forked from diepthihoang/mpboot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gss.cpp
345 lines (302 loc) · 12.2 KB
/
gss.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/*
Geneset selection (GSS) for Roland
*/
#include "gss.h"
#include "lpwrapper.h"
#include "gurobiwrapper.h"
#include "mtreeset.h"
GSSNetwork::GSSNetwork(Params ¶ms) : PDNetwork(params) {
readGenePValues(params);
}
bool GSSNetwork::isPDArea() {
return false;
}
void GSSNetwork::readGenePValues(Params ¶ms) {
//taxa->Report(cout);
// first build the gene list
TaxaSetNameVector *allsets = sets->getSets();
TaxaSetNameVector::iterator i;
for (i = allsets->begin(); i != allsets->end(); i++) {
for (vector<string>::iterator it2 = (*i)->taxlist.begin(); it2 != (*i)->taxlist.end(); it2++) {
if (gene_index.find(*it2) == gene_index.end()) {
gene_index[*it2] = genes.size();
genes.push_back(*it2);
}
}
}
int ntaxa = genes.size();
// build the area_taxa structure
if (allsets->size() != getNTaxa())
outError("Number of gene sets do not match between tree file and set file");
area_taxa.resize(getNTaxa(), NULL);
for (i = allsets->begin(); i != allsets->end(); i++) {
int id = -1;
try {
id = taxa->FindTaxon(NxsString((*i)->name.c_str()));
} catch (NxsTaxaBlock::NxsX_NoSuchTaxon) {
outError(ERR_NO_TAXON, (*i)->name);
}
if (area_taxa[id]) outError("Duplicated set name in set file", (*i)->name);
Split *sp = new Split(ntaxa);
for (vector<string>::iterator it2 = (*i)->taxlist.begin(); it2 != (*i)->taxlist.end(); it2++) {
sp->addTaxon(gene_index[*it2]);
}
area_taxa[id] = sp;
cout << id << "\t" << (*i)->name << endl;
}
cout << ntaxa << " genes and " << area_taxa.size() << " gene sets detected" << endl;
cout << "Reading p-values file " << params.gene_pvalue_file << " ..." << endl;
gene_pvalues.resize(ntaxa, -1);
try {
ifstream in;
in.exceptions(ios::failbit | ios::badbit);
in.open(params.gene_pvalue_file);
string name, tmp;
for (; !in.eof() && ntaxa > 0; ntaxa--) {
// remove the failbit
in.exceptions(ios::badbit);
if (!(in >> name)) break;
// set the failbit again
in.exceptions(ios::failbit | ios::badbit);
if (gene_index.find(name) == gene_index.end())
outError("A gene not found in gene p-values file");
// read the sequence weight
in >> tmp;
double pval = convert_double(tmp.c_str());
if (pval < 0 || pval > 1) outError("Some pvalue is out of range [0, 1]");
if (gene_pvalues[gene_index[name]] != -1) outError("Duplicated p-value entry");
gene_pvalues[gene_index[name]] = pval;
}
in.clear();
// set the failbit again
in.exceptions(ios::failbit | ios::badbit);
in.close();
} catch (ios::failure) {
outError(ERR_READ_INPUT);
} catch (string str) {
outError(str);
}
if (params.gene_scale_factor < 0 || params.gene_scale_factor > 1)
outError("gene_scale_factor must be in range [0,1]");
cout << "Rescaling split weights with " << params.gene_scale_factor <<
" and gene p-values with " << 1 - params.gene_scale_factor << endl;
// incoporate into the split system
for (iterator it = begin(); it != end(); it++) {
// first, multiply split weight with the coefficient
(*it)->setWeight((*it)->getWeight() * params.gene_scale_factor);
}
for (DoubleVector::iterator it2 = gene_pvalues.begin(); it2 != gene_pvalues.end(); it2++)
if (params.gene_pvalue_loga)
(*it2) = (-log(*it2)) * (1 - params.gene_scale_factor);
else
(*it2) = (1 - (*it2)) * (1 - params.gene_scale_factor);
}
void GSSNetwork::checkZValue(int total_size, vector<int> &z_value) {
z_value.resize(genes.size(), -1);
int i, j;
for (i = 0; i < genes.size(); i++) {
int genesetid = -1;
for (j = 0; j < area_taxa.size(); j++)
if (area_taxa[j]->containTaxon(i)) {
if (genesetid < 0)
genesetid = j;
else {
genesetid = -1;
break;
}
}
if (genesetid >= 0) z_value[i] = genesetid+2;
}
}
void GSSNetwork::lpObjectiveGSS(ostream &out, Params ¶ms, IntVector &y_value, IntVector &z_value, int total_size) {
//IntVector y_value, count1, count2;
iterator spit;
int i;
// define the objective function
if (params.gurobi_format)
out << "Maximize" << endl;
else
out << "max: ";
// first compute the coefficient for x variable
DoubleVector xweights;
xweights.resize(getNTaxa(), 0.0);
for (spit = begin(),i=0; spit != end(); spit++,i++) {
if (y_value[i] >= 2)
xweights[y_value[i] - 2] += (*spit)->getWeight();
}
for (i = 0; i < gene_pvalues.size(); i++)
if (z_value[i] >= 2)
xweights[z_value[i]-2] += gene_pvalues[i];
// now write down the objective function
for (i = 0; i < xweights.size(); i++)
out << " +" << xweights[i] << " x" << i;
for (spit = begin(),i=0; spit != end(); spit++,i++) {
if (y_value[i] < 0)
out << " +" << (*spit)->getWeight() << " y" << i;
}
for (i = 0; i < gene_pvalues.size(); i++)
