+FY9N1KfWL68uNe8SXK7LjW9R2tcuuc+
Wu0BY4x2jQBe/JJJAF1281r4s6gl54rtE03QLdxJYeFxKJQWBys94R8skg4xGMoh5y5wV2qdvbsf
0rn7TXNV8bavNonge1i1i8hkMN7q0rD+ztMYdRK4OZJB/wA8Y8t03FAc0AXte8Q6b4Y057/VLyKy
tVIXfIeWY9FUDlmPZQCTXKTa54q8ZQeTouky+GtPm+U6xqzBblYz/HDbAE7iM480rtPJU9K7238B
+GvCF0bu8ZvGni/ZtfWtRwY7YnqttEDthHbC8nA3Mx5o8xs9eTQByGm/CnwtptxBcvpa6nfw8pfa
tI97cA+oeUsQfpitXX/F2keGPs8eoXix3NxkW1lEplubgjqIoUBdz7KKbDqGteMtbm0DwZBDeXtu
4j1DVrrJsdM6cORzLNg5EKnPTcUBBPpHhvwz4Y+C8Mz2/ma14nuwGvdWuiHu7hv9p+kaDJ2xphVB
4FAHI6D8MfHPiux/tPVdWtvAlrIN0Gmrapd3ar2NxI52KxHWNAdv981pH4DadfSeZ4t8d6jqlnjY
tjp9wul25PqzQnzGOMjG/bz0zzUmueJr/wAQShrmTEa/dhThB+Hc+5rNjjlkYCONnJ6bEzn8hQB6
HoepeCvh5pCaV4ds7TTrBCSLXSrcImT1JxjJ9zzUN/8AFT5mFpYYOeGnf+grD07wLrWoRrIY1tY2
GQ1w2D+XWukt/hjArZutQkkOeViUKPpk80AcrL481ySQuL4xg/woihR+lN/4TjXj01CQ/RF/wr0a
z8EaPa7SLPz2U53TEv8A/WrZtbCKzi2W1skMec7Y4wBn8qAPGpPFGtTMzNqF1z12nA/QVY8O+Fbz
xLdmSTzIrbOZLmQElvYZ6mvYiu3grj6qB/SjcQOuBQBzeoSeHfhx4cvNXv2g07TbKEyXN3Ku47R6
9SxJ4CjkkgAVwdx8Tra+jF/4g+GPijSdCZQ0erz2UcxCtjDSQQu08Yxg/Mny/wAW2uo8N6PbfH74
uadaW1ydR8EeE43vr+4t1LWs+reYq20IfGyVoQszsoJCOYyfmAx9MW/gnRrdQPsYkbn55HJY596A
PlzQ/DvhDxxo8Wp+G9Yj1GwkJC3dhdLPGSDyCexHIx1r1Hwf8C7jSTpWt6J4nu9OuCFkljkhDI6/
3cAjIPvnrU3jz9mjS7/VJvE3gW4h8EeNGUCW9hg8y01JQMCO9gBHmj0cESL2bBIO78FfiBfeILbV
/C3iHSl0Dxl4XeK31GxjuPPgljkTfDdW8hCl4JBuUFlBDxyKRlaAPdfAen3UOl/ab9IBeSkjdbkl
SgPBGeRnrjn6munqtpqhdPtgMY8tenTpVmgAooooAKpaxYLqGnyxEfOBuQ+jDpV2igD5G/aN8A3t
5a6Z8QfDllJe+KfC0cu+yh+/qWmyFWurQDu/yLLH/txgZAdq41P7G+IXhuxvraZL7TL2FLq0uoT1
RhlWU/Q8j8K+oLhv9JkKnI8xsMO/zGvkXWvh74l8HeNNZl+Hlzp76bqV9JNP4c1YSLbxXDvl5rZ4
wWi3ElmjwVZjuGwliwA2D4V2qsTPfzON3ARQvy/41rf8IP4f0+2eSe2QQry01zKQAP8AeJAArovD
v7PnxY8WXBh1j4h6LoEMgY+X4b0HdcQjIx+/uZZEJAyD+65Ner+Gv2LPhlpskV34j065+ImrqUc3
/jC4N+BIo+/HbtiCE8n/AFca0AfJ914s+GV9cNa6RcyeJb6J/Ley8I29xq06tzw6Wyybeh+9gZpf
E3hvXdD0ae/uPg98QtNsgMxXwtIbzuAC9vbyyTqDnPMeQOuK/RvTdIsdFtVttPs7extl4WG2iWNB
9AoAq3QB+Rtv8SvCs98ti2v2NpqLEL9gvpPstyCRkKYpdrg+xGa6XsD2IyD2r9NfEXgzQPF1nNaa
5omnazazKUkhv7WOdGBGCCGB7V84+PP2HdK0e6XXfg/Na+CtTi3GXw3cKz6FqAI5Rohk2rHP+sgx
zyySdKAPm/SfFep6MoSC6ZocY8mX50x6YNVbPw34P1r4i+Dtbi8Ow6L4jTxNpErXulsYFuiL6EYm
VCok46bwcVta1Zxab4i/4RvxXpc3w58ZyB2t9N1CZJLPUlUZeSyuB8syDqQNsijBeNcis3QUeDx1
4ViZ1cr4j0pSUIZT/p0HQjqKAP05ooqjrmi2fiPRdQ0nUYftGn39vJa3MO5l3xupV1ypBGQSMgg0
ALa63p1/qF5YW1/a3F9ZBDdWsUytLBvzs3qDld21sZ67T6V4PqX/ACkC8P8A/ZMdR/8ATrZV5P8A
sH+E9H8C/tOftXaBoGnw6Vo9hq2jxW1nbjCRL5NycD8ST+Ndb8Wvih4e+Ev7c3hjWPEtzc2thN8O
r+0R7Wynu2MjanaMBshRmAwjckY4HPIoA+sKK8L/AOG1vhN/0F9Y/wDCb1L/AOR6P+G1vhN/0F9Y
/wDCb1L/AOR6APdKK8L/AOG1vhN/0F9Y/wDCb1L/AOR6P+G1vhN/0F9Y/wDCb1L/AOR6APdKK8L/
AOG1vhN/0F9Y/wDCb1L/AOR6P+G1vhN/0F9Y/wDCb1L/AOR6APdKK8L/AOG1vhN/0F9Y/wDCb1L/
AOR6P+G1vhN/0F9Y/wDCb1L/AOR6APdKK8L/AOG1vhN/0F9Y/wDCb1L/AOR6P+G1vhN/0F9Y/wDC
b1L/AOR6APdKK8L/AOG1vhN/0F9Y/wDCb1L/AOR6P+G1vhN/0F9Y/wDCb1L/AOR6APdKK8L/AOG1
vhN/0F9Y/wDCb1L/AOR6P+G1vhN/0F9Y/wDCb1L/AOR6APdKK8L/AOG1vhN/0F9Y/wDCb1L/AOR6
P+G1vhN/0F9Y/wDCb1L/AOR6APdKK8L/AOG1vhN/0F9Y/wDCb1L/AOR6ZH+278IZNW0vTP7d1NL7
U7uGytIpPD+oL5s0sixIuTBgZd0XJ4yw9aAPd6K5RfiTpjR7xp/iDG3dg+H74H7u7GPJ647evHWp
ZPiBp8aSsbDXCI1djt0S8JO1ZmOB5XJPkPgDqWiAyZE3AHTUVzV14+0+0aZXsNcYxFwfK0W7cHYZ
gdu2I7s/Z3xjrvixnzY90b/EXTY5GQ2GvEqxXK6DekcMy8ERdMoefQqejDIB1NFctH8RtMlZVFhr
wLFVG7QL5RyUHJMPA/eLn0Ac/wADYWD4iadcGILYa8vmFAPM0K9XG4wgZzFxjz1znpslzjy32gHU
UVysPxI02ZYiNO8QL5gQjfoN6uNwhIzmLjH2hM56bJc/6p9vVUAFFFFAHxr8SfgdqPjbx/491vT9
Qt1uH1gIlnMpUMFs7YH5+xyPTFc54T8ceKPgrqkWleJbO6fRT8ohb5xH/tQv0IAydmfyr6J07/kZ
PGX/AGG3/wDSa3pfEXhvTfFmlyadqtql3aMd2xuqsOjKexHqKALdhfQapZQXdrKs1tOgkjkXoykZ
Bpb6xt9Ss57S8t4rq0nQxTQToHjkQjBVlPBBHY187tceIf2dfESQ7pNU8JXku5Qw+96gH+CUDt0b
H5e/aB4gsPE+k2+pabcLc2cwyrr1HqCOxB4IoA8k/wCED8YfA+Qz/DtG8V+C9w3+BL+6WObTkHX+
y7hh064tpm2dAjxKNp7v4e/Frwx8Tlu49Ev2/tOxIXUNGvomttQsGOcLPbuA6ZwSCRtYcqSMGuxr
jfH3wj8MfEiS2utXsZItYswRZ63ps72mo2mSCRFcRkOAcDKklWxggigDpdY0ey8QabNYajax3lnM
MSQyDKt/9f3r5j+IHwpPhDWDP4Z1SS6Klm8lG2z2+T90Op+b6dfXNa/izR/i58J7eSf+07z4s+FR
wQphstcthnjcMpBcrk9R5TAAcOTmuPb4+eEbGV49dl1LwkyYDSeItNnsoMnsJ3Xyicns5oAz9N+I
Wq6a5iuwLxU+UrMNrg/Ud/rWzdeNvD3iTTJtP1vTBc2dwhSa1uoFuIZARggqeo+orZm0rQPHVml7
aTW98ki5S+0+ZZMjsdykgj61yOqfDTULVibSSO8j7KTsf8jwaAMyz8EeG9NkWTwT4w1XwQ2QfsME
3nWBVeifZbgMka+0Ww+9WbzW/idoOmSvFqHgjxQEORct9o0+QLnBzEplDsOejLn2qlN4P1qDhtOm
PGflww/nWW1jPGxDW0isF3HdEQQPXp0oAzL7V/iD4jyuqeNRpVsXz9m8M2CWpZf7rSymVz9V2H6V
naP4D0PQ777fBYi41TaVOp38j3d4wJzgzylnxntnFdBtPXBx9K5y88cWjas2i6La3XinxAuN2laK
gmkizjBmckRwjHOZGXODjJ4oA6L9TWNrXi7TdDuobKWV7rVJ/wDUaXYxme7m5x8sS5bHIyxwB3Ir
f0j4K+IvEERvfHXiFdB0/BLaF4bmKYHpNesA7H2iEeORlutdFpE3hD4a2ktr4K0C0s3mO6a6ji2t
K3955D88je7HmgDkNP8AhfrPie1N/wDEC5PhXw8TlfDun3JN5cr2FzcJjbnjMUJ7YMhBIrpbzxJD
aaXDo3h+yh0LQ7dPLhtbRBGAo7YXhR7D86y9Q1K61W4M91M00h/vdB7AdvwrUs/DMdrps+sa/eRa
FolsnmzXd24jAUdSS3Cj3NAGdpOj3WtXi21pHvc9T0VR6k9qZqGix+PNdPgjQbyWPS9Nk8zxT4hs
32Mr4ylhBJ2kIO52U5jXHRnBGpYzav8AE7T/ACNAW68D/D9lPm6tLG9tquppzu8hHAa2jP8Az2f9
4RnYq/K9P1DUNL0HRLfwz4VtIdM0G1UoEtl2h8nLe5ySSWPLEkmgCT+2tN8IaLB4b8HWEGi6NaAp
GtsgUckliv1OSWPJJJrCtLO41O6ENvG9xPIei8k+5P8AU1b0Dw/c+Ib4W9uuFGDJKRwi+v19BXX+
GW1XxZqF34c+F+nW119ilNvqnivVFb+zbKUcMilcNdzKesUZCqQQ7oRtIBTTwxpPg3SLjXvFuoWt
jp9ovmSvPKEgjGRjex6nOBgdc45rpvDVj8R/HkUuq+G/C+maR4dAVbI+K5Z7G7vuMmVYUjZoYuQB
5gDtg/KowT6H4Q/Zn8PaPrVhr/iTUdS8d+I7J/Nt7vW5R9mtZOcPBZoBDGy5IV9pcA43GvX/AHJy
fU0AfPUPwP8Aid4gmI1XxtovhWxYYMfhvTGurwHPVbi5Plj/AL8n61fH7L+qJ8q/Gbx1sPXdb6Sz
fgTZcV7tRQB4gP2TPDt5FGdY8X+PNYulTZ9p/wCEknsieeuy18pM/wDAau6f+yb8PLbzDfQa7r8s
mMya14hvrojBONqtLtXr/CBXsVKql2CqCzE4AHU0AfOXjD9l+78L282q/DPxdq2gXMQeWTSdaupN
V02fjOCkzGRAMHHlSJj3xivA5vjFqXxU+HfhqJ7T/hHrfxVfafpl5NbSO8kdtc3KQu8TcFRIjfIx
AZRICQCMV+l2n+DRJHuvm4Ycwr6ehNeV+Hf2G/hP4Z8TadrFvpepTx6Xdi903SbrVriTT7KVX3oY
7ffsIRuUVgwQgbQMDAB1fhvwXHoWj2ekaHpMen6VYxLb21rbRCKGKNQFVVAwAMAVqP4d1GNcm1Yj
GflIJ/nXf0UAeYyQyQuUkRo2/usMGvFfjxbnwd4k8EePtG3Q+IP7b0/w3dRoSE1HT7u5ETwygdRE
XM6N1Qo2CA7g/V99p8GoQmOdAw7HuPcGvlr9rb4b+NdRXwTd+D9M/t+TRdYbUWsTepaeafs8kUTs
zAhlRpMlRg9GGSu0gH0/odwLnS7dgclV2H6jir9fJHw9/av1bwO0Vj8TvBGo6JbMAsuuaHL/AGvY
xvnA8wRos6HH3mMOwd2r6g8KeLdF8deH7LXfD2qWmtaPexiW3vrGZZYpVPcMDj/CgDXooooAKgvb
lbO0lmboik1U8R+ItM8I6DqOt61fQaZpOnwPdXd5cuEjhiQFmdj2AAr5E8VftCfFL4ozG58IWeh+
BvCud9lJ4lsJr7Ub5D0lkt0kiW2BHKozO+GG4IcrQB3XxS0G5tvDdzeaFq91oWoCQyCO3kIjuXbO
VK9FJyTkYweteX/CzxV4n0XW5rzWNA1PWrN/ke8jh3SW5/ibj73HUdfSub1bWfjIzvd3114R8XMg
+W0ggudJYjuFYvMucZxkAE4yR1r2T9nn4gaf488K37WqTWGoWN4bfUNLvFCXVjNtBMcygntyrAlW
UgqSCDQB9F+FbNLfSYZgpD3CiQlhg4IyBjtxWxTIeIUHX5R0p9ABRRRQAUUUUAct8SPhl4Z+LfhS
78OeK9Jh1bSrgZMcmVeJxyskTjDRyKeVdSGBGQa/PzxT8KfEv7Ovxl8E+HteuLzxH4Y1HxHpX9he
K3g+Zz9vg/0S92KFScZ+WTCrKPRhg/pZXnvxw0pNU8H6ezKGNrrukXC5PTbqEFAHoVUdcs7vUtF1
C0sL99Kvp7eSKC/jjWRraRlIWUI4KsVJDYYYOMHir1FAHzN8GP2QfEnwf+LPiDx0PjBq2tz+JrqK
68Q2NxotlFHqbRI6RZZUzFt8wn93tz3zXiv7c3/J1/gv/sSrz/0uhr9A6/Pz9ub/AJOv8F/9iVef
+l0NAHl9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXT/DH4W618X7vfYySaV4Yjcpca7sB
MrA4aO1DAh2BBBkIKKePnYMqgGL4X8N6z4+8Qf2H4btVur1QGurqbItrCM9HmYdz/DGPmc9AFDOv
umu/B3RvhT8P9H+y7tR1u68XeFvt2sXCjzrgjXrAhQP+WcS/wxrwOp3MWZvY/BvgrRvh/oEGjaDY
pY2EOW2glnkc/ekkcks7seSzEknqa5n45/8AIo6J/wBjf4X/APT9YUAfStFFFABRRRQAUUUUAFFF
FABRRRQB8EfET9oTW/gb+0R4+k1m2i1f4b3GsQ/bmtYmF7oubK1DXWASJ4c8yKArIuWG7GK+obG9
t9Ss4Lu0njurW4jWWGeFgySIwyrKR1BBzmvkL46xtL8dvHqIpd21SMBVGSf9CteMVc/Zp+INz8JP
EFv8OfEnnWvhjWLhj4UurlCsdnOV3PphY9A2Hkhz23xjG1AQD6n17QbDxNpNxpupW63NnOu142/Q
g9iOxrwCTSPFv7P+sXN3pyNrHhmZ8uCCVI7bwOY3HTeAQcc19H0hAYEEZB4IoA8h0f8Aac8LXsLn
UIrzTJQcBNgmDD1yvT8a6ix+NXgjUGKx+IrVSBn98GjH0yR1rqbjQtNvITFPp1pNEeSkluhB/DFY
epfCvwhq0hkufD1gz7dm5ItmB/wHHPvQBqTeItDuInik1XT2jcFWU3KYIP414NqHiTRLe4ntJNSt
2RGZSrtuUgHH06V1/iT9nPwWbSS5hN1o6QoSxilEinjjIcHv6da8H1L4e6tp5XyYxfJ6wcEfVTQB
o6l8J/hrr15cXcNhZ6VqUxVpb/Q7l9NuX44LSQMjN+Oay7vwjpunQrHpPxU8W6QikLtS/j1DoMYJ
