-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupplementary-contours.RegionWidth.pyt.xml
1223 lines (1223 loc) · 104 KB
/
supplementary-contours.RegionWidth.pyt.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<metadata xml:lang="ru"><Esri><CreaDate>20190629</CreaDate><CreaTime>19252900</CreaTime><ArcGISFormat>1.0</ArcGISFormat><SyncOnce>TRUE</SyncOnce><ModDate>20190703</ModDate><ModTime>23181800</ModTime><scaleRange><minScale>150000000</minScale><maxScale>5000</maxScale></scaleRange><ArcGISProfile>ItemDescription</ArcGISProfile></Esri><tool name="RegionWidth" displayname="Region width" toolboxalias="" xmlns=""><arcToolboxHelpPath>c:\program files (x86)\arcgis\desktop10.5\Help\gp</arcToolboxHelpPath><parameters><param name="in_features" displayname="Input features" type="Required" direction="Input" datatype="Feature Layer" expression="in_features"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Input features to be used as region boundaries. </SPAN></P><P><SPAN>These can be any spatial features. For supplementary contours generation, the result of </SPAN><SPAN STYLE="font-weight:bold;">Region borders </SPAN><SPAN>tool should be used.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="out_raster" displayname="Output region width raster" type="Required" direction="Output" datatype="Raster Dataset" expression="out_raster"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Output region width raster.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="cell_size" displayname="Output cell size" type="Required" direction="Input" datatype="Double" expression="cell_size"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>Cell size used for generation of region width raster. It can be selected freely, without any dependency on the input raster DEM cell size. The smaller the cell size, the more precise the region width estimation. However, extremely small values may cause long computation time. Set reasonably.</SPAN></P></DIV></DIV></dialogReference></param><param name="snap_raster" displayname="Snap raster" type="Optional" direction="Input" datatype="Raster Layer" expression="{snap_raster}"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>A raster used to snap the resulting region width raster. Width and centrality rasters must be aligned and must have the same geometry. Therefore, if a centrality raster is computed first, then it should be used as snap raster in </SPAN><SPAN STYLE="font-weight:bold;">Region width </SPAN><SPAN>tool, and vice versa.</SPAN></P></DIV></DIV></DIV></dialogReference></param><param name="interest" displayname="Regions of interest" type="Required" direction="Input" datatype="String" expression="ALL | INSIDE POLYGONS | OUTSIDE POLYGONS"><dialogReference><DIV STYLE="text-align:Left;"><DIV><P><SPAN>This parameter can be used to limit locations for which the region width will be estimated. It can be used to speed up computations, if</SPAN><SPAN> </SPAN><SPAN>region width only inside or outside polygons is of interest. There are three options available:</SPAN></P><UL><LI><P><SPAN>ALL - region width will be estimated at any point inside the envelope (extent) of the input features. Available for point, line and polygon input features.</SPAN></P></LI><LI><P><SPAN>INSIDE POLYGONS - region width will be estimated inside polygons. All other locations will be NoData. This mode is used during the estimation of average region width of closed supplementary contours. Available for polygon input features only.</SPAN></P></LI><LI><P><SPAN>OUTSIDE POLYGONS - region width will be estimated outside polygons. All other locations will be NoData. Available for polygon input features only.</SPAN></P></LI></UL></DIV></DIV></dialogReference></param><param name="mode" displayname="Computation mode" type="Required" direction="Input" datatype="String" expression="CPP | PYTHON"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The mode used for computation of region width raster:</SPAN></P><UL><LI><P><SPAN>CPP - fast external compiled C++ module.</SPAN></P></LI><LI><P><SPAN>PYTHON - straight Python implementation of the same algorithm. Much slower than CPP version.</SPAN></P></LI></UL><P><SPAN>Default value is </SPAN><SPAN STYLE="font-weight:bold;">CPP</SPAN><SPAN>. If loading of external module fails, then only PYTHON option will be available.</SPAN></P></DIV></DIV></DIV></dialogReference></param></parameters><summary><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>This tool calculates a raster that gives the estimation of a free space between regular contour.</SPAN></P><P><SPAN>Regular contour lines and the border of the map divide the mapped area into a set of </SPAN><SPAN STYLE="font-style:italic;">regions</SPAN><SPAN>. Each region can potentially contain a supplementary contour line. Region width is used to (a) ensure there is enough space to place a supplementary contour and (b) identify excessively wide regions in flat areas where supplementary contour lines are included, even if they are close to the centre of the region. Since a supplementary contour can be located anywhere within a region, an estimate of region width is required for any point within a region</SPAN><SPAN STYLE="font-size:12pt">. </SPAN><SPAN>This is done by </SPAN><SPAN STYLE="font-weight:bold;">Region width </SPAN><SPAN>tool using a raster-based approach.</SPAN></P><P><SPAN>Region width is calculated using the following algorithm:</SPAN></P><OL><LI><P><SPAN>Calculate Euclidean distance raster for regular contours.</SPAN></P></LI><LI><P><SPAN>Allocate a new zero-filled output raster with the same geometry.</SPAN></P></LI><LI><P><SPAN>Propagate the </SPAN><SPAN STYLE="font-style:italic;">doubled</SPAN><SPAN>value of each cell of the euclidean distance raster to the output cells that are covered by the circle neighbourhood of the corresponding size. The resulting value is determined by the following rule: If a pixel is empty or has a value smaller than the doubled value of the distance raster, then its value is replaced with the doubled value of the distance raster; otherwise it remains unchanged. </SPAN></P></LI></OL><P><SPAN>A detailed description of the method can be found in the following paper:</SPAN></P><P><SPAN STYLE="font-style:italic;">Samsonov T., Koshel S, Walther D., Jenny B. </SPAN><SPAN>Automated placement of supplementary contour lines // </SPAN><SPAN STYLE="font-weight:bold;">International Journal of Geographical Information Science</SPAN><SPAN>. — 2019. — Vol. 33. — DOI: 10.1080/13658816.2019.1610965</SPAN></P></DIV></DIV></DIV></summary><usage><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>For detailed information on the tool usage please see the description of its parameters.</SPAN></P></DIV></DIV></DIV></usage></tool><dataIdInfo><idCitation><resTitle>Region width</resTitle></idCitation><searchKeys><keyword>supplementary contours</keyword></searchKeys><idCredit>2017-2019, Timofey Samsonov & Dmitry Walther, Lomonosov Moscow State University.</idCredit><idAbs><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>This tool calculates a raster that gives the estimation of a free space between regular contour.</SPAN></P><P><SPAN>Regular contour lines and the border of the map divide the mapped area into a set of </SPAN><SPAN STYLE="font-style:italic;">regions</SPAN><SPAN>. Each region can potentially contain a supplementary contour line. Region width is used to (a) ensure there is enough space to place a supplementary contour and (b) identify excessively wide regions in flat areas where supplementary contour lines are included, even if they are close to the centre of the region. Since a supplementary contour can be located anywhere within a region, an estimate of region width is required for any point within a region</SPAN><SPAN STYLE="font-size:12pt">. </SPAN><SPAN>This is done by </SPAN><SPAN STYLE="font-weight:bold;">Region width </SPAN><SPAN>tool using a raster-based approach.</SPAN></P><P><SPAN>Region width is calculated using the following algorithm:</SPAN></P><OL><LI><P><SPAN>Calculate Euclidean distance raster for regular contours.</SPAN></P></LI><LI><P><SPAN>Allocate a new zero-filled output raster with the same geometry.</SPAN></P></LI><LI><P><SPAN>Propagate the </SPAN><SPAN STYLE="font-style:italic;">doubled</SPAN><SPAN>value of each cell of the euclidean distance raster to the output cells that are covered by the circle neighbourhood of the corresponding size. The resulting value is determined by the following rule: If a pixel is empty or has a value smaller than the doubled value of the distance raster, then its value is replaced with the doubled value of the distance raster; otherwise it remains unchanged. </SPAN></P></LI></OL><P><SPAN>A detailed description of the method can be found in the following paper:</SPAN></P><P><SPAN STYLE="font-style:italic;">Samsonov T., Koshel S, Walther D., Jenny B. </SPAN><SPAN>Automated placement of supplementary contour lines // </SPAN><SPAN STYLE="font-weight:bold;">International Journal of Geographical Information Science</SPAN><SPAN>. — 2019. — Vol. 33. — DOI: 10.1080/13658816.2019.1610965</SPAN></P></DIV></DIV></DIV></idAbs></dataIdInfo><distInfo><distributor><distorFormat><formatName>ArcToolbox Tool</formatName></distorFormat></distributor></distInfo><mdHrLv><ScopeCd value="005"/></mdHrLv><mdDateSt Sync="TRUE">20190703</mdDateSt><Binary><Thumbnail><Data EsriPropertyType="PictureX">/9j/4AAQSkZJRgABAQEAkACQAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdC
IFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAA
AADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFj
cHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAA
ABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAAD
TAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJD
AAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5
OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEA
AAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAA
AAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAA
AA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBo
dHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAt
IHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAt
IHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcg
Q29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENv
bmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAA
ABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAA
AAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAK
AA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUA
mgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEy
ATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMC
DAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMh
Ay0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4E
jASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3
BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDII
RghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqY
Cq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUAN
Wg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBh
EH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT
5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReu
F9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9oc
AhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCY
IMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZcl
xyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2
K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIx
SjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDec
N9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+
oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXe
RiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN
3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYP
VlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1f
D19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/
aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfBy
S3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyB
fOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuH
n4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLj
k02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6f
HZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1
q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm4
0blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZG
xsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnU
y9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj
4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozz
GfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////2wBDAAMCAgMC
AgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIU
FRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU
FBQUFBQUFBQUFBQUFBT/wAARCAEeAZADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAEC
AwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0Kx
wRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1
dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ
2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QA
tREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYk
NOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaH
iImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq
8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1j4geOPixqHx+8d6bpfj/AFzS9DstV+z2dhaLbeVHH9nh
YgFoS33mc8t3r1Twlo/jy4t45NU8f+IXyASPNiUn8oxVzTfCUM3xM8b6pIgJk1iTGR1xHGP6V3Kq
EUADAoAo29jqcSjf4o16U+rXuP5LSXNhqU6kJ4p1+A+sd6OPzU1o0UAeJfGDwn8YYtAv7vwR8VPE
cd9HEzw2sn2V9zAZC/NAeD0/Gvj3Rf2hv2gfFljFJpXxc8QW1yciSG+gsv3bg7XRtttwysGBHPKk
cda/S+vjX44fC1Phr8Xk16xt9nhvxdOS4jU7bTUwpZ1PZVmRS44ADo/JMgFAFzRPih8T4LWP7b8S
vEV3IFG5nNspY46/LCBWo/xa+IDLgeO9eQ/3hJDn9Yq5aigDzr4qftCfG7wP440KBPix4ji8O603
2WKfZY5guu0ZLWxyGHTvkGvYPA/jb4tXttG+o/E/xJcD1cWqlv8AvmAV4h+09atN8FdenjwJrJoL
yNj/AAtHMjcfgCPxr6V8L2yyWNo6jCtEhH4qDQB0+m+JfGsijzPGuvSepaeMfyjrZj8SeJlHzeLd
cc/9fKj/ANkqhDGI0CgU+gDR/wCEo8R/9DRrX/gUP/iaa3ibxI3TxXra/S6X/wCJqhRQAt34k8Xo
pMfjDXMf9fCf/EVgX3jbxxDnb401wf8AbaP/AON1vHnisfVLUYPFAHOXXxL+IEOdvjjXP+/sX/xu
syX4ufENM48da5/38i/+N1PqluBmuZvYwrHigDVf4yfEQcf8J3rgP/XSH/43VWb4z/EnkL4/11T7
PB/8arn5xyKqTdRQBrXXxw+KMWdvxE14D62//wAZrKuPj78Vlzt+JGvr9Ps3/wAZrJ1DGDXGeJvE
+keGoTNqupWunx+txKFz9B1NAHZXn7QnxeVSE+KHiKP3VbT+tvXnfiP9sb4seG9STT5PjD4tur5l
3i1tLWymlC+pVbTgfWuGv/iRfeNJBZeCNPlvDIdr6zeRNFaQLz8wyMyHjgD1rqvAfgG08E2czec+
oaveN5t7qcw/eTv/AOyqOyjpQBF/w2v8arxxbaX8Q/H2oaix2ra/2dZxYP8AtM1oAo969F8C/Hb4
+rDJc+J/ilrJlkH7uxgFowiHqzi3G5vpwPeskHnNSfSgDvH/AGgvioBkfEXXvztv/jNcX4+/aA/a
Chjiu/DHxM1qfywRNp8hs0aTuDG7W5APbB49x3rSNsUluPrxVVp41HMiD/gQoA5aT9tb442Mxh1L
xx8Q7CRRyf7PsZU/BktTVix/ax/aQ8USbdB8ceLIoOc3usrYW0f4L9kLn8quTP5kpZeRntV2zbHX
9aAO58P/AB6+Mtlpsaar8Vdd1G+PMkqR2saD2UCDp9eavP8AtB/Ff+H4k+IB/wCAv/xivPZb63g/
1txDH/vyKP5mq03iDS7f/W6lZx/71wg/rQB6cv7QnxVXr8SNfb6/Zv8A4zWV4i+O3xqv4YhpPxc1
3SpVJ3Fre0mVx9DDkY9j3ri4dWsbgAxXttID02zKf61ZWRX+6yt9CDQAtx8Zv2mFyYPjjey/7Mmn
2yfr5JrJm/aC/artdxPxKvLsA9IbmzQn/vqyrX2n0P5VDJ3ODj6UAYMP7Tn7VF7MbdPGOvWLjrcX
d5pzRfUBLQsfyr0zR/2gPjJa6fDHqHxV169vNv72ZY7RFLd9oEHArz+fUrW1kJluYYwOu+RR/WqE
3jjw9bybH1uw3/3VnVj+QzQB6zJ+0R8WgCV+JniD6Ytf/jFMj/aK+Lcn/NTPEAH0tf8A4xXkcvjr
SGTFvLcXrNwFtLSWU/otNh8aWMLbbi31G1B53TafMF/EhSBQB7ZD+0D8V2+98SvEB/8AAX/4xV2H
4+fFOVsf8LF1787f/wCM15Lo/ifSNYYrZana3LjgpHMpYH0IzkV0lj70Aeip8cvicB83xD14n62/
/wAZrznxl8YP2k7XUJLjw58WNUvrBiWFlcfY4ZY/YObVgw+oB+taVFAHmf8Aw2Z8bdHvEsPE/wAS
/F/hm/bhBdx6eYJP9yUWu01sH9rT4uLjPxr14fjp3/yNXR6rpNjrlnJZ6hZwX1rIMNDcRh0P4GuX
j+DPgZB/yKmkk+9sDQBah/as+MNwwEfxn8QuT/d/s4/+21atp+0h8aJGBb4u+J2HoY7DB/8AJWuZ
vfgX4Cvo2R/C9hGD3gQxN+BUjFYN58CX0ljP4T8S6ho8nGLO9c3dqcHphvmGfY0Aevw/tGfF5VG7
4oeInPutp/S3r0j9mn41/E7xJ+0H4L07WPiJrmsaLdzzx3WmXa2vkygWszLkpAr8Mqnhh0FfIM3j
PWPBMiW/jfSPsEJIRdZ0/Mtk54HzfxR8nvxX0J+yHq9pqP7Rnw8ks7iO6hmubhkkhYMpH2Oc5BFA
H3fBGF1bxCw6tq1yT+Yq1VeL/kKa9/2Fbn/0IVYoAKKKKACuP+Lfw+g+KPw91nw5K/kT3UW+0ugo
Zra6Qh4JlB43JIqsPpXYUUAfC/hjWZNe0O3u54Ra3oLQXlruybe5jYxzxE+qSK6/hWrWz8afC0vg
f4zzXNsn/En8XI15x0hv4UVZhyekkXluABjdHISctWfHCFAJ5NAHl37RGj3mtfCTWorK2N9JC0N2
9nz/AKRHFKskkfAJ+ZVI6V9CfDLxNp3jLwtpGt6VKJdOvrdJ4WAxhSBwR2I6Ee1ch5YdSCoIPGCO
teUaDr9x+yv4mneeK7u/hVqk0k7/AGeFpm0G4OWY7VBPkOcnj7p+vIB9f0VneHfEel+LdGttW0bU
LfVNNuV3RXVrIJI3HsRWjQAUUUUAFUtT/wBX+FXa8Q+LX7S3hzwdqUugaRHP4v8AFa/L/Y+j4kMT
dvOk+7EOR1OcdqAOt1aQLmuL1jUrazy1xcRW6/3pnCj9TXj2of8AC0PiBI0+ueKo/CFlIGxpXh2J
WkUHoHuJASWA/ugday4vgL4SMq3Gp2114ivFXabjWryS6Y/gxwPwFAHf618VPB2jN/p3ijSLU9lk
vE3H6AHNcHrH7RmjXe+38JadqHi+/JKR/Y4Gjtg2M5eZgFC+4zV6z+GfhTR5N9n4b0u2k/vx2iBv
zxWg9ukKlERUUdFUAD9KAPPrrTPHvjTc2v8AiddAtX3f8S/w9HtYAngNM+STj0AqbR/hP4a0e6F4
bE6lf5ybzUpGuZc+oLk4/CuxfC5PQDvWBfeNdMt52treR9UvQdptdPTznBxnDEfKn1YgUAbQURqA
oCqvQAYFUtU8V6dojRxXUxN3L/qrSBDLPJ2+VFySOevQdzWNI/iHWuCY/D1qevllZ7o/jjYh/wC+
609D8P2OhrIbaNjNMd01xM5kmlPqznk/ToOgoArtqniPVFAtdOttHiYf63UJPOlX/tlGdv5vSN4d
vLrd9v8AEGpXKt1it3W2QfTywG/Nq3aoarr2naGqm/vYbQucIsjgM59AvUn6CgDO/wCEF0NlAnsF
vMfxXkjzn83Y0n/CA+Gj10DTT/26p/hUY8cWkwP2Ww1S89PLsXQH6F9opv8AwkmsXC5g8PNF/wBf
t5HGfyTfQAlx4C0JAPJsRZ/9ecrwf+gMKq/8IXo4yHtnn/6+LiST/wBCY1LJeeJrzP8Ao+lWHoWm
kuD+QVP51Vks/Eqrn+19OPr/AMS5v0/e0AWrfwnolpnydIsYyepFshP6irsGg6ZCvyadZp3+W3Qf
0rG/s/WZPv68yH/phZxqP/Ht1Ph03WFbC+IZ2/66WsJH6AUAaVx4b0iYEvpVi5PHzWyH+lVovBWg
Z3DR7NG9UhC/ypg0/wAQycf21Z7PVtO+b/0Zj9Kctj4jtWzHqWn3af3J7Roz/wB9K5/lQBI3g3Sf
4beSH/rjcyx/yamN4L0gr88E04/u3F1LIPyZjSfbPEytg6Vpko/vLqDr+hio+0eJpm2/2bpduv8A
ea+kkI/ARj+dADofCWh2uPK0exj9xbp/hWjDbxQACONI19EUD+VZf9ha1dj/AEvXvs/P3dNtVj/D
dJvP8qa3hVVbI1XVg56t9sPP4Yx+lAHUwN8vX9amyfXFch/wj95H/qPEWrQ/VopB/wCPIavW1v4n
jyI7zT9QQdBcQNC5+rISP/HaANPUNB07WF231hbXYzkedErEe4OM1Wh8F2tuxeyvtUsH/hMGoSlV
+iMWX8CMUfbPEUEZeTw007KMstnfRvu/3d+3P44q/oniKx1ppYoJGju4f9dZzoY54uSPmRuQODg9
D2JoAW31XxPowCyrbeIrdf48i1usY7jmNz/3xVkfEiwh2LqFjqmku3X7RZs6D6yR7l/WrdI3SgBs
HxA8NXjbINf02SQnG0XSBs+mCa3YZkuIw8TrIp/iQhh+lcvNZ29wrLLBFKrcESRhs/mKy/8AhBdE
G5oLEae7HJfT5HtWz65jIoA7+iuHXSdVsTnT/Ed8gAwIb5Uuo/xyA/8A49Uy+J/EGmYF/pEOqRcA
3GkybX9yYpCMD6OTQB1d1DHcRvFKiyRuNrI4BDD0INaf7Jvwn8P+Gf2qvAWs6PBLpkn2y58y0t5m
W2fdZTrny+gP0riLf4haFcSLDLe/2fcsdq2+oI1s5PsHA3fhmvW/2Y9Uhl/aQ+H8MbrIXu7g5U5H
FnOaAPrjw/4v0/W/G/j/AEWC5je/0bW5I7mBWBdPMjjkUkdQCHFdNX54fGi48Q+E/wBr74oeJvDG
pSaNrcGvL5Vwq7454/sNpmKePIEkRIIKnBHVSrYNfWHwK/aK0r4vQf2ZfW6+HvGdvEZLnRZZNwlR
SAZ7Z+PNiyRzjcu4BgpNAHr9FFFABSMcKaCcVUurgKpAPNAHhX7VVrD/AGN4T1iU7DpniG3AfdgY
uEe2IPqCZV49cV54i7jivavjR4Z/4TrwDq2ipcLaXMyrJbXMkfmLDcRuJInK5G4B1UkZGRnmvnvw
j4mfWbi80/UbX+yvEWnMqahprNu8snO2SNsDfC+CUcDnBBAZWUAHTxQgdeakeFJI2R1V0YYZWGQR
6EU5elLQB5LffDXxD8MdYufE/wAKdRaxllnFzfeEbqTGl6hwQ+wY/cysMYYcZUZr1L4e/tOeCPG0
Mltf6lF4T8R2pKXug67IttcQOACcbsB15BDLwQRVisHxJ4D8N+MvL/t7QNN1nyzlDfWqSlfoSKAO
quP2j/hVaSGOX4i+GVcHBUanE2COxweKwPE37Xfwv0GHFj4hXxXqDA+TpvhuNr6eUgZwNgwPqxAr
Osfhr4T0yHybPwzpFpHjAWGyjUflipoPD+n6UpFlYW1mO4t4VT+QoA858UeOPib8aM2z+Z8MfCLk
h7e2lEmrXicja8g+WAHg4XJ96n8K+BdF8C6aLHRLCKxgPLsoy8rY+87nlj7mu1ubcLWdIm04oAz3
Sqz0a5rNj4fsJL3UbqOztY8BpJTgZJwAPUkkAAckmuAutf1zxYT9kEnhzST0mkQG+nGeoU5WEEY+
9l8HopFAHQ+IPEGm+H4hLqN7DZqThRK4DMT0Cr1J9gK5C78Uanrm6PQ9NkgRx/yEdUjMUa+6xHEj
kehCg+tXdL8M6bpExngtVa7YYe8nYyzv9ZGJY/nWiw5oA5xfBNldnfq80+uzHr9ubMQ57RLhB+RP
vW1b2NvY26wW0EdvCowscSBVH4CoNU1zT9Fh82/vYLNM4HnSBST2AHUn2Fc3eeMdQ1QeXolg0ETf
8xHUoyiDrykXDuen3to56mgDpLmaO3UySyLEg6s7BQPxNc7/AMJhNqchj0C0TUYl4a/mkMdqD6Iw
BMh/3RjtnNQWvhWzuJBc6mW1q8zkTX2HC/7iY2p+Az6k1vBQq4AAVR24AFAGO+l6rqef7T1qURnI
Nvpq/ZkP1fJcn6MPpVnTfD+naRI8traRxzuAHnbLSvj1dssfzpLTWDrE8sGi2N5rssZ2ubGLMStk
gqZmIjBBByN2R3FdZovwo1vWJFm17U/7Jt+o0/SHDSHr/rJ2X0xwijBH3iKAMT73vVLUta07R1Vr
+/tbFW6G4mWPP0ya9Qt/gt4Zd0+2Q3mrIowItQvJJY/xTIU/iDXW+Hfh74c8P7n03QtPsS3DNDbI
C2PU4zQB89p4l064KrZztqcjEBYtNie6c5/2YwePfpWkuj+J7vm38H6w0DdJpvJgB/4C8gb8wK+m
I40hGI0VB/sgD+VKVDdRmgD5l/4Q7xjuLyaZptpF2Wa+ZpPxCRkD8Cagk8O+LbWT93Y6TeJ323sk
TD84yP1r6H1nT1EZYDg1xU0IS4ZR0zQB5a8ms2K77vw1qKQfxS25juNv/AUYsfwBqq/jDR7f/j8v
V01v7moo1q35SBc17fp9mGxxzXaaD4Ti1Lb58Kyr2V1DfzoA+bY9Ss5IROl3btCeRIJVK/nmn32o
2mmWJvby6htLIdbmeRUj56fMTivs3w7+zx4Kurxb+68KaNLddfOexjLfntrs9B+Avw68NapHqem+
CdDs9RjZnS4jsUDIzfeZeMKT3IGTQB+fem6mniC4httDguvEV3O2yK20e3e6dmPTOwEIP9pyqjuR
Xqei/stfFHXbM3d1ZaL4c3ANHZ6jePNcdOknlKUQ544Z6+64oY4M+XGkeeuxQv8AKn0Afnxqn7Pv
xY0GKSWfwha6uq9F0HV453I9dsyw/wAzXPaTOYtWutJvLW60zV7XBn0/UIGgnRT0baw+ZDggOuVJ
BAPBr9I5rdZR0wa8z+MXwb0n4raILa8LafrFrl9N1m3UfaLKT1U/xIcAMh+VhwRQB8sWFj55AxxU
2tfDvR/EkUX2+3P2iHmG6gcxTwn/AGJFww9x0PQg1P4bW/sb/U9G1u0+wa/pMvkXluPuNnlJoj/F
FIvzKfqpwysB0NAHnDfDXXrX93a+Jre4hH3W1HTt834tG6Kf++RVS58B+LrbLR6to16P+eTWUsGf
bcJGx+VepU1xuWgDxa4bxFpe0X/hqaUfxS6XcJcIPwbY35Karx+NtIWQRXVw+mSk7QmpQvbbj6Au
AD+Br1nUEG08Vy2qW8c6MkqLIh6q4DD8jQBlRSpPGHjdZEPRkIYfmKdWDN4G0fzWltbdtLmLbjLp
srW5J9SFIDfiDUX9m+I9NwbPVINXiAP7nU4vLkPoPNjGB+KGgDfuLeK6jMc8STRngpIoYH8DXdfs
m+C9G0v9pr4f31hYQ2MyXdyCLYGNG3Wc4OVB2n8q8o/4S46fxrWl3mkjOPtG3z7c8dfMTO0f74Wv
Xv2TfEVjq37Rvw8+wXUV5BJdXDCWBw6kfY5+hFAG/wDGbRRdfHz4jy7f9ZrJJP8A27wD+lczeeBf
t32aaCa40/ULOUXFlqNk/l3FpMBgSRt2OCQQcqwJVgVJB9i+IWi/bPjJ47l28Nq79v8AplEKlttH
jjUDbn6UAdF8F/jtc6/JF4W8YiG08YRRkxXEaeXb6vGo5mgGTtcfxxE5U8jKkE+w/wBpLXzj4h8D
WPiawFvcrJE8brNb3Vu2ya2mX7ssb9VcHofqDkEirnhn4wan4XvoPD/j4xwTyMsOn+I0Gy01InAV
JO0FwSQNh+V8goSSUUA98l1DPSs26vQoJJ5rCbXlb+L9azr3WhtPzUAL4g1DdGwzXifxE8Ft4ieD
VNLnTTvE2n7vsV8y5UqcFoJQPvxPgZXsQGGGUGvRdU1DzM81g3DZBoA4jwb4ut/F2ltMqG01C2c2