if (z_value[i] < 0)
out << " +" << gene_pvalues[i] << " z" << i;
if (params.gurobi_format)
out << endl << "Subject to" << endl;
else
out << ";" << endl;
}
void GSSNetwork::lpVariableBound(ostream &out, Params ¶ms, Split &included_vars, IntVector &y_value, IntVector &z_value) {
int i;
PDNetwork::lpVariableBound(out, params, included_vars, y_value);
for (i = 0; i < gene_pvalues.size(); i++) {
if (z_value[i] >= 0) continue;
if (params.gurobi_format)
out << "0 <= ";
out << "z" << i << " <= 1";
if (params.gurobi_format)
out << endl;
else
out << ";" << endl;
}
}
void GSSNetwork::lpGeneConstraint(ostream &out, Params ¶ms, IntVector &z_value) {
int i, j;
for (i = 0; i < genes.size(); i++) {
if (z_value[i] >= 0) continue;
out << "z" << i;
for (j = 0; j < area_taxa.size(); j++)
if (area_taxa[j]->containTaxon(i))
out << " -x" << j;
out << " <= 0";
if (params.gurobi_format)
out << endl;
else
out << ";" << endl;
}
}
void GSSNetwork::transformLP_GSS(Params ¶ms, const char *outfile, int total_size, bool make_bin) {
Split included_tax(getNTaxa());
IntVector::iterator it2;
for (it2 = initialset.begin(); it2 != initialset.end(); it2++)
included_tax.addTaxon(*it2);
try {
ofstream out;
out.exceptions(ios::failbit | ios::badbit);
out.open(outfile);
vector<int> y_value;
vector<int> z_value;
checkYValue(total_size, y_value);
checkZValue(total_size, z_value);
lpObjectiveGSS(out, params, y_value, z_value, total_size);
lpSplitConstraint_TS(out, params, y_value, total_size);
lpK_BudgetConstraint(out, params, total_size);
lpGeneConstraint(out, params, z_value);
lpVariableBound(out, params, included_tax, y_value, z_value);
if (make_bin)
lpVariableBinary(out, params, included_tax);
out.close();
//cout << "Transformed LP problem printed to " << outfile << endl;
} catch (ios::failure) {
outError(ERR_WRITE_OUTPUT, outfile);
}
}
void GSSNetwork::findPD(Params ¶ms, vector<SplitSet> &taxa_set, vector<int> &taxa_order) {
// call the entering function
if (isBudgetConstraint()) { // non-budget case
cout << "Please specify k";
return;
}
enterFindPD(params);
if (params.find_all)
outError("Current linear programming does not support multiple optimal sets!");
string ofile = params.out_prefix;
ofile += ".lp";
double score;
int lp_ret, i, ntaxa = getNTaxa();
int k, min_k, max_k, step_k, index;
double *variables = new double[ntaxa];
if (isBudgetConstraint()) { // non-budget case
min_k = params.min_budget;
max_k = params.budget;
step_k = params.step_budget;
} else {
min_k = params.min_size;
max_k = params.sub_size;
step_k = params.step_size;
}
taxa_set.resize((max_k - min_k)/step_k + 1);
// now construction the optimal PD sets
if (isBudgetConstraint())
cout << "running budget = ";
else
cout << "running k = ";
for (k = min_k; k <= max_k; k += step_k) {
index = (k - min_k) / step_k;
if (!params.binary_programming) {
transformLP_GSS(params, ofile.c_str(), k, false);
cout << " " << k;
cout.flush();
if (params.gurobi_format)
lp_ret = gurobi_solve((char*)ofile.c_str(), ntaxa, &score, variables, verbose_mode, params.gurobi_threads);
else
lp_ret = lp_solve((char*)ofile.c_str(), ntaxa, &score, variables, verbose_mode);
} else lp_ret = 7;
if (lp_ret != 0 && lp_ret != 7)
outError("Something went wrong with LP solver!");
if (lp_ret == 7) { // fail with non-binary case, do again with strict binary
if (params.binary_programming)
transformLP_GSS(params, ofile.c_str(), k, true);
else
lpVariableBinary(ofile.c_str(), params, initialset);
cout << " " << k << "(bin)";
cout.flush();
if (params.gurobi_format)
lp_ret = gurobi_solve((char*)ofile.c_str(), ntaxa, &score, variables, verbose_mode, params.gurobi_threads);
else
lp_ret = lp_solve((char*)ofile.c_str(), ntaxa, &score, variables, verbose_mode);
if (lp_ret != 0) // check error again without allowing non-binary
outError("Something went wrong with LP solver!");
}
Split *pd_set = new Split(ntaxa, score);
for (i = 0; i < ntaxa; i++)
if (1.0 - variables[i] < tolerance) {
//pd_set->addTaxon(taxa_order[i]);
pd_set->addTaxon(i);
}
calcPD(*pd_set);
taxa_set[index].push_back(pd_set);
}
cout << endl;
delete variables;
// call the leaving function
leaveFindPD(taxa_set);
}
extern void summarizeSplit(Params ¶ms, PDNetwork &sg, vector<SplitSet> &pd_set, PDRelatedMeasures &pd_more, bool full_report);
void runGSSAnalysis(Params ¶ms) {
cout << "Dedicated for Roland..." << endl;
vector<SplitSet> taxa_set;
IntVector taxa_order;
StrVector genes;
DoubleVector gene_pvalues;
PDRelatedMeasures pd_more;
params.intype = detectInputFile(params.user_file);
GSSNetwork sg(params);
sg.findPD(params, taxa_set, taxa_order);
summarizeSplit(params, sg, taxa_set, pd_more, true);
}