uYpG/HNZZ8O6n5mw6bc7s4x5R61p2vgHW7pc/ZBD7TOFP5DNAGa2nXLt+8+Mnjgj/plY6cn8rWpr
nwzp+sRvHqHxX8aXNnIMNZySW0X/AI9Hbq//AI9V9vh9rC3IgZbZZCu4A3Cgn6Dr+lQXngjW7NiG
sXkH96FgwoAzofhT8I7bc17FqPiMvwy6xqF3eofX5JH2/pXQ6f4q0XwjpI0vwnoFno1gmdkUECwx
j32IBk/WsCHQdSuJvKSwuDJkDBjIxnpnPSuh074Z6hcLvvJYrKMcnnew/oPzoA57VNbvdakD3l08
2Oi4wq/QDir2geD77xAQ8Y8m2zgzyDj8B3NSXHjD4Y+EdQktJddi1zWbfG/TdNV9RulPGM29urMO
o6jvV5rTxj8VGaO4F58PvB/QQwyBdY1BO4dhkWkZHZSZSCOYyMUAVbnxFonhbW5tB8MWEnjfxvAB
5tlbyKsdjuHyvdTcpbqQc4OZCAdqtipX8BxfbLfxN8StTi8S6pBIJtP0lIcaZp0o5Bt4SMySj/nt
KSw5KhAcV0m/w98KdDi0jRdPt7NF+eOytxt3EnJkkbqSTklmJJOa8/1HUrzXtQ82dmmnkO1VUcD0
VRQBf8ReLbzxFIVkcw2ucrbp0/E9zUOgeGrvxDcBIFKwgjfOy/Ko/qfYVqTaDpPgzw/N4g8XXn2K
ygCloQCSWJwsYC5Z3YkBUQEkkAZzT7ex8ZfEi3Cyed8OPCjDCWlsV/tm6j/23GUtARn5U3SYIO5G
4oA0dD0J/iV4ym+HPhq5n07w/piCXxTr1o5WZdwBWxgkH3Z5Acu4OYkIxhnVl+rvDnhzS/COhWOi
6LYW+l6TYxLBbWdrGEjiQDgKB/k15h8B/DOkeB7aXR9ItI7Cwgt9yJvJJJfc7uzEl3YkszsSSSST
zR42+PKxalFong22TXtWmYxiVQWiDYztQcb24OeQBg80AewVzHiT4l+GfCYYajq9vHMoz9niPmSn
6Kua8+b4U+NvG8wufFXiprCFlU/YdMJAXnO3ghePXk1u6L+z14N0nDTWU2pyd2vJiQfqq4FAHJ6p
+0vPeXT2/hvw7Le7WwJJ97M2P+maAkcepzUUfiH40a1m6tdOSzgbG2NreKPjGQcOxbv/APWr3DSt
HsdDtI7XT7SGyt4xhY4ECgflVw9TQB4VBJ8b55QhW2hB/wCWkqQBR+Wa+iPhLpOtxeHYbvxQLN9Y
JID2edmzscHo3Y444461l4r0y1jENtFGv3VQAflQBLRRRQAUUUUAFZviCzS80qcMBujUyK3oRzWl
TJv9TJnptP8AKgD46+IHjbw3H4t8qzvt80wXzTHGwRHPTnHcYrJ+CvjSL4N/H298O2ZS38P+MdMu
Ncnstu2GDUbeaGKSZAPumdJ039i0QbGWYl/7TVnpH9uaTMuo2FnrDQlWt7i5jhknXPykBiMsO3tX
z/40bxFrPibw74j0PW4dJ1zSbOewdr2z+1QTxSSRuTtV0IbMSg8kEDpQB+nUPjS0dQZIpEJ/u4Yf
XNYvjD4waL4Lsba8v1mS1muVtjNt+WMsDhm9sj8M1+e+k/Fn416F/wAe3jjw/cRAkizuPDjCL6Bh
cFl+vP0rqof2kJPihoOpeFvFMa+G/E6xmT+y5iphvNmCJrWYf61M9jh143KMjIB65+2R8RotU8H6
BpVzKo0GXxFpj6t5RJRbfzg0e9h95TMIdwPy7Sc8VQb7xyec88V4Hd3cuo6De6Ldt9q0m9iaGezm
G+N0bquD0H0rX+BPi+6tb7UfAmsX0l5d6bGt1pFzdPumutPPy7WY8u8L/Ix5O1oixy2aAPZOPX9K
5HxNpet+HdftvHPghIW8WWMXkXGnzv5UGt2eSTaTN/CwJLRSkExuf7rOD1tFAH018Hfilovxk+H2
l+KNCeYW1wpjmtbqPy7mzuEO2W3nj/gljcFWX1Hpg12lfFPwv8RSfCX9oDS7uNpB4b8fSLpGqW6g
+XBqaRs1nd46KZER7d26sRbD+GvtagAooooAKKKKACuQ+KwDeDxn/oJaaf8Ayegrr65D4qf8igP+
wlp3/pdBQB19FeffGz4lXfw18K2TaPZ2+p+Kdc1K30PQ7G6d0hlvJ2OGlZAWEUcayzPgZ2QvjnFX
vAegeN9HuLmXxZ4v0/xIk0alILHRfsC28mfm2HzpCUI6K25hjO49KAOzr8/P25v+Tr/Bf/YlXn/p
dDX6B1+fn7c3/J1/gv8A7Eq8/wDS6GgDy+iiigAooooAKKKKACiiigAooooAKKKKACoru8g0+1lu
bmaO3t4lLySysFVFHUknoKJpys1vbwwTXl7dSCG1s7VN81xIeQiL3OASewAJJABI+ivg3+ziNHur
XxJ41SG91uNllstJRvMtdOYcq5PSWfPO/wC6mAEGQZHAOL+E/wCzzfePPJ1jxhb3GleGzh4NGkDR
XV+OzTjhoov+mfDt/FsAKP8AVNnZwafaQWtrBHbWsCLFFDCgRI0UYVVUcAAAAAVNRQAV578c/wDk
UdE/7G/wv/6frCvQq89+Of8AyKOif9jf4X/9P1hQB9K0UUUAFFFFABRRRQAUUUUAFFFFAHxt4v0e
3j+MHj/Uiu65k1VUDN/Aos7YYH1pdS+FLfErw7daZqWmLd6TdqAwuHMYJBDK6MPmV1YBldcFWAII
IrurTw2mrfFbx1eXKhra31gAIwyHf7JbcH2Fd6qhQABgDgAUAeH+H/EPxD+CunpYeM9Pv/iD4Ztw
Fg8T6LF9p1O2iC/dvbVAGmIxjzoFJbPzRjBY9f4e/aE+Gfii6+x6f460F9QAy+n3F6lvdx9OHglK
yIeRwyjFehfpWZq/hnR/EH/IU0jT9T7f6ZaRzf8AoSmgDmfE3x0+HHg1VbXfH3hnSQ3Ki71aBC30
G7J/Cuff9onT9YaaPwb4Q8XeO5YyAZNM0o2lq2e63N4YYnHujNXfaT4I8OaCwbTPD+k6cw4DWthF
GR+IWtskt1JP1NAHhHibUPjd4uk2WXw+8N6TpeA6w6t4sZZ2OM4kWG1kUEHIwGI75rnBo3xftrWV
rr4c6RJOrfKun+KFlRl45+e3Rs9eMV9M0v4H8qAPlfTtR+JGqSvHb/Cu+dEbYZ/7atFiz9WIP6Vu
6N+z/wCMPHzJcfEPxA3hrTOq+GfBl9IjOexuNQ2pK2DghYREOoYuK+i/LP8AdP5UyeVLWMyTOsMa
9XkO0D8TQB5Fb/si/CCK18u48DWGq3W7zDqmrSS3mo7s5B+1yu0wI7YbjAxisDWP2Y9W8P2zv8Pv
iBq+mGNMRaT4mH9s2ROcn55GW4BxwP32BxxXod38cvBFncyQPrkbtGcFoYnkTPswGD+FZ8f7RPgp
7wwG8u1TJHntaP5Z989efpQB4beaT8XFaS0fWPB+nzqSrXH9lXUrA/8AXIzKM/8AAjVcfA/T9aka
fxnrOreOJmJJt9SuPJsFB/gFpDtjZR28wO3ua734kfF7w5fXy3GjLcXs+zbIxiMUbEfdOTyfTp2r
zO++I2r3WRE0Vop/55plvzNAHpGi6FpfhfT47PSdPs9IsYl2pBZwJBGqjsAoAxXP+IviFa6erQ6e
VvLnkbwf3afj3P0rzm41G91Nts1zcXRJzsZy2T9K3dB8AX+qMklypsrU8ln++w9h/jQBjRRah4k1
LC+ZeXkvJY/zJ6AV32m6LpXw/wBFutc1u6htxZwtPc3kzYit4wMkj8O/U9q0tQvvD/wz8NXGo39x
DpemWygy3EuSzEnCjjl3ZiAqjJJIAFcbp+k3/wAUr+28ReKrWbR/CllIt1pXh28HlyTOpyl3eqeh
BwY4D9zhn+fAQAf4M0a/+IGuQeO/FNrLY2luWbw5oN2u02MRBH2ydT/y8yLkgHmJGC4DF83fEnxG
k85rfSSqopIa5YZ3f7o7fWqHi/xw+s77OzzHZZ+aTo0v+A/nWP4b8PzeItQWFNywLzNMB9xf8TQB
LZ3mt+JLg2cd5dTmbiRfMITb3LY/h9q+pfhX8PfDvhTS4rrTNt/fuu2bUJBmTdgZUD+Aewr5s+IH
x1+G/wABpLPSdd1ZLG+uFDx2NrA9xcMp4DsqAkAkHBbrg4rlvDvjP41ftLa4bL4UWt98MPBCKwvP
Gmu2hWec8YW2hJ+bIPUds5ZCACAffX8RUD5h1XuPwpk0qWsZeZ1hQdWkYKPzNfJ9n/wT9g0n7FqG
mfGX4jWXiePd9r1j+1PNN5ns6NkYHOOe/OTg1Jb/APBOrwdrJkPjrx148+ISyMrNb6xrTrACCTwq
YI6+vGOMUAfROvfE7wf4W0m41PWPFWi6bp9uAZbm51CJUTJwMnd68V4H8Qv+Chvw38K+Ihonhew1
v4o3ogE8knguFLy3hz91Xk3dT/sg46Hnirui/wDBOX9n7Q9Ut76LwKbmWBtyxX2p3NxCx/2o3cqw
9iK9m8C/CDwT8MbC7sfCfhXSfD9pdyebcRWFssYlYDALdzgdKAPm+T/gopZ+HpEk8XfCHx94Z0xh
vbUms0mihT+8+CMfzr7k+FvxO8M/GLwLpXizwjqsWs6FqEe6G5iyCCOGR1PKOpBBVgCCOa8W8aeB
I4Laa8sE3Q4/fWhG5dvcgHt6ivDv2BdTh+D37Sfxa+DwVLPR9YWLxboNsiHbtYCO4APQAHywF9EP
pwAfoLRRRQAUUUUAFfL/AO3L+1sP2d/B9noHhmH+1vib4nJtdG09Bv8As6n5Wu5Rn7iZ4Bxub/ZD
EfT9fjl4b1y5+MXxg+I3xQ1uZr2/u9budP0zzAcWllCxjjRAScfKB+Jc/wARyAYNj+zjoeufbNW8
dvc+LfFept52oaldXchYyEAYQgjgYxn24AGAOek0Pxt+zzJJcaEbjxp4CU7n0uZ83enr3MZ/iUe3
HqBy1esa743/ALN1xdF03SL3XtW8kXM0FoY40t4iSFaSSRgo3EHCjLHBOMA0/wAO+N4da1KXS7yw
vNC1qOPzjp+oBN7xZx5kbozJIoOAdpyuRkDIoATwF8RtA+JWjDUtBvluohxLCw2ywt/ddTyPr0PY
1e8UeFNN8YacLPUoWcRv5sM0TmOa3kHSSJxyjj1H0rzf4gfA6VtcXxf4BvE8NeLYtzSKi4tr8Hkp
IvQEnHOMHuM4I2fg/wDFtfiFa3Wnara/2N4u0tjFqOlvwQRx5iA8lD+hPcYJANXwt4gv9P1p/Cvi
GXz9USIz2OpBQi6lbqQGYgcLKmQHUcHIYcHA1/E3h1tcjtLmzvJNJ1zTpftOm6rCoaS1mAxnB+8j
AlXQ8MpI461V8f8Aht/EXh2X7I3k6xZZvNNul+9DcoCUP0blWHdWI71ueHbs+IvBOgeJoV/0LVrZ
Zk/2GI+ZD7g5H4UAd/8ADH4uN4ouF8P+JbJdB8YxxmT7Lk/Z9QjGMz2jn76cjKH5kJwRjDH0mvFV
t9N8aaXbeHdf8yOGKUTadqVtIY7rT7kfckikHKsMkehBKsCpIrrfhn4q1ae/1fwj4okjm8U6GI5H
vIU2x6jZylxBdqo4Vm8t1dB910bHylSQDW+Jfhu48VeCNTsrGY2urRqt7pt0oyYL23cT20mO+2WN
DjoQCDwa+zPhX43h+Jnwx8JeLoEMcOvaTa6miEYKiaJZMfhur498eeLLXwH4K13xFetsttMsZ7pv
VisbEKPUk4AHvX1Z+z/4Nufh58Cfh54XvCrXmj+H7CwnZRgGSO3RHOPqDQB39FFFABRRRQAVyHxU
/wCRQH/YS07/ANLoK6+uQ+Kn/IoD/sJad/6XQUAZfxm+G+pfEDTfD15oGrQ6N4n8M6vHrelXF1CZ
rZ5VilgkhnQEMY5IbiaMlSGUuGGSuDn6h8S/EPw58NNceNdP0/U9akF1eJZeGXKxxWVvCJJZGe5Z
NxU8cY5kjGMbmr1OsvXfC+jeKI4I9Z0mx1aOB/MiW+tkmEbYI3KGBwcEjI7E0AeX6t+0jaWmoQWd
n4a1O8kvLtrSxkZ4kS5ZNRtbCY43F0CS3YPzKMiKXpgE/Lf7d0zw/tV+CmSCS4P/AAhl0uyMqDg3
8ALfMQMAHJ5zgcAnivtnw38J/Cvhmxkgg0WyuZpp/tVzeXNrE09zP57ziWRgo3MJZHcHszEjFfFf
7c3/ACdf4L/7Eq8/9LoaAPGxq92Qp/sS/GcZG+34yF/6a9tx/wC+G/2cp/bN5jP9g6h0zjzLf0zj
/W/hWrRQBmNq10AxGiXxwDgB7fnAbp+977R/32v+1hZNVul340a+fbuxteD5sb8YzL32LjP/AD0X
OMNt0qKAM1tWulYgaNfMASMh4MHlhn/W98A/8CHvhV1S5ZgDo96oJAyXgwOQM/6z3J/4CfbOjRQB
nJqly2zOj3qbtudzwfLnZnOJO29s4/55tjOV3NXVrpgudFvlzjOXg4zt6/ve24/98N1+Xdp0UAZX
9s3eAf7C1AcZx5lv6Dj/AFvvj8DS/wBsXe1j/Yl+SATjfb88Nx/re+AP+BD3xqUUAZz6pcrvxo96
+3dja8HzY34xmTvsXGf+eqZxh9rItUvL7xBpGg2emS/2trF2LOyW4ljWIuS3zuVZmWMABi20n51G
Cx21ozTR20Mk00ixRRqXeRyAqqBkkk9BXU/CfwvJHrHhfxTqELRX2qazaLaQyqVa2s9xKKQeVeQ/
vGGARlEOfLBoA+j/AIQ/A3SvhdC19NKNZ8UXEey51eWPaVUkExQJk+VFkDgElsAsWIGPS6KKACii
igArz345/wDIo6J/2N/hf/0/WFehV578c/8AkUdE/wCxv8L/APp+sKAPpWiiigAooooAKKKKACii
igAooooA8b04D/hJPGRxz/bb/wDpNb1qVz0erLY+KvGSzWt15X9tMftEcXmR/wDHtb8HbyMfSta1
1ayvo2eC7hkVfvYkAK/UHkfjQBborKbxNZNlbYy6g4O3bZRmTn/e+729ab5ms3zfLHb6XFj/AJa/
v5fyBCj8zQBr+v61lX/iawsVmCyNeXEYJ+y2amaUkdsLnB+tNXw3DNk31zdaln+C4kxH+CKAv860
re1hs4/Lt4o4E/uxKFH6UAeJa/4s+LHiSRE0bw1NoNnKfkkcIZSpzguzH5OOuBwazG+HPxeurXZN
4kwsi4aNtRIP0JC/yNfQmKUZPAGT6CgD5iuPhP8AFSGZkS+uLhR/y0j1dgp/Mg1Svfgz8S9UhEN6
JLuHOfLuNUEiZ9cE19TxyJKzqjB2jOHCnO0+/pTuBQB4N4Z/ZehWBn8QatI0zY2w6dhVX6sw5/AA
V09j+zf4OtQnnJf3jK2SZboqGHoQuBivRNe1/TPC+k3OqazqNppOmWyGSa8vp1hhjUDJLOxAAArx
jVv2q7DV7WRfh54X1nx1M3yxah5X9n6Vkj5X+0z48yP/AGoVkyOgNAC/ED4W+ENKmtraw037PKyl
5GSdyQP4ep471y9n4E0W1bK2fnn/AKbMX/Sub1O3+J/iu4lvte8XaN4QinGXh0Oz+1XCN7XNz8hA
HYQ1h3vgfQLi38vW/iN4u1iVDvMketvaMeOm21WNce2KAPWbbT4LFAILZIFX+5GFx+Ncr4u+KWje