9/p8h/e2dwPvRuP1DdGUqwyCDW/XH+OPCJvtQGs6PcjRvEsMYSLUEj3LKgJIinTjzYjk8E5GSVKn
mofDvxQs7y6i0rX4h4b8QEAfZLqT9zcNzzbzHCyjgnHDgY3KM0AdtRR6UUAFV7gDn6VYrkvGHxF8
P+EPl1PU4orlgfLs4czXEmOuyJMs34CgC7edK4Txl4907wvMlqVk1DVpVJg02zAaZ/duyL/tuQPx
IFc/r3xD1/xRvg0i3bw3YtlTfXirJdsPWOLJVPUM+T/sVj6Xo1ro6y/Z0JlmbfPcSMXlnfGNzueW
PA6+gAoAbFp95rOpx6x4gaKe/j5trSElrexyMHy8gbnIJBkIBPQBQcVr0zzlVCzMFCjJLHAHvXPp
rV94qcxeHtsdjkb9anTdER3EC/8ALU4/i+4M9WwRQBo614isdBWL7VKTNMdsNtCpkmmPoiDk/XoO
pIrCvo9e8URrDJEfDumvgy7Zt17IvdAU+WLPGWDMcZxg8jpdF8I2GhNJNEr3N/MMT3903mTy9Tgt
2GScKMKM8AVcuYwqk9qAOUsvC+laTMZbbT7eKY9Z9mZD9XOSfzrP1TWILe9axt45dR1MgMlhZrvm
Oc4yOiA4+8xA960bb7f44upbbRZDZ6ZH8s2tFAwJ7rbqeHYd3Pyg/wB45A9A8P8AhvTvC9gLTTrc
Qx53O7EtJK3d5HPLse5JoA4vTfh7rl1bpNqWuHTrhufsmnQRvHH/ALJeRSXI9QFHtWxYfCfTLqQt
rN1d67/0xunCW+PQxJhWH+9muvqa3cK3NAGrpNnBY28cFvDHBDGuEiiUKqj0AHStSHvWdayjA5q9
HIB34oAuQd61Yf8AVr9Kx42K8gEj6VpWs25Qp/CgCzRRyOoxTJpkt4nlldY40BZncgBQOpJPQUAY
XjrxJY+FfD0t/fuwjDrHHHGpeSWRjhY0UcsxPQV5OfGmoW7C61bwtqmm2b4PnxKt2Is4wJFiJZev
JAKjBya77w9ptr8U/Gy+Ijvu/DekwLHpM2GENzcSbvOnjB4cBNiLIOPmkAOCc+pR6TBGoCwBRjHA
oA8t8I6vYa9bQ3en3cF9auSBNbyB1JBwRkdwe1e9+A9LWZkbbworyDxP8Ko7jVP7c8OXKaBr2f3z
CLdbXoxjbcRAjcRgYdSHGOpGVPqPwC8WSeJtPvYb6zGma3pdz9i1CxWXzVjlChgUfA3RujK6sQDh
hkAggAHtdlAIIVAFT0i/dH0paACiiigAqC8jDR57ip6bJ/q2+lAHzp+0t4NltYbPx/pUDS3+jRmH
U7eJWZ7vTidzgKv3pIm/eJwTjzFGN+a88tLuG/tYbm2lS4t5kWSKWNtyupGQwPcEV9O+MGVdHuQc
HIxg18lf8K/13S9cuYPCeoWdrpMzM/8AZ2o27zR28jHJMJV1KqSSShyOfl2jigDeqlq+rWWh2Ml3
qF5b2FrGNzT3UqxIo9SzECu78F/s3+JPFTQnW/Gk1vHnLRaHYR2wYf3S0nmsPqCDX0b8M/2Tfh54
NuIb+Hw3b6jq0YIGq6yWv7sZOSBLMWYDPYYAwOKAPhqx1K88ZTLB4V0LW/Fk0ib4zo+myywSewuC
FhH4yCrviD4OfFfRbOG9v/hf4gWzkTzHexa3vXtxjOJIopC+72QP9a/Uu00+CziWOONUReAqjAH4
VZ2gdBigD8X7rxNp2myRxanO+iTyP5aQa1BJYSs2cbQk6oSfwrXhwyg9QeQfWv181XQ9O121e21K
wttQtnGGhuoVlRh6EMDXy38YP2BPDutM2q/DOe38CasMmTSVhLaRec5O6FcGB/vfvIsdcsr4AAB8
V13f7LvhfS4/2nvAWqxWMMOoLd3CtPEgRnBs5xhsdfxrj/Fnh7xB8N/EY8PeNdEm8M60+fs6TOJL
a+UAkvazj5ZlGCSPldQMsi5Ge7/Zfv42/aQ8AQowYtd3Gfws56APc/GduP8AhZHjF8ctq0v/AKBG
Kht7bdV7xgN3xE8W/wDYVl/9BSlt4wq5xQAR2qr1FV9W0PT9e02507UrKC/sLqMxT2tzGHjlQjBV
lPBFXqKAPLbjw54o+G5LaA1x4r8NZ/5BNzNm/sUx0t5XP79Mgfu5CGGWw5+VKueHfH2meMLWWXTL
wSvCQlxbSI0VxbOQDslicB42wQdrAHmvRq5Hxt8MtC8aTRX11bva6zbrtg1awkNvdxDIO0SryVJA
yjZU45BoArST55zk1SuJwoPNcPqH/Cb+A5GiuIv+E20tQAl1biO21BOg/eRkrFL/ABEshTsNh61l
XHxe0SBmTVWvNBZRk/2raSQRj/toQUP/AH1QB1t/N5m49q47xDp9rq1rJbXttDd20gw0M6B0b6g1
pjXbXU7cTWdzFdQsMiSFw6n8RWVd3G4nmgDlYdFvPDsmfD+uajo0ecm1WQXFseMACOUMEHshWrB+
IHjm3tzC0+gzy84ums5lPsTGJME/8CFXLiQc89KyLhhk0AZ2o3niLxApXWPE99JCy4a100CxhPvl
Myf+P1TsdB0/R1f7FZw2xkOZHjUb3PqzdWPuTWg7CNSzkIo6ljgVhN4mOrSSW3h60bXrpSVaSFtl
rEef9ZOfl4IwQu5h6UAanesi88U2sV0bKySTVtS6fY7EB2X/AH2+7GPdiPxrVtfhzLqOJPEWpyX+
Tn7DZ7re1Xk8HB3yccHc2Dj7orqLHR7LR7RLWwtIbK2XhYreMIo/AUAcNa+C7vXGSfxPLHPGDuTR
7Yn7KnH/AC0JwZiOeoC9PlyM116qI1CqAqqMBQMAD0q1Km2snWtcsfD9mbq/uFgiztXgszt2VFHL
MeygEmgC23y+wrj/ALP/AMLGvdu9v+EUgOGaNiBqcn93I/5YL3x988fdB3Wl0TUfG/zaxHJpehbs
rpatia7X/p4YfdQn/lmp5A+Y4JWuxjt44YkiiRY40AVUQYCgdAB2FAEljHHbxpFEixxqoVEQYCgd
AB2FW6oNJ5IJYgKoySTgD3qbwfoPiD4prHNoki6R4cckf27cRb5LgZxm1iPDDriV/l4BVXBzQBFq
2s2miwxSXTtumfyoIYY2lmnkwSEijUFnbAJ2qCeDXTaD8J/H2vWS6hKdJ8PRzH93pmpRSS3Ua9mk
aN9gY/3BnHds8D1TwN8G/DXgW8XUra2lv9c2FDq2pTGe5AbG5UJ4jU4GVQKOOldzQB4rpvwB1m4Z
W1nxrLFGrZ+z6DZJbhhj7rSSmRvxXbW5H8C7SP5B4n8ReT/d+0xE/wDfXlbv1r06igDzZP2fPCXz
NK+u3EzHJmk1673D6BZAB+AqzH8A/ASw7JvD8d+//Pe/uJbib673cmvQKuafpk2oyhIxx60AfO3x
E+Et98ONB1LxF4H126sYrGF7q40rVJXvbR0UZbartvTgHGxgBnOD0ryXR/H2pfGDxB4N8N6nZ/Zt
N1i+jF/ZINxkCwvMIGIPKl41DdmXIPBr9HdO+GthcWbx6nCtzFMhSSGQZV1IwQR6EVz3gP8AZX+G
Pw21+z1rRPDSrqdiGWxnvLmW5+wqwKlYBIxEY2sV+UcA46UAYOi/Dt1hRrgbOBhFHQentWs3ge2U
c7hXr3lJ/cX8qr3Gmwzg/LtPtQB4jq3gdljZofm74715DdXM3gb43eA7yyAgm1+9k0XVFbhZ7dLW
eeNmH9+N4wFY9BI4/i4+rdS0gwEkDivmf9pr4Z+Mte1zwz4j8G2un3cukrP58F5eNbFGcpiZcI28
hVdccH5utAH0jC4kiVhzkU+vm3wL+1JJ4fii0/4haBdaQVG06xpe6+s85wPMCqJY+OSxTaO7V9Da
LrWn+I9JtNU0q9t9S028iWa3vLWQSRTRsMhlYcEEd6ALlFFFABUVzJ5cLH8KyPG3jTSPh74X1DxD
rt19j0yyTfI4Uu7EkKqIo5d2YhVUcsSAK+Xda/aC+I3jOR5rGPTPBumtkQ2Utub+825+VpZN6orY
6ogYA5w7daAPZPiN4kjihNsjgkctXOeBdLF7cCUjJZs14JqOu/EEMbia50fXwrBjbLBJZSOM84fe
67sZwCACcDI617v8A/F2n+MLOO4s3ZZIZTBc2sy7ZraUYzHIvZhkH0IIIJBBoA+pPAXh9Y4YyFxX
pEUYiQKowKw/CNuE09Gxg4rfoAKKKKACiiigDlPiZ8L/AAz8X/CN54a8V6VFqulXI+6+VkhccrLE
4+aORTgq6kEEV8A/DP4E+I/2e/23PAWg6rNPrWhXF1dSaRr3l/6+MWc58ucKAEmXuQAr9Rg5UfpT
XBfETQYrzxZ4B1QoDNY6uwDdwHtp1/rQB8FeOPj0fB/7VXxK8O+IQieHW8QJb2uoKMGzke0tWCy/
9M2aQ/N/CTzwePcov9WuPSvkz9o7w6mpftHfFxZolnhudcw8ci5VlNjaqVIPUECu9/Zy+I1xDEng
PxBPJJf2kZbSL6d9xvbVf+WRY8mWLgHPLLtbJO7AB7xRRRQAUjfdNLTJm2qaAOX8QxKwOR3rzjVb
dfMZSMq3VT0r0HX7pefzrz/Upg8hoA4LUvhz4dvLiSf+y4rW5k+/cWLNbSt9WjKk1jXngM2cRWw1
3XLNew+2mb/0aGrvZmGazrw/IfpQB53/AMIvdysVm8R61KB/03RP/QUFWV+H1tNHi41bWpk/u/2g
6fquD+taiXcD3jwrLGZR1jDjd+Wc1rr0FAHNR/DXwyu0y6RDeuvR75muW/OQmunt4Y7aBIoY1iiU
YVEUBR9AKSkkuYrWIyTSJDGvJeRgqj8TQBNSP901gL43028by9KFzr0xyFTSbdrhSR2MgHlr/wAC
YVYh8B6v4sxN4oP2HTT93QbSXIcZyPtEowX4AzGuE5IJcUAY9x4muteuZLPwvapqckbFJtRlYrZW
7A4ILjmRxz8iZ5XDFavaN4Dg028/tK/nfV9aKlft1woHlKTkpCg4jXp05OBuJIzXd2+nw2NvHb28
KW8EShI4o1CqqjsAOAKjmiDKeOaAMFo/L47U2qvijXrbw9bxNKsk9xcSCG2s7dd81xIRkIi9zgEk
nAABJIAJqvpvgfVfFRV/E1z9hsWOf7G06UjcucgTzDDNnAyibV5IJcUAW/Bvg4fF7WJHvPm8E2Uv
lvGp41eZT8yE/wDPuhGGH/LRgVPygh/p7SYEiMaIoREUBVUYAA6AD0ri/CNpbabY21pawR21tCix
xQxKFRFAwAoHAArttPk2yLQBr0UUUAFFFFAD4YzNKqDua9V8I6GlnbLKy/N2rzbRFEmpQg+te1Ws
Yht40HQCgCWiiigAooooAjmhE8ZVq4/VrMRyMpHB4IrtK57xLGFIYDk0AfI/xQ0WPTdcuPLwBvP3
ay/2d/iU3gHxr4k8IsVbRJ44dXtbbp5E0ryLOE9FZkEmP7zue9aXxr8V6Vb+JprOXUrSO43H908y
q35ZzXzl4jt72Xxw+taLrL2Fx9mjtpAYVlQhGZgV5BB+c98dKAP0ZtfHelXKK3mlSeMEUy78faXb
RlhIXPoBXwRb/ELx9pyo0HiK0vGUgmK+05djjuMoysv15x6Gui0f4/Pre6wvrQ6PraIWlsnfeGAO
C8T8eYnI5ABGRuAPFAHbftS/EhvEF54KsZJPI0dNaV7hNwCGTyZFg8zPX96Vx/tbKwYV2xiuD8X3
0fii3ntrxBPbzLtdGPUf4+/apvhf4knvLe80LU7k3GqaYw2TSYD3Ns3+rlPqRyjHuyE4GRQB3VU7
LUtV8B+K7bxd4egF1dxKItR0sME/tK2BzsDHgTJkmNm45KkgNuW5RQB+iXwX8daN8Svh7pfiPQbo
Xmm3iEo+Croykq8bqeUdGDKynlWUg8iu5r4I/Y++Is/gH41S+EJpceHfGccs9vG8mFt9VhQMQgP/
AD3gV2IGAGtierk1970AFFFFABRRRQAVznjAZufD3tqkf/ouSujrnPGB/wBJ8Pe+qR/+i5KAPz3+
L/h86h8fPiLIEzv1kn6/6PAP6VUb4Of8JFbxKUlilidZoLiBiksEq/dkjYcqw/qQcgkV7RrHhL+1
vjH44uCmQ2rvz9I4h/SvQdN0W202JVRFLAfexQB4VpGv+NvBdsLfxjoN5rtlGG2+ItCtjMzKMY+0
Wq/Or88tEHU4JwmQta0Pxe8EzOYz4q0m3mX70F3dLbyr7Mkm1gfqK9u6dOKr3Wn2l8c3NrBcH1mi
V/5igDxS4+M3ge3kMSeKtLu7gDIt7K4FzKfoke5j+VY138T9R1oKNA8H63fQuCReX6Lp8I+omIk/
JK95k8P2SxkW9rDbH/pjGqfyFcrqmj+Wzcc+tAHhV7D8RtS3u2k+HbUfwxtqs8jH6kQAD9awbjSP
iEM58PaIxHUrrT4P0zb17lcW+xiO9UZY6APE20fxxNGRH4c04SEcGTWMJn3xETj6Cr2mfBc6o32n
xfqs2py5ymn6bLJaWcPJ/usHlOCAS7Y4yFWvUpF2mm0Aca3wb8DNp6WX/CKaSsCMXUrbKJFc8lw4
+bdkn5s55rnr34ItYqT4d8SahYIoO201IC/h/NyJf/H8V6nRQB4dN8PPFvm+VdeJNOghPBksdLYS
/VTJKyg/VTWlpvwn8O2skc99bPr18pD/AGrWH+0MGxjKqfkT/gKgV6TrEQxnHPWsegBI41hjCRqq
IOAqjAH4ChlDDBpaKAM+8hAzXN+JtftPDOly394zCNSESOMZeWRjhI0HdmJAA9TWl4y8Vaf4TsUu
L6Rt8z+Tb28Kl5riQgkJGg5ZsAn2AJOACa4bRdHv9c1pPEHiJVW7iLDT9MVt0WnoQQWJ6POwOGfo
oJVeNzMAW/CPhm5jvJfEGubJNeukKLGp3R2EBORBH78Au/V2HoFA7WFtrKapxtlcVMkmODQB1uja
iIWAJwK7OxvlkVcNk185+IfjR4d8Ka0dHknutR1dU3vYaXZyXcqA4xuEYO3ORjOOtWPDugfE/wCN
kjSG51D4W+DTwuY1/ti/UryQGyLdcnuN3FAH1DZ3iuu1jyOKsTXMNrHvmljhT+9I4Ufma8Qh/Y20
JUSTRvGHjbw3dMMXN1Y65JI9zxglxLvXPuAK3LX9i/4aSNBLrttrHi+eHkP4h1i4ulJxjOwvtz+F
AHaa98SPCfhXTzfax4m0jTLMMF865vY0XJ6DOeteUat+19oEuuXum+D/AA3rvxAW0KpJqegpE1h5
hGfLEzuASBgkjI5Fek6P+zD8J9Av472x+H2gw3UYISQ2avtyMHAbI6E119p4C0DS9Kj03TdJs9Ls
oxiO3soVijT6KoxQB4Npv7Y0PhjULa48X/DvxV4a08P+8v1ijvYYl6ln8liwHvivufw14i03xd4f
07WtGvYdS0q/gS4tbu3bdHLGwyGU+lfJ/jTwQLBZCIxJA4IIxwwPUEVY/wCCfmu/8I/p/j/4WTfu
/wDhGdVOoabEE2qNPvMyKAehxKJRx04oA+uqKKKACiiigAr5N/be/aNvvh9DYeA/BFzB/wAJ/rUe
9p2AcaRaHIa5df755CKepyeQMH6rvrpbCyuLlxlIInlYeyqW/pX46+FdfuvHeoaz4/1TdLrfii9l
v55pOWERYiGLP91Iwqge1ACQ/CHwzJayLqVj/bd9PlrnUtRYy3U7nq7SE5yaxTBr3wnlL2/2jxL4
WzloXbdeWa/7J/5aKPTrXVXXjBv7SmsdP02XUJrfH2iTzFjiiYgEJuPVsEHAHAIzjIo0vxEmuXM1
tJby2F9BgyWtxjcFPR1IJDKfUH2ODxQBqeHfE2meLNLj1DSruO8tZP4k6qfRh1B9jTtb0G0163SO
5VlkhbzILiJtssD9nRux/QgkHIOK4nXvAdzZalLr/hK4XStbK/voGH+jXoHIWRfXr8w55rofA/ja
DxnprsYWsdTtW8q90+Q/PbyDt7qeoPcUAO0bWrn7fLo2qEf2nCnmJKq7Uu4s48xR2IOAy9iR2Izq
X3h6e5mtr+xuv7O1izJa1vFTdtz95HXjfG2AGXvgEYYAjO8ZWbyaSb+2VjqOmn7XbGMfMxXlo/cO
uVI9/UCu00iaDUbGC8t5Fmt50WSN0OQykZBBoA0/CPjqPXZTpuowDStfij8ySxZ9yyKCAZIW48yP
JHuMgMATXTtIB0rgde8O2+vWsayNLbXMD+da3tuds1tIBgOh9eSCDkMCQQQSKk8K+K728gurHVlj
XV7CQQ3DQjEcwIykqA9Ay845wQwycZoA3fEOtXnhmO28RaWHbV/D9zHrFmI8BmkgO8oCegdA8Z/2
ZDX6w6XfJqmm2t5HxHcRJMv0ZQR/Ovx/8XX1zcaLcWliVOpaht02zVwSpuLhhBEDjtvlXNfr3oOn
nSdFsLLOfs1vHD/3ygX+lAF+iiigAooooAK5bxdLu1Dw8o7apH/6LlrqGG5SBxXJ+KIyt/4fz/0F
I/8A0XLQB5K1msPinxVPj55tWnOfoFH9Ks0t1/yHvEP/AGFbj+a0lABRRRQAVmazaiSLfj61p1W1
H/j1agDzzVIdrGsSbjNb+sMNx+tc9cSAbj2oApTdajpfME3KncvqvIpKACisrxF4p0fwjY/bNa1K
20y3yFV7mQJuYnAVR1Yk4AAyTmuA1D42XF+u3w54avLpXXK3urn7DB/3wQZSf+AD60Ad7rUyquM1
jqd/QZrzC+u/FuuyM9/4l+wIWyIdGtEjAHoXl3sfqNtZ83hGG4ffcaprlw3ffq9wo/JGA/SgD1+R
hCpZyEXuWOB+tcV4k+K2m6XdHTdIVfEWtld32OzmXZCM4DTy8rGufqxwdqnBrjJ/Aehzr/pFj9u7
/wCnSyXP/oxjVuzsbfTYxDbW8VtEOkcKBFH4CgBNN068v9bbXdduY77VyhhhWFCsFnESCY4gSTzg
bnPLEDoAFHSxPtNZUMm36Vg+M/idovgSGNb6WS5v5si302zTzbmc46Kg/meKAO9WYDnOK89k8d+I
PiN4hufDnw3htbg2jBNQ8SXoJsrM90jx/rZAOcDgcZrCs/DvjL4wSbdelfwb4XZudKspc310oPSW
UcIpGMqvOCRX0b4C8N6Z4T0a20vSLKGwsLddscEK4A9T7k9yeTQBY+CHwisPhXoMsEdxJqmrXcrX
WoatcKBNdzMcljjoo6BewH4163p8HmOCeprF0z/Umui0v7w+lAG1FGI0AAp9JS0AFFFFAFDWrFNQ
02aJgM7SQfQ18m/st/GzTNF/aK+IHiS6mjj8OX4g0OG5f5Rtt2bdLk9RvZh9Bmvor43X2r6Z8HfG
13oEcsutw6PdPZpBGXkMvlnbtUck+gFfnh8GfgBP4606G/8AEdhcWvh+xjW203S7wNF57AfvLiSP
g8nIGfc46UAfs3puq2esWqXNhdwXtu6hllt5FdSD3yDVuvyQ1rw1P+zLcWPj/wAFT3nh+fTb+2ku
4bGaT7Nc27SqkySw5KspQnJxkYByCAa/UHQPiTpevafb3cMimKZFkRkIZSCMgg+lAHXUVjHxVZY+
/WRqnjRVUrDwfXvQAnxQ15NM8F62qOPNaxnAwen7tq/Kf4O6d53wy8OPjObNO31r6s/aA+Ocnidd
U+HHw+83xP8AELVIWsxDp37yLSxIuDPcy4KxhQc4PJ44q94H/ZNfwj4Q0nRzeQzPY2kduZP77KoB
bp65oA+RpNPk0HxlPbyD/RNZbz4Jc9J1QB4j9VUMPo/oM6eteD5L77LfWUsdvq1mS0EkgJVlb78T
452sAPoQp5xXtXx++BOreGPCMmv2lubtNFnj1B/IUuwiRh5pAAyf3ZfpXnyusihkYMjDKsOhB6Gg
DirPXJP7QOm6jZPpupiPzViZg8cyDALxOPvAEgEEBhkZAyM8b8TbceFxD40sCbfUbGSNLjZ0uoGc
KyOO+M5B9q7bx5cxnVvDdtGA96t09zgHlIViZXY+xLqv1Irjvik39raTpmhxo0k+q6jbwKg67VcO
x+gCmgD0gSGRVboCARV34V6WRda7p0TFrG2uVlhX/nkZU3vGPbcSw9N+Kl/sZljwOgGK6f4F6Usk
Gvylf30uryh/+ApGg/QCgDqLfwmboAKhNee+Jvh14m0fx5d3VpoGqaja31nbpDLp9u043RtJvRgv
3SN4PPUdORivqvwj4XW4ZPk4+le7+A/BkLSR/uxgdTigD4g+CX7P/wARfHHxQ8JXM3gzUtM8Oabq
1rqd5q2sqtrEFglEuyONj5kkhZVx8gUcndxg/qJTIYVgjWNBtVRgCn0AFFFFABRRRQAVzXjBf9L8
On/qKR/+i5a6Wud8X/8AHx4e/wCwpH/6LkoA8iuHDeIPEYHVdVuAf/HaWsa41IQeOPFcRPy/2tN/
JK2FcSKCpyKAFooooAK5j4heM9H8D6BJqOt6lb6XZhgvnXMgUFicKo7sxJACjkkgCuf+NHxej+GO