FbiDT4jLr3iC6LC10LSCs13MQMkkZCxoO8khVRkAnJAPnMngn4bxNIZ7PX/EOVMRj1jW726hdT6p
LMVPT0q5pWqaZ4TtZLTwp4a0nwvbOMH+z7VEc/UqBQBoR6NqF5rVj4t+Is1nHdafuk0jwvp8nnW9
jKwI855GAM9xtJAfaqoGYKDyxqeIvFl54ikKyHyrUHK26nj6se5rKdp9QuSzGS5uJDknlmap/E+u
eFPg7oX9v/EHUo9PgbAttOUl7idvQRry38h1JoA0fDPhK68RTBgDDaKwDzEdfZfU1zXxE/aDl0Xx
Hb/Db4RaPB4u8bNlbht26y0xR9553HDMD1GQB0JyQp5/+3fi/wDtJw/ZPD2nS/CL4dyjY2qXq41O
7iOQREg/1YPqMdQQx6V7Z8G/hb4J+A+h2mjaGILOFZEN3fXDq1zcsCMvKwxnv8owB2FAHVfst/sp
D4UvqvjPxzdWniz4oeISsuoaq0IaO1TA/cQbhwvAywAztUYAUCvo4DAAHAHAHYV5jrn7RPhDSZXi
tpbnVpR0+xxZRj6BzgVl6d8WvG/iqSKTQvA2LJ3QC4vZmVdpPJzgce4zj0NAHsdFcFDYfEi/kD3G
r6BpCYP7q1s3uT14yzMO1H2f4l2tuQt94av5VPBkt5oi4z3w2Bx7UAd7RXnN78RNe8J6xpUXivSd
OsdKv5DD/aFhdvKkMn8Ifcq4Br0bO7kcg80AIVEnykbg3BHrmvg/4R/ErS7j/goV4h8RRy58OeEd
Jl8OPcNgI9y8mZNr5wduCCDj7p/H7X8a397pfg3Xr3TY2m1C30+4mto0GWaVY2KgDucgV+P37Mfw
Vvf2hIY4dde/g8CWZkvtSnjmKSavqUrZwz4+baMZPVcAdScAH7uaTr2m69brPpt/bX0LDIe3lVx+
hq/X48/Fb9mrSf2fvAuqfED4Wa1r3g/xH4fC6hE9rqEjpJsZchlJIIx1DZBGQQQa/UL4NfFyw+Jv
wv8ACfiZp41k1fTLe8cp/q97oCwBHo2eO1AHolFVP7Wsuv2qH/vsVSvPFFlbKRG/2iTssYz+tAFr
WtQTTdNuJnOCEbaPVsHAr8a/2bN7/Dmd5eZG1e+LsOhbzjnFfbP7Vn7ZWhfDWzu/DWlyTeK/iXqV
vJBpHhXRImupxKy7VaQIDtAzuwfmbacDg1xXwT/Yg8TeCf2c/DOj3qm28UWtvJfXNmwViJ5iZGgL
q23K5C7hkZHfrQB89XUk/hT4lR3VxGTo/iaKO0S47Q3sIYqh9pIycdg0eOritLxt4VfxJZ2dxYzR
2WuaZP8Aa9OvJFLLHJgqyuByY3UsrD0ORyAa92+Nn7NHiHTPgHryRWv9qazaRJrUFvGpVhdW7LMi
Ie/Me33ya8j03UrfWdOtdQtJFmtLuJbiGRTkMjgMCPwNAHO6H46a41iHQ9d0ubQNbmRnhjdxLbXY
UZYwTDhsddrBXwM7cc1wf7Q3gkWelt8Q9Ck/s3xVoIWf7THwLiEEBkkA+9wT9Rx3rrvioyTR+F7O
Ar/a8+u2j2PHzL5b752HoPIEoJ9Gx3rE/aa1ZrD4R6paQKZbzVZYtPtoV+9IzuPlA7nGeKAPQvDO
sDxD4d0rVQnlC9tYrnZn7u9Q2P1rZ+C9ikPizxx4VDpNotzb22tx2vezuJ3ljlC9lVzCJAB/G0h7
1l6HocnhvRdO0eRds1jbRWzLnkMqBSD75rqfgHavJ4z+JkksDpewajZadtYfNsW0jlUdP7078e/v
QBBoujy3Xia105kZ5PtIjdVUknB54H0qb426Lr3hH4maT4il8P8AiGWwutHawhuNH06a8PnCfeY3
SFWdSVIKkjHDDIOM+1N4BufAfxU8Ka7teSzv5vIumQjbFO6MAp/2Txye4x6V9V+HfD62UaXE6k3L
D7pPC/8A16APzOtfCXjz423FjoegeEvFkok1Gye61DW9Ln06ztYI7mKSYu1yE3ZjRl2orEkgY61+
pw44HAopaACiiigAooooAK5D4qf8igP+wlp3/pdBXX1yHxU/5FAf9hLTv/S6CgDr6KKKACvz8/bm
/wCTr/Bf/YlXn/pdDX6B1+fn7c3/ACdf4L/7Eq8/9LoaAPL6KKKACiiigAooooAKKKKACiiqerX7
2Fqpgga7vZpFt7W1U4aeZztRAe2SeSeFAJPANAF3QPDv/CfeKo9IdN2jWIS61UkfLKCcxW3vvILO
ORsQqwxKDXuF5/yMXhD/ALDlr/M1lfD/AMHp4I8Nw2BkW5vpGNxfXYXb9ouGxvf1xwFUEnaioueK
1bz/AJGLwh/2HLX+ZoA+j6KKKACiiigArz345/8AIo6J/wBjf4X/APT9YV6FXnvxz/5FHRP+xv8A
C/8A6frCgD6VooooAKKKKACiiigAooooAKKKKAPHNO/5GTxj2P8Abb/+k1vUt9oenapKsl5YW11I
pBDzRKxGOnOPeotO/wCRj8Y/9ht//Sa3rToARFEaBEARBwFUYA/CloooAKq6pqtloem3Oo6leQaf
p9rGZZ7q6lWOKJAMlmZiAAB3Ncz8VPidpnwp8LnVr+Ka9up5ls9O0u1wbjUbtwfLgiB7nBJY8Kqs
zEBSa+fZvB+rfELVI9c+JWoDXrxXWa18Owt/xJtKYHKiOLA+0SKQP30247hlFjB20Adxqf7UjeIo
3T4aeFLvxehJVNc1OQ6ZpBwR8ySuplmUjkNFEyN2bvXG6x4f8XfENmfxx441Ga0YEDQ/C0kmj2C8
8Fnjb7RI2ODulCn+4K2dV8VaXo3yXFyokA4ij+ZvyHSuO1T4oTS5TT7UQDtJMdzfl0oAtx/BXwzY
XaXWkPrPhy6UgtJoeuXll5pHQyBJNsh92BrRbwr4rjASx+Lfjuxi7xrdWk+f+BTWzt+tcM3jbWiS
f7RmH4L/AIVXuvFGq3yhJdQuGHTar7c/kBQB1eo+BfC9nqEWr+K7++8XapCRJBP4mvWvzEw6NDA3
7qNufvIin3qjrHxKvrtilii2cPQMw3Pj+QrnrHQtQ1VgbeynmyfvkYH5mtubwVbaDps2qeJNXtNG
02Bd800syqqKOuXbAFAHNXl9cahJ5l1PJO3rIxNOs9Pur9ttrbSzn/pmhI/PpXMXf7UHw7h1J9K8
BeFtZ+JWrowRv7LtHeFGJwC0jDhSR94DHXtV+LWv2kfHcaCx8P8Ahn4Y6cwKs2oTfbLpB2ZQvy/g
QP6UAdjD4C1ho2lmhis4V5aS4lCqPc15p4q+N3wz8GagdMOv3PjDXtzImk+Frc3Lu4zlN/3c8cjO
Rg1Jffs02+uyfaPix8Vte8aykYfTLKX7JaMAeB5SZ59xiu28Nx+F/hrpo07wJ4ZstAgHDXPlhp5C
BjLMcsxwByxNAHnt14++MviPTJI/Bfw9tfhnpsibjr/ia4WS7KEfwQkZDgngFWHHOKyPA/wXtdF8
VR+L/FOpXHjnxgr+YNQ1fLxxNyR5cRJAAJyM9O2K9SuLm51i8DTNNd3Mh+XcSzEnsB/hWP4o1RvD
uuQ+H7bT7vX/ABPNEs40XSgsk6I2cNKzEJEvB+Z2UcYGTxQBvTanqmszESXN1dyEfdUk8fQVuaT8
N9RvpEe8C2UJ5JY7pPy9frVPwvonxTltTEI/DHgeEHPmMkmrXk45wHAMSR446F85I4xk7i+FviY6
7pPiFpCS+kHhnEf5NcE/rQB738KPAfhbR9PW80+087UgNs092wllRv8AZ7KD7V6N2A7DpXyPp9h8
XtJu/Os/iD4bhIGA3/CLSlj/ALw+2YIz2xXR2fjD42Wc0Rm8XeCtTgBy6S+GLi3Zh6BlvGx+VAH0
tRXz2vxl+K2l3Cm48JeE/EFpnL/2fq09lcbf9hJInRj9XUe9df4J/aU8G+KtUg0PUprjwX4qmO1N
B8ShbWeZsZPkSZMVwAOpidsd8UAeg+JvDtl4s0O80rUIhLbXKFD6qezD0IPINcTouqeK/h7Yxafr
2mSeINLt18uLVdJBkmCDp5sR+Y8d1z9K9K/CjvQBh6B420LxRavPpuqW1wsa7pV3hXi/31OCv415
B4s8RaJD4m1KOLULSNVmPyiRcZIBJGOMV6H8TPBvhnW9Dnk1azVJckx3FriOcuRjgj73uDkV8nah
4X1HSVcz2MixRnBlQAp9eOgoA9hvrG21zS7iznVJ7O8haF14ZXRlIP14NeK/sD/Eq48F+DfEXw6m
uhNd+EdaurL7FdviQwNIzJKB2BO8Z6cV0vgnxouk7bC9J+xE/JJ/zyJ/9l/lXP8AxC/ZM1n4k/E5
PGXw88SQeE/EVzbCDU3uLYTW11GMBZGx/HjA752r0xQB7B8Zv21PDnwn+yaNbaJf+J/HmpR/8Svw
xppDzXDHhS5UEohIPOCSA2AcGsLQ/gh+1B+0fZm48ceP7H4O+GLolZNA8K24lvzC3Ox7gn5JAOCy
sR7dh1H7Lv7HunfA3VNQ8RazrD+N/iNrDbLnxFdQeWY4yeIoVJYoMbQTnJ2gcKAB9m2tslnbxwxq
FRBgYoA8Z/Z7/Y/+GX7NNrJJ4T0Uz69cLi88Rao/2nUbokDcWlI+UMRkqgVc84r2uiigBskayoUd
Q6MMFWGQa+OPiP8AsGW+kXWqap8PPFV74b066ne6bw7LaRXdpbPIxeQ2xYB41ZizbCzIpY4AHFfZ
NIyhlIIyDwQaAPyg/wCFaWXgzxNd3E2san4k1tENtJqGrLGjQrkbookjVVRSQCcDJIGScDHG+FfD
7/Gz9qzStGEEl9oXge2GqXMUY3I18xHlIw9RwR/umvbf23ZtO+Dnib+xPCtpc674/wDFUiwaHo/n
GR/OkJBuHzyVU+vy5wOACR7L+yR+zfD+zn8OGs76ePUvGWsS/b/EGqIS3nXJH+rViASiZIHAySzY
GaAPKdR8D6nL8SjpcllO01xL9q8vbhjETuLY9OorW8NqfCP7TVlBd5isPF9pEsKyJtVb+z3FkOeS
0kDqQPS3Y17H/ZD337Qr33mBUsNFjYr3bzGZQP0Jqz8cPhrL8RPBcx0cQ23jLSpE1Tw9qErFBBqE
PzQ7mAz5b8xuB1SRx3oA9V8P6dHqepRpNGssSfvWVhkZBBH64P4V39eRfAH4jWHxM02bUbaCawv7
YtZanpN2Atxpt4m3zbeVezDIIIyGVlZSVYE+u0AFFFFABRRRQAUUUUAFcf8AFZtvg8H/AKiemj87
6Cuwrzb47a1HpvhrSbUybJbvXtJjCg8kfb4M/hQB6TRRRQAV+fn7c3/J1/gv/sSrz/0uhr9A6/Pz
9ub/AJOv8F/9iVef+l0NAHl9FFFABRRRQAUUUUAFFFFABW/8IfDv/CQ6xJ4suVzY2pktdIVhw7cr
Nc/jzGh/uhyCRIK5VtNufFmtWXhmxkkglvg0l5dREhrW0XAkcN2diVjTnIZ9wBEbV9B6fp9tpNjb
WVnBHbWltGsMMMS7UjRQAqgdgAAKALFULz/kYvCH/Yctf5mr9ULz/kYvCH/Yctf5mgD6PooooAKK
KKACvPfjn/yKOif9jf4X/wDT9YV6FXnvxz/5FHRP+xv8L/8Ap+sKAPpWiiigAooooAKKKKACiiig
AooooA8H0fWVb4iePdMkYCRdY8yIf3lNrbbh+B5rqK+Qfirq3xI0P9pTx/P4Qv8ASb+2/taKX+x9
Wja3CgWNoCUukJKHOTyjg5xgda73T/2ivGun28b658KryZIyFnk0XWLa4kI7vHE+zcB6ZBI6DPFA
H0DVPWNYsfD+lXmp6neQadptlC9xc3l1II4oIlBLO7HgKACSTXj0n7Y3w0hs45pJ/ESXDEqbA+F9
R+1KwGcNEIcjp16e9eZeOvE+o/Gq5ttT8W2lx4a+HNnIk9h4Wu8fatWmU7knvlUkBFIBjtskA4eT
nCoAW7PWrj4teMpfiPq0UlpottE9t4VsbtTG1vZsB5l7Ih+7NORxnlIgg+Us4OJ4v8dPqDNaabK0
dr0eZeGk9h6D+dZviTxpd+IFMIH2azz/AKlTktjoWP8ATpV/wj4JGoRjUNRPlWS/MqMceYB3J7L/
ADoA57S9A1DWWxaWryLnBkPCD6sa7XS/hfDGFfULppG/55w/Kv0JPJrj/G/7Wnw58B3q6LY3c/ir
WVyqaT4Zg+1yKV6rkfKCPTOa5P8A4WB8dfjRN5fhDwvD8L/Dz8f214kXzL5we8cGPlYc8EEHjmgD
3+38G6NbAMmmxNgY3SAt+eaxfEnjjwH8NYTc61rWh6CCcDz540diBnAXOScZ4Arxi9/ZinvGiuvi
D8aPFmsXHHmW9lciygk5PHlLk4+nNQ6T8Cfgz4OmaXTPBSa7dk7jc65K9wpb12uT/IUAWb/9rTVf
iLcNpfwX8Fah4uuW+X+3dSha10y37biWwWwSCVJUkZxWMPgN/wAJRqsOufG7xlN451OJ/Mh8N6W5
i020bOQuFxuxkjPGRwd1ehXXiC9uLdLaN1srJBhLSzQQxKPQKtQabo97q8gSztpJ+cblHyj6npQB
r2fi2Lw9psWm+GtHsfD+nQgLHDaQqoAHbAAFZV/rV/qhzdXc0w6YLYX8hxWxqXhzR/CGn/bvF3iX
TvD1sMZa6uI4gCTgDc5HfHQVTs/H3gCSRE0DStc8ZzMu+OTStLuLiCQYyMTsqw9u70AZENvJcSbI
Ymlcn7sakn9K6ez8DtBYS6jrl5DounwL5kslw6rsQDJZmJwg+tW7bxB4/wBUjRNE8BWPhS1YENce
JdQTzI/Qi3td4cexlWqjeALa8vINV+I3imPxZc2cgkg0uKIWul28gPysLQMxlccENMz7SMqFoAoa
V4ivvElu8Xwx0Rfssh8v/hNNbUraBckNJbxH95c46qQEjbOQ5Fd14U8J6N8LvD8yRzO7yyG4v9Uv
CGub64b70srAfMx4AA4UAKoAAAz9S+KEEJMen2hlAGBJMdi/goritW1y+1yZXvJ2kx9xAMKv0FAH
Y6h8UuWWxssjosk7Y/HaKyZfiVrEkZVfs8R/vLHyPzNGh/Dy/wBUHmXR+wQEZXeuXb/gPb8a6W3+
GGmR7vNnubj0G4Lj8hQByD+PtckUr9sC57rGoNQ/8Jprn/QSm/Jf8K9At/hxo0Mgc280wH8MkhK1
zPijx18JvDGoNp+u+JPDel36gK1vNfRpKg7ZUHI+poAyYfHWuQyBjfNIP7siqR/Kta68YaN4s0x9
K8U6Ja6jYTDEsU8Kzwt7mNh/Km6bH8PfGMCzaB4o0y5QnAex1KKZTjqMbjUOq/Dm9tYvPsZU1GDG
fkwG/DsfwNAHQeEfEXjf4Yx+V4Iu7Hxx4PbGzQde1CSO704k8/Z7why0eM4hlHBPyyBQFG5r3xS+
Kfjorp2naZb/AAyscbrnV2uYdSv29I7ePaYkJ6mR92MYCHOR5Ba3l3pN0WgkltbheDtyp+hH+Nab
eNtcXzE/tCQ7j1KrkfQ4oA1rj4ia58NdaFn8SfE0us+HroZ07xdqUcUAt5P4rW7MarGhPWOXaqty