l2lrYW0eq+K9VLR6XpjuVVtuPMnlIyUhjyCzY5JVRlmAPz1Ho91qmsLr3iXUpvEniPHF7dDbFb5z
lbaHJWBOcfL8xAG5mIzQB0GsfGDXPFWR4X0BrK1f7uqeIg0A2kZDpaj943P8Mhjrm7jwg+vSGbxN
q994hlPP2eSQwWaZx8qwRkKR/v7z710MfSnUAcv/AMK20GHH2GC60gf3dJvp7RfrtjcL+lPm8L3U
MeyLxN4iSLpt/tJm/Ugn9a6WmTf6s0AcND4J03Tb03ywyXeo4Km+vpnubjBOSBJISwGewwPapZI8
Eg/nXQXX3a5TxF4g0zw3Zve6rf2+nWinma5kCL9OepoAlorzN/jQ2usyeD/DGq+JeMrdtH9ltDz/
AM9JMZH+6DQbH4o+JN4m1PRfCdu2MLZQteXAHf5nwoP4GgD0G6uIrS3eWeRIYlGS8jBVH4mvNb74
1aJNdm08PwXniu9B2+XpEJeMH3lOEH51cg+Bej3s/wBp8S6lqni243h8ancnyAcY4hTCY9iK7iz0
ez0ezjtbC1hs7WNdqQwIERQOwAoA8umufiV4uARLaz8D2JzvkaQXd4wyMbQPkXIz644rV8F/D3Sv
Cd3LeIJb7V5j+/1S+bzLiT/gR+6OBwMDiu5lUCuZbVp9U1ibT9BsZdavIW23HksqQWxxnEsp4B6f
KMtyDjHNAHoOhzqm3mu/0a+UbeeK8j0vwZ4tuP3t7rFho/yjba2Nubkhu+6R9uR7BR9a3Lfw34it
cMvi+bP93+z4Nv5df1oA910m9XjJ4NdNp1wI5BzxXznC3jO2+74qtio/6hKZ/wDQ/wClTr4u+Ien
SDyPEGj3MI/hu9Gbd/30kw/lQB9VRsHQEc06vm/S/jx430eSNb7QtF1u1H+sNndS2k3/AABXVlJ9
iyj3r0zwL8ePCXjq6j09Lx9E19hk6JrCi3usgAnYCdsoGQN0bMue9AHolFFRzXEcClnYAUAMvbgW
trJITjA4rwbUDuvpz6uTXo3i/wAUKkDIjeyj1rzJmLsWPUnNAGZ4k0O38TeH9S0m7jEtte28lvIj
dCGUj+tcJ+y/8ZbvTvhzp2k384N/orPpV3Ez7ijwsUGe+SoB59a9NrzPXv2Z7/xr42uNc8L+K5vC
F3qOwaii2i3MU+0ECQKSNsmMDPI4HFAHpPiD9qST+3Lbwr4R8P3Hi7xreLui021k2xW6/wDPW5k6
RRjj3ORiti1/Z6+JvxOhST4l/EuXS9Nl2NL4c8FQ/ZIyA2TG902ZGUjCnbtyM+tdj+z78A9A+C2k
3UGnPPqOqahL9o1LWL4hrm8k7biBhUUcKg4HXqSa9noA5L4a/Cbwj8H/AA+ujeD9BtNDseC4t1zJ
MwAG6SQ5aRsAcsSeK62iigBskazRsjqHRgVZWGQQeCCPSvmHx/8Asd2un2l3eeCvEOqaLaoC6aIE
hnghXJJWAuhdAM8ISVUABQAAK+oKD055oA/Na48AxeG7i5naS4u7+bAnu7t98sm3oOwVRzhVAAJJ
xyaxfhD4Nk+JHxc1jWREZtN8MxiwtnwChupBulYH1VcD8a9V/akW8j+K0PgHwiEk8Ua5iaPA3LYW
7A77mT0Uc4z1Nex/CH4Q6b8LvBdj4e0sPNHDl5rqY5kuZmOXlc+rH8hgdqAOQbwDN5f+rzWH8ObN
/CPxO1jRLlfLh1aNdUtGY/ekQLFOgHbAETe+8+lfRA0PjnFcT8UPh7fato8Oo6JHG/iLSJ1v9O3P
sEki5DQs2DhZELxk4ON2ewoA9k8D6eohjIHXHNe7eDrQQ2wbHOK+fvg34s0/xp4btdT052aJneGS
KQbZIJkYpJFIv8LowKkeor6J8LEfZF7cUAbtFFFABRRRQAUUUUAFc34xfbdeHB/e1WMf+Q5D/Suk
ry34k+K4ofid8ONASQGa41OSeRM84W1nIoA8J17XEHxR8cWwbDwaxICPrHGf61v2GuFFHzV8nfGj
xV4z8M/tQfFS50hrG505NcAWyvt0Zb/Q7UkrKucDJbgqc+orV039o/U7N4v7V8IXC2p4kl0y8S5d
P9oxkKSP90k+1AH1eviBMc4NYHjn4qaT4B8N3utatOLaytVBYgFndicJGijlnZiFVRySQBXg037V
HhP7OptYtcvrlhlLWPRrlJC390l0VU+rED3rzXV9Y1j4ia9DrviQCCO1YnS9FSTfFYgggyORxJOw
JBbogJVOrM4B0mm6lqnizXNQ8WeIFaPWdUKgWrEEWFsufKtVIyPlyWYgnLsxzjaBvrWBp90AoHat
RtQht4GlnlSGJBlpHYKoHqSelAGlG1PrybVP2iPDkd89j4fttS8ZXqHa6aDb+dEh/wBqU4QfnWTL
q3xT8eMSJLT4daWT8qoFvdQdc9yf3ceRj1xmgD288Lk8D1PSuR8Y/FLwn4Jt2fWfEFhYkAny2mDS
NjsqDJJ9gK8zk+CVpqHmtr3iXxN4heU5f7VqkkcfToEjKqBVzR/hT4T8KusmmaBY20yDAm8oNJj/
AHmyaAM3VPjJ4m8ayfZ/A/hx7WzY4OueIFMMQGRzHD99+CcZwOKraL8I7ObUotY8VX03i/XF5WfU
APIhPH+qhHyryAe5rs2XYwqzG2cY60AWVUIoVQFUcBQMAVJH3rG1PxZo+isiX+p2tpK3CxySje3s
FHJ/AVnf8J9DcZ/s3SNX1Mg4zHaGBP8AvqYoCPpQB1tUdY1ay0Wxe6v7qK0tlIBkmYKMngAepJ4A
HJrB/tDxVqmVgs9O0WM42yXUjXUvvmNNqj/vs1reH/Bdvb6iup6lcza1qq/6u4u8bYBzxFGPlTrj
IG4jqTQBmWdjr/jnyxa28vh7RZRl766+W8kTj/VQkfu8g/ekww/uenpmi6LZeH9Lt9P0+3W1s4F2
pGn6knuT1JPJJpbXvVugBaKKP1oAZVW4Uc1ZkYRqXb5VHJJ4FcfffEvwxDNLEdcs3kjYq4jk3hD6
MVyBQBqS/wCsNZmtaRZa3ZNa6haQ3tvkN5c6B1DA5BGehBAII5BFQWfjLQdUG611rT7jP/PO6Q/1
q7NcK6goQwboQcigCXw18SPHvgOBNP0+eLxToy4WGDV7x47u2UZ+UT7X81emA43DnLt0E+tfEP4g
+MphFLcQeENOj5P9m3Aurq5PoZHjCxKB/dBZs9VxzVtVG3PerFAGXpPxGufC93JpvjbU2ki+/ZeI
LpQkUy94pmUBUlU9MgBwQRkhgN63+KXhG6nihi8RWDNMwSMmXarsegVjwSfrVfaCuCMjvmob6xtt
Ss5bO8t4rq0mQxyQTIGR1IwQVPBFAHaQzJNIFU7vUivRfAsSqxOBnFfNHhfxA/w01C10TWrgyeH5
m8rTNWnYkwkn5bW4Y9+0chPzYCt82C/0X4J1ONJoxuBRxgMDkH3zQB7Don8Va1YGi3QVwCetb9AB
RRRQAUdME8iig8A0AfHfwP8ADS6P8fvjXp2tBrvxausrfNqU0Z3z6dOoa2VWPVEwUwOBsr6NjjWN
cKMCvGfC94uu/ti/Fi4IwdL0TSLCP3VjNIT+de0UAFFFFAHCXGoD4PeP38Vj934S1144NfRIxts7
kAJDqBI5CFQsUpOcARP8qo5P1z4N1NJIU+YH8a+fLq1hvraa3uIknt5kMckUihldSMFSD1BFcx4B
+I99+z9qkWieIpbi+8AsSNM14q0r6WvUWl4QCfLUf6u4PG0bJCGAaQA+3KK5XwL8R/DnxA01LrQN
d03WoCufMsLpJhj32k4rqqACiiigAooqpqeqW+j2cl1dSCOKMZJPf2FAHkHxy/a6+HHwDvG0rxBr
Dv4iaBZo9Ks7Sa5lVWyEeTy0YRoSrYZsA7TXyL8I/wBoi0+NH7X/AIEeHUVvGkvbpwsYJCgWc/B4
447Gua/bpuZPiF4uTxTpzxwanpsX2eNJDtjuLfdnypCO+fmVuqknsSDxX7DuqJq37SXw9nWN4W+2
XSSQyDDRutpcBlOOOD3HB6igDtf2gf8AkvnxG/7DJ/8ASeCuCq9+0vceOv8Ahpb4opoml6Veacut
Lse+umif/j0ts4Cg8Zz1rzebxB8QNJZZL/wVb6hbH739j6gJJU99rhc/gaAO73Hjk4+tX4ZAVAzX
lj/ELxTqW1dI8A6jGS2Gl1ieO2RPfALMfwFRf8I94+8SKRrHie30G1bcGtdAh/eYPQec+e3oBQB6
F4q8f6P4DsftOq3y25Y7YrdfmmmbsqIOSTXI6X4N1j4w3Kax46hmsfD6sH0/wv5hXIBBEt1g/Mxw
Ds6Ade9XPBvww8P+G9SN/Fave6njH2/UJWuJ/wAGYnH4V6fAwKCgCPS9JstDso7PTrSCxtIxhIbe
MIij2Aq3RSMwVSzHao6seBQAjdKx9Y1C10uylury4itLaJSzzTOERR6knpWHqPji51i7ksfCsdve
mNmjuNVuGJtIGHBVQvMzg9VUgDBBYHiq9r4Nt2vI7/V7iXXtRQ7kmvMeXCef9VEPkTGSM4LY6saA
KLeJr7XG/wCJDpMlzCTgX9+TbW+M4JUEb39RhcH1p48IXupYOt61cXSf8+mn5tIOvfaTI34tg+ld
Uw70lAGZpfh/TNDUjT9PtrPccsYYgpY+pPUn61odevNMuLiK1jaSeRIYxyXkYKB+JrnG+IOlTMU0
4XWtP66bbtLH9PM4TP8AwKgDq4j0rWtJgMV57DrXia8O6HR7GxiPIW+vGaX/AIEsalQfoxqZV8V3
DfNq+nWMfdbWxaRx9Gd8f+O0AeoQTdxzVXWPGmi+HI1fU9TtbLccKkkg3ufRVHLH2ArzhvCa3gX+
1NU1TVyOq3F00cZ+sce1T+Iq3pnhvStFkaSw021tJG+9JDEqsfqcZoA0Lz4ha34g+XQLAaTZHGNR
1eE+a44OY7fIIGMjMhUgj7pFUH0O6vudT1/WdRkzni8a2UewWHYMfXNaI61KKAKNr8P9IugTeJda
jG3WG/vp7iM/VHcqfxFdVb28VnCkMESQQoMLHGoVQPQAVBYt8oFW80AUrzQ9N1DP2rT7S5z186BG
/mK528+HdvZ75/Ddy/h276iOEb7Nzz9+Anbgk8lNre9dfRQBxlr43k0WQ2/iLTLnTpgdouLWJ7m1
l4zuV0BK/Rwpznr1O9o/izRvEEkkWnanbXk0fLwxyDzE/wB5DyPxFT3J64OKxNY8N2GviI3UP7+F
vMhuomMc0Lf3kkHzKccdeQSDkUAdXS1xaaT4gslP2TxTPNzwup2cU4A9igQ/maLbx5Lo8i2XieKP
Tp87Y9RjVvsVxzgHef8AVMcj5HPU8FutAHU6hDFdW7QTRpNE4w8cihlYehB61g6PZal4JvEn8J3s
emwDiTSbhGksnHHKoCDEwx1Q45OVPGNhrgSqHDBlbkMpyD+NRUAd94e/aY1jQoQfE3hNpLaNvnu9
Au/tTIndzC6o5x/dTc3oCeK+hfBvxS8MeMtNju9K1/Tr+3YcSQ3SHHYgjOVIPBB5BFfHlYmreEdC
1i8S6v8ARNOvbmM5Wa4tI5HB9QSM0AfoXDNHcRiSKRZYz0eNgy/mKfX53WTah4P1FdR8L6rd+GdQ
jOVbT3K278g4kt/9VIDjByucE4KnmvoH4V/taxeI5YdC8WwWuh+Jz8kTo2LTUcDO6Ascq2ASYmO4
YOCwG4gH0hWRrWrpawOqt82OTXNXXjpZVIEgUe1cd4g8XgxvtfnHrQB558DZorz9oT483THddm/0
2LcTkiIWilR9Mlj+Jr3uvjDxD4p1/wCD/wAWLr4i+HrFtd0zUbeO18RaHGB508UZOyeA95EDH5Tw
wyO+R9T/AA7+Jnhv4reHItb8M6nFqNkx2uF4kgfHMciHlGHoaAOoooooAKTaPzpacKAOZ1TwBp11
q1prmmD/AIR7xPZMWtNe0uNI7qLP3lY4xJG3G6NwVbAOMgEdvonxy+KXh0Qw6tpHhzxnbqW33VjP
JpVzt/hxC4ljY46/vFHsOlZ1FAHY2f7W0EG/+3Ph14v0dF/5bRRW18h9wIJnc/8AfOa0dP8A2x/h
Zd7vtWsajopXr/bGiXtmB+MkIH61528ayKVYZBrn9WsNu7r+dAHq2tftwfBnTYWMHxA0C5l6bft6
KQfcE5rwX4qftpeFPEUbRWHiWz1MniOz0uT7TM30jjyx/Ks/VNNjLNuRT7lQa5e+02JSxWJFbpkK
AaAPnv40apqHxM09YrHRdYeeOYTRJcWrxxTNggLICQNhz36deorvf2K/Dc3hv9pD4cQy6dFpjtc3
LvbwEMiubOctggDPPfvXQahaCFzgcV1/7O9sjftCeAZdvzpeT4P1tJ6AM347KB8c/iER1OsHP/fi
GuHrV/aD8daRpH7QfxQt9Sv7exFvrgTdcSBAc2ls3Gev3h0rz+T4jWMwYabYalq7Dobe1MaH6SSb
VP4GgDoL5QRk9ay/pzWHdax4n1hisFpYaNEcYkuJTcyj/gC7VB/4EahPg83an+0da1W/JOdq3H2d
B7ARBePqTQBavPF9tp9+1laxXGq6io3NZ2KB2Qdt7EhUz23EZ7Vcj8WeIjGPs/hyONj0+26gigfX
YrU/SNJstFtfs1haxWkGS3lxLgFiclj6knqTyavUAZk+oeLNQ+WTUrHSImHIsLYyyj6SSHb/AOOV
Rk8H6felm1NrrWnb751K4eZG/wC2ZOwfQKK3m5PAzWVqviTStDZEv9Qt7aR/uRO43t9FHJ/KgDfs
4YrWOOKKNYokG1UjUKqj0AHSrdcEvjTUtQbGkaRvtl/5etTdrZX9kTaXP1YKPTNV7q48R61Ihvbx
NHtE/wCXbSpSzynnl5mUED/ZUDkck9KAOq8R+LLTw88NuY5r7UrgM0FhaqGlkA6tyQFUcZZiBkgZ
yQKx5L7xNrmY1+yeH7c8NLE/2q5xj+HKhEPuQ/0qtoej2+nzXNwrzXF5c7RNc3UpllcL91dx6KMn
CjjJJ6k1uwyrGCXO1e7McCgDMh8E6Qsyz3Nu2qXIO4XGpObhwfUb8hfooArcVQqhVACjgKBgD8Kx
7nxpoFmzJNrenxuvBU3KbvpjNVf+Esm1Jimh6VcageR9puQbW2B92YbmH+6poA6aPAXFTKRXLroO
vXX7y68RtZyHP7rTbWMRqOwzIGLH34z6Clbw1q2OfFuqf8Agtl/9p0AdT16c1i6l4w0bS7g282oR
NdAZ+zQ5llx/uIC36Vnr4PivGX+0tT1TVAOdk90UQ+xSMKD+INbel6TZaNbiGws4LKH+5bxhB+lA
GYviXUNU+XR/D97cFh8s+oYs4Qffdl/yQ1eh8E3upbpNc1q5k3dLPS5GtYI+T/Ep8xjjgktg44UV
vafjd71oUAcyPh7pkbBornV4JF+66atcEj8C5B/EUTeGdUiYG38W6zGB0WQW8o/HdFn9a6amTHgU
Acv9p8W6czNHe6ZrCAcQ3Vu1s5/7aIWH/jlSr45vYcpqPhzUbeQdJLMLdRP9CpDD/gSitNvmkNPo
Ay7HxppurX32EPNZ320uLS+haCR1GMsoYDcBkZK5xkVtRnK5HI9azdW0Ww122FvqNlBfQBtwjuIw
4B9Rnoa5yTweNHm87w7dtoc6jHkovmWkvXAeEnHfqhVuBzjigDt6bJGs0bI6q6MMMrDII9CK5Sz8
cXNmjxa3o15DcoxAl02B7qCZezKVG5fdWAIOcZGCb9j460TU5RbwX8a3ZGfstwDDMP8Atm4DfpQB
lt4Mh0uUyaDdz6DJ/wA8bY7rZuvBgb5R15K7T705PEXiLSdo1HSYdWhGAbjSpNknuTDIen0cn2re
dv4jwKqykGgB2jeMdJ16R4rW6xdR8yWlwhhnT3MbYbHB56GpNY8Qadoaq+oXsFpvOEWRwGc9gq9W
PsBVGbwzpviJo11Gxt7wIcoZkDFfcHqPwrd0bwho3h+RpbDTLa2nfAadUBkbHQFzk/rQBxNz44t5
LmCKaw1HTku+LW4vrVoY5jj7oJ5Vj2VwpPOBxUGoWNtqlvJbXlvHcwP96KZAynHI4Nel6ppNnrmn
zWWoW0V5ZzDbJDMoZWHuDXIXPwpiiA/srXNS05VyRDK63UX0PmAtj2DCgCp4a+K+s/D1UsdRe81z
w+o/d3GTNeWYHRWH3pkx0PLjjO7OR6Rb+OLXxJp8d5Y3kd5azDKTQtuVvx9favD/ABHp+u+EV83V
7aO+sBgHUtNViqe8kRyyD3BYDqcCsrTdQufDd/8A23oQW7iuAHu7CNh5d6uPvoeglA6N0YfK3YqA
e7NuupNx/CuVvPBOseF/EL+L/h9qKeHfFW0edGwzZako58u4j6HPI3jkZ610fhTXLHxNo9vqenze
fbTA4JBVlYHDKwPKsCCCDyCK2aAPRvgv+0fo/wAUZG0PUrdvDPjm1j3Xnh+7bDehkgbpLH7ryMjN
eupJv6dK+NvG3w/07xtbwPM0thqtofMsdWs28u6tJOzI45/Doa6b4a/tP6j4FvrXwx8Xmityw8uz
8ZwpssrrHAFwOkEh65+6eelAH1OtLUcMyTxpLE6yRuAyuhBDA9CCOoqSgAooooAKo6ooKA47Yq9W
dq0wjTB7CgDjtWUc/SuV1DGTWj408XaR4XsZbzV9StdMtIxlprqZY1A/E14fcfFnxH8TJGtvhl4b
lv7ViVPiTWVa209Bz80YPzzfgMe9AHReMNe03w7YSXuqXsFhaR8tNcSBFH4nvVH9kr4ww+PP2pvh
5ZaJpF7Joxurl31i6XyY3xZTlfLQ/MwJ78VgRfs0PdXa6x4z1WfxjrKnepufltYD6RQD5Rj1OTXp
37OXhddH/aW+H0iIEVbu4AwMAf6HPxQByv7QWj2Uf7SHxPvRaxG7m1oFpmQF+LS3AAJ6DA7VxnXr
zXRftKeLrDSP2hvit9ul8hLfXljHBZnZrO1IVVHLElsAAZJ4AriLWLxJrw3WtjDods33ZtUzJMwz
1EKEYBHPzMDzyKANTo3AzVXUPEOl6Sub3UrS0/67Tqp/Imp4fhvbXDB9Y1LUNYkzny2mMEA9vLjw
CP8AeJra0zwpouiriw0mys/eGBVP54zQBxv/AAlE+rSCLw/YvqLZAa8nDQ2kY453kZc4zwgPPBI6
1ZbTfFM2FbVdLtk7tDYu7/hukwD9Qa7G5iFVKAORPgi2mYNqF/qepTY5ea9eNT/wCMqo/KrNl4d0
3Rd5sbKG1aQ5d40G5z6lup/E1f1rWtP0VRJf3sFmpOB50gUk+gHUn6VgSeItR1r5dF0qTyf+f/Ug
0EXX+FCPMf8AJQfWgDSlwuSTgdyawX8UW95I0GlQT63cKSCtioaNSDghpSQgPtuz7Vag8Dw3x8zX
buXW5ephk/d2o6cCEHBH++WPvXWWsMdvGsUSLFGowqIAqj6AUAcrZ+Fdd1L95qGpjR4+otdMCvJ3
+/K6nPbhVGPU1oL8O9EYlry3l1VzznUp3uB+Csdo/AV0lJJIsMZd2VEXksxwB+NAFOHTbS0VVhtY
IVX7ojiVcfkKevDc1gXXj7TpJGi0tLjXZxxt09N0YOcEGU4jH03Zqq1z4ovuV/szSEz90h7uTH5o
oP50AddTZpEhQtIyxj1cgfzrk/8AhHLq9yNQ17U7pW/5ZwSLbIPp5YDfm1SL4F0HcrS6XBdyL0kv
Mzt+bkmgC1ceNtBsZ/Kl1iyE3/PJZgz/APfIyab/AMLA0ndtiXULk/8ATDTp3H57MVftbK3slCW9
vFbqOixRhR+gqV+V5J/OgDMHjLUGkxY+Hb5+OJbySO3j/H5i3/jtWY/Evil1Bay0eE/3PtEz/wDj
2wfyqb6UySaOH/WSIn+8wH86AI5fEXiqVSkcGjWxI/1xaaXH/AMLn/vqoCviG4+aXxDsfusFhGqf
kxJ/Wq2p+MNC0VVa/wBZsLNWOAZrhFyfzp2n+MtB1KNXtda0+4VjgGO5Q5/WgCT7V4qsW3pc6bqy
D/ljLC1q5/4GpYf+O1Zh+IunW/yaxFcaBN/0/p+6P+7KuUP0yD7VcUhlDKdynkEcinxKHfnkUAQL
8RvC7sFXxBp+5jhQ1wq5PoM1peas2HVgytyrKcgj2NRSQxzIUeNHU8FWUEVz3/CFxafIZdEvbjRG
J3GC3w9sx5/5YtlV5P8ABtJoA69F2rxVbUtJstZtzBf2cF7Cf+WdxGHH6iubt/Gk+gslt4oijtBn
amrQA/Y5Dg/eySYTx0b5eQAxJxV9fiF4YeRUGv6cSx2g/aFwT6A9M0AVpPAthayFtPuL/SmxgfY7
xwi/SNiU/SoToviC1VRba/FdYPP9o2SsxH+9GU/lXSCZLhRJGyyIejKcg/iKKAMDT/GMvh+6WHxJ
aLp0bHCalC5ks364DNjMR4/jGOQAxNeiQzx3MKyxSLLEwyHRgyn8RXLzqGiZWAZSMEEZBrk/+EXt
rC4abSJrjQpySd+myeWhJ6lozmNj9VNAHrVFed2fi/xFosiC/totfss4aWxj8m6jGRgmMttkHUna