hwwUvdh/aD+GF1fR2UPxB8NTXMrCNI01KJtzHgAHOCT9ah0n4lf6OYNXtvtSngyRqp3D0ZTwa1bX
xV4a1xG0yayiS2nUxGG6to/JcHjYRyMH3oAi8VeAY75ftWlIiXDHLRBgEcHuPf8AQ1sfBn4oHwG1
xpWsadePZyOW+1QwvJJBhfuFAOV+nTNedWt+/wCzzqSafqk8Y+GF9cFNP1CViP8AhH5GA22sxOR9
mZt3lyEgRlljPG0j6m+FurQzWM9mrqX3efGynIdSACQe+P60AdT4F8eeH/FGr2o07VIZpFlUNC2U
kUkZAKMAea9irzC1K2l4lyqKJAysWCgMcepxXpkMqzRJIhyrAMDQA+iiigApKWkoA/Pb4d6Daaf/
AMFHvjKnjSBtR8XtY2+peFtQvJfMEWmsoWRIE6Jt3Bc9eHxjJJ+uq+VvEN6vij/gqkD8oi0f4es8
RCAFi0+D83Uj973yBg46mvqmgDzjTdWh/wCF9a5ZMCkp0a3VCSMNtdmOPwYfka9Hrx34zFPC3jjw
T4rT92UujZ3LDq0ZH07Bmr2Ljt07UAeSeNrqX4GfEq2+LVmjnwxdRJp3jWzhTJ8jcqwapj1tslZT
1MLEknyVWvqa2uYry3ingkSaCVQ8ckbBldSMggjqCO9eZSRrNG8bqrowKsrDIYEYII7givJ/C3i2
8/ZP1D+y9XMl78FLiUmx1FVaSXwix5+zzgZLWBOdkn/LDOxv3WDGAfVVFYPhXx54a8dWMd74b8Qa
Xr9pIgkSfTLyO4QqRkHKE8VvUAFFFFABRRSMwVSzEADkk0AeY/Fb9pb4b/BfUo9M8V+JoLHWZbY3
kelwxSXF0YclRKY4lZlQspUMwAJBGa+SfHf7XXg34t/E7wZpeh+KdMv2ufEWkLFb29wHIH2+D5Qo
/iPfPSux/bc8Jr421bSvEugSRWvirw7azCCWUlYry2dlMltMRzsYoGVsEoygjILKfnf4U+JoPFXi
TwvcLZyadfW/ijS7W9sbhVEttMt9ASjEcNwQwYHDKQR1oA/VyiiigAr8/P25v+Tr/Bf/AGJV5/6X
Q1+gdfn5+3N/ydf4L/7Eq8/9LoaAPL6KKKACivI/+EW8Q+MtXm0vVpnfwrZ6he3T3Vnqh8y+ZpWM
Nv8AIQ0Yh3FSpIGUXsK9B8D2up2Pg3RLfWXaTVorOJLpmcO3mBRuyw+8c9T3PNAG3RRRQAVW1PUo
NI0+4vbpylvAhdyAWOB2AHJJ6ADknirNWvAPh3/hOPGX2mZd+heH5ldsj5bm/ADIvusIIc/7bR85
RhQB3fwj8Fz+GtFm1LVIRH4h1grPeLwTboAfKtgwzlY1JzgkGR5WGN+K7uiigAqhef8AIxeEP+w5
a/zNX6oXn/IxeEP+w5a/zNAH0fRRRQAUUUUAFee/HP8A5FHRP+xv8L/+n6wr0KvPfjn/AMijon/Y
3+F//T9YUAfStFFFABRXhv7QfxU8efC/XtNl8MeEtW8XWF7oepRW1npGmtdZ1nzLUWIuXX/UQbWu
CzkhcA5OQoL/ANn2z+JXhrxR4o8N+PvEt74zittN0u/h1u602K0jF7P9pF5awGJFWSKPyYGXqy+d
gk8UAe30UUUAFFFFABRRRQB+dnx3Rm+OXj4gE/8AE0j6f9eVrXI2+oahaSrLDc3Eci9G8wn+Zo/a
A1T4pR/tQ/Em28L+BdE8T6It/CyzahcmJw32G03c7uOcjpz6cZPI6j4s+K2hRxz6r8BrK9sQf3za
JrAadF7lVxz9O/tQB6FJ448QyRCP+0JVA7qAD+dZd1dX+sXCmd57uc8KDlj+AFebTfHl9Qt5B4c+
CHji+1CJd0kesg2dunIBzJg9M57fh1rFOpfHTxVdXBtr/RPhjplwoXytNj+03SqOxZs8+4K0Ae26
tDo3w60mTX/Hep22g6RAN5juH/ezHGQqoPmYn+6ASeleZR2vi79szVo3cX/gn4I2hykaN5N3r2Mj
n0ix6/KAeNzcpneEfgJ4Y0vXI9b8VPqPxE1eIZhl8R3bTRI56ny84Yf7LZHftXruqeKNQ1aFYZZV
itUGFggURoB2GB2oA1fCuj+APg3YfYPB3h61tmACvLaoC74GMvM2WY/iabrHj7VtUUpHiyjPXySS
x/4EefyrL0vwvqesbTb2j+Wf+WsnyoPxP9K6zT/hX0a8vSwHVLdP/Zj/AIUAcPDZ3eo3BWKGW5nb
k7QWY/Wui0/4c6lMplvWj063UbnaVgSo9T2H4mreqePbfR9Tfwn4C0m38S+JoVDXUAufKtNPU4Ie
8uArFCQfljAZ27ALlhz+qeC7PUs3HxL8Rf8ACb3SkMvh2zi+zaRE3YfZwSZegOZ3fBGQF6UAQab4
m0LVpJIvA+iX3xJukbZ9uhYW+kI2DybphscAjB8oSsPTNa954f8AE+owbfF3jK38Naaygf2H4NQw
vgghke7fMrezRrEeOtRan421C8i+zW2zTrJRsS3tgFCqOgyP6YrBjR7iYKitLK54VQWY0AaWl6d4
J8J332zRPBttLqar5f8Aa2pf6RduP9qaQtIeg6tWheePtdul2rOLZOywIB3p1j8PdVuY/NnWOwhA
zuuG/wAOn41z+peMvht4Vu5bK+8Ry+INUiO2TT/D1vJfSxEjI3rArlf+BECgCS51C+uuZ7meTP8A
fkOP50lnpV3qEm21tJZ2zj92mfzNJpPjrWdcvmh8I/DKzgt/mzd+LNUW0ZlBGGEcaTMAfRtre1dB
JqXxJurcBtZ8BeFHXd5scUVzqhHPYl4B09QaAL2k/C+8uMNfTC2H/PKIb3/PoP1robyHwr8O7BtQ
1S6sNIghHz3upXCR4/4ExrzvUtCstQ81fEnxA8UeJ1k+9ZaZOumWqc9F+zhJMf70jdKrWOn+C/D+
pLqWjeBtKi1VQFGo3qfaLjA/22y360AdU3xI1/xvuj8A6FvsTkN4m8Qo9tYDqMww8S3HYgjYjA8S
Vk3nhn7Ysq+Kfib4h1WVgu+10F10y3jYdfL8geaBns0rH3qrrHifUtcOLq4Jj7Qx/Kn5Cq1ho97q
gb7Jay3AXqY14H40AWYfh78P5/8Aj71fxfexqQ3kah4k1KSN/YoZsMPY8Gun0HXPCHgzT003QPD0
el6fH9yGws44U55JxxzknrWPZ/D7W7qMsbZbcdvPcKT+HNSr8N9ZYZxbj2M3/wBagC9qh+H3ipSd
a8L6fes2UP27S4pTtPXJweKo2/wh0GP/AEz4b6xN4G1BFOIdJIbT5eScTWL/ALsgnqyBJMcBxVG5
8F63ax730+Qr/wBMyH/QGslWms7jKl4J07jKsP60Ab9148GlMNO+J3hqXS7pRhNf0y1ludMuwBy4
kQM9ufVJgME4VnxmruiTfDrx7eT2nhzxHZXl/GAXtbS9Vpo/dom+YfiKqW3xE1u3UKZo5gOpkjGT
7Eik1y98M/EC3+y+LNFiaSN/Mt9QtAUuLaQdJIpVxJE47MpzQBZ1D4Z6rbyN9lMd5EOQQwVj7YPe
uf1LRb7SJRHeWskDMMjdyD9D0Nb9n4d8VwxMvh34rf2mQflj8SaXb3gVeOMw+Q5+pJNQ6h8Q28K7
tG+K1va2FrIR9m8T2UMqaVP2xKxLG0kBIG2RtrZG1ySVABLoPjRrPT307U7T+0rFwUKyYY7D1Uhu
GHsaj0HwXB4dvodW+E+sReDr2I7pdCljZ9Ln5yc2wYeU3J+eErnPzB+BVnVPh3MIPtek3CahaOu9
NrAsw/2SOG/CuTmhls5tkqPBMv8ACwKsKAPdrD9obx5oMAbxV8MBfRKfnufB+sJeMqgcuYLhIX7f
dQux7CvevhH8bvCfjzRYrrRdfs9SsJeRtlCTW7fxRyxNh42U8MrAFSCCK+ItL8WarpLr5V28kYPM
Ux3qfz6fhUfiJvB/jC8F7rvw/wBC1e/xt+03lvHJJtIwQXKZNAH6awXMV1GJIZEljPR42DA/iKlr
8rfsFt4fvYNR8Azaj8MtUg/1b+F7ww2p/wB+0IMEmeh3xnIPYgEfSHwW/bU1LVr+38KfEhdM0HxH
M3l6frEBKafrGB0Xcf3E/cwsSCOUZsMFAPsEsFBJOAOprmvEXiKNoGtrN97Nw8i9MegPfNYd7rV7
qEbJNM3lMMFEGAQa+e9H+K3/AAqvWdX8Ka801/bWc5+w3i/MVjbLBHPoMgDHTp2oA43wZawT/wDB
Rr4iXNyB9st/BdlFaEHpEzqX/UCvqivgj4xr4z8E/F6x/aC+HkMfinULfT203XfD/wDz/wBju3Hy
iAWDjC9AT8ikA4Kt9WfAn9oXwX+0T4Rj13wjqSzlVX7Zps5C3di5/glQH1zhhlWxkE0AdL8QvAtt
8QfDcul3ErW7hhLBOv8AyzkHQkdx6ivPfAXxMvvBupf8Ih453W93CQlrqMh3JIhOF3N/d9H/AAPN
e0Vz/jPwLpHjzSzZarb7wDujmjO2SJvVT/Q8GgDoOtBXOQRx0NeL2Hi7Wfgn5Oj+KY5tX8PAhLPW
rdclAekbqT25759M163o+tWHiCxS9027ivbV+ksLbl+h9D7GgDivF3wJ8J+JroatZabD4X8WwsJb
LxToVvHbajayA5DCQL868YaNwyOMqykHFW9N8ffG7wj9nh1TRvCfxFtVB82+0u6l0S8Ppi2lE0TN
/wBtkH0rt6KAOYtf2pbqzhml8R/CH4heHo4kDNLHY22pqeeirZXEzk/8Aq9aftifCuS3km1DW9Q8
NpG2xj4j0O+0wA4yebiFBgeucVsAY6cfSnMzMuCxI9GORQBlf8NlfAtlynxc8GyseiJrduWP4b65
H4iftmfDHSdOyvjjQbsybfKsbDUI7m4uCxIUKkZLMSRwqgkkcZqD4geAdPSNtUtdPtR82bhPIU5y
fvDj868xvLjQNBm86ZLCzuFGQVhQSfhgZoA8Z+P3xGb4w+D7uy0jTPGhuppUuVmXw/fQrMyNlYHV
lTdE3CsCVGO461R+Efg+fwjqngpLzwt/wiWo3XiDSbi70/zRNiT7bApPmAnfwBg54GBXpGrfFK5e
Vl06ERx9PMnyzH3xniuf03VrvWPHvhKe7lMsn/CQ6UB2Cj7dDwB2FAH6Z0V518WPidfeDb/w34b8
N6XDrnjTxNPLFp1ndTmG2ghhQPcXdw4VmWGIMg+UEs8sSDG/cOg8Cp4wj0+5XxlLoc995v7iTQop
o4zHtH3llZiG3buhIxjp0oA6Wvz8/bm/5Ov8F/8AYlXn/pdDX6B1+fn7c3/J1/gv/sSrz/0uhoA8
vooooA8Ev9Si8N+ItehsfjPpWhRzahNcSaXNYQSG2kZjvXLPnOevTJycZJr2rw3Obrw/psx1GPVz
JbRsdQiQIlzlQfMCjgBuuBxzXC+Kb3xPcXd9ph8LeGbqzui8UX27VijzxnIBaPyT1HUAn612Xg3S
b3QfCej6dqN2L6/tLSKGe5GcSOqgE88np1PJoA2aKKbJIsaM7sERRksxwAPWgCjqs15I9ppmlKsm
talL9ms1cZVGIJaVx/cjUM56Z27QcsK958I+F7PwZ4dsdGsAxt7VMGSQ5eVySzyOe7uxZmPcsa8/
+CPhtr6OXxtfRlZtSi8rSo3HMFiSGD47NMQsh6HaIVIDKa9XoAKKKKACqF5/yMXhD/sOWv8AM1fq
hef8jF4Q/wCw5a/zNAH0fRRRQAUUUUAFee/HT/kUNE/7G/wv/wCn6wr0KvPPjp/yJ+if9jf4X/8A
T7YUAfS1FFFAHjXxs8P/ABR/4TrwZ4n+GK6BdyWFtfWWraf4l1a5tbW4gmMDRlEihkzKrwkiQ42g
suG8z5eo+FepfErUI9S/4WJo3hfSHQx/Yh4a1S4vRIDu8zzPNgi24+TGM5y2cYGeA/ao0fwRq3/C
Mf8ACZfBnxB8XPL+1fZf7D0xLz+z8+Tv8zdLHt8zCYxnPlN0xzzP7GvgC08IeLPibqXh74Yat8L/
AAZq76dJY2GvQRw3klyiTi5wiySFYAGhKBj955cccAA+oqKKKACiiigAooooA/PX41ateaX8c/iF
9juZLbzNUj3+WcbsWVrjNcgvirWEdnXUrkM3U767H4yzaFD8eviA2v6omk2g1KMieWVI0z9iteGZ
ulcE/wAUPhTaMsem3d94xmbKj+w7Wa9jznoZY18tfxYUAWtS8S6pq0ey7vpZY+DszhfrgVmVBcfE
7WtQjH/CO/DWy0U/dF14ovY96cffENv5m/H91nXOOo61ys3gvXNcmebXvGmpzNKD5lvo8cdhBk9S
CA0o/wC+6ANbxB420jwvdW1tfPNcXtwcxadYxtNdTLnkqigkDn7xwozya3NK+LC2qK+n/CnW1mUj
ZNq19ZRnnucSuRj6VheGfBWjeEFnOmWfl3FyQbi8mkaa5uCOnmSuS74zxk4HatygBbn4ofE7Wk2R
WvhjwmmR8ytNqsu3nIGRCqnpg/MPaucvfCNz4hYSeJfFHiLxHLnO2bUHtYO3y+Rb+WhXjowPvmuj
69Oazdd8R6V4XtPtWsalaaXb5x5t5MsS59Bk80AbmjXyeGPDlvoWg2VnoGlQggW+mwiIMTyWJHcn
qabY6bdalIUtLeS4cckRrnH1NclpPxSh1B5k8OeFJPFbDBW/vp3sNPT28woWlyOnlqw9SK2tQ8ae
O/EFnFptrb6b8PbLANzdaLci9u5T/diMkSpGOnzMrMRkADrQB0msRaJ8O9FTWPGNxLCk0ghtdNs4
2murqU5IjSNAWdsAnC9ACSQAawpvil4tvLQQeFvB2neDVk4a/wBdnW6njX1FvAcMx/2pRjrz0rKs
vDrR6wNX1PV9T8Q6qkTW8N5q06yPBEW3FIwqqqAnGSBltq5JwK2QPQcUAcveeA4PELeb4r1TVPGV
www/9sXJNuec8W0e2Ef98Z9639N0200ezjtNPtYLC0jG1ILWNY0UegVQBWfqXjPw/ozOt/rumWTI
MsLi8jQqPfJ4rCPxU07VHEPhmyvvFs7dH02LFqOcZNy+I+vYEt7UAdrUqWc0ih0t5HU9GWMkH8cV
V0fwb4rh2ah4g8bWHhC64ePS9AtEvZYRn7sk04IckYyBGuMkZOM1t61f682nslj8TtRSccJ9n0O1
Tj3LKRn8KAGWfhnVdQIEFhcOD0Zk2j8zRrlroPgtoB4r8WaRoEkzBYrea4BmlPoifeY8jgCuSk0n
xDrG2LxB8Q/FWrWRI329vPBp4YZB+/bRxv2x97HJrqvD02h+CRL/AMIx4X0vR5pjmW8Mfm3Mx/vS
St8zt15YnOaAE03xHot7tXw74Q8V+MrhXCNNJYNp1qP9oyXPlhl4/g3H2NbsfhXxjryC58W+KYvB
ulqMR6D4TkCAD/pteyJvc9CPKWIDJHzcGs+68aa3dNufUZlxnAjwo/lWRcXc15IZJ5nnf+9IxY0A
bq/DjwXFN50PjPxZFPnKyf8ACW374PrtZyp+hBHtUsfg/UtrSWfxs8RqpPyrcRaZMo56HdbBiPxz
71gw6bd3DKsVpPIzcgLExz+lPn0W/twDNY3EYJwC0Lf4UAdJE/xHsJ5G0/xR4R8WxL9yxvLOTT52