VPoprZHjxr1dumaBq15MTj9/B9ljX3Z5COPoCfagDc1pkWxdnIAHcnFeA6lbxeFfECG1Xy9I1GXa
8K42W855Dr6K54IHG4ggcmvULrwVd+MJFuPFc0E8aj9zpFrua0hOOS5bBmfPRiAAMYUHJPm/j7wD
D4f1KGwsWa10/U4JdsYJZIJ49jRvGCfl7naOOAfXIB0PgHWk8K+M2hnlW30zWlwzOQsa3i4CHPYy
Jlck4JjUdTz7TXjfge0tfF3hlZdQtIpTJut7q1lXcgkU7XUgjkZBx6gg10dr4Vu9Fy2gazdaav8A
z6XBN1a9sfI53IBjojKPagD0EnArD1/T7TWLGazvbeK7tZlKyQzKGVwexBrnbjxtqvhtgfElrbjT
Sozq+n7/ACom7+dG2TGvfeCyjncV4zv+cLhVcMGVhkMpyCPUUAYXgfxp4z/Z5mKaFFN4x8BFgX8O
TS/6Vp4z8zWkh6rj/lm3HAxjNfRvgP8Aak+GfxAkitrPxRa6dqrHYdK1g/Y7pXxkrskxk49MivDj
0rnfEPhTRvEy+Xqul2eoqOR9ohVyD6g9QaAPumORZY1kRg6NyGU5B/EUpYKpYnCjksegr4B0HwPq
PhCZH8G+MvEXhJFBUWtnema15IP+pl3KMY7AVt33gLXPHyrH41+IHibxNZlWRtPNyLO2kBxnekIX
d+J7mgD6F+IP7U3gLwLeyaVBqEninxIMhND8Pp9ruN3HDlflj6jliOteY3fiL40/FaVmWbTPhfo0
hGyNEGoamV3HOWOI4yVx0DYya0PBHgvRPB9mtromlWumQ91togpPuT1J+teg2ChcYFAHnHh79mzw
dpt8mp63FdeM9dB3nUvEU5unDZzlEPyIAegUdhXqccaQxrHGqoijCqowAPQDtTqKADrwa0vhXpMc
fxy8C3aLjF9KD7ZtZ6za6j4Uf8lY8Hf9f7f+k09AHz18cPCGmr+098S9bkiM9/JrOY2lOVhxaW6E
oOxIUZPXtWWn3qvftC+N9I0r9or4mWt9qFvZyx655arNIFZybS3fgdTw3auOj8aRXu5dL0zVNXkU
Z/0W0ZE/7+SbE/I0AdPRWALjxXfbfs+iWmmRkcyaleb5F/7ZxAg/99ioJvBeoauANd1ya7h6tZae
n2S3fnPzEEyMPYvg9xQBFrXjnT7e8lsbFZdZ1KPhrTTwHKHAOJHJCR9R94g1iSWniDW2zqF8ujWp
/wCXPS23SEc/fnYdxjhFGP7xrr7fRLTR7NLWxtorS2jGEhhQIij2AqtOu2gDE0vwrpWjyGa1soxc
kANdS5lmbH96RiWP51q1z9x440xLh7e1M2qXKEq0WnwmYKw7M4+VT7EiqN1rviDUkEdlpqaKjH5r
i/dZZFH+zEhIJxnlm49D0oA6DUdVs9Ft2ub66htLdeDJM4UfTnqayP8AhNpr5QdI0a7vVOdtxdYt
Yf8Ax/5yPcKaoab4btbW4W8uHl1LUB1vL5vMkHTO0fdQHHRABW20ixqXdgq92Y4H50AUHk8S6jnz
9SttJjI/1enQ+ZID/wBdJOP/AByoh4RsLqXzNQNxq8nBzqMzTLkdwh+QH6LWdq3xQ8K6Kzpc67aG
ZTgwwP5smfTauTmqUXj7WtcJHhrwbqmorkD7TfgWUHPfL/MR9BQB3carHGEVQqLwFUYA/Cor7UbX
S7dp7y5htIVGTJM4RR+Jrll8N/EjXGYXOp6P4Zt2x/x5RtdTgd/mbCg/gau6f8DvDsNwLvWftPii
/wCc3GsSGUDJyQsf3QPwoAzpvjV4RiuDBb6k+pTD+DT7aS4/VVIob4v2jAm38N+J7v08rSZefzFe
i2mn22nqsVtbxW0Y4CwxhQPyrctFwo5/WgDyZPFni/VUU6T8PNSwx/1mqXMVqo9yMk/pVuPwv8UN
dYiW58P+GoGHBjWS9mB/HatetLVuH7woA8vtv2f9Q1SILq3xC8Qzn+L7EIbYH6YXI/Otqz/Zm+H0
LebeaRNrFzjDXGp3ks7n82wPwFemWv3KnoA4zSfgz4F0OTzLLwlpMMuMeYbVWb8zmq+pfBXwJfNI
83hDRmeT7zizRWPvkCu7pk33aAPENQ/Z50rTXV9A13XvDyrnbBaXxkhHtskDDFY0ng/4i+HS8mm+
JdP8RIrAi21a08l2XuPMjOM9eSK9v1BhtrDkOXNAHlNv8YLLTJo7Pxbp914S1BiF/wBMQvbOcZ+S
ZcqR9cV2un6xY6xbLPYXlvewuMrJbyK6kfUGti6tYbyExXEMc8TcGOVQyn8DXCap8D/B95cG6t9M
bSLrn99pU72p59kIB/KgDrI1DZ3AHtginPBHJGY2jRoyMFGUEflXluqWfiD4Rta6jBrOoeJfDiSC
O+s75RNcQxk482N1G47e4OeM/WtJvjhokmGtNM16/hP/AC2t9Kl2/qBQBv3HgPRVYva2raZITuL6
bM9sSfUhCAfxFQLo+rWrE23iW9Ze0d5DDMo/HarfrWM3x08I+csV1eXOmSN0XULOWEfmVxVlfit4
NkxjxPpf/ArlR/OgDQI8VIpzd6TejsrW8sBP4hm/lVMeKJNNmjh1+z/slpCFjuhL5tq7E4CiTA2n
OOHC5zxmujsb621K3We0uIrqBukkLh1P4in3EUdxA8cqLLE42sjgEMPQjvQBJYqrEd8muotlCwqB
XlA8NyaK+7Qb+bSu4tW/fWvTgeWx+UeyFa3dP8f6lpq+XrGitNGP+XrSX84Yx1aJsOPou6gDv682
+M3+u8J5+Uf2hL83qfs0ny/j1/Cut0PxtoviJpI7K+VriNQ8ltMjRTIpzgtG4DAcHnGOKxPiPaR+
JtDl0+OTyp1ZZrecdY5lOUb6Z6juCR3oA5z4Y6pBa61rWlTyLFd3E63ttG3Hmx+WiMV9SrKcgcjK
nuK9PXoK8a0u1s/FWgwSXdvtkBKuisVe3mUlXCuMFWVgQGBBrf0fxld+E5Ta69NNfaQeYNWKbng5
+5OFHI9JAOmQ2MbmAPRmUMpBGQRgg9DXKt4Lk0hnfw7qMmkKSW+wyJ59nnjpGSCg46IyjknFdJaX
tvf2sdzazx3NvIu5JYWDIwPcEcGpGNAHKya1r+m5GoaIt5CD/wAfGkzeYcY6tE+1h9FLVHY+NtF1
GYQC+W3uj/y7Xitbzf8AfEgB/Kuqb7prH1SwtdSjaG7tobqJuCk0YcfkaANGzYHBHI65HSui06QY
XnpXl3/CDaRCytZxT6Yy9P7PuZIB/wB8q239KuWOka3bTf6L4p1HZ0EdzFBMo/EoGP50Ae26fMNo
5rp7GcfKa8Ms28a27Dytd0qVfSfSnz+azD+Vbln4h8bWuMzaDc+32eePP/j7UAe00V5VbfELxrGd
snhvRJlH8Ueryrn8DBx+dXo/iR4lUZl8I2x/646wp/8AQoxQB6PW78L79IvjP4FtcjfLfyHHsLWc
14pdfGDVo0ZU8A675g/iWezdT9P3wJ/IVY/Z18far4i/aq+Hlre6Bqelo13dMXvBFtGLOcgZR2oA
0/jFoNja/Hz4kailtF9tutZ3STFBv4t4FAz1xhRXO9evNdj8amDfGnx6AeRq7A/9+Ya46gBCKqTr
1qxNNHbwvLK6xxqMs7kKoHqSa4+48cHWWMXhjT5Nfkx/x9BjDZJwcEzkEMMjH7sOfagC14k1qy8O
6bLfX84gt0wM4LMzE4VVUcsxOAFAyScCuJbR9R8ZN52siTTtJODHpEb4kl5zuuHU/wDkNTjruLZw
OpsfA882oJq2u3Uep6pHnyFjj2W9mDkYiUkndg4Ln5jz0BxWjcWvl+1AGDHp8FnbpBbwxwQoMJHE
oVVHoAK5bxd4x0fwjCh1K8SGWQ4it1BeaU5xhUHJ5Ip/j7xdd2+pWXhjw4qXXinUuY1I3JZw/wAU
8voo7Z6mug8C/CXR/BkjX8hk1nX5smfV7/DzMSckL2RfQD0FAHAWUPj3xoivpmlxeFNNkGReawN9
yykdVhB4P+8a0o/gPplwRL4j1PUvE82QzLeTlIAR6RJhcfXNexsu761nahJHawSSyusUSKWZ3ICq
PUk9KAOc0Hwhofh9Qmm6RZWI6/uIFU/nit8dK5218WWF8qNp32rWFfGxtLsprtWz0OY0Ix75xXQ2
+k+K7qRRB4F154W/5bSC3iH/AHy8wb9KAHUyQhVyTgDkk9q17f4cePdSkVY9G0/SYW6zalqAd09/
KiU7vpvH1rrPD/7PWmExz+Lb+TxXcDB+xvH5GnqcDOIATvGef3rPigDyTT9Wl8RTSR+HdL1DxM8f
VtLg3w5BII89isWQQcjfkelbcVr4psVZ7/wL4gtIVGTKiQXA/wC+YpWb9K+lre3itLdIIIkhgjG1
I41Cqo9ABwKkoA+YIvGGk4H2i6bTm/556lDJaOP+AyqpqYeNtGX/AFV8L1uy2MUlyx/CNSa+mJFE
ow4Dj/aGarNCI+ANo/2eKAPnu38fWcODJp2vRof4m0O7A/8ARdW1+JfhdSq3GtW9hI3SPUN1q5/C
QKa9surcPkHOexzXO6np0dwrJNGsg9HUN/OgDzSb4meGI2KQavBqNx2t9Mzdyn6JGGNIJvFniQH7
Bplv4etT0uNZPmzNz1EEbcAj+84PtXYW+nw2UxWGJIlPOI1C/wAqu0Aef3fgPxNJGHi8U2slx3Sf
Sx5J9htkDD8zWJqemeLfD8MlxdaTZ6vZxLveTSZ287A6kQuvzYHOAxJxwCa9bpGGVNAHkVvrVjea
fb38V5A1ncIHhnMgCOpGQQTS3WoW1vaPcyXEMdsi7nmaQBFHqWziuivPhr4Yg1B72LQNP+0yu7Mz
W6t8znc5APALHk4xk8mo7f4Y+Ere5S5Tw5pizq4kDrbKPmHRsYxn3xQB5vdeO9FmliRbmQRTMqJd
PbyLbsSQFAlK7DkkAc8k8Vrr8owOK9Q1DTbXVtPnsb23jurKeMxS28yhkdCMFSPSvPZPhTqelgR6
L4hzaKfkt9Xtzcsi9lWVWViPd9x96AM6aGO4UrLGsi+jqD/OqEnhrSLhSJdLspA3Xdboc/pWpceE
/F1sSFGi3fp++mh/9las+SDxRYKTdeHUuR/1DL5JD+UgjoA5G9+D+jx3ButDub7wvck5b+yJvLjf
j+KM5U/lVKSx+IGg/Na63Y+JLcN/qNSg8iXbjoJE4z9RXYyazfKv73w3rMH/AGxR/wD0BzWXdeLr
KzJF9FeaYuMmS+tJIox9XI2j8TQBzQ+LUWmSCLxRo9/4ck4Bmkj862JJxxImf1ArqdL8TaRrcYks
NTtLxD0MMyt/WrMMkF/CHjeO4gcZDKQ6MP5GsDVPhf4U1hna40K0Er8mWFPKfPruXBzQBoeIdI/t
OOOeCX7JqdqfMtbwLkxt6Ed0boy55Hvg1np46ks2ii1rTpdPdiqG6jYS2xc8D5h8wBPdlHXFYkng
nxT4dLxeG9dhudPY/JZ60rSmHk52yA5I9j6Vg/D/AMP6jr2teKItT1abVdNT/QZ2kI2PcY/eeWv8
KqCBj1oA7S5s73S9TuNR0tI51uSGurGRtgkYADzEbs+BjB4bA5HWtDSPEFtrckkKCS2vIQDNZ3A2
yx5zyR3BwcMMg44NZVvqV34ejtLPXIGRdy26apGQ0EhztTf3jZuOoxk4BORXQ6h4Rttajikd5LW8
hz5F5bkLNCT6E9RwMqQQccigCGPw+LKaS40q9utFnkbc5smHluc5JaJgUJPc4z71rWeveKrX93La
6brC84mSVrR/YFMOD9QR9KxvtWsaF8mpWTalbLnF9pqEtj/bhzuB/wBzdn0FbOg+JtK1aUxWt9DJ
Ov3oC22Vfqhww/KgC02ueKJPu6Dp4X/sKNn/ANFVXk8UXNkT/auiX9kgwPPgQXUX5x5YfUqK6aFe
mat28e5h2oA4/wD4TjQu2pRN7Krk/litrwx4g0zWpZVsb6G6eM/vI42+dPqvUflXRDjpxWRrnhXT
vEDRy3MTR3kP+pvbdjFcQnIPyuOccDIOQehBFAHSwDqat269TXA2PiHWfDIa31qyuNYtkJCarpsI
d2Tt5sIO4P2JQEHGcLnA2NP+JPhuaVYn1aGynbpBfhrWT/vmQKaAOziWpar2dzFdRiSCRJoz0eNg
w/MVYoAK7P4D2aSfHzwFcbR5kV7Ng47G0nFcZXc/AWZV+OngZCfme9lx+FrOaAPJvj98SrTw/wDt
LfFDTp2eSca6EhtIY2lml/0O1Y7I1BY438nHHesiK88X69GDaaZa+HIWBPn6s3nzdeMQRsAM9cs+
Rxx6esfFrRLKx+O3xH1CG2jS9vNYLTT7fnbbbwqBnrjCjiueoA5K3+HGnzTLc63NP4kvFIYPqRDQ
oQcjZCAI1x2OCeBkmuoEaqoVQFVeAAMAVLTKAK00eK89+LXjRfBGgCW3h+26xeOLbTrFfvTzNwBj
+6OpPoK6jxx440bwFo76jrV4lrDnbGnWSZ+yRr1Zj6CvKPA2l3/i7xI/jvxLBJb3simLStNmH/IP
tz3I7SOOSeozj2oA6j4Z/D1PBljcXl9N/aPiTUiJtS1Fx80j9kX0RegA9K7WoYZQVFUta8RWWgpB
9od5Li4fy7e0t0Mk87/3UQcn1J6AZJIAJoAm1jWLPQdPlvb6YQW8eAW2lmZicKqqMlmYkAKASSQA
M10Hgf4T3Hiq9tdd8YWfk2URWbT/AA7NhgrjkTXQGQzj+GPlUPzHc2NqfDfwBe6prVr4m8UW6W9x
b5Om6PuWQWRYEGWRh8rTlSR8uQgLAE5LH2uH7woAlgiW3jCoNijjCjA/IU+iigAooooAKKKKACo5
vu5qSopm6CgCtN92sbUlG4/StiY9B3rzzXviFZPqlxpejW914l1aD5ZbPSIxL5JwDiWQkRxnDA7X
YEg5AoAnuGC3Ap9YP9k+PtSuBJHoOk6dAwz/AMTDVWaUfVIo2H/j1aS+GfG8a5/4p1/9jzbgfrt/
pQBcpGbapqn/AGD4425+yeHSf7v2245/Hyv6Vnzab8Qo2LSeHdFnj9LPWXMn4B4FB/MUAT3kg8xF
9802sqSw8ZSSZPg+cN/ebUbcL+jGo7zUtd0OMy6x4S1O3tEXc93YtHeog90jPmfkhoA2aKqaXrFj
rVml3p93De2z/dlgkDKfbjv7VbY7c5oArXKjBrOnUFqZrfijSNFXOoarZWK9zcXCJ/M1gyfEDQp1
ZrXUF1Aj+HT4pLlvyjUmgC9Mo3dOtZN0oyQRkHgjsalhvtV1ePfpfhXxBqGem6xNqPznMdOvfCfj
mGHz28HyTJ/zxttQgeYfVSVX8mNAHDah4F0mS4a5tYpNLumO5ptOkMJY+rKPlb/gQNZs9h4h0j5o
Ly31qFesV2ggmPPJEifKTjsVH1FdXf8A9q2GTe+GvEFqV6r/AGZLN+sQcGsT/hJLCa4jtnle0u5A
SltfQvbTPjrhJFVjj2FAFTR/EFtrEchVZLa5gbZcWlwAssLdcMM/kRkEcgmuE8KeIIfh/rF/oetq
bWC/v5bmy1PH7iYyHdsY/wALDpz1xXY694bOrXC3tlN9g1WJNiXIXcGXrskX+Jc9uo5wRWMnk+Io
LrRdasY47xEH2mzkO5GU9JI2/iUno3BB4ODQB2N7ZwalZz2tzGs9tOhjkjYZDKRgj8qz/B+tGFv7
A1GUjVbNdsby9byEcLKp/iOMBgOQ3bBBPBWmqat8Kt0F6txrHhIcxXi/vJ7Af3XHVkHYjpXVNJpP
jXTUmiliv7VjujmgkwyN03KyncjD1GCKAO8rH1rR7DWAVvLOC6CnIMqBiD6g9QfpXN/2fqYyq+Jt
VVRwq/uSQPTJjyfxqBhr1n80GtNdlTnytQgQq3tuQKR9ecehoA2rWx1nQ/m0XUGuIl5Gnak7SxN1
4WXl0Pv8wH92ujs/HkNrsGq6bqGkScgmW3aWL6+bHuXH1wfasrwL4ii164ltLiA2OqQDdLaO275c
4Do38aH1/AgHivSLWAKoOKAM7Sdf0zXoy+m6ha36jqbeVXx9QDxV+q+peCdG151lvdNt5J1zsuFX
ZKufR1ww/A1jyeHPE3hm3c6bN/wkmnxcpZ3bbL0LnJVJidshA4UOATjl+9AHQKuTTpreK5jKTRJM
h4KyKGH61hWfjTSpLqO1uJ20y9c7VtdSia1lY9wocDd/wEkV0PYHselAHPS+A9EMxmtrV9LmY7mk
0ud7QsfVvLIDfiDU8dr4l0z/AI8PEZu4858nWLZZgB6B49jD6ndW1RQBlSeOPEGmxn7f4Xa7Gf8A
W6PdrMMepSTYw+g3V1P7K/xMtPGP7UvgOygaWKeG5uGktbiF4ZEH2S4AJVgDjIPPTisurv7L/ge5
0b9sDwdrUWo/abe/vrmSeG4iHmIfsMyoqOCMIMfdIPUnPNAHo3xkYN8ZPHYH8OrsD/35irkasfGn
xCLT9oH4lQFuI9axj620B/rXlnjL402+i30OhaHYP4h8V3QzBpsDYEY/56TN0RBx15NAHZeKvGOi
+CdLbUNd1K3020XOHnfBc46KOrH2FebX/wAej4pMml/DvR7zxBrZX55ry2e2tLHOMNMXAJ4O4KvJ
ArU8G/CN/wC1I/E3je6j8SeLGBKFlzaWAPPl28Z446byMnHvXpSoq5IUAnrgYzQB4tpfwpmj1ga/
4pv5PEniPkpcXC4htc/wwR9EHHXrXTBjA2DXeXlutxC2R82OK86sdBn+I3iC7tRO1r4Ys5Db3MsD
FZr2YH54kcfcjXozDknIBXacgBpt9q3jC6ls/DEUUkcTNFcazdAm0tnHBVQCDM4P8KkAYIZgRg+j
+D/h/p3hGSW7VpdR1m4VVudVvCGnlA6KMcIg5wiALkk4ySTvabptpo+n29jY20VnZ26COG3gQIka
gYCqB0FWKAN/S5Au2t+Fxwe1chZ3Wwity01FcYJ4oA3aK5TxF8TPDPg3yV1rWrSxlmOIbd3zNKcZ
wkYyzH6Cshfjt4WZQ4TWjGeQ/wDY1zg/+OZ/SgD0KivMbj9ovwhDIYki12ecf8s49EuR/wCPMgX9
a5rV/j9r2qBotA8MppgJKi816dSw9GWCEnd9GdaAPcXkSNGd3VEUZZmOAPqa5Gb4xeB7e4lgbxXp
TzxNseOG5EjK3phc8+1eKXWj3fjBmn8WardeIw2f9CnxHYoCBlRbphWHHHmbyM9a6TTbOO3jVIUW
GJRhUjUKAPYCgD0Cf40+EIVz/akjD+8tlcEfn5dUJ/jd4W6W0uo6hOxwkFppVy7sT0A+TA+pIHvW
AGdsDexH+8a3NFhG8Ekn8aAKdvo/iL4lSed4gabw3oDFWTQrOfF1OOv+lToflHT91EcfLy7AlR3u
i6Hp3hvTINO0qxt9NsIF2xWtrEI40HsoGKksQAn4VaoAKKKKACiiigBMD0qFl2txU9Ry9qAOP1z4
U+EPEV5Le3/hvTbi+kxvuWt1EjY6EsMZI9etc2Pgx4eLLDcNql9ZocixvNTnlgPsys3zDn7rEj2r
1CqMqj7QKAMPQvAPhvw2pGmaBplgScn7PaRqc/XFdJbwiIfKAn+6MfyqMdRVlaAF69eaKKKAD9Kx
vE3hfSvFmmTWGs6dbanZSDDw3UYdT+fQ/StmmP3oA+VbTwm/hbxNr3h0vJcW+nXS/Y5J5C8jW0iK
6bieTtJdMnJIQEknNL4q+HsniCzims5Fs9WtCZLS5I4BPVHHdGHBH0IwQCO88baetr8YLicn/j/0
aBgvbMM0ik/lKv6VOq7aAPE9L1BbqSezuYTZ6nbfLdWMv3485Gf9pDg4YcH86xpvg/pOq6k11pcl
14f1CRgWn0uXywxzn5k+6ep7V7N4s8E6f4ugQz77XUIQfs2o2+FngJ9DjlTgZVsqcciuR+w614Dv
re81CW01fSDMkc01vE0E0AYhQ5QswcBiM4IwMnnGKAMOH4B6zdAx6h4/1SS0YYMdrbxQyY9PMAz+
NUvFfwV1bwbYTar4P1e81A26eZPo+qzGZbhRy3lueVfGcds174kYXqOacVDcEZHpQB826XIfFGk6
X4g0aTyL6MC5tJGOACfvRPjqrcqw+hHIBr2HwZ4us/FFsVRWtNRgA+1afPgTW7H1HdTg4YZBxwa8
u8I6aPCHj7xN4Nk+WOOY6ppwOPmtpmJIA9FfcPyrtdS8Jwai0N1HLLp+p24It9QtSBNDnqOeGU4G
VYFTgZFAHp1rHvYV0FjYg44rzHwd45lj1K20TxGsVnq8uVtrmEEW19gZPlk/ckxyYic9dpYAmvXr
Nf3QNAEV5o1jqVq1te2kF7bsMNFcRiRT+BFchdfBvRIwTotxf+GnxtVdNn/cqPaBw0Y/BRXeUUAe
V3ng3xjo+Wt59L8QwZ4WQNZThfqN6MfwUVjz+J30ohda0bVNFOceZNbedD9fMiLqB/vYr2s9Kzry
Mc44oA8x07X9N1iHzrC/tr6P+9byq/8AI16H+zbfJJ+0h4Biz8zXlxgfSznrlPEXgLw/r0wnvdIt
JrkZC3AjCSr9HXDD862P2ZvhzF4b/ad+HV/Y6jqLWi3V0j2d1cGdMmznwQzgvx/vUAeR/tXXPifU
f2rPixo3h/bZRya4rz6tMNy26mxtBhF/ic4J9vxq/wDC3wLpXgazMdkjS3UxDXN9cNvnuW7s7Hk/
TpX198Uv2B/E3jr4teL/ABfp/jHR7K116/F8trc6fNJJFiCGLaWEoB/1WeAOtUrH9gPxlZ4z4z0J
8f8AUPnH/tWgDx1TkA0V79b/ALEvi6FdreKdDf8A7dJx/wCz1L/wxX4r/wChm0T/AMBZv/iqAPl7
x14jPhXwte38arJd4WG1iY4Ek8hCRqTg4G5hn2zU3w702Pw/4f0+wSQzGGMB5mxulc8u592Ykn61
7f43/wCCevjbxhdaQ8fjnQbK30+drnyW0y4k8yTYVUkiZegZuMHkg9q2NJ/YU8aaYiq3jHQpselh
Ov8A7UNAHmAORkUV7dB+x34tiXDeJNEb/t2mH/s1S/8ADH/ir/oYdF/8B5v/AIqgDwLVNWstB0+4
1DULuGxsrdS8txO4REUdyTXj2t/FnWvGkrW/h+Sbw/omR/xMZIwLy6XH/LNGH7lenzMC55+VeGr6
M8cf8E4fiF4814Xt98SPD5sYH3Wemvo1w0NuQc7yBcAPJ0+dhxj5QMmpbH/gm941tVAbx54fkPtp
VwP/AGuaAPmDR9BsdGEj2sP+kTYaa6lcyzzHGMySsSznHck1o19Rx/8ABPfxgqgHxpoTf9w6f/47
Tv8Ah3z4u/6HPQv/AAXz/wDx2gD5hX7oFOU7WBr6fX/gn74uUYPjLQj/ANw+f/45Q3/BP3xftO3x
loQbHBOnzkZ/7+0AfP8Ap8geMAc1r2bDGO9dpJ/wTC+It1cG4uPi3pzzlid0NheQqvPAVEugoA9w
av2//BOf4wWb/uPjVpHlg/Ks2gPIR7EmbJoA4dThhW5pMwVlr1PQf2H/AIgWdmY9W8beHdTuN3yz
waVPb/LjoV81gTnPIx9K2If2M/FsJBHibRD/ANus3/xVAHB2FwGUc1oV6Da/so+LrfGfEGit/wBs
Jh/7NWjH+zN4sRcHWdFb/tlMP60AeXUV6p/wzT4q/wCgvov/AHxNR/wzT4q/6C+i/wDfE1AHldFe
qf8ADNPir/oL6L/3xNR/wzT4q/6C+i/98TUAeV1DI25q9Zb9mfxU3/MY0Uf9s5v8aZ/wzH4q/wCg
xov/AH7m/wAaAPJWYKpJrOaXdNntXss37Lviybj+3NFUf9cZv8arr+yl4rHXXdFP/bGb/GgDyoHo
RViNtwr1OP8AZZ8Vpx/beikf9cpv8akX9l/xUvTWtF/79Tf40AeV0V6x/wAMx+Kv+gxov/fub/Gj
/hmPxV/0GNF/79zf40AeT1FI2B7164f2Y/FR/wCYxov/AH7m/wAaq3n7LPjCeJli1/RIWP8AEYJm
/wDZhQB8d/G7XrTw34u8Oa5dMy2FvDcWF5OqlhAkpR1kfH8AaIAntuycAE1bhmjuYUlidZYpFDI6
HKsD0IPcV7h4p/4J+eOvErsx8d6BDns+l3D/APtYUngX/gnv4x8HeHLfSZPGugXsduzCJo9NniCI
WJCBfNbhc4HPTAoA8UrlviYok8C68N2wrYzOGHZlUsD+YFfWn/DDviz/AKGnQ/8AwDm/+LrA8Xf8
E+PGXijQb/TE8baFaC8haBpDp074Vhg8eaO2e9AHillMbizt5W+9JEjH6lQanr3zS/2GPGVjZQwT
eLtCuGjULvWxnTOBjp5hq2f2I/FnbxRomf8Ar0m/+LoA+Gfj5B/wj82geN7dGM+iz+XeKmSZLOQg
SAgddpw34V1dvcR3VvHNC4kikUOjqchlIyD+VfSviz/gnn4y8U2NxaSeNfD6Qzo0bpJpk8ilSMEE
ecM1neB/+CbvjPwf4btNHl8faHqCWg8uGX+y50Ij/hUjzjnHPPpj0yQD5z1bS7TWrCW0vYFnt3wS
rZBDA5VgRyGBAIYcggEVf8C/FCfw5qlv4d8T3Pn2lw4h07WpCAS54WC47Bz0WTox+U4bG76Zk/4J
/wDi9lIXxloSn/sHzn/2pXNa9/wTR8Y67ay28vjrw20UqlXSbRp5FYHqCPPFAFCivR/h/wDsR+P/
AAjoCaZqnjvR/EHksRb3MljPHIkX8MbMZGL46Bickdcnmul/4ZJ8Vf8AQf0X/vxN/jQB4kx4rOvJ
BzXvcn7IvixxgeIdFH/bvN/8VVOX9jbxbJ/zMmij/t2m/wDiqAPnm6YYrrv2f3A+PHgUHqb2bH/g
JPXp0n7FHi2T/mZ9EH/bpN/8XWn8M/2PfFfgn4teGPFd74r0i507SJpZZbG3sZllm3wSRABzJhcG
QHlTwCO+aAP/2Q==</Data></Thumbnail><Enclosure rel="side-panel-help"><Data EsriPropertyType="Image" OriginalFileName="thumbnail.jpg">/9j/4AAQSkZJRgABAQEAkACQAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdC
IFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAA
AADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFj
cHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAA
ABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAAD
TAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJD
AAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5
OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEA
AAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAA
AAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAA
AA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBo
dHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAt
IHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAt
IHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcg
Q29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENv
bmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAA
ABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAA
AAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAK
AA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUA
mgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEy
ATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMC
DAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMh
Ay0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4E
jASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3
BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDII
RghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqY
Cq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUAN
Wg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBh
EH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT
5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReu
F9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9oc
AhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCY
IMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZcl
xyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2
K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIx
SjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDec
N9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+
oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXe
RiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN
3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYP
VlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1f
D19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/
aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfBy
S3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyB
fOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuH
n4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLj
k02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6f
HZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1
q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm4
0blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZG
xsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnU
y9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj
4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozz
GfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////2wBDAAMCAgMC
AgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIU
FRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU
FBQUFBQUFBQUFBQUFBT/wAARCAEeAZADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAEC
AwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0Kx
wRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1
dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ
2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QA
tREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYk
NOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaH
iImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq
8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1j4geOPixqPx+8d6bpfj/AFzS9DstV+z2dhaLbeVHH9nh
YgFoWb7zOeW716p4S0fx5cW8cmqeP/EL5AJHmxKT+UYq5pvhKGb4m+N9UkQEyaxJjI6kRxj+ldyi
BFAAwBQBRt7HU4lG/wAUa9KfVr3H8lFJc2GpTqQninX4Ce8d6OPzU1o0UAeJfGDwn8YYtAv7vwR8
VPEcd9HEzw2sn2V9zAZC/NAeD0/Gvj3Rf2hv2gfFlhFJpXxc8QW1yciSG/gsv3bg7XRtttwysGBH
PKkcda/S/rXxr8cPhYnw1+L6a9Y2+zw34vnJcRqdtpqYUs6nsqzIpccAB0fJJkAoAuaJ8UPifBaR
/bfiV4iu5Ao3M5tlLHHX5YQK1H+LfxAdMDx3ryH+8JIc/rFXLDpRQB518VP2hPjd4H8c6FAnxY8R
xeHdab7LFOUscwXfaMlrY5DDp3yDXsHgfxt8Wr22jfUfif4kuAe7i1Ut/wB8wCvEP2nrVpvgrr08
eBNZNBeRsf4WjmRuPwBH419K+F7ZZLG0dRhWiQj8VBoA6fTPEvjWRR5njXXpPUtPGP5R1sx+JPEy
j5vFuuOfe5Uf+yVQhjESBQKfQBojxR4jH/M0a1/4FD/4mmt4m8SMOPFetr9Lpf8A4mqFFAC3fiTx
eikx+MNcx/18J/8AEVgX3jfxxDnb401wfSaP/wCN1vEZGKx9VtRg8UAc5d/Ev4gQk7fHGuf9/Yv/
AI3WZL8XPiGhOPHWuf8AfyL/AON1PqluATXM3sYVjxQBqv8AGT4iA4/4TvXAf+ukP/xuqs/xn+JP
IXx/rqkejwf/ABqufnGCKqTjkUAa118cPijETt+ImvAfW3/+M1lXPx9+Ky52/EjX1+n2b/4zWTqA
ABrjPE3ifSPDUBm1XUrXT4/W4lC5+g6mgDsr39oX4vKpCfFDxFH7qtp/W3Ned+I/2xvix4b1NNPk
+MPi26vnXeLW0tbKaUL6lVtDgfWuGv8A4kX3jSQWXgjT5bwyHa+s3kTRWkC8/MMjMh44A9a6rwH4
BtPBFnM3nPqGr3jebe6nMP3k7/8Asqjso6UARH9tf41Xji20v4h+PtQ1FztW1/s6ziwf9pmtAFHv
XovgX47/AB9WGS58T/FLWTLIP3djALRhEPVnFuu5vYYA96yQcHNSA56UAd4/7QfxUAyPiLr30zbf
/Ga4vx9+0B+0FDHFd+GPiZrU/lgibT5DZo0ncGN2t2APbB49x3rSNsQluPrxVVp41HMiD/gQoA5a
T9tb442Mxh1Lxx8Q7CRRyf7PsZUz7MlqasWP7WP7SHiiXboPjjxbFBzm91lbC2j/AAX7IXP5Vcmf
zJSy5Iz1FXbN8dc89zQB3Ph/49fGWy02NNV+Kuu6jfHmSVI7WNAfRQIOn15q8/7QfxXP3fiT4gHt
/ov/AMYrz2W+t4P9bcQx/wC/Io/marTeINLtx+91Kzjz/euEH9aAPTk/aE+Kqjn4ka+31+zf/Gay
vEXx2+NV/DENJ+Lmu6VKpO4vb2kyuPoYcjHse9cXDq1jcAGK9tpAehSZT/WrKyK/3WVvoQaAFufj
N+0wgJg+ON7L/syafbJn8fJNZM37QX7VdqGJ+JV5dgHpBc2aE/8AfVlWvtPofyqGTgE4OPpQBgwf
tO/tUXsxt08Y69YuOtxd3mnNF9QEtCx/IV6Zo/7QHxktdOhj1D4q6/e3gX97Msdoilu+0CDgV5/P
qVrayky3MMYHUvIox+tUJvHPh63k2PrdhvH8Czqx/IZoA9Zk/aI+LQBK/EzxB9CLX/4xTIv2i/i3
If8AkpniAAe1r/8AGK8jl8daQyYt5bi9ZuAtpaSyk/ktNh8aWMDbbi31G1B53z6fMF/EhSBQB7ZB
+0D8V2HzfErxAfr9l/8AjFXYPj58U5Wx/wALF1765t//AIzXkujeJ9I1litlqdpcuOCkcylgfQjO
RXSWJwec0Aeip8c/icB83xD14n62/wD8Zrznxl8Yf2k7XUZLjw58WNUvrByWFlcfY4ZY/YObVgw9
MgH1JrSooA8zP7Znxt0e9Sw8T/Evxf4Zv24QXcenmCQ/7EotdprYP7WvxcUDPxr14Z9Tp3/yNXR6
rpFjrllJZ6hZwX1rIMNDcRh0P4GuXj+DPgZB/wAippJJ9bYGgC1D+1Z8YbhgI/jP4hcn+7/Zx/8A
batW0/aQ+NEjgt8XfE7D0Mdhg/8AkrXM3vwL8BX8TI/hewjB7wIYmH0KkEVg3nwJfSXM/hPxLqGj
yDGLO9c3dqcHphvmGfUGgD1+H9oz4vKo3fFDxE591tP6W9ekfs0/Gv4neJf2g/Benax8RNc1jRbu
eeO60y7W18mUC1mZclIFfhlU8MOg96+QZvGeseCZUt/G+kfYISQi6zp+ZbJzwPm/ij5Pfj3r6E/Z
C1e01H9o34eSWdxFdQzXNwySwsGVh9jnOQRQB93wRhNX8QsOratck/mKtVXi/wCQrr3/AGFbn/0I
VYoAKKKKACuP+Lfw+g+KPw81nw5K/kT3UQe0ugoZra6Qh4JlB43JIqsPpXYUHmgD4X8MazJr2h29
3PCLW9BaC8td2Tb3MbGOeIn1SRXX8K1a2fjT4Wl8D/Gea5tk/wCJP4uRrzjpDfwoqzDk9JIvLcAD
G6OQk5as+OEKATyaAPLv2iNGvNb+EmtRWVsb6SBobt7MZ/0iKKVZJI+AT8yqRjFfQnwy8Tad4z8L
aRrelSiXTr+3SeFgMYUgcEdiOhHtXIGIOpBUEHjBHWvKNB1+4/ZX8TzvPFd3fwq1SaSd/s8LTNoN
wcsx2qCfIc5PH3T9eQD6/orO8O+I9L8W6Nbato2oW2qabcruiurSQSRuPYj+VaNABRRRQAVS1P8A
1f4Vd6mvEPi3+0v4c8HalLoGkRz+L/Fa/L/Y+j4kMTdvOk+7EOR1OcdqAOt1eQKT/SuL1jUrayBa
4uIrdf70zhR+prx7Uf8AhaHxAkafXPFUfhCykDY0rw7ErSKD0D3EgJLAf3QOtZcXwF8JGVbjU7a7
8RXirtNzrV5JdMfwY4H4CgDv9a+Kng7Rm/07xRpFqecLJeJuP0AOa4PWf2jNGu99v4S07UPF9+SU
jFnA0dsGxnLzMAoX3GavWfwy8KaPLvs/Del20n9+O0QN+eK0Ht0hUoiKijoqgAfpQB59daZ498aB
m1/xOugWr7v+Jf4ej2sATwGmfJJx6AVNo/wn8NaPdC8NidSv8gm81ORrmXPqC5OPwrsXIUk9AO57
VgX3jXTLadra3kfVL0HabXT085wcZwxHyp9WIFAG0FEagKAqr0AGAKpar4r07RGjiupibuX/AFVp
Ahlnl7fKi5JHPJ6DuaxpH8Q62MEx+HrU9fLKz3TD642If++/wrT0Pw/Y6Gkhto2M0x3TXMzmSaU+
rOeT7DoOgFAFdtU8R6ooFrp1to8TD/W6hJ50q/8AbKM7fzekbw5eXQb7f4g1O5VusVu62yD6eWA3
5sa3aoarr2naGqm/vYLQucIsrgM59AvUn6CgDO/4QXQ3UCewW8x/FeyPOfzdjSHwD4aI50DTT/26
p/hUY8c2kwP2Ww1W89PLsXQH6F9opo8SaxcLmDw88Xte3kcZ/JN9ACXPgLQkA8mxFn/15yvB/wCg
MKqjwXo4BD2zz/8AXxcSSf8AoTGpZLzxNeA/6PpVh6FppLg/kFT+dVZLPxKq5/tfTj6/8S5uPp+9
oAtW3hPRLTPk6RYRk9SLZCT+Yq7BoOmQr8mnWaZ5+W3Qf0rGOn6zIPn15kP/AEws41H/AI9up8Om
6wrYXxDO3/XW1hI/QCgDSufDWkTAl9KsXJ4y1shz+lVovBWgA7ho9kjeqQhf5Uwad4hkOP7as9nq
2nfN/wCjMfpTlsfEdq2Y9S0+7T+5PaNGf++lc/yoAkbwbpJHy28kP/XG5lj/AJMKY3gvSCvzwTTj
+7cXUsgP4MxpDeeJkbB0rTJR/eTUHXP4GKj7R4mmbb/Zul26n+Nr6SQj8BGP50AOh8JaHa48rR7C