6YzPHJIuev8AyypurfEKazieLxp8O9btFwAt1pFv/a8LseymAeav1aNR71ybxtbuN6NE45G5SprU
sfFmr6dGEt7+ZUAwFYhgPpmgBdM1/wABeL9Xh0iyvNS8Oa3chmtdP17T7iwkucDLeStwi+ZgDJCE
kDk1p6h8OdYs1kkRIrpVPAhb5j9Aar6t4osvFujvpfirQrLxBYsQ/lzoMbgcq2D0IPQjBrIi8J+H
rO8+0+CdTv8A4d6uv3PLcz6bc99k9q7FCCerrskx0cUAV5I3t5ikiNHKpwVYFWFdLpfj+/s4Db3a
R6lasNrJOOSvoT3H1FZNv8VDcWbWvxB8IalFcI2INW8N6bc6jZ3YBwSpiRpIm6ZRxjn5WbBw/S9S
8B+LbsWOi+KY7PWGXeNJ1dGtLrbnGTDMEkA98UAQWfhXwta3AuvCOpal8Nb4HPk6awfTZcnJD2bZ
hwT1ZVR/RhVzVvH3inwysEXijwzpXjbTX4GqeGZgkvHUtazN8uB2WView7U7UPBes6duL2UksY58
yD51I/nWI0ZjYqyFGHUMMGgDd8O6p4E+Jk0kHh3V2sNXRd8mk6hE9tcoucZMEoVwM9xkVc1jwbY+
FbCS/wDEPiPT9FsY+XuLpxEgX6uRXGXmg6Frk1ude0Ky16GBt8cd4mTG395G6qw7EGuk0PS/h1od
8NTi8LtNqkQxDc6gzXssQPVY3mZjGvsuBQBx+qeOPDlvJZm1/tttOupvs8OtX2lS22nzSE4VUlcD
7x4VjhWJAUkmrmp6XZ6zYzWOoWkN7ZzDbLb3MYdHHoVPWvUbjxl4f8XWV5pGtWKvpt0hhkgvUEkM
yHgq47Vxsn7PtlbLH/wifjnWNHt1H7qxuZo9Ttj6D98DLj2Eg6UAc94T8e+IPg2Us2/tfxV4IY/6
lZ3udQ0n3Te2+4g/2MmRP4dwIC+j61d6X8TPDVt4i8NX8OrQR7l8y3O4tz8yEdVdTnKkZHIry/xB
p3jT4b273PiXSYdd0aLl9a8NRSO0S/3prM7pFUccxtJ3JCism3a90fU4vHPw/urea+uEV7qyWbFj
rkIHCuRkLKB9yYDIIAbcuRQB2+l6vd6NdJcWkzRspyVydrexHesrxX8GT4k8QJ8SvhPrB8BfE6zV
vMaAhbW+yQSlwmCCGx97BB/iBIGOx0n+xfi14XXxN4ZMlvO7Mlzp9woSWCdeJIJU/gkU5B7HqMgg
1g6fqV1o94J7aRoZl4P9QR3oA9b/AGbf2y9P+J2oL4G8fWa+BvivanybjR7oGKG+ZRzJasxwc4J2
ZPQlS6/MfpiviD4hfD3wX+0VosFnq8badr9r89jqdudl5ZyDBDROPvLkA7T6DoQDUHwz/aw8Y/s5
anp3gj4/LJqehzS/ZtJ+ItoheN152JeAchgABu+967gGegD7fvbG21K2e3u7eK6t34aKZAyt9Qa8
o8SfBu98P3jaz8P7+TR70EM+m+Z/o8vrgHjPsePpXqWj6zYeItJtNU0u9t9S028iWa2vLSVZYpo2
GQyMpwwI7irlAHitj8fb/wAN+XaeNfDd7p1yp2tdW8eI29wpOOx+6TW1dftHeCbdYil5dXRkXcRB
bEmP2bPevTLi3iu4jFPEk8R4KSKGX8jVS10DS7Dd9m02zt933vKt0XOPXAoA86sfj/Y6tcpFpnhj
xBqIkOIpIbYbZPcEnA/E1NrXxE8aNbOdH+Ht+r79qyX0sfpnOxW/DrXpqKI0CIAiDoqjAH4UUAfO
eq6b8YfGkMq3ok0zT5g/mRGSO3jVepDBctjj1rz+H4Y6nMwaa4t48nk7i5x619PfFLx5o/w/8J3d
9rGqWekxNGyrNeTLEoGPmbLHoBXxVeftOa18TNVufD3wL8GX3xA1OImOXWpozBpVqRxlnbG/HBxl
dwOVJoA77UfBWieFdLn1PxDr0dhp0C7pbmZ1gjT3LMf0ryrw3+0R4Z8XfFDwZ4f+HvhO+1+w/wCE
o0iK98TTKYreBRfQ5KFhlzkD04Oa2bP9jXxF4s1GDxH8ddcvvFl6rCSHQ7YtBpVoc5CgLjeRyM8Z
HDZr0Bvh3pvhDXvBTaHbQ6fpsPiHSIhYwqFSPN9ABsHp7UAfXfxS8H+MY/iV4R8feCrXSNZvNJ0/
UNGv9F1i8kshPa3T20vmQzpHJtlSSzi+VkKsrv8AMpAJ1bz4sf8ACJ2OjxeL9Law1+8VWnsNDeTU
obbfcx28WZvKjJLyTRKBsBJL4BWNmHoVYV94J0XUtbk1e5svN1CRLVHlMj4K20sk0A25x8skrt05
OM52rgA4S7/aP8N2Mb3MlvfPZrai43QwM0kZWK6lnEgwERY47QnfvIJkUD7yF/k39vJLmT9qrwUL
WWKGX/hDbolpojIu3+0INwwGXkrkA54JBwcYP2n/AMKX8G/2NeaSdGVtOvLCXS7i3a4lKyW0kEED
xnLd47aFc9flJzlmJ+M/25v+Tr/Bf/YlXn/pdDQB4mLPxJtXOraWTgbv+JZJycJnH+kcciT6bl67
TuuaTDqkPmf2leWl3kLs+y2jQbeu7O6R854x0x71oUydZGhkWJxHKVIRmXIBxwSO9AHhmpaboFjq
niK38V/D/VPEmsXd7PLHfw6WbwTwO58hY5v+WWyPYmCV2lSfevTvC+m+IbPwLoVncXsEOsw2aJdS
XcRufnERABKumSH2ktn5grDgtuHmtrqXiPwq19p2pfFLwjp14bueZobqANKgkkZwcNONvDAhSPlG
Bk4zXrXg+zi0/wAK6RbQ6i2sRR2sarqDOH+0DaP3mQSCG68HvQAj2viAs23VNNVcnAOnSEgZbA/1
/oUH4E98CvHoeoeIPE/hnQNavbS60bWL9re8gtrNomljS2luPLLNK42OYNjjHKuQCOtdDUel/wDJ
Svh//wBhWf8A9Nt7QB9CUUUUAFFeT+Pv2nvAPgJrq2bU5Nf1S2UtLpugxG8mjxx+8K/JHzj77L1r
tvAuua54i0Q3uv8Ah1vC908rCLT5LtLiQRYG1nZPlVjz8oJxgc0AdFVC8/5GLwh/2HLX+Zq/VC8/
5GLwh/2HLX+ZoA+j6KKyPF/i7SPAXhfU/EWv30em6NpsDXN1dSZIjRRknABJPYAAkkgAEmgDXorw
28/bK+HMei2t9px17XrmZpd+k6XolzJqFtHGqNJLNblFeONRJGd7AA7xtzXsPhzxBp/i3w9peuaT
cC80rU7WK9tLhVKiWGRA6OAQCMqwPIzzQBo1558dP+RP0T/sb/C//p9sK9Drz346f8ifon/Y3+GP
/T7YUAfStFFFAHzV+1Tr2nW/j7wDonjbx1q3w4+Gt/bX8t1q+l6k2lpdalG1v9mtJ71cNChia6cL
vTzDHjPy4M37J+vWN54q+IOjeEfHGrfEX4b6aLBtN1vVb9tREV9J9oN5aQ3jDM8caLZv95thmZc9
hd+LXij412/xhsNO8L/DPSvFngH+yrwTG/12O2iu7gvZmNpQ1s5iaP8A0hVQFhIHdjjYBXXfBf8A
4WZd6t4gvvHOh6L4Q0ZoLS20bw3o98L0W7IZ2uJ3mEMfMnmQqEAIUQZ4LHIB6pRRRQAUUUUAFFFF
AH5n/tCeB/DmoftGePtXvNC0+81ManHi7uIBJIuLG1AwWzjgY4rCXbGoRUVVHRV4A/Cuy/aGvrfT
fjN8Rbu7nitbWDUFklnmcIkaiytSWYngAV5toEfi/wCIUazeFvDv2XSpOY9b8RM1tDKv96GAAzSD
P94RgjkEjBoA2Nw6BBn8ap6prWn6HbvPqN5aafAgLNJdTrEoA6kliK1V+B8Ai8zx148vr3P3tP0R
jpVr17eWzTnjg5kwfQVc0/w78L/Cd0brR/BOnz6h/wA/1xarJMx9TLJuc0AcFZePIfFUxs/BVjJ4
01BuB/ZrH7HEfWa6P7tAM5IBZsdFNdJN4B8cmFI7jxD4K0a6bDSAxXN15QxyoBkj3nP8Rx06V1Go
+PtQu7cW9qkWm2+MFLYYJ/Ht+Fc7DbyXMhWKJpn7hFLGgDjbv4YvdTSJrXjDWNfYPkSWFy+m2/Tk
IkJDbf8AeZj7mreh/Dnw14duvtdnpET3+3b9uvJHurnbnOPNlLNjPbNdP4ii/wCERsFvdbkh0m2Z
S/mXkqxgKOrHJ4H1rhD8TP7ckMPhLR7rxI2P+P8A/wCPbT19CZ3Hzj/rkr++KAO53buNmfxNc1qX
xD0ay1QaTatLretlgg0rR4mu7ncegZU4jB/vOVA7msseBNV8RN5vivX7ieI8jSdHdrS0Xnozg+bK
exywU/3RXYeF9PtPBFukHh+0t9GhQMqx2cSxqM9TgDqfXrQAlv4F8Za/ELjWtQtPhvpbDIhXy73V
HGO5OYYT7AS59RS/8K3+H6/Nq0niHxtNt2Musag6W8gxzugjKRHOT/BVySSa8nLu0k8zHknLMa2N
N8Faxqa7ktDBF3kuDsUUAYNxpHhaO1gttL8FaBo0NuSYvsdkisuTnqB37+9OUhVChFCjoBwBUfiD
xV4L8JzXFlca83iLXojt/sTw3Ebu4DkZUSbciIHj5nKgetcaNU8d61k2ejaX4bt2GVk1e4a6uAf9
qGHCjv8A8tDQB31rY3N+xFvaSXDd/LVmrSfwhq8EMk1xY/ZIY13tLcyBFA+ua8/03R/GMcZW7+IW
qQRP/rLXQ7aGzhbrzllkkBxjkOOlQ3Hwv0DUmkOqx32viTlk1rU7m9jPOfuSOVHPoKANDWvHvhrw
4AdV17S9OzwBc3iISfQAnNWtP+JHw6nsY7mTxTJeF494h0jTbm7cf98I2eKg0bwboHh1NmlaJpum
rnOLW0jj59eBWyGKjAJA9jigCFfih4XjQSaJ4I8WeJnzgfabUWEfTqftLRnH0B61Y/4W148Vm+we
AvCdlb5wsd1rcxkKjpu2WxUHHYE/Wmfe9/1pk1xFb482WOLPTzHC/wA6ALh+MnxLZVQeEvCcJJx5
v9t3ThB67Pswz9MioYfGXxEuNz3nijS7V9+Vj03RAEC/3SZJWLfXisLVvG3h7QoWm1HXdOsolOC0
90ij+dV9N+I3hXWI99l4k0q6T1ju0P8AWgDfPj74k2bSvcDwn4rhzlLW4sptPkxnp5oeUZx/sVPD
8VPh/dyeV4osL74d3xHL6kNtkTnHy3KboTnsCVb2qCCaO6iWWF1mjYZDxsGU/iKcQGUqcEHqDyPy
oAd/wlXw5urhIrL4n+E53d9qo+pRAkkgADD8nJrU1nRJ9JMcjeTcW03MVxbyB45PoQayJYY5rY28
kcclu3BhZFKH8MYrkf8AhWttot4LnwnqN14QnSQSCDTwrWbEHODbOCignrs2k+tAHoemeJNR0dWS
zupIEPVAcj8j0q7q3iWw8W6edP8AFXhzS/Elk33or23Vwccg4YEZzjn2rmLP4pQ2sgsfiZplvp6E
4i8X6REY7FsngXCFma3b/abdGf74JxVq78QfD2O/Wzi+J/hb7UzhBDLqMQbJ+6OH6nNAE9v4a8IW
cjyaJf8AivwbMyhVOlavLJBF0+7bys8QAwP4Kp3Hw/8AEFw/m6T8UdP1WRiWceJ9JVpnzjALwPFg
jn+E9q6SbwHqnkiez8nU7ZhlZrOUOCPWsW40+6tTie1mi/34yKAIFvG8Fbrf4j6Sui2Mj/6P4s0i
4NzpmCcKk+4B7du+XUx8geZniuz/AOFdPe24utL1GzvrSQBo5FbIYH/aUkdO9crDql1DZzWiXDfZ
ZkKSQk7kZT1GDxXHw/D/AE/Sbprzw5c33g+/LGQzaDcG3RnPVng5hkP++hoA9A1TwnqmksfNsmkj
/wCesOXT9KxlYb/lRd4/u5yKXS/ix4+8IyR/2zaWXjXSQ2JbjTYjZ6lGnZvKLGOcjqcGM8HAJ4rq
bX45aLqql/D/AIN8Wa1fuMpDH4dls9/IBzNcCOJcdTl+xxnpQBTsG8RW9s09ql8sC8EgsVwPY9v0
ryHVLVPhr4gj1ywTy/DmqXKxarZJnyreaRsJdxgfdy5CyAcHcH4IbPtGqfDvxJ8Wtv8AwnFyuh6D
GS0XhrRrt5PPbs15OAvmAD/lio2ZzuL8Y8j+J3wZsfhzq2jaXp7TDwl4sefRLzT/ADm+zxE20siP
GhJETDyyPkwCCcjIFAHQaHrcPw3+Kuk6w8osdF8QsdK1fPEP2jbm0uZD0UgoYd38Xmxgnha9f8Ve
AW1a8kvrF445ZQC0L5CsfUMPWvCPA0s3ijwXcWGu2qXd1p8raNqsc8QaKWVUB3FTwVkjZHA9Hx1B
rs/CPhODR4YofBvinUfBVxGDt0u9kOo6TN6KIZW3RKOyxPGB7igCa+0290mbFzaSW7qeGYEDPqGF
aX/CUR6vpU+jeI9Pt9f0W5Xy57a7QPuX8eD+P51c1Hx14k8F24/4WDo2nXvhh02T+IvD7SvDb8cy
XNs4LRRf7aNIF6ttAJEGseD3jhi1DR5F1XSrhRLDNbsJPkIyCCPvDHQigDg/DFl4/wD2T7yXXfhE
8njv4XS7ptQ8CXUzPcWZPLPatgtkc8DJPOVckMv0p8Lf27Pg58UEigXxTB4X1ossUuj+JP8AQp45
SceXub5HbPHysea8Lsr650u6E1tM9vOp+8pwfoR/jVfxPpvhvx8uPF3hHRvELdBcTW4jnX6SLzQB
982t1DfW6z20sdxAwyssLB1I9iOKk7E9h1PYV+a+j/BfSvBsvn/DX4i+MPhjKudlnFcteWO4nJYx
sefxNdBffCDxp4+t1i+I37Q2u+INMD4NnpHl6bHKMcpJsPzAgnPH+NAH0t8Yv20PhP8ABZprPVPE
cWs+IFby00DQcXl68hGVjKqdsZORjeR1FeIXXx2/aO+ORH/CIeHdM+EHhy4JWLUNbButUdD9x1iI
wreqsvfqcc6Pw8+Fvws+ENsG8N6ZpVlOi4a+dhPdN9ZGy35V6LoPxG8NabrdndXeoB4In3t5cbue
BxwByc4oA53wf/wT98K6leW/iD4ua7rPxZ8V58x5dZu3WziY9VjhU42f7JJHFfTfh3w3pPhHR7fS
dD0uz0fS7dQkNlYwLDDGB0AVQBXl1/8AtPeHYOLPTdSvDzyVWMcdOpzg1xuuftRazcxumm6XZ6bn
AEs8hmccc8cDrQB9JsiyqyMqurDBUjIP4V4Z8YNDtdF1zwY1m8Ign8U6NmBZMtGRfQnOM5wa8r1P
4ueNPFEckDazdPDM20w2Mewc8bQUGfwzWd4f8L6zH4o8LX82k3yW0XiHSVkuZrdlC/6dBwSRQB+l
VFFFABX5+ftzf8nX+C/+xKvP/S6Gv0Dr8/P25v8Ak6/wX/2JV5/6XQ0AeX0UUUAeKwaL4l0DWfEE
cXwy0zXrO51O4u7e+uNQt0mdZHLHduQk8kkZxhSF5xk+u6L5v9j2Pn2KaZN5Cb7KNw6wNtGYwwAB
A6ZAxxXh2s2Hgw65ro8c6Lq994lkvZzayx211K0lv5jG2Fs8WVXCFBwQQwbNew+BY9Uh8F6HHrRd
tWWziFyZG3P5m0Z3Hu3qfXNAG7Uel/8AJSvh/wD9hWf/ANNt7UlR6X/yUr4f/wDYVn/9Nt7QB9CU
2SNZo2RxuRgVI9QadRQB4B4g/ZX/ALJ8JaxoXw78STeGNK1Lc02h38IvLJ24I2scTRHKjkOw5Py1
7F4NvvEN9pTnxNpVnpOpxTNGUsLw3MEygDEqMURgDk/KygjHfg1yfjr436f4JufEVk2nzXupaZHY
La2aSoj6hc3kkkcMEW4/3oxlsYALHnaa3Phx43uvG2m6l/aOk/2HrGl3z6ffWIuRcJHKESQFJQAH
UxyxtnAxkgjIoA62qF5/yMXhD/sOWv8AM1fqhef8jF4Q/wCw5a/zNAH0fXFfGT4dy/Fb4car4Xg1
NNGnvGgkjvpLUXSxNFPHMMxFl3gmMAjcOtdrRQB862/7P/xZtvGmp+K0+MWijWtR0+30yef/AIQe
PmCF5nQD/S+Dmd8nvhP7or2P4XeCR8Nfhr4U8JC8/tEaFpVrpn2zyvK8/wAmJY9+zJ2525xk4z1N
eQ61+05qmvatD4Q8B6PpN/8AEGfW9T05tO1S/cQ2FpYyuj3l15aF41l2x+WuOfPXDEA1638K/HS/
E74beGfFi2baeNZ0+G9Nqz7/ACi6AlQ+BuAJOGwNwwe9AHVV578cv+RQ0X/sbvDH/p9sK9Crz345
f8ihov8A2N3hj/0+2FAH0rRRRQB8qftkabY3HxA+Gs/ifwl448feB2t9TgvdE8GWl/N9nuSbVoLy
b7IVyFCyxhHbnzWZQdrV2H7Kun/D/T4PEv8AwgngHxp4GVmt/ti+MLDUbU3JAk2GH7Y7btvz7tmM
blz1FUP2mvETzePfBHgzVviPffCbwhrNlqF1ceINNvIbK4u7uB7YQ2SXUqsIcpLNIcYZxHgHAbMv
7L/iOVvFnj3wjp3xEvPit4R0GLT5bHxJqFxDd3EVzP8AaDcWT3USqs5jWK3kyQWUXIUngUAfQtFF
FABRRRQAUUUUAfnH8Z/Cmg3n7SnjzWPE1zfazBa6tDJY6CyILGKVbG1xK4ABlbdyA5KqcEDIBrO1
jxxqmrMyrMbSA8CKA44926mtD9oTWNI0f44ePZtZ1mx0Sz/tWNXu76dY4482VrjOT3OPzrm9M8Yf
DxvK/s7Ub7x1cSk+XH4dspruPjrl4xsXnjLMBQBU+aWQn5nkY+7Ma2dL8G6tqxBjtWhj/wCek/yD
9ef0rWtvFHi64jkj8NfC06VtbAn8Talb2UbD+8BB58h7cECjVPCfjPXoZD4s8eW+gaSxy1l4Vtza
ysv8UbXcrO5BHeJY29CKAMnxBfeCvh7Mlrr2rTalrZQSroulxNcXTrnGfJjBcLnjc2B6kVzFx478
beI1aDRrG3+GminI3bY7vV5B6nrDAf8Av6SD/Ca6eyuND8C2Mmm+CdLt9Ht5H8y4vFXdcXUnd5JG
y7scDLuSxrHcvK7Ozb3Y5ZieSTQBy0Hw50T+0l1PUYZvEGrqxYajrk7Xs6k9dhkJEY/2UCj0FdMB
gADoOg7Cub174iaB4evDYz3rXepAAnT9Ohe7uQD0JjjBKj3OBWdN4q8Va0Gh0TwnNpxY4GoeIZo4
okB/iEUbNI5H907M/wB4UAdhdXcFhbSXFzNHbW8Y3PNM4RFHqSeBXH/8LRttUYp4b0fVPFPIH2mx
hEVpz3E8pVHH+5upbH4XWl1dQ6h4nvZvFmpxsHQ32BaQN1zDbD5Fwc4Ztz8/eNdoVWOPJKpGo9QF
H9BQBnWfjL4jXFnHDa2/hjwao4eW2hfUbl19dzeWiN+DjNZt74QuPEOD4o8T6/4q65hvr3yLcggZ
DQQCONh7MG61U8QfFzwX4XZ01LxPpsEq9YVnEkn/AHyuTXJW3x/fxdIsHgLwX4g8ZyyEqk8Fq0Nt
uHZpGHy/jQB6jpek2Oh2SWem2dvp9pGMLBaxLGg/BQKkvL63063M91PFawL1kmcIo/E1wsXgr9oL
xcqFrDw18PbOQfPJf3P2m5iHqAMqTRYfsx+EPtQvviB4o1j4n6srbvJMrWtgjA/woDn9cHnjmgCr
r37R3w78OsUn8SQXMgJUrYo0/PplQRWf/wANKeHZo0ksdF8SanE4ysltpUhVvoT1r2HQ7fQ/B8Zi
8M+FNB8PxZyfstihdjjGWYjJOMc+1bkPj3WoQAtxCVBzt8lMfTgdKAPB7X4veLPEhePwz8JPFmoS
j7rahB9kiOc4O5sjtWpa+Ff2h/F2w2/hvw34JgY4Y6rd/aJgOOQEJHrwR+Ve0P8AETXWYn7TEoPR
REMD2qlP4v1q4DBtSlVSc4Qhf5CgDgLL9kr4haoS3iL4z35ViGMOkaesIX1AYnp+Fa1j+wf8O2jZ
vEl/4i8W3LPuE+qamy7eOihNvH5mugHiHVIyx/tK4BY5P7481VuNQuLxy0908zHnLyk0AWtH/ZB+
CnhKZrlfCFjISOf7Tu5LlOO4WRyP0qe//Z7+BuoMxk8JeHYzJwfs6+UBx22kYrKSNrhgqjzW7Bcs
a2YfBOt3EYkTT2CnpuZVP5E0AefXX7HPgqxmnn8G/ELX/B8QXIs7XUBPbRknrtf5j+LVkXHwO+Nn
h2IzeGfiLoHjiL7wtdYtvIfbzwGXOT0HLCvVLrwfrFmpaXT5NoG4smGAH4VkruhkyreXIOcqcEUA
eRW/x6fwrqA0f4l+G9Q8B6uDtElzEZLOU4zlJRwePqB0zXpOjeKdG8TQ/aNI1Wz1KFuQ1tOr/wAj
XWt4mlv7B9P1m0s9f05xta21GJZAR6civOPEf7PPwg8SXjXUPhm+8J37Db9q8O3xhEZ9Vj+7/wCO
0AdfDM1vMjgLvU5CyKGB+oPUVuW/jCeG3MEmnaXcQMfmjazRVI9MAY/SvnjxRo3i79nW1XxH4V8W
3/jnwnakNqvh3xFEGmMGTuZZRk8A5DLjbjPI+Wuqm/aa+E1+pfRZ/FGq5ALLZ6S8ggzztYkAnH60
AdNqngfw3NfLfaJpcvg283F5G8NX81hHKxx8zRxsEZuOrKc1PbXnxA0lHFh8Rby8Bxsj17Tba7RO
fVFiY/i1efv+1B8M21I2i61e2jDr/aWnyQkHHfggfjWzH8cfh/KisPGOjgHs1yFP5GgDU1XVPiNd
MJJD4Q1FlBwsFnPpxf03MHl/lWb/AMLGm8PsieMtJ/4RuNztXU47kXOnlicBWmwpjJ4/1iqMkAEm
uo0XXtM8R2gutK1G01K3P/LW0mWRf0NXJoEuInilRJY3G10cAqwPYg9RQAqsrorKQysMhgcgj1Br
ZtPF2sWdqttBfyLCv3V4OPYe1eZr8MxoM32jwjrF34XlUh1s4yLiwJHQG3fhFz1EZTNdlZ/FbUNP
iEfjXwDDqK4xLrHhUidSAPvtbNtlQn+7H5mOmTQBrXHijV7o5k1Gc9OA20cdOBT/AI3asmqeBfBd
0ygmbxDYh52wPJcb8/TcRs/4HTNN1TwZ4+Z4fCOsr/a0MXnSaNfB7e78vpu8qUK4Ge+MVi+JLH/h
JPBereGbh/Ktr4pIs6HEltOjBo5UPZlZVP4UARfD+axj+Ivinw7qEy2U/iOytLvTHkOEuJoBIkqL
2MigxHHUqeM7Tjc1jQb7Q5fLvICgbo68o30NedeG3t/iV4O+yeI7OGTU7KdrTUYFJQwXkRwZImBD
Jn5ZEYENtdSK6jw98QNU+HbHSPGFxc+J/AsyeXFq0sZmvdMI6LclfmmiPaYDemPn3AlwAdX4d8YX
mgsIyftFkeGgc9Aeu30+nSn2Pgu0t7iW6+HHimTwdPK5ml0S4gFzpcrseSbZipjJJJPkOmSckGp2
8HQa1p0GreGNRttb0q4UPDLBOrhge6uOG/nXPXlhcafN5dzC0Eg/hkGD+H/1qAN3U9Q8T2m7/hLf
h9Fq1vnb/a3g+789wv8Az0e3lEcg7fKhkP1rD07VvBniS9+xaT4qhs9VK7xo+vRPYXgXOMmKVVfG
e+3FTWetajYY+zX00WCDhZCRx7Gq3i6SPx5Zpa+IbOx1eBeAt1bI4x6HI5oA2p/Aetwgstp58YGf
MgcMpHtVVfCertN5Q02bfnGdox+dcHa/DnS9Jmjl0a51Xw80YxHHo+q3FtCuM4/ch/L7/wB2t7RZ
PG1hdRxr8TdSa3ZlBOr6fa3axqOv3I42Ofc0AdjZ/DfV7hQ0iwWvPSR8sB64FdLpnwv0+OaI6hd3
M8eR5iwYTjvg8muetYPifNlrHx14J1KMt8qzeH542256ZS76/hWt/wAXTtrdiV8G6hN2G+7tl/k9
AHuekfAnwIlvFMmmnUEaPiS4uXcP/tYzjP0rprH4deF9NXFt4f06L5dmfs6kkehJ69K+evDPxW+M
vhlo7ebwH4W1Gyz8y2/iqRduTyUD2g/InHvXay/tA+LbePLfC25uHxkra6/aEfQb9tAHtVrp9rYK
VtraG2UncRDEqgn14HWuK+LGsLDb+H7BJR59x4g0hmUnpGNQgJ/PoK88l/ak1t18pfg94zs58fNL
K+nzRKfby7olvyrzLXPjNqevfETwXplz4W8TWL3viPSDLeX9pGqYF/DxlXICjvQB+jtFFFABX5+f
tzf8nX+C/wDsSrz/ANLoa/QOvz8/bm/5Ov8ABf8A2JV5/wCl0NAHl9FFFAHl0PxIufCMmtaXrWi+
Ir/UVvrqSzazsZLhLqB5GeFY5FBVdqMqkEjaVrtfAtrqln4M0SDW5Gl1eOziS6dn3sZAo3Zb+I56
nucmsnXPjB4T8O6nc2F7qbLcWpAuDDazTRwEjOJHRCqnB7njvXXW9xFd28U8EiTQSqHjkjYMrKRk
EEdQRQBJUel/8lK+H/8A2FZ//Tbe1JUel/8AJSvh/wD9hWf/ANNt7QB9CUUUUAeJ/E/x14S8O+M9
Rv7zwnY6v410OHT7fRJJjEl3e3F7JNHFBCzDKqGUktzgGQgfKc9h8Ita/tjT/ECXOhW3h/WrPV5o
NVt7O4+0QyXJjjk81ZNqlw0ckR5UEHK4+WuJ+KHjiTR/iM8+l/DzQ/EGqaGmmwHXtUu1tri3a+uH
t4khbyJH2AklmDAYZuDg11/wX1u/1zT/ABM+q6XpGi6lBrtxBcWGkEusbhIzulkKr5kjgiTftHyy
ICMg0Aeh1QvP+Ri8If8AYctf5mr9ULz/AJGLwh/2HLX+ZoA+j6KKKAPmG8+Osuu+Nrrwz8O/Dnhb
/ha97q+pWGpnUtxFlp1jKyLdXxhUSgTAQ+UpOD5ykEhTXtXwW8VQeOPhH4N1+10qLQ7bUNJtriPT
bcAQ2ymNcRx4AHljopAAK4OB0rwbXvjB8Wb/AMbXj+F9M+G+jaRqOs6l4ftLjxG12bqeSwMqnz3j
2qN4ildF5wg5PNe3/AHxA3iv4I+BdZa5iu3vtGtZ2kgtFtI8tGpKrCpKoF+7tUkDHBxQB31ee/HL
/kUNF/7G7wx/6fbCvQq89+OX/IoaL/2N3hj/ANPthQB9K0UUUAeEfHr4meF/CHxH8H+HviaNAtfh
lr2maj5t54lt43sm1OKS1a3ikkl/dx5ha7YbsbiuAcrgyfs9/Erw5428ceO9I+Hn9j3Hwy0G302H
T7zw/axx2B1CT7S95FFJGAkuxPsbErnBlIzXquuHwx4n0ufTNZ/snVtOnAEtnfeVNDIAcgMjZB5H
cVa8O22jabpkOnaFFY2un2qhI7XTlRIoV5wFROFHXgCgDUooooAKKKKACiiigD4Q+JHhHwTZfHrx
/wCKNU07SpNfk1NI1vLi3R50VbK1ACkgnpVG6+Jml2qsltFNcAdNihF/Wsj48D/i+nj7A5/tSP8A
9IrWud0vwlqusANBaMsR/wCWkvyL+vX8KANa++Jmp3GRbxw2i9iBvb8zXNX2o3WqTB7q4kuZO285
x9B/hXd6b8LYlw9/eNJjlo4BtH/fRrJk+JHhLRNQl0nwlps3jPX43MT2egoJ/JcYyJ7liIocZ6O4
PHAJ4oAqWPhJYdMn1fXbyLRdItkM0890wTbGoyzEnhVx3Ncp4mTV/iZ4dQ6NFP4N+HwcOtxKDBqu
s9BujDfPBEQfvECRuoCDBbtG8I6r4jmg8QfEy4s0s7F/PtPCunOZrGGUEbJJ5GVTdSgjKgqqKTkK
SoesXxBrs/iDUHuZiQvSOPPEa+n/ANegDnNB8O6Z4XsRZ6TYw2FvnJWFcFmPVmbqzHuSSTVPxf44
0HwFphv9e1ODTbfnb5rZeQgZwijlj7AVnfGrxs/wv8I6fJarHe+LNcmFromibSZZ3YhRIyjnYCRx
/ESBkZq58O/2ZdE8F/Z/GPxVuj428dTori3vMPbWjDnZFHjaSpI+YjaCOAKAOK0fxn8SfjEp/wCF
aeDDaaS33fEfiQmC3Yf3kTqwI6EZ9xWjL+zLZ6hOJfiT8RNc8Y3Wf3ml6MwtLEDH3G6569Vwa9m1
7xle60BCn+hWajatvCcDHoSOv06VT0Pw1fa+x+yxDylOGmkO1F/GgDk/Dvw3+HPgtYf7C+HmhwzQ
ndHdahGb2dW9d8mTXaP401fyfJiuhaQjgR2saxgD04FZLa14Fgu7q0Pjmw1K+tm2S2WiRtf3CsCQ
VMcIds5BGMZyK3tNs49QsvtWjfDn4heJUB6/2T9g3A9wt08JIHqKAOfuLqW5cvPK8rnq0jE5/OtP
R/Cup64f9Gtm8v8A56yfKv4Hv+Fdlo3hnx9eqw0T4My6RMAuy48WaxaW0Z5OT+4a4fI/3RnNdxpP
7Nus+Jm8z4i+L5L2y3ZHh3wuj6dZbcghZptxnmxgg4aNGB5SgDxMTeGLPXG0X+0L7xRr8TKk2j+F
7KS+mgZvu+cYwwhB9ZCorTt7GWyjmn1X4SfETT7SNN5nmsobrj0EdtNJIT7bc19f+FfCOieBdFg0
fw5pFjoWlQjEdnp1usMS/wDAVA/M1r/TigD4Ybxl8JoWA1HxKvhyZskWviBpNLmHJH+ruURuxqS3
8d/BlJFSPxtoeozMw2w2+qrcOx9AkeSfyr7fuLeG8XbcQx3C/wB2ZA4/UVHb6fa2f+otbeD/AK5Q
qn8hQB8Zw/Gr4faPI9tFZa1AA2GYeFNS2nnGdxg5Hv0rUT43fDT7WlpP4q0TT7t8bbfUnFnI2emF
lCk19Zaxo9rrluYbpC3o6nDr7g14z4m8NixvpLK/t4rpB8yGaNXVlPQ8igDz7UvjH8PdAaMTeLND
SebPlW9rdRzTy47JHHlnPsBWdH8QPFni9seE/B0tnYkjGs+LGayjZSPvRWygzsR6SCLPrXVxt4a8
NzMIU0zTZSfm8iKONs++0ZqC++IWjWjMFne6cDP7lCQfbJ4oA5lfD/xaVhMfHHhV3GCbX/hGZliP
qN/2ssPr+lV9S1Dx3axytrnw/wBH8SWaKW3eHdU/0on2inRBnHpJmto/FS134FhOUz97euceuK2N
H8caXrEnlLK1tLnhLjC5+h6fhQBxen+HtF8ZaLba/wCH9Wji0i5BwLpSpidSVaNt2CjqwKsjcqQQ
aVvhzfsvmx3djLDn5pFl+VR6k9K0PEHwf+G17ql5rOt+H9LvJbuUTTpfZltnmxt83yGJj80rwX27