PHcW6f4Vow28UAAjjSNR2RQP5Vl/2FrV2P8AS9e+z8/d021WPj03Sbz/ACpreFVRsjVdWDnq32w8
/hjH6UAdTA3y9f1qYEjuR9K5AeH7yM/uPEWrQ/VopB/48hq9bW3ieIkR3mnagg6C4gaFz9WQkf8A
jtAGnqOg6drK7b6wtrsZyPOiViD6g4zVaHwXa2zF7K+1WwcfdMGoSlV+iMWX8CMUC88RQRF5PDTT
soyy2d9G+7/d37c/jir+ieIrHWmligkaO7h/11nOhjni5I+ZG5A4OD0PYmgBbfVfE+jALKtt4it1
/jBFrdYx3HMbn3+SrI+JFhCEXULHVNJduv2mzZ0X6yR7l/WrdI3SgBsHxB8NXjbINf02SQnGwXSB
gfTBOa3YJkuIw8TrIp/iQhh+lcvNZ29wrLLBFKrcESRhs/mKy/8AhBdEAZoLEae7HJfT5HtWJ9cx
laAO/wA0Vw6aTqtic6f4jvkAGBDfKl1H+OQH/wDHqmTxP4g0wAX+kQ6pEMA3GkybX9yYpCMD6OT7
UAdXdQx3EbxSoskbjayOAQw9CDWn+yZ8J/D/AIZ/aq8Bazo8EumSG8ufMtLaZltnLWU658voD9K4
i3+IehXEqwy3o0+5Y7Vt9RRrZyfYOBu/DNet/sx6rDL+0h8P4Y3WQvd3BypyMCznNAH1x4e8X6fr
fjfx/osFzG9/o2tyR3MCsC8fmRxyKSOoBDiumr88PjRceIfCX7X/AMUPE3hjUpNG1uDXl8q4Vd8c
8f2G0zFPHkCSIkEFTgjqpVsGvrD4FftFaV8XoP7MvrdfD3jO3iMlzoksm4SopAM9s/HmxZI5xuXc
AwUmgD1+iiigApGOFNBOBVS7uQqkA80AeFftVWsP9jeE9YlJQ6Z4htwH3YGLhHtiD6gmVePXFeeI
u44r2r40eGP+E68A6toqXCWlzMqyW1zJH5iw3EbiSJyuRuAdVJGRkZ5FfPfhHxM+s3F5p+o2p0rx
FpzKmoaazbvLJztkjbA3wvglHA5wQQGVlAB08UIA55qR4UljZHVXRhhlYZBHoRTlGBS0AeS3/wAN
PEPwx1i58T/CnUWsZZZxc33hG6kxpeocEPsGP3MrDBDDjKjNepfD39p3wR42gktr/UovCfiO1JS9
0HXZFtriBwATjdgOvIIZeCCKsVg+JfAfhvxkI/7e0DTdZ8s5Q31qkpX6EigDqrn9o/4VWkpjl+Iv
hlXBIKjU4mwR2ODxWB4m/a7+F+gwYsfEK+K9QYHydN8NxtfTykDOBsGB9WIFZ1j8NfCemQeTZ+Gd
ItIwMBIbKNR+WKmg8PafpSkWVhbWY7i3hVP5CgDznxR44+JvxoBtn8z4Y+EXJD29tKJNWvE5G15B
8sAPBwuT71P4U8CaL4F0wWOiWEVjAeXZRl5Wx953PLH3Ndrc24U1nSptOKAM90qs4waNd1mx8P2E
l7qN1FZ2seA0spwMk4AHqSSAAOSTxXAXWv654sJ+yCXw5pJ6TSIDfTjPUKcrCCMfey+DyFIoA6Hx
B4g03w/EJdRvYbNScKJXAZyegVepPsBXIXfinU9cLR6HpssCOP8AkI6rGYo0HqsRxI5HoQoPrV3S
/DGm6RMZ4LVWu2GHvJ2Ms7/WRiWP51ouMH60Ac4vgmyuzv1eafXZj1+3NmIc9olwg/In3rat7G3s
bdYLaCO3hUYWOJAqj8BUGqa5p+iQ+bf3sFmmcAzSBST2AHUn2Fc3e+MdQ1UeXolg0ETf8xHUoyiD
rykXDuen3to56mgDpLmaO2QySyJEg6u7BQPxNc6PGE2pyGPQLRNRiXhr+eQx2oPojAEyH/dGO27N
QWvhWzuJRc6mX1q8zkTX2HCf7iY2J+Az6k1vBQi4AAVR0HAAoAx30rVdTz/aetSiM5BttMX7MhHu
+S5P0YfSrOm+HtO0iV5bW0jjncAPO2WlfHq7ZY/nSWmsHWJ5YNFsbzXZYjtc2EWYlbJBUzMRGCCD
kbsjuK6zRfhRresyrNr2pjSbccjT9IcNI3X/AFk7L6YOEUYI+8RQBiZ3epqlqWtadoyq1/f2tird
DcTLHn6ZNeoW3wW8Mu6fbIbzVkUYEWoXkksf4pkKfxBrrfDvw98OeHyz6boWnWJfAZoLZAWx6nGa
APntPEunXJVbOdtTkYgLFpsT3TnP+zGGOPfpWkuj+J7sZt/B+sNA3SabyYAf+AvIG/MCvpiOJIRi
NFQeiAD+VKVDDkA59aAPmX/hDvGO4vJpmm2kXZZ75mk/EJGQPoCagk8O+LbWX93Y6TeIeoS9kiYf
nGR+or6H1nTlEZYDg1xU0IS4ZR0zQB5a8us2C77vw1qKQD70tuY7jb/wFGLH8Aaqv4x0e2H+mXq6
a39zUUa1Y/hIFJr2/T7MMRxya7TQfCcWpFfPhWVT0V1DfzoA+bYtSs5IROl3btCeRKJVK/nnFPvt
RtNMsTe3l1BaWQxm5nkVI+enzE4r7N8O/s8eCrq8W/uvCmjS3XXznsYy357a7PQfgJ8OvDWqx6np
vgnQrPUY2Z0uIrFAyM33mXjCk9yBk0Afn3pmpp4guIbbQ4LrxFdzsEittGt3unZj0zsBCD/acqo7
kV6nov7LXxR12yN3dWWi+HNwDR2eo3jzXBGOknlKUQ544Z/rX3XFDHAD5caR567FC5/Kn0Afnxqn
7PnxY0CKSWfwha6uq9F0HV453Yeu2ZYf5mue0mcxatdaTeWt1pmr2uDPp+oQNBOino21h8yHBAdc
qSCAeDX6RzWyyjoAfWvM/jF8G9J+K2iC2vC2n6xa5fTdZt1H2iyk9VP8SHADIcqw4IoA+WLCw88g
Y4qbW/h1o/iWKL7fbn7RDzDdQOYp4T/sSLhh7joehBqfw2l/YX+p6Nrdp9g1/SZfIvLcfcbPKTRH
+KKRfmU/VThlYDoaAPOG+GmvWp8u18TW9xCPuvqOnb5vxaN0U/8AfIqpc+A/F1sC0eraNegf8sns
pYM+24SNj8jXqVNcbloA8WuX8RaUVF/4amlH8Uul3CXCD8G2P+Smq8fjbSElEV1cPpkpO0JqUL22
4+gLgA/ga9Z1BAVPFctqtvHOjJKiyIequAwP4GgDKilSeMPG6yIejIQwP4indawZvA2j+a0trbtp
cxbcZdNla3JPqQpAb8QaiOm+I9MINnqkGrxAH9zqcXlyH0HmxjA/FDQBv3FvFdxGOeJJozwUkUMD
+Bruv2TfBWjaV+018P76wsIbGZLu5BFsDGjbrOcHKg7T9cV5QfFx0841rS7zSQDj7QV8+3PHXzEz
tHu4WvXv2TfEdjq/7Rvw8+wXUV5BLdXDCWBw6kfY5+hFAG/8ZtEF18fPiPLt/wBZrJJPr/o8A/pX
M3ngX7eLaaCa50/ULOUXFlqNk/l3FpMBgSRtzg4JBByrAlWBUkH2L4haL9s+MvjuXbw2rv26/uoh
Utto0caAbQfpQB0XwX+O9zr8sXhbxiIbTxhFGTFcRp5dvq8ajmaAZO1x/HESSp5GVIJ9h/tJSK+c
fEPgax8TWAt7lZInjdZre6t22TW0y/dljfqrg9D9QcgkVc8MfGDU/C1/B4f8fGOCeRlh0/xGg2Wm
pE4CpJ2guCSBsPyvkFCSSigHvkuoZHFZt1ehQSTzWE2vKw+9+tZ17rQKn5qAF8QahujYZ614n8RP
BTeIng1TS5007xNp+77FfMuVZTgtBKB9+J8DK9iAwwyg16LqmoeaTzWDcNkGgDiPBni638XaU0yo
bTULZzb3+nyH97Z3A+9G4/VW6MpVhkEGt+uP8ceETf6gNZ0e5GjeJYYwkWoJHuWVASRFOnHmxHJ4
JBGSVKnmofDvxQs7y6i0rX4h4b8QEAfZLqT9zcNzzbzHCyjgnHDgY3KM0AdtRR2HvRQAVXuQOfpV
jrXJeMPiL4f8IDbqepxRXLg+XZw5muJMddkSZZvwFAF28OBXCeMvHuneF5ktSsuoatKpMGmWYDTP
7t2Rf9tyB+JArn9e+Iev+KN8GkW7+G7Fsqb68VZLth6xxZKp6hnyf9isfS9GtdHSX7OhMszb57iV
i8s74xudzyx4A59ABwKAGxadeazqceseIGinv4+ba0hJa3scjB8vIG5yCQZCAT0AUHFa9MMyqhZm
ChRkljgAetc+mtX3ipzF4e2R2II361Om6IjuIF4804/i+4M9WwRQBo614isdBSL7VKTNMdsNtCpk
mmPoiDk+56DqSBWFfR694piWGSI+HdNfBl2zbr2Re6Ap8sWeAWDMcZxg4I6XRPCNhoTSTRK9zfzA
Ce/um8yebqcFuwyThRhRngCrlzEFUnsKAOUsvC+laRMZbbT7eKY9Z9mZG+rnJP51n6rrEFtetY28
cuo6mQGSws13zHOcZHRAcfeYge9aNsb/AMcXUttoshs9Mj+WbWigYE91t1PDsO7nKg/3iCB6B4e8
Nad4WsBaadbiGMnc7sS0kzd3kc8ux7kmgDi9N+HuuXVuk2pa4dOuG5+yadBG8cf+yXkUlyPUBR7V
sWHwn0y6lLazdXeu5/5Y3ThLfHoYkwrD/ezXX9amtnCvzQBq6TZQWNtHBbwxwQxrhIolCqo9ABwK
1IR1rOtZQAOavRyAHrwaALkHetWHiJfpWPGxU5AJHqBWlaTblCnPtmgCzRQQQeQR9aZNMlvE8srr
HGgLM7kAKB1JJ6CgDC8deJLHwr4elv792EYdY444lLyTSMcLGijlmJ6CvJz401C3cXWreFtV02zf
B8+JVuxFnGBIsRLL15IBUYOTXfeHtNtfin42XxEd934b0mBY9JmIYQ3NzJu86eMHhwE2Isg4+aQA
4Jz6lHpEESgLAFAGOBQB5b4R1ew1+2hu9Pu4L61ckCa3kDqSDgjI7g9q978B6WszI23hQPzryDxP
8Ko7jVP7c8OXKaBr2f3zCLdbXwxjbcRAjcRgYdSHGOpGVPqPwC8WSeJ9PvYb6zGma3pdz9i1CxWX
zVilChgUfA3RujK6sQDhhkAggAHtdlAIIFAFT0ijCj6UtABRRRQAVBeRB489xU9Nl5jb6UAfOn7S
3g2W1gs/H+lQNLf6NGYdTt4lZnvNOJ3OAq/ekib94nBOPMUY35rzy0u4b+1hubaVLi3mRZIpY23K
6EZDA9wRzX074wZV0a5BwcjGD3r5KPw/13StduYPCeoWdrpMzM/9najbvNHbyMckwlXUqpJJKHI5
+XaOCAb2cVS1fV7LQ7GS71C8t7C1jBZp7qVYkUepZiBXd+C/2bvEnipoTrfjSa3jzlotCsI7YOP7
paTzWH1BBr6N+GX7Jvw88G3EN/D4bttR1aMEDVdZLX92MnJAlmLMBnsMAYHHFAHw1Y6leeMplg8K
6FrfiyaRN8Z0fTZZYJB6C4IWAfjIKu+IPg58V9Fsob2/+F/iBbORPMd7Fre9e3GM4kiikL7vZA/1
r9S7TToLKJY441RF4CqMAfhVkKAOBj6UAfi/d+JtO0yWOLU530SeR/LSDWoJLCVmzjaEnVCT7YrX
hAZQeoPII7iv181XQ9O121e21KwttQtnGGhuoVlRh6EMCK+W/jB+wJ4d1pm1X4Zz2/gTVhkyaSsJ
bSLw5yd0K4MD/e/eRY65ZXwAAD4r/rXd/su+F9Li/ae8BarFYwQ6gt3cK08SBGcGznGGx1/GuP8A
Fvh7xB8N/EY8PeNdEm8M60+fs6TuJLa+UAkvazj5ZlGCSPldQMsi5Ge7/Zfv42/aQ8AQowYtd3GS
PaznoA9z8Z24HxI8Yvjl9Wl5/wCARiobe23Cr3jEbviL4t/7Csv/AKClLbxhUzigAjtVUciq+raF
p+vaZc6dqVlBf2F1GYp7W5jDxyoRgqyngir1FAHltz4c8UfDcltAa48V+GgR/wASm5mzf2KY6W8r
nE6ZA/dyEMMthyAqVc8O+PtM8YWssumXgleAhLi2lRori2cgHZLE4Dxtgg7WAPNejVyPjb4ZaF40
nivrq3e11m3XbBq1hIbe7iGQdolXBKkgZRsqccg0AVpJ885yapXE4UHmuH1D/hN/AcrRXEX/AAm2
lqAEurcR22oJ0H7yMlYpf4iWQp2Gw9ayrj4v6JA7JqrXmgsoyTqtpJBGP+2hBQ/99UAdbfzeYWPa
uO8Q6da6tayW17bQ3dtIMNDOgdGHuDxWmNdtdTtxNZ3MV1CwyJIHDqR9RWVd3G4nmgDlYNFvPDsm
fD+uajo0ecm0WQXFseMACOUMEHshWrB+IHjm3tzC0+gzy84ums5lPsTGJME/8CH4VcuZASeelZFy
wJNAGdqN54i8QqV1jxPfSQsuGtNMAsYT75TMn/j9U7DQdP0dX+xWcNsZDmR41G9z6s3Vj7kmtB3E
SlnIRR1LHAFYTeJzq0klt4etG166UlWkhbZaxHn/AFk5+XgjBC7mHpQBqdDWReeKbWK6NlZJLq2p
Dj7HYgOyn/bb7sY92I9s1q2nw5l1HEniLU5L/Jz9gst1varyeDg75OODubBx90V1Fho1lo1olrYW
kFlbJwsVvGEUfgKAOGtfBV3rjJP4nlinjBDJo9sT9lQ4/wCWhODMRz1AXp8uRmuvVBGoVQFVRgKB
gAelWpU2msnWtcsfD9mbq/uFgiztUYLNI3ZUUZLMeygEmgC23y+wrjzb/wDCx73bvb/hFIDhmjYg
anJ/dyOfIXvj754+6DutLomo+N/m1iOTS9CLArpatia7X/p4YfdQn/lkp5A+Y4JWuxit44IkiiRY
40AVUQYCgdAB2FAEljFHbRJFEixxooVEQYCgdAB2FW6oNJ5IJYgKoySTgAetTeDtA8QfFNY5tEkX
SPDjkj+3biLfJcDOM2sR4YdcSv8ALwCquDmgCLVtZtNEgikunfdM/lQQQxtLNPJgkJFGoLO2ATtU
E8H0rptB+E/j7X7JdQlOk+Ho5j+70zUopJbqNOzSNG+wMf7gzju2eB6p4G+DfhrwLeLqVtbS3+ub
Ch1bUpjPcgNjcqE8RqcDKoFHHSu5oA8V034Aazcuraz41lijVs/Z9Bsktwwx91pJTI3vldtbkfwK
tIzsHifxH5P9w3MRP/fXlbv1r06igDzZP2fPCQLNK+u3EzHJmk1673A+wWQAfgBVmP4B+Alh2TeH
479/+e9/cS3E313u5NegVc07TJtRlCRg4PegD52+IvwlvvhxoGpeIvA+u3djFYwvdXGlapK97aSI
oy21XYunAONjADOcN0ryXR/H2pfGDxD4N8N6nZi203WL6MX9kg3GQLC8wgYg8qXjUMOjLkEYNfo7
p3w0sLmzePU4VuYpkKSQSDKupGCCPQjtXPeAv2V/hj8Ntfs9a0Tw0q6nYhlsZ7y5lufsKsCpWASM
RGNrFflHAOOlAGDovw6dYUa4GzgYRR0Hp7VrN4HtlHO4V695SEfcX8qr3Gmwzg/KFPtQB4jq/gZl
jZofmxzjvXkN3czeBvjd4DvLICCbX72TRdUVuFntktZ542Yf343jAVj0Ejj+Lj6t1LSDASQOPavm
f9pr4Z+Mte1zwz4j8G2un3cukrP58F5eNbFGcpiZcI28hVdccH5utAH0jA4kiVhzkU+vm3wL+1JJ
4fii0/4haBdaQVAU6xpe6+s85wPMCqJY+OSxTaO7V9DaLrWn+I9JtNU0q9t9S028iWa3vLSQSRTR
sMhlYcEEd6ALlFFFABUVzJ5cLH14rI8beNNI+HnhbUPEOu3X2PTLJA8jhS7sSQqoijl3ZiFVRksS
AOtfLutftBfEbxnK81jHpng3TXyIbKW3N/ebc/K0sm9UVsdUQMAc4dutAHsnxH8SRxQm2RwSOWrn
PAmli9uRKRks2c14JqOu/EEMbia50fXwrBjbLBJZSOM84fe67sZwCACcAkda93+Afi7T/GNlHcWb
sskMpgubWZds1tKMZjkXswyD6EEEEgg0AfUngLw+scMZC4969IiiESBVGAKw/CNuE09Gxg4rfoAK
KKKACiiigDlPiZ8LvDPxf8I3nhrxXpUWq6Vcj7j5WSFxyssTj5o5FOCrqQQRwa+Afhn8CfEf7Pf7
bngLQdVmn1rQri6upNI14x/6+MWc58ucKAEmXuQAr9QAcqP0prgviJoMV74t8A6oUBmsdXYBu4D2
06/1oA+CvHHx6Pg/9qr4leHfEIRPDreIEt7XUFGDZyvaWrBZf+mbNIcP/CTzwePcojmNcelfJn7R
3hxNT/aO+LizRLPDc65h45FyrKbG1UqQeoIFd7+zl8RriGJPAfiCeSS/tIy2kX077jfWq/8ALIse
TLFwDnll2tkndgA94oozRQAUj/dNLTJn2oaAOX8QxKwOQOprzjVbdfMZSAVbqp6GvQdfu1GfbmvP
9SmDymgDgtS+HPh28uJJ/wCy4rW5k+/cWLNbSsfdoypNY154DNnEVsNd1yzXsPtpm/8ARoau9mYE
1nXpwh+nagDzseFruVys3iPWpQP+m6J/6Cgqyvw+tp48XGra1Mh/g/tB0/VcH9a1Eu4HvHhWWMyj
rGHG4fhnNa6nIFAHNR/DXwyu0y6RDeuvR79muW/OQmunt4I7aBIoY1iiQYVEUBQPYCkpJLmK1iMk
0iQxryXkYKo/E0ATUjn5TWAnjfTbx/L0oXOvTHIVNJt2uFJHYyAeWv8AwJhViDwHq/iwCbxQfsOm
n7ug2kuQ4zkfaJRgvwBmNcJyQS4xQBj3Hia6165ks/C9qmpyRsUm1GVitlbsDgguOZHHPyJnlcMy
1e0bwFBpt7/aV/O+r60VK/brhQPKUnJSFBxGvTpycDcWIzXd2+nw2FtHb28KW8EShI4o1CqijsAO
AKjniDKeOaAMFo/LOO1Nqr4p1+28PW8TSrJPcXEghtrO3XfNcyEZCIvc4BJJwAASSACar6b4H1Xx
WVfxNcmxsWOf7G06UjeucgTzDDNnAyibV5IJcUAW/Bng4fF7WZHvPm8E2UpjeNTxq8yn5kJ/590I
ww/5aMCp+VSH+ntJgSIxoihERQFVRgADoAPSuL8IWltplhbWlrBHbW0CLHFDEoVEUDACgcACu20+
TbItAGvRQDkUUAFFFFAD4YzNKqDua9V8I6GlnbLKyjd2zXm2iIJNThB7npXtVrEIbeNB0AFAEtFF
FABRRRQBHPCJ4yrd+9cfq9mIpGUjg8EV2lc94ljCkMByaAPkf4oaLHpuuXHl4A3n7tZf7O/xKbwB
418SeEWKtok8cOr2tt08iaV5FnCdgrMgkx/edz3rS+NfivSrfxPNZy6laR3G4/unmVW/LOa+cvEd
vey+OX1rRdZewuDbR20gMKyoQjMwK8gg/Oc846UAfoza+O9KuUVvNKk8YIpl34+0u2iLCQuR2Ar4
ItviF4+05UaDxFaXjIQTFfacuxx3GUZWX6849DXRaP8AH59bDWF9aHR9bRC0tk77wwBwXifgSJyO
QARkbgp4oA7b9qX4kN4gvPBVjJJ5GjprSvcJuAQyeTIsHmZ6/vSuP9rZWDAmyMVwfi+/j8U209te
IJ7eZSrox+8P8fftU3wv8ST3lveaFqdybjVNMYbJpcB7m2b/AFcp9SOUY92QnAyKAO6qnZalqvgP
xXbeLvD0AuruJRFqOlhgn9p2wOdgY8CZMkxs3HJUkBty3KKAP0S+C3jvRviV8PNL8R6DdC8029Ql
HwVdGUlXjdTyjowZWQ4KspBGRXc18EfsffEWfwB8apfCE0uPDvjOOWe3jeTC2+qwoGIQH/nvArsQ
MANbE9XJr73ByKACiiigAooooAK5zxgM3Ph721SP/wBFyV0dc54wOLnw976pH/6LkoA/Pf4v+Hjq
Hx9+IsgTO/WSfr/o8A/pVR/g5/wkdtEpSWKWJ1mguIGKSwSr92SNhyrD19yDkEivaNY8Jf2t8Y/H
FwUBDau/J9o4h/SvQdN0W202JVRFLAfeIoA8K0jX/G3gu2Fv4x0G912yjDbfEWhWxmZkGMfaLVfn
V+eWiDqcE4TIWtaH4veCZnMZ8VaTbzL96C7ult5U9mSTawP1Fe3Dg8cY9Kr3WnWl8c3NrBcH1miV
/wCYNAHilz8ZvA9vIYk8VaXd3AGRb2VwLmU/RI9zH8qxrv4n6jrQUaB4P1u+hcEi8v0XT4R9RMRJ
+SV7zL4esljIt7WG2P8A0xjVM/kBXK6ro3lO3HPrQB4VewfEbUt7tpPh21H8MbarPIx+pEAA/WsG
40j4hDOfD2iMR1Ka0+D9M2+a9yuLfYxHeqMseRQB4m+j+OJoyI/DmnCQjgyaxhM++IicfQVe0z4L
nVG+0+L9Vn1OUnKafpsslpZw8n+6weU4IBLtjjIVa9SkXaabQBxrfBvwM2npZf8ACKaSsCMXUrbK
JFc8lw4+bdkk7s55rnr34INYIT4d8SahYIoO201IC/hH4uRL+G/Fep0UAeHTfDzxaJfKuvEmnQQn
IMljpbCX6qZJWUH6qa0tM+E3h20kjnvrZ9evkIf7VrD/AGhg2MZVT8ifRVAr0nWIhjOOetY9ACRx