iAATxUEfwN+FNx5q2nhTQYoG5mt7NRFDIP8AppGjBWH+8DQB5TrnxE8I6LcmI+JLK+t1Yxy31okk
tnC4OCj3AUxKQeOW7j1rct7eG3QCCKOJOoEahR+le6W8Gk3WmtplvHZy2HleUbOJUMXlkY27Bxtx
xjFeOXX7PeteG9sHgjxTb2mjoT5Wj6/ZPdpbL2jhmSRHVBzgPvwMAYAxQBj32j2GpRmO8sba6Rhg
rNCrj9RXNz/B7wLdSM8vg/RGdurfYYwT+Qrsr34e/E+1kQW2n+E9Rjx8zNqlxanPsDA/86zbrR/i
Po8Ze+8ALqCbsAeHtZhuXAxnJWdYf0yeaAPMNY/Zn8ONqJ1Hwzfal4L1A8tJo9wVjf0BQngewwKp
/wDCM/Gbwd8+m+KNM8Z2yn/j11W38iXaOysOp9ya9TuNY1axx9s8E+LLYH+7pnn/APop3rOvPiLp
WktnV7bWNBhxk3OsaPdWluPrK8YRfxIoA8+g/aSXw5Mtr4/8Kar4Qn6G5EZubUnsA6jJP0zXo/h/
4jeFvFUYfSfEGnX2f4Y7hQ49ipIINa8M9jr2nrJDJbalYTLkMhWaJwfzBrgvEH7Ovw78SMz3Hhm2
t5CdxexZrc59cIQD+VAHWeLvClv4u09EeRrS/gPnWOpQ4860lA4dG9OxXowJByDWBD8QNS8OW6r4
y0K505YsJPrdiFn05jwPM4PmRKep3rhecsQMniV+FXxA+Gdy/wDwr3xJDqWjyZ/4k3iRmkWE+sbj
nA6AZHvk1zPwj/4TrUvjx4hsvEGuHVrOztWGsW8MjGzR5FxHBGh4455AHRsk9wD2bW/D+o6drjeJ
PDIhmu7hFTUNNmk2RagijCOr4OyZRwGxhl+VuxXQ8NeOLHxFdTWPl3Gl61bqHn0q/UR3Ean+IAEh
07b0JX3rmND165+Ful22ieIrC4XRLHFtaeIYMS2wgziIXAzviZVwrMQU4zuGcDrPFHhHT/F1tB9p
8yC7tj5lnqNqwS4tXx9+N+3uDlWHBBBoAgXwYuk6lc6n4Y1XUPB2pXJLTzaM6LFOxOS0lu6tC7Hu
5Td710tn8TvHmmo1treiaH41s8fLcWsh0+49g0Th0b/eDr/u1wi+IPE3g/EOvabL4i05BxrOjQ5m
AHee1HzZ94twJz8q9K2vD/j7w74okaHTdXtZ7pQC9m7+XcR57PE+HU+xFAHV23jbUdcuo4ovhbZm
ZuFU61FH+eFxWD4m1zVvDt5NLrHgHXtC00AbbqzUapB055gLSDv1QDjrWs1vKsIlaJxETgSFTtyO
2a09K8Varo2Ps12/l/8APOT51/I/0oA86/4W94J5H/CVaSHU4aM3IDqfRl6g+xFdV4F1DS/iV9tT
w5remapdWYVpbWG5BlUNnBK9QOD1FdzD8ULlWzLptq4xztJUk+vSqOt23g74nNB/wkOm/wBnapbE
/YtWs5mt7u1J6mK5jw8ZOBkZwRwcigDE1DSb3SJQt3bSW7dmYcH6EVPa+JtWs9vlajcKFG0KX3AD
6GtlfEXirwBG+n+LNJvPHHh8DdD4j0e0SWcRjPF3aKdzOOPngVg3J2JjmCx8ffCXW7qK0Os2Ok6h
KPksNUaTTbk5z/yxnCMfyoAWH4i63HndNDL/AL8I4/KtG3+KV2uBPYwSjHJRipJ9e9a6/DvQ9Qtw
9nczMmf9bDOsoPt6VnXXwrcAm11BWP8Admjx+ooAvw/FDT2UmSzuIznou1qY3jLS/EGteFrdYpkn
XxHpDxGRO/2+DOCDxxXNXfw+1q1BIt0uFBP+pkBP1wcVV0fSbzS/Gvg8XdrLb7vEOk48xcA/6dB0
NAH6aUUUUAFfn5+3N/ydf4L/AOxKvP8A0uhr9A6/Pz9ub/k6/wAF/wDYlXn/AKXQ0AeX015FjUs7
BFHVmOBTqwfHWoaBpfhPULvxQlvJoUSq1yl1D50ZG4bQUwd3zbccdcUAcXGPF3hO51PTtF0/QtX0
6+vbi8ivrrUDA0JmkaRlljCNvCs5AKnlQBxXceC9BHhfwjo+kCf7V9itY4DMBgOVUAkDsPQdhivn
KNfh38TZklu38IeB/DAYMtpC1omqXgHI8xx/x7r0+Vcv1BIzX0v4dh0220DTYdHMR0mO2jS0MD74
zCFATa2Tkbcc55oA0Kj0v/kpXw//AOwrP/6bb2pKj0v/AJKV8P8A/sKz/wDptvaAPoSqesXN3Z6T
e3Gn2Y1G+ihd7ezaYQieQKSqFyCFycDcQcZzVyqetQT3Wj38NqwS6kgkSJj0DlSFP54oA8Z1bVfH
niODUkv/AIH6Zex6papZ3ZfxPbkzwqXKIx8rJCmSQj0LEiu0+Cnh7/hGPBhsf+EQh8FEXUjnT4dS
/tAyE4zK82MsxOR82SNo56VyPwd+NPgHRfhT4b0rUvFGk+H9S0XToNOv9M1a7jtLm1ngiWORGjkI
bIZTyBg9s1sfs+6gmvaT4u16ximi8P614iub/SDMjJ5tu0cStMqsAQskyTSDI5D570AeqVQvP+Ri
8If9hy1/mav1QvP+Ri8If9hy1/maAPo+uV+Jmta94f8ACc9/4cGg/b4XTc3iS9ezs1jJwxaREcg8
jHGCTXVV5j+0pomoa98Gdah0zTJtaurW4sdROmW4Blu4ra9guJYUB6s8cTqB3JA70Aee+L/CfxY8
X+Hr3TPEnw5+EOp6NNL9sube+1S7aFpAP9awNnjcAPvdfevc/AcYi8EeH0Fvpdoq6fbgW+iPvsYx
5a4W3bauYh0Q4Hy44FeM3n7dvwYGkSSW3iWXVNWYNFF4btdOuG1OafGBbi3KBhIW+X5sDPU45rvP
2cfCur+B/gN4D0HXlaLV7DR7eG4t3bcbchBiAnJz5YIjzn+CgD0evPfjl/yKGi/9jd4Y/wDT7YV6
FXnvxy/5FDRf+xu8Mf8Ap9sKAPpWiiigD4Ub4FHcf+MGvAx56/8ACS6dz/5L17l+y54Tt/CEnim0
T4L+Hvg3ct9leW20PVba9a9H73a0ohRNm35tu7Od7Y6GvE/j14o+Mq+MPFdp8Q9b8UfDv4VRNdrp
Oq/DHR1ujdQBS0D316rzXNo/AVtluicn95jmvXv2GPC/w/0v4C+G9d8Gf2deavr2mWN54k1S1vft
tzd6ibdWm+0zM7v5iu8nyMfkLMABnFAH0PRRRQAUUUUAFFFFAH56fGfxzonw/wDj9481TXrmG1s/
7SSIPIwB3GztcbVPLN2AHJ7VRh+Inizxoo/4RDwfPY2Lkbdb8WZs4iuDlo7UZnfBwMOIwc5BxXc+
OPAfhi0+OnxA8Wz6VY/25Lqio2p3EatJGq2VqoCs33RhR09K53XviTbWjPFp6fa5Rx5zH93+HdqA
Mhfg7N4mzP8AEHxFdeLdwOdJgBsdIjyCCPs6NulBHXznk55AHStqbxNoHgfT4dJ0ezt44LdRHHZa
fGsUMIHAGFGBj0FcLq3ibUtZz9pum8vp5cfyJ+Q6/jUWj6De65N5dnAZAPvOeEX6mgB+ueILzxDc
iS5f5V4jiQYVM+g7n3pPFWsaN8Gfh/feOPFZ/d2qZtdPI+eeY8Rx47sTj2UZJ4FdTfWvhr4TeH5/
E3ivVILS2s13yXE5xGjdlReruegABJJ4FfPHh/WH/aX+J48feJop4fh74dl/4pnw9NGV/tGb/n5m
zwRn5v8AvlR0bcAdb8EfAN5ZTr8Z/igW1P4ga3Hv06xeMoulW7D5Y40b7jbDznlQSPvM5brNW1Wf
Wr+W6uGy7nhc8KvZR7Cn6zrV1r981xcNljwka/dQdgB/nNb0Wj6P4I0dvEPi+9hsLOMrtjmbjcTh
U2jl3JIARQSSQME0AN8PeF7GPSJ9d1+5jstIt42md55BFGI1BLPIx+6gA611XgXwFd/tDQw3eo2N
1ofwoBzFZTxtbXXiQDgF0IDRWXHQ4ebuBH/rMXwn4X1L4+eMNEPiLSpdD+HlpcR3lvod8m271eWM
745LqP8A5ZQKQrLCfmZsFwoXafsFVAAAGOwAoAoaF4f0zwvpttp+jabZ6TYW0axQ2tjbpDFEijAV
VUAAAdBWgfm68/WuK8afFzw54GdoLy6a6v1/5cbQB5R/vc4X8TXnN5+1VAsLm28OS+YPum4u1VMZ
74GaAPeqWvmu+/ak1i8jEWn6NYWs7HAZpmuDz0wuBzmqPl/FP4sYjk+129g3UuPsdv8Aj/E360Ae
1+LfjJ4W8HsYbnUBeXYz/otiPNcH0bHC/ia4Ob9qjTlkcR+Hb10B+VmuY1JHqRjipfCv7MOm2aCT
X9Ql1CXOfIs8wxD2J+836V31v8IfBltbLAvhuwdVG0NJHvf8WPJNAHGD9qDw5tBOl6sDjn5Y/wD4
qsrXP2p7ONFXSNFmlkYfevpVQA+yrkmu8tPgb4Is7hJk0KORl6LNK8iH6qTg1v6b4F8OaPJvsdC0
+1fIbdHbrnI6HmgDwm18ZfFzx9h9Lt5rK1ZuJba3WCMdf45Mkj6elZHjX4c/EBpoLrXtRjvJXHlx
t9uyQB2wFAFfVOOg/ACvCvjT8X9B03xVZ+F7drrXPEUabxouh27Xt78xwGaOPPlpxjfIVUHvQB48
/wAOdajK4igfccErMOPc8VdT4W6iWXdd2qrnkjcSP0rq4LL4ta5brLpfwyt9KVv4fFXiCG0kA9dl
slx+pFaMfgH4zNCHbRvAscmMmH+3bxhn03/ZB+eKAOO/4VS3lH/iZjzc/wDPH5cfnmsy9+GmrW5P
kmC6XttfaT+B/wAa7j/hDfjlgn/hFPAQx2/4Sq75/wDJGkXw/wDGe1YSXfw/8OXMA++ul+LDJOf9
1ZbWNT+LigDy+fwvq1qwEmm3AJ6bU3fypLrw5qdrI4l064THJ/dkjH1Feg/2z8Seg+B/i7P/AGEt
JA/P7XReeKfGWhhrjXfhJ4w0zTVG6W9tTZ6iIhjJLRW07yn0+VGoA8wgmktZhJE7Qyr0ZCVYV0EP
xC1yEjNykoAxiSIH8eK7fT7zwz8SNHF5p9zaatZlinnWzjfG4OGVv4kcHgqwBBGCKj/4Vro2cbLn
Pp5poA4+b4ja3IuBLDFz95IRn9aZH8QtcjcE3Mcg/uvCuP0rqNX8M+ENEtjLqV3b6ZEOTLdXyxAf
ix6VyCeN/g3cXCR23jTR7+YAD7PYamLl35x9yPcT1HSgCX/hYGu9r0f9+l/wofx7rciNHLcxzRMM
NFJCpRx3BHcUWOpeGdWuXi0Pwn448Q3C7sRW/h+9ijcjsJZ0jj57ZfFXdW8G+MjorXln8E/EySFi
qwf2tp/2hRj77R/acEewbOe1AHkeo/C3QLi+lvtNhn8N6hIzObnQ52tSWPd0X5JD/vqarSad460F
S1lqun+KYEXi21WH7Jcv/wBt4gUz9Y/xrodQ1jUdCk8rWPBnjPSplVWdJPDd3Oqkjp5kCSISPZjV
Wz8e6DeX0Fi1+bDULjPk2OqQS2NxJjrtjmVGb8BQAeFfGVt4ma5t2trjS9Wsyou9LvQFnhz91uCV
dDg4dSVOCM5BFePab4qT4H/FbxPF4rtXttG8T3q3VlryKWhBxjypMfdxz9OT05r1/wAV+D18QPb3
tndvpGvWQb7HqUSBigP3o5FP+sibAyh9AQQQCMezv7fxpb3nhDxnpVsmq+Vumszl7e8iBx59ux5w
DjI+9GSM8YJAOyZbbVbEgiK7s7mPBHDxyxsOnoQQa4fwJqg8I37eB9VuClxbsx0Wa4bH26y6oqk/
ekiB8tlyWwqsfvV5ysfiT9mTUJfLivPE/wAMZmL7VO+50k9/qn6cZ+U53er2OqeEfjJ4ZzbXFrru
mvhiqMVlgfGQeMPFIOCCMEUAddnHfBrJ8QeEtD8WRLHrOk2WqKp3L9qgVyh9VJGQfcGuej+Hur26
iG3+IPiOK1TiKJltJXQdgZHhLvj1Yk+pNPPhbxhpqs9l40fUZMgiLXNNhZCP7u6ERkZ9ecehoA0t
G03xJ8PVc+D9deWwZt0vh/xEzXlnN6hJSTLCxAwCCyj+4a6i3+IHhS+jiPiPw/r/AIIuiSJJTYy3
FgcdWF1ErxheOrbT6gZrmPBvia68Saw/h+/0uTSvE0cZl+wmQSR3MY6y28nHmJnqMBlyNyjIz3Wi
+KNS8OyMkEpMWcPby5K8e3Y0AW9C0Pw943tWufCni7TNdhGf+PWdJsH0JRuPxFZ+teG9Q0Fh9sg2
xk4EqHchPpnt+Na95pXgD4jXUUuu+HrO31aMEQ6go8i4jJ4Pl3Ee10J9iKe3hzx18Pba4TQ7uLx7
4fX54tG12cpqMSd4ors5WYY+6JgGyfmlx0AMfR/FOpaGNtrcHyv+eUg3L+Hp+Fb0nxAttWgMGtaJ
bahEeCrqrqf+AuDWNZ+KPh34n1BLFtSm8Ja7M5VdJ1uJrGcuACypHMAJAP70ZZfQ1q33wx1GH5rW
aG6jIypJ2E/0/WgDHj8A/Cy7mE+nWE3g26LZeTw/czaUXPXMn2dlWT/gQNblr4V8Zaem/wANfEdd
Zt9+77L4nsI7sBf7iywGJx2+Z959c1zN9oeoaYf9Ks5oR/eKkr+YqpDM8Lh4ZGjcfxRsQfzFAHan
x7458Psq6/8ADubUItxBvPCeox3iKvHzPFN5Mg6n5UD9PpXPaf8AG7w98RPiJ4N0fTJLi2u7fxDp
kxs9StJbS6OL6AMwikUHaM4J9a0vD3jy+025iS8ne6ss4YMNzqPUH2rn73wTOPjt4a8baR4k0+/t
tU8RaLb3VjeWhNxbwpew4SB1cbV3Esdykknk9AAD9RaKKKACvz8/bm/5Ov8ABf8A2JV5/wCl0Nfo
HX5+ftzf8nX+C/8AsSrz/wBLoaAPL6a6LIpV1DKeoYZFOooAg+w23/PvF/3wKmVQqhVAAHAApaKA
Co9L/wCSlfD/AP7Cs/8A6bb2pKj0v/kpXw//AOwrP/6bb2gD6EooooAw9W8C+Gtf1CK/1Tw9pWpX
0WPLubuyilkTHTDMpIrbVQihVAVQMAAcClooAKoXn/IxeEP+w5a/zNX6oXn/ACMXhD/sOWv8zQB9
H0UUUAQizt1uDOIIxOesmwbvzqaiigArz345f8ihov8A2N3hj/0+2FehV578cv8AkUNF/wCxu8Mf
+n2woA+laKKKACsPQ/A3h3wxrGr6to+hadpWp6wY21G7s7VIpLxo9wRpWUDeQHbBOTzW5RQAUUUU
AFFU9Q1iw0mSyjvb23s5L2cWtqtxKqGeYqziNAT8zbUdto5wrHsauUAFFFFAH53fHqaRvjZ49iMj
mJdUQiMsdoP2K15xXKaL4fvdfn8u1jyoOHmbhE+p/pXdfFWzt779o7xpDdyRx2x1aMyeY20MBZWv
y59TXO/GT4/eFfgXotvE6/2prl4RFpnh7S8NcXUhO1eBnaueN3U9ACcCgDbvdN8J/DXQ5NY8S6hZ
2tpDjzL3UpFjiVj0VQeMk9ByTXk2sftxeC763TTfhzp2p+OvE9yxitNLs7CWBc44eRmUYTpnAyO+
BzVbwh+z74k+M/iKLxv8cJBOqkPpfgiCQ/Y7FeoMwBw788jnP8RIwq+0ahrvh7wf+50vT7Rb2CL7
PGtpAiLEg6IWA4Uf3RQB87X3wJ13xpdWvif42a82ta+wEtl4SseNNsFyeHHRjzjj6EuBXeRxpDGs
carHGgCqqjAUDoAOwrYtbe/8YazsMvmXEmWZ5D8qKP5Aegqj4o8M3nibxbD4K8J3hsTZIs/iPxEc
O9krgGO2gQ/L9okXLZbIjXDMDuUEAj0HxlBHrE+keG9Ek8VeMocM0TSCKx01SPle5mwdmcghAGkI
5C4yR3/hf4XmHWofEni3UB4p8VRg+RcPF5dppwIwVtICSI+CcyEtI2cFsYA6Dwl4P0T4e+H49L0a
0jsLCHMjlmLPI55aWVzy7k8lmJJNc34m+IzMZLXSuB903R7/AO4P6mgD0zRfE+neFdatr3UrtLaC
PdvLN82Cp7dTWV4p+M2vfES+/sHwRZXMMUy4a427Z3Xuc9Il9zz9K8b0/Tr7xNqWyMvcTtzJNIc7
V9Sf6V9I/Ce70XwTpZ01oVt5XO6S/wBvM3+/j07dsUAUPBf7N+n2sJufFMzareyfMYIpGWJSRzub
7zt79K9Etvhl4Ss5o5YfDemJLHyr/ZlJHvUfir4q+DfA+kvqfiHxTpGi2C4zcX14kS89AMnJJ9BX
ndx+2P8ADKGYJHd+Ib2M4K3Nl4X1GeBge4kWEgj3FAHr1r4f0uxl82202zt5MY3xW6KfzxWh9ea8
XuP2vPhxDtEUviS9lYZ8qz8K6jM4+oWHj8aydY/aR8TaqsieEfhveRIMbdU8YXsem2xB7rEnmTkj
+6yJ060Ae/ev5mvPPE37RHwt8F6o+m698RfC+k6hGMva3WqwrKv1XdkV8++IHvvGiq/xG+IU+twg
7joXh7fpmmZB6NHE5mmGDgrLKynH3afofibwj4VtY9O0XQIdL0+JsRx2VnFFGB6hQB/jQB7jcftP
/Cy1Us/jWwKdN6JKy/mExVWT9q/4VrE7xeKftrKpYQ2Wn3U8r4HRUSMlj7AZrzT/AIWhpbcGS7I9
4zj+dbml6/Z6ugazvFlOM7FbDj6jrQBq2OseN/2hmnFmuqfDH4e5Mb3MiiLX9XUjnysE/YYiOCxH
nnJwIiAT6d4B+Gnhj4X6S+m+FtFttHt5X82d4QWmupCADLPKxLzSHHLuxY9zV7wfEsPhnTgoHMQY
7TnJJJJrZoATp0paKKACiiigBNo9BS9GyOD6iiigDzjxx+zr8OPiJqk2qa54Q0251eZPLfUo4vKu
HHbc6YL4/wBrNeJ69+znp+izSaG+v+LBpBbcNPj164EUqk8APu81VzxtVwO3SvrOuY8SWsc3ibw4
zqpPnODu6kAZH60AcN8PP2X/AIdeDZI9THgnQzrJXi4kskleJeu0M4Jzn9a9XtdNs7HP2azt7b/r
jAifyFWaKAFZmbqzEe5NN2j0paKAFDMvRmA9iawfGngXw98RdDuNH8UaLY6/pk4AkttQgWVTg5BG
RwQQCCOmK3aKAPgDWvh9N8Kfil4r8E20t1eaJaW9trOlNcSNK1vZz70MJkYlmCSxPyScCRR0Aqvf
fDq2+JCpZrqL6Nrdo32vSdSjjDmC4UdGHdGGVZQfmUsOODXvfxutTb/tCeD3MWbPWfC+p2dw3l5D
PBcWzxqW/wB2WbA+tePXsE3h3XJY42KTWs3yP345B/KgDk9F1yW5vLvQ9atV0vxNYjbfaYzbgVPA
liJ/1kL9VYD1BwwIHCeJv2cfDerao2raHcX3g/WGOTdaLL5SuevzJ0xnk4xmvo7W/DXhv41aNBFq
KNa63Zr5ltqFpiO8sJDxvhcjp6qcqw4YEGvP9a8K+Lvhbp82u+IrvS/F/hfT187UZNPt5LC+gt1H
zzhS7pKVHzMq7DgNgE4WgDz/AEr4A+OtYgit7r48tBZtjzYf7JWO4C55UPu646Nn8KueKP2VfGfw
30qTX/hp4/1XxFfW0bSXGi+IpFuI74DnbGwICtjPB6nHzCvXvFHhP+xI4ru2m+1adPgxyHqMjIz6
5HetD4aau1rqzWLP+5nUlE7bxzx9Rn8qAPCPDOvR/GjwDpPiLS5H0LXrScXFrOPmewvYjgqehaNu
VZeNyORxmvZ/CviHSfjFaSxzR/8ACP8AjWxjUajpUhyUPIEi/wDPWFiCVkXtwcMCB4Zpmmn4R/tG
eNPBcq+VpPiFv+Eg0dudpLf65MnvndwOgX3r0HUPCem+I76xnurq40i/s2L2WtafxdWbHHKN/dOB
uU5VgMEEUAdLrXhm/wBBkIuYsxdp05Q/j2/Gtnwj44k0lktL5mlseivjLx/4j2qXw/8AEDUPDuoW
Phn4gtZreXzCHTPENsnl6frBxkJgk+RcYz+6JIbGUJ+ZV6DWvhzYX++S0JsZz0VeY8+69vwoA2L7
T9F8aaO9tfWllremzLteG6iWeNlPYqwNcY3wN0vSd7+Edb1zwPIwAWPSLzzLRQOgW1nEkKj/AHVF
c9PBq3g/UPvSWc38LocpIPUdjXX6L8TYZFEepxGF/wDntCMqfqOooApf8XT8O8EeG/HFpv8A+mmk
XSx/T97FI+P+uYPtWRffELw3+7Xxh4Q17wZcPnM15YGSBcdS1zamSJR/vsK9Xsr+31KATW0yTxH+
JDn/APVU/TIHAPUdqAPI9P8AD+jeMLM3/g/xHpuv2bZ2/ZrpJenUblJ5+oqnpOn3Gl+PvCltdxGG
dfEOk5VsZ/4/ocV2/iX4O+CvF159t1Pw1YPqW0qupW8f2e8QEEfLPGVkU8nkN3rj4/gefCvjjwZq
ui+K/EIsIPEmkm40nULpb2OUG/h582ZWlHXs/YYxQB+l9FFZniZLyTw3qyacSNQa0lFsV6+bsOz9
cUAeMaP+3R8Ede+KqfDux8bwT+JJL06bEPss4tZrsHb5CXBTymfOAAG5JABJIFT/AB8/ZB8KftCe
KtH8R6vrviTQNX0uyk0+Kfw/ex2/mQu6yFX3xvn5lB4x+PFfmheXOkyf8Esfhbp2knPjofEQxwQW
uftg1Lz7kjgfMH8loh+Kd8V+0VAHyJ/w7V8F/wDRSPiV/wCDm3/+RqP+Havgv/opHxK/8HNv/wDI
1fXdFAHyJ/w7V8F/9FI+JX/g5t//AJGo/wCHavgv/opHxK/8HNv/API1fXdFAHyJ/wAO1fBf/RSP
iV/4Obf/AORqRP8Agmn4KjvLS7X4j/Epbm0kMsEo1m33RsUZCQfs/B2u6/RjX15XwFpXjrWvEXgP
4bKuu3tppHgPxJpJ1u+N26faby511LVLeV8/Mkdo00kiNx/pNs3agD1f/h3/AKH/ANFZ+KX/AIPI
P/kej/h3/of/AEVn4pf+DyD/AOR69Q/Z1GoeIPCupePdVe4W58b3za3a2dwSPsWnFFjsIQhJ8tjb
RxSyL2mmmr1agD5Z/wCHf+h/9FZ+KX/g8g/+R6P+Hf8Aof8A0Vn4pf8Ag8g/+R6+pqKAPln/AId/
6H/0Vn4pf+DyD/5Hprf8E+9Aaa3lPxX+KJkt5Vmib+3IMo69GH+j9RX03rVi2paPfWaO0b3EEkQd
TgqWUjIPbrXwf4H+M19c+GfgD8QtU1y9h8GeD9LstP1SRZmK6neTeGrq6vXk5xN5Wy0Vc8iU3Cnl
aAPbf+GK4/8AotXxa/8AB/B/8jUf8MVx/wDRavi1/wCD+D/5Gr034D+H9c0X4e2954oeY+KNduJd
a1SCaVnFpNcNvFqmeiwR+XCMYB8rPUk16HQB83/8MVx/9Fq+LX/g/g/+RqP+GK4/+i1fFr/wfwf/
ACNX0hRQB83/APDFcf8A0Wr4tf8Ag/g/+Rqqap+wrp+tW8cF98YfitdQx3EF0iS69AQssMqyxOP9
G6rJGjA9ior6br4R1Txp4k8ReFNF0PStav7WHwn4+m1rxBdxXDB5YW8Zz2dpYuc5aJokvJGA+79k
hUgLIKAPbP8Ahke8/wCi6/F//wAKGD/5Go/4ZHvP+i6/F/8A8KGD/wCRq6j4A3V341XxL8SLm4mk
s/FV4DoluzsY4tIgBjtHRScDz/3l1nAOLlVP3BXrVAHz7/wyPef9F1+L/wD4UMH/AMjUf8Mj3n/R
dfi//wCFDB/8jV9BUUAfPv8AwyPef9F1+L//AIUMH/yNR/wyPef9F1+L/wD4UMH/AMjV9BUUAfDv
7Tv/AATp8QfGrwXoug6X8ZPF+o+VrEV3c/8ACaakL22hhWGZTJFFHChaYM6AZZRtZ+elfQX7NH7P
t3+zz4KGg3XxC8T+PmKoBL4guRJHb7Vxtt0wWiT/AGC7Yr4RHxO8SaK37SXw08PandTeOfiD8U7j
w1oamVpXsradne7uVTO5YoYC2WT7hkQ8dab8C/E2rftIeEf2W/g1aapey2Gn2tz4y8ZXUdy+9rW3
vJ4be3kcHdiRwVZSejxt2FAH6oUUUUAfkl+2N8VNctf2kvH3g3wTos2peKJdTh8y8niP2SyjaxtW
8xm6E47HGMd+Ad79mP8AZ70nwLbz+LdZuP8AhJvHd9M5uNZulyYe2yEH7oxxu6npwMAe4/GT4H+P
Nc+LvjHVNN8My3unX99HPb3Ed5aqJE+ywJna8qsMNGwwR2965y3+C/xXtbF7OHwzexWztuZE1CyG
Tj18/NAB468Xx2Nu+n2U2bqQYkkTkRr6Z/vH9K82jjaaRUTLyO2AAMkk13v/AAz78Sf+hPuf/A+y
/wDj9avhf4H+PtJ1iK8vPB140cIJVY76yJ3dB/y3+tAFa3XT/hb4L1XXdYkVI7K2kvbyRRnbGili
g9emPcmq3wU0W6sfA8Oq6qnl694hmbW9SXglJpsFYiR18qMRxA9xGKv/ABi+DXxL+IHh+w0TTvBl
3HZSajbXGoPNqNkpeCKQSGNQJjncyoCD1Umr1l8Nfi3Y6ObCLwjMAMhJjf2W9FPYfv8A9e1AHKfE
TxI11eNplvN/o8XE23+N/Q+w/nWX4V8HzeIpPNZvJsVba8n8R9l/xrfb9n/4lMST4Quix5JN/ZE/
+j69B0P4eeM9J0i1tP8AhCdQVokw229sSC3c/wCv9aAM+y0+w8PWDCIR2tvGu+SRyAMDqzMf5mvF
/Enxx1Pxu81h8PGW10sFo5vF13CShPT/AEKFhib/AK6t+76EeZyK6z4hfs/fFj4n69cQ6z4Vul8G
27p9j0WLUrMJesFBaW7xP84DEhYeU43NuJAW0v7PfxIVQq+DrhVUYAF9ZAAen+voA8g0jwLpmmam
+rXBm1nX5BiXWtWkNzdtnkgO3+rXPOyMKozwBXRb2/56N+Zrvv8Ahn34k/8AQn3P/gfZf/H6P+Gf
fiT/ANCfc/8AgfZf/H6AMDTfGl7o+mCzsxFESSXmILOxPesm/wBUvNUbN3dy3GOnmMSB+HSu1/4Z
9+JP/Qn3P/gfZf8Ax+tPw78CPHFjqAuNS8F3k8UY3JEl9YkM3bOZ+lAHC6V4P1XV4xJb2pWI4xJJ
8gPuPWtZfhjqjEhp7VRjruJ/DpVLUv2b/jX40vLm/wDEcHiS2eSVzb6boXiG2sLazjyQiqYp1eRt
u0szk5bOAo4qza/s+fH3TpVNprXik26klbe9n0a5UD03EhyB7tn3oAjuvhzrNum5Uhn4yRFJz+tY
EkNzpl0BIstrcJ8w3Aow969S8DeA/jlp2pXVt4r8Lw6zpflb7bUbKeztrlZN2DHJF9oKMMch1I9N
veui8QfC/wAV+ILFoZvBGomQDMcgvLDcp9j5/egDJ+H/AO0Vd6Db22na5ai+sYl2Lc242zoPcdG/
Q17r4Z+IXh3xgo/srVYLiXGTAzbJR9UPNfMn/DPvxJ/6E+5/8D7L/wCP0q/s/wDxKRw6+EbpXXkM
uoWQI+h8/igD68orzj4c3HxA0Xw6lh4k8H6reXcDbYrmO+sXZ4+wYmccjpnuOtdT/bevf9CPrX/g
VYf/ACRQBvUVg/23r3/Qj61/4FWH/wAkUf23r3/Qj61/4FWH/wAkUAb1FYP9t69/0I+tf+BVh/8A
JFH9t69/0I+t/wDgVYf/ACRQBvV554w8URw+JrAwkSLp77nxzlj94D8P1qzr2q+Or6NodP8AA+qW
sZ4MzXtgXI9v9I4/nXGf8Ib4z/6EvUv/AANsf/kigD2i1uory3jnhcSRSLuVh3FS15d4ci8f+HWK
R+CtRntmOTA97YgZ9QftHBrsIdd8QtGDJ4D1qN+6i808/r9ooA6GisH+29e/6EfWv/Aqw/8Akij+
29e/6EfWv/Aqw/8AkigDeorB/tvXv+hH1r/wKsP/AJIrI1zWPG1zC0Om+BtUt88G4kvbDcP90faP
50AeNftY+JE0TXvAfiMNLJpfhrVn/tb7NG0jiC5t5IGYKoJYI7ROw7BSe1c14m0W08XabB4k0K9h
1C3uIBMslu4eOePGQ6MODxXTeMPhf8TvE0wSPwddxWitvAbULIs7f3m/f1kfCH4KfEr4f2fiHS77
wRN/ZU+qTXunLa39kfLjlVWkVlM+BmUytgcYagDza3uJLWZJoZWikQ7ldOCK9TAi8afDu9t77EiX
tjcW1x8vByjK3FZLfs/fEgsxHg+5xk4/0+y9f+u9bv8Awq34pWPge+0mx8FXC6hJFMkE7ahZbVLq
cE/v+uTQByHhHUpvFP7OvhbVb35ry60KxupNowN5jQk49Otcxp942nX1vdRthoXD/kef0r07wH8H
fiT4Z+E+keFLzwXdSXOn6VDpyTRahY7WCRKmT+/HTH41kf8ADPvxJ/6E+5/8D7L/AOP0AeZ/tleF
p28H6B8TdDjWbW/BN5HqKrj/AF9mzL50Z/2fusevAYd61ZLqx1zTNL8Q6Q/maLrVsl9aPgjCuMlC
OxUkjBr0jUvgz8UtY8Of2Hd+EJ5rBlMcitfWWXQjGw/v+QK4L4G/swfFz4d/DrXPBureD7iewt9W
kuNBkTUrF/KtnIYq374EHcXPOeWPtQBY0u/03UdKufDniO0g1Lw5fKY57e5j3qAfb0zzxyDyKzfD
PxOuPhdrSeH/ABNfyan4RluPs2l+JJ3LyWeWxHBeMeWU8Kk56nCvzhm7f/hn34k/9Cfc/wDgfZf/
AB+oLz9nH4g6jZz2l14IkubWdGilhmvLFkkQjBVgZ8EEdqAO/vtPtdTtzDdRJPGezDOPcen1rzPx
V4Dk0WNru0dp7MfeUjLx+59R71vfCP4L/Fj4drf6HqHhvUdU8MRrG+kNPqdnLdWmch7ZmM+XiXCl
GYlhuKngCvRW8F+MmUg+CtRIPBBvLH/5IoA+f9H1u80OdpbOfyywwykZVvqK9D0H4iWWpMkN4Psd
wxChjyjH69vxqDVvgH4+n1KeSx8GXcdqzbkRr6yBX1H+v6Zqp/wz78Sf+hPuf/A+y/8Aj9AHfqyu
oZWDKehHINVrtlW90It/0HNKA47/AG+DFYuh/C/4taGI4o/ClxNaqf8AUSX9kRj0B8/itNfhj8Ud
d8VeGTP4Sl0/TrbWtPu5v+JhaECOK6ikdm2zEnCoxwBz0oA+3qKKKAPGbH9jf4L6b8WG+JVt8PdK