rDGEjVUQcBEGAPwFDKGGDS0UAZ95CAD7VzfifX7TwzpUt/eMwjUhEjjGXmkY4SNB3ZiQAPU1peMv
FWn+E7FLi+kbfM4ht7eFS81xIQSEjQcs2AT7AEnABNcNomj3+ua2niDxEqrdxFhp+mK26LT0IILE
9HnYHDP0UEqvG5mALfhHwzcx3sviDXNkmvXSFFjQ7o7CAnIgj9+AXfq7DsoUDtYW2upqnG2Vx6VM
kmBg/nQB1ujaiIWAJwK7OwvllVcNk+1fOfiH40eHfCmtHR5J7vUdXVN72GlWcl3LGDjG4Rg7c5GA
cdaseHdA+J/xskaQ3OofC3waeFzGv9sX6leSA2Rbrk9wW496APqGzvVddrHkcVYnuYbWPfNLHCg/
ilcKPzNeIQ/sbaEqJJo3jDxt4bunGLm6sdckke64wS4l3rn3AFblp+xf8NJHgl1221jxfPDyH8Q6
xcXSk4xnYX25/CgDtNf+JHhPwrp5vtY8TaRplmGC+fc3saLk9BnPWvKNW/a/0CXXL3TfB/hvXfiA
toVSTU9BSJrDzSM+WJncAkDBJGRyK9J0b9mH4T6Bfx3tj8PtBhuowQkhs1fbkYOA2R0Jrr7TwFoG
l6VHpum6TZ6XZRDEdvZQrFGn0VQBQB4Npv7Y0PhjUba48X/DvxV4a08P+8v1ijvYYl6ln8liwHvi
vufw14i03xd4f07WtGvYdS0q/gS4tbu3bdHLGwyGU+lfJ/jTwQLBZCIxJA4III4YHqCKsf8ABPzX
f+Ee0/x/8LJv3f8AwjOqnUNNiCbVGn3mZFAPQ4lEowMY44oA+uqKKKACiiigAr5N/be/aNvvh9DY
eA/BFzB/wn+tR72nYBxpFochrl16bzyEU9Tk8gYP1XfXa2FlcXLjKQRPKw9Qqlv6V+OvhTX7rx3q
Os+P9U3S634ovZb+eaTlhEWIhiz/AHUjCqB7UAJD8IfDMlpIupWI1u+ny1zqWosZbqdz1dpCc5NY
pg174TSl7f7R4l8LZy0LtuvLNf8AZP8Ay0UenWuqu/GLf2lNY6fpsuoTW+PtEgkWOKJiAQm48lsE
HAHAIyRkUaX4jTXLma2kt5bC+gwZLS4xuCno6kEhlPqD7HB4oA1PDvibTPFmlx6hpV3HeWsn8SdV
Pow6g+xp2t6Daa9bJHcqyyQt5kFxE22WB+zo3Y9vQgkEEEiuJ1/wHc2Wpy6/4SuE0rWyv76Bh/o1
6ByFkX164Yc810PgbxvB4z012MLWOp2reVe6fKfnt5B291PUHuKAHaNrVz9vl0bVCP7ThTzElVdq
XcWceYo7EHAZexI7MM6l94enuZra/sbr+ztYsyWtbxU3bc/eR143xtgBl74BBDAEZ3jKyeTSTf2y
udR00/a7Yxj5mK8tH7h1ypHv6gV2mkTwajYQXlvIs1vOiyRuhyGUjIINAGn4R8dx67KdN1GAaVr8
UZkksWfcsiggGSFuPMjyRzwRkBgCa6d5ABxXA694ct9etY1kaW2uYH861vbc7ZraQDAdD68kEHIY
EgggkVJ4V8V3t7BdWOrLEur2EghuGhGI5gRlJUB5AZecc4IYZOMkA3fEOtXnhmK28RaWHbV/D9zH
rFmIsBmkgO8oCegdA8Z/2ZDX6w6Xfpqmm2t5HxHcRJMv0ZQR/Ovx/wDF19c3Gi3FpYlDqWobdNs1
cEqbi4YQRA45xvlXNfr3oOnHSNFsLLOfs1vHDx/soF/pQBfooooAKKKKACuW8XS7tQ8PKO2qRf8A
ouWuocblIHFcn4ojKX/h/PbVIv8A0XLQB5K1ksPinxVPgb5tWnOfYBR/SrNLdf8AIf8AEP8A2Fbj
+a0lABRRRQAVmazaiSLfj61p1W1H/j1agDzzVIdrGsSYYJrf1hgGP1rnriQAMew70AUp+tR0pkEx
yp3L6ryKTNABRWV4j8U6P4RsftmtalbaZbkhVe5kCb2JwFUdWJOAAMk5rgNQ+Nlxfpt8OeGry6V1
yt7q5+wwf98EGUnvjYPrQB3utTKq4zWOh3jgE/SvML678W67Iz3/AIlFghbIg0a0SMAeheXex+o2
1nzeEIbh99xqmuXDd9+r3Cg/gjKP0oA9fkcQqWchFHUucAfnXFeJfitpul3R03SFXxFrZXd9jspl
2QjOA08vKxrntyxwdqnBrjJ/AWhzp/pFj9u7/wCnSyXP/oxmq3ZWFvpsQhtreK2iHSOFAij8BQAm
m6deX+ttruu3Md9q5QwwrChWCziJBMcQJJ5wNznliB0ACjpYn2GsqGXZ9KwfGfxP0XwJBGt9LJc3
82Rb6bZp5tzcHHRUHP4nAoA71ZgBnOMd689k8d+IPiN4hufDnw3htbg2jBNQ8SXoJsrM90jx/rZA
OcDgcZNYVn4d8ZfGCTbr0r+DfC7tzpVlLm+ukB6SyjhFIxlV5wSM19G+AvDemeE9GttL0iyhsLC3
XbHBAuAPU+5PUk8mgCx8EPhFYfCvQZYI7iTVNWu5WutQ1a4UCa7mY5LHHRR0VewHrzXrenweY4J6
nvWLph/cmui0o5YfSgDaijEaAAU+kHSloAKKKKAKGt2Cahps0TAZ2kgnsa+Tf2W/jbpmiftF/EDx
JdTRx+HL8QaHDcv8o227Nulyeo3sw+gzX0V8b77V9M+Dvja70COWXW4dHuns0gjLyGXyzt2qOSfQ
Cvzw+DHwAn8dadDf+I7C5tfD9jGttpul3gaL7QwH7y4kj4PJyBn3OOlAH7N6bqtnrNolzYXcF7bu
oZZbeRXUg98g1br8kNb8NT/sy3Fj4/8ABU954fn0y/tpLuGxmk+zXNu0qpMksOSjKUJycZGAcggE
fqDoHxJ0vXtPt7uGRTFOiyI6EMrAjIIPpQB11FYx8VWQH36yNU8aKqFYeD696AE+KOvppngvW1Rx
5rWM4GD0/dtX5T/B3TvP+GXhx8E5s06D619WftAfHOTxOmqfDj4feb4n+IWqwtZiHTv3kWliRcGe
5lwVjCg5APJ44q94H/ZNfwh4Q0nRzeQzPY2kduZP77KoBbp65oA+RpNPk0DxlPbyD/RNZbz4JSek
6oA8R+qqGHXo/TAzp614Okvja31lLHb6tZktBJICVZW+/E+OdrAD6EKcHFe1fH74E6t4Y8Iya/aW
5u00WeLUHMCl2ESMPNIAGT+7L8CvPkdZEDIwZGAKsOhB6GgDirPXJDqB03UbJ9N1MR+asTMHjmQY
BeJx94AkAggMMjIAIzxvxNtx4XEPjSwJt9RsJI0uNnS6gZwrI474zkH2rtvHlzGdW8N20YD3q3T3
OAeUhWJldj7Euq/Uj0rjvik/9r6Tpmhxo0k+q6jbwKg6lVcOx+gCmgD0gSmVFboCAQKu/CvSyLrX
dOiYtY21yssK/wDPIypveMe24lgO2/HQVKdGZI8DOAMV0/wL0pZYNflK/vpdXlD/APAUjQfoBQB1
Ft4TN0AFQnPpXnvif4deJtG8e3d1aaBqmo2t/Z26Qy6fbtON0bSb0YL90jeDz1HTkYr6r8I+F1uG
T5OPpXu/gLwZC0kf7sYHU4oA+IPgl+z/APEXxz8UPCVzN4M1PTPDmmataaneatrKraxBIJRLsjjY
+ZJIWVQBsCjk7uMH9RKZDCsESxoAqqMACn0AFFFFABRRRQAVzXjBcXfh0+uqR/8AouWulrnfF4zc
eHv+wpH/AOi5KAPIrhw3iDxGB1XVbgH/AMdpaxrjUhB448VxE/L/AGtNx+CVsI4kUFTkGgBaKKKA
CuY+IXjPR/A2gSajrepW+l2YYL51zIFBYnCqO7MSQAoySSAK5/40fF6P4Y6XaWthbR6r4r1UtHpe
mO5VW248yeUjJSGPILNjklVGWYA/PUej3Wq6yuveJdSm8SeI8HF7dDbFb5zlbaHJSBOcfLliANzM
RmgDoNY+MGueKiR4X0BrK1f7uqeIg0A2kZDpaj943PG2Qx1zdz4QfX5TN4m1e+8Qynn7PJIYLNM4
+VYIyFI/395966GMYFOoA5f/AIVtoMJH2GC60gD+HSb6e0X67Y3C/pT5vC91DHsi8TeIkiPG3+0m
b9SCf1rpaZMMxmgDhofBGm6bem+WGS71HBU31/M9zcYJyQJJCWAz2GB7VLJHgkH866C6Hy1yniPx
Bpnhqye91W/t9OtEPM1zIEX6c9T7UASnijOK8zf40trrMng/wxqviXIyt20f2W0PP/PSTGR/ug0G
x+KPiTeJtT0TwnbtjC2ULXlwo7/M+FB/A0Aeg3VzFaW7yzyJDEoyXkYKo/E15rf/ABq0Se7Np4fg
vfFd6CF8vSIS8YPvKcIPzq5B8C9HvZ/tPiXUtV8W3G8PjU7k+QDjHEKYTHsRXcWej2ej2UdrYWsN
naxqFSGBAiKB2AFAHl01z8SvFwCJbWfgexOd8jSC7vGGRjaB8i5GfXHFavgr4e6V4Tu5bxBLfavO
f3+qXzeZcSf8CP3RwOBgcV3MqgVzLatPqmszafoNjLrV5C224MLKkFscZxLKeAenyjLcg4xzQB6D
oc6oV5rv9GvlG3nivI9K8GeLbgebe6xYaP8AKNtrY25uSG77pH2gj2Cj61uW/hrxFa4ZfF82f7v9
nwbfy6/rQB7rpN6uRkjBrptOuRHIOeP6V85wN4ztvu+KrYqP+oSmf/Q8fpU6eLviHp0g8jxBo1zC
P4LvRm3f99JMv8qAPqqNw6AjnNOr5v0v48+N9GkjW+0LRdbtR/rDZXUtpMB/sK6upPsWUe9emeBf
jx4S8dXUenpePomvsMnRNZUW91kAE7ASVlAyBujZlz3oA9EooIwajmuI4ELOwAoAZe3AtbWSQnGA
cV4NqJ3X8555cnmvRvF/ihUgZEbrwoHc15k7l3LHqTmgDM8SaHb+JvD+paTdxiW2vbeS3kRuhDKR
/WuE/Zf+Mt3p3w507Sb+cG/0Rn0q7iZ9xR4WKDPfJUA8+tem15nr37M9/wCNfG1xrnhfxXN4Qu9R
2DUUW0W5in2ggSBSRtkxgZ5HA4oA9J8QftSyDXLbwr4R8P3Hi7xreLui021k2xW6f89bmTpFGOPc
5GOtbFr+z18TfidAknxL+Jcul6bLsaXw54Kh+yRkBsmN7psyMpGFO3bkZ9a7H9nz4B6B8FtJuoNO
efUdU1CX7RqWsX5DXN5J23EDCoo4VBwOvUkn2ccUAcl8NPhN4R+D/h9dG8H6DaaHY8FxbrmSZgAN
0khy0jYA5Yk8V1tFFADZI1mjZHUOjAqysMgg8EEelfMPj/8AY7tdPtLu88FeIdU0W1QF00QJDPBC
uSSsBdC6AZ4QkqoACgAAV9QUEZHPNAH5rXHgGLw3c3M7SXF3fzYE93dvvlk29B2CqOcKoABJOMk1
i/CHwbJ8Sfi5rGsiIzab4ZjFhbOQChupBulYH1VcD8a9V/akW8j+K0PgHwiEk8Ua5iaPA3LYWzA7
7mT0Uc4z1PSvY/hD8INN+F3gux8PaWHmjgy811OcyXMzHLyufVj+QwO1AHIP4BmEf+rz14rD+HNm
/hH4naxolypjh1eNdUtGY/ekQLFOgHbAETe+8+lfRA0LI5xXE/FH4e32raNDqOiRxv4i0idb/Tgz
7BJIuQ0LNg4WRC8ZODjdnqBQB7J4H09RDGQOuOa928HWghtg2BnFfP3wb8Waf408NWup6c7NEzvD
JFINskEyMUkikX+F0YFSPUV9E+FiPsi9uKAN2iiigAooooAKKKKACub8YvsuvDg/varGP/Ich/pX
SV5b8SfFcUHxO+HGgJIDNcanJPIgPIC2s5H+NAHhOva4g+KPji2DAPBrEgI+scZ/rW/Ya6UUfNXy
d8aPFXjPwz+1D8VLnSGsbnTk1wBbK+3Rlv8AQ7UkrKucDJbIKnPqK1dN/aP1OyeL+1fCFwtqeJJd
MvEuXj/2jGQhI/3ST7UAfV6+IExzg1geOfippPgHw3e61q04trK1UFiAWd2JwkaKOWdmIVVHJJAF
eDTftUeE/s6m1i1y+uXGUtYtGuUkLf3SXRVT6sQPevNdX1nWPiJr8Ou+JAII7VidL0VJN8ViCCDI
5HEk7AkF+iAlU6szgHSabqWqeLdc1DxZ4gVo9Z1QqBasQRYWy58q1UjI+XJZiCcuzEHG0DfU1gaf
dAIB2rUbUIbaBpZ5UhiQZaR2Cqo9ST0oA0o24p+cV5Nqn7RHhyK+ex8P22peMr1CFdNBt/OiQ/7U
pwg/OsmXVvin48YkSWnw60sn5UQLe6g657k/u48jHrjNAHt54XJ4Hqelcj4x+KfhPwTbM+s+ILCx
IBPltMGkbHZUGST7AV5nL8ErTUTK2veJfE3iF5TlxdapJHH06BIyqgVc0b4UeE/CrrJpmgWNtMgw
J/KDSY/3myaAM3VPjJ4m8ayfZ/A/hx7WzY4OueIFMMQGRzHD99+CcZwOKraL8IrObUotY8VX03i/
XF5WfUAPIgPH+qhHyryAc8muzZdjirMT5Ax1oAsogRAqgKo4CgYAqSM9axtT8WaPojIl/qdraSvw
sUko3sfQKOT+ArO/4T6G4B/s3SNX1Mg4zHaGBD/wKYoCPpQB1tUdZ1ey0Swe6v7qK0tlIBlmYKMn
gAepJ4AHJrBOo+KtUJWCz07RYzjbLdSNdS++Y02qP++zWt4f8FW9vqK6nqVzNrWqr/q7i7xtgHPE
UY+VOuMgbiOpOKAMyzsNf8ciMWtvL4e0WUZe/uvlvJE4/wBVCR+7yD96TDD+5np6Zoui2Xh7S7fT
9Pt0tbOBdqRp29ST3J6knkk0tqetWwcigBaKKBz7/SgBh4NVbhQCasyMI0Lt8qjkk8AVx9/8S/DE
E0sR1yyeSNiriKTeEPoxXIFAGpKMSGszW9IstbsmtdQtIb23JDeVOgdQwOQRnoQQCCOQRUFl4y0H
VButda0+4z/zzukP9auzXCuoKEMG6EHINAEvhr4kePfAcCafp88XinRkwsMGr3jx3dqoz8on2v5q
9MBwGHOXbgCfW/iH8QfGc4iluIPCGnR8n+zbgXV1cn0MjxhYlA67QWbPVcc1bRRtz3qxQBl6R8Rr
nwvdyab421NpIj89l4gulCRTJ3imZQFSVT0yAHBBGSGA3rf4peEbueKGLxFYM0zBIyZdqux6BWOA
SfTNVyoK4IBB6g1DfWNtqdlLZ3lvFdWkyGOSCZAyOpGCCp4IoA7SGZJpQqkN6kV6L4FiVXJwM4r5
o8LeIH+GmoWuia1cGTw/M3laZq07EmAk/La3DHv2jkJ+bAVvmwX+i/BOpxpNGNwKOMBgcg++aAPY
dE6NWtWBot0FcAnrW+DmgAooooAKAcEE8gdqKCcA0AfHfwP8NLo3x++Nena0Gu/Fq6yt82pzxnfP
p06hrZVY9UTBTA4Gyvo2ONYlwowK8Z8L3q67+2L8WLgjB0vRNIsIz6qxmkJ/OvaKACiiigDhLnUB
8HvH7+KxmPwlrrxwa+iRjbZ3IASHUCRyEKhYpSc4Aic7VRyfrnwZqaSwp8wP0Pavny6tYb62mt7i
JJ7eZDHJFIoZXUjBUg9QRxiuY8A/Ee+/Z+1SLRPEUtxfeAWJGma8VaV9KXqLS8IBPlqP9XcHjaNk
hDANIAfbmaK5XwJ8R/DnxA01LrQNd03WoCufMsLpJhj32k4rqqACiiigAooqpqeqW+j2Ul1dSCOK
MZJPf2FAHkHxz/a6+HHwDvG0rxBrDv4iaBZo9Ks7Sa5lVWyEeTy0YRoSrYZsA7T6V8i/CP8AaJtP
jT+1/wCBHh1FLxpL26cLGCQoFnPweOOOxrmv26bmT4heL08U6c8UGp6bF9njSQ7Y7i33Z8qQjvn5
lbqpJ7Eg8V+w7qiav+0l8PZ1jeFvtl2kkMow0braXAZTjjg9xweo4NAHa/tA/wDJfPiN/wBhk/8A
pPBXBVe/aXufHQ/aW+KKaJpelXmnLrS7Hvrponz9kts4Cg8Zz1rzebxB8QNIZZL/AMFW+oWx+8dH
1ASSoPXa4XP4GgDuwxyOTj61fhkBUDPWvLH+IfinUtq6R4B1GMlsNLrE8dsie+AWY/gKiHh7x94k
UjWPE9voNq24Na6BD+8weg858np6AUAeheK/H+j+A7H7Tqt8luWO2K3X5ppm7KiDkk1yOleDdY+M
NymseOoZrHw+rB9P8LiQrkAgiW6wfmY4B2dAOverng34YeH/AA3qRv4rV73U8Afb9Qla4n/BmJx+
FenwMCgoAj0vSbLQ7KOz060gsbSMYSC2jCIo9gKt0Z4pGYIpZiFUdWPAFACOMisfWdQtdKspbq8u
IrS2iUs807hEUepJ4FYeo+ObnWLuSx8Kx216YmaO41W4Ym0gYcFVC8zOD1VSAMEFgRiq9p4Nt3vI
7/V7iXXtRQ7kmvceXCef9VEPkTGSM4LY6saAKLeJr7XG/wCJDpMlzCTgX9+TbW5GcEqCC7+owoB/
vU8eEL3UwDretXF0n/Ppp+bSDr32kyN9C2D6V1TDvSUAZmleHtM0NSNP0+2s9xyxhiClj6k9SfrW
gTk88/WmXFxFaxtJPIkMY5LyMFA/E1zj/EHSpnKacLrWnHfTbdpY8+nmcJn/AIFQB1cRxita0mAx
XnsOt+Jr07odHsbGI8hb68ZpR/vLGpUH6MamVfFdw/zavp1jGeq2ti0jj6M74/8AHaAPUIJs8jn6
VV1jxpovhyNX1PU7Wy3HCpJIN7n0VRyx9gK84bwmt4F/tTVNU1cjqtxdNHGfrHHtU/iDVvTPDWla
LK0lhptraSN96SGJVY/U4zQBoXnxC1vxD8ugWA0myOMajq8J81xwcx2+QQMZGZCpBH3SKoPod1fc
6nr+s6jJkni8a2UewWHYMfXNaIODUoOTQBRtfh9pF0CbxLvUY26w399PcRn6o7lT+Irqra2is4Eh
giSCFBhY4lCqo9ABxUFi+UA5q3mgCleaHpuog/atPtLnPXzoEbP5iudvPh3b2Yefw3cv4du+oigG
+zc8/fgJ24JPJTa3vXX0E4FAHGWvjeTRZDb+ItMudOmB2i5tYnubWXjO5XQEr9HCnOeo5O9o3izR
vEEskWnanbXk0fLwxyDzE/3kPI/EVPcng4JH0rE1jw3Ya+IjdQnz4W8yG6iYxzQt/eSQYZTjjryC
Qcg0AdWDmlri00nxBZKfsnimebJ4XU7OKcAexQRn8yaLbx5Lo0i2XieKPTpydseoxK32K4GcA7zn
ymOR8jnqeC3WgDqdRhiurdoJo0micYeORQysPQg9awdHstS8E3iT+E72PTYBxJpNwjSWUg45VAQY
mGOqHHJyp4xsNcCVQ4YMrchlOQfxqKgDvvD37TGsaFCD4m8JtJbRsN93oF39qZE7uYXVHOOu1Nze
gJ4r6F8G/FLwx4y0yO70rX9Ov7dhxJDdIcdiCM5Ug8EHkEV8eViat4Q0LWL1Lq/0TTr25jOVmuLS
OR1PqCRmgD9C4Z47iISRSJLGejxsGU/iKfX53WTah4P1FdR8L6rd+GdQjOVbT3K278g4kt/9VIDj
ByucE4KnmvoH4VftaxeI5YdC8WwWuh+Jz8kTo2LTUcDO6Ascq2ASYmO4YOCyjcQD6QJwKyNa1dLS
B1Vvmwcn0rmrvx0sqECQKPQVx3iDxeDG+1+SOuaAPPPgbNFe/tCfHm6Y7rs3+mxbickRC0UqPpks
fxNe918YeIfFOv8Awf8AixdfEXw9Ytrumajbx2viLQ4wPOnijJ2TwHvIgY/KeGGR3yPqf4dfEzw3
8VvDkWt+GdTi1Gyc7XC8SQPjmORDyjD0NAHUUUUUAFJtBP1pacBgUAczqvgDTrvVrTXNMH/CPeJ7
Ji1pr2lxpHdQk/eVjjEkbcbo3DK2AcZAI7fRPjn8UvDohh1bSPDnjO3Utvu7GeTSrnb/AA4hcSxs
cdT5ij2HSs6igDsbP9raCAv/AG58OvF+jov/AC2iitr5D7gQTO5/75zWjp/7Y/wsuw32rWNR0Ur1
GsaJe2YH4yQgfrXnbxrIpVgCDXP6tYbQ3X8DQB6trX7cHwZ02FjB8QNAuZRxt+3opB9wTmvBfip+
2n4U8RxtFYeJbLUyciOy0uT7TM30jjyx/Ks/VNMjLNuRT7lQa5e+0yJCxWJFbpkKAaAPnv406pqH
xM09YrHRdZeeOYTRJcWrxxTNggLICQNhz36deoFd7+xX4bm8N/tI/DiGXTotMdrm5d7eAhkVzZzl
sEAZ57966DULQQucDiuv/Z3tkb9oTwDLtG9LyfB+tpPQBm/HdQPjn8QiOp1g5/78Q1w9av7QfjvS
NI/aD+KFvqV/b2It9cCbriQIDm0tm4z1+8Olefy/EexmDDTbDU9XYdDbWpjQ/SSTap/AmgDoL9QR
k9fesvqeOfpWHdax4n1hysFpYaNEcYkuZTcygf7i7VB/4EahPg83an+0da1W/JOdq3H2dB7ARBeP