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Analyzing correlative relationships between microbes and metab-
olites is a timely topic1–3 but is complicated by the compositional 
(i.e., relative) nature of the data4,5. Recently, Morton et al. proposed 
a neural network architecture called MMvec to predict metabolite 
abundances from microbe presence6. We do not doubt the useful-
ness of MMvec but write in defense of simple linear statistics. When 
used correctly, correlation and proportionality5,7 can be scale invari-
ant and can outperform MMvec in certain conditions.

Scale invariance is important because we do not want a method 
that is sensitive to (variant with) changes in technical factors such 
as sequencing depth (differences in scale). In compositional data 
analysis, scale invariance is forced by using a log-ratio transforma-
tion that normalizes the data with an internal reference8. The result-
ing log ratios are scale invariant, and so analyses of log ratios are 
scale invariant too. This is also true for multi-omics data, but only if 
the transformation is performed correctly. Let us consider two pos-
sible centered log-ratio (CLR) transformations of multi-omics data, 
presented here as functions of the input
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for sample i, where ui measures 1, …, M microbes and vi measures  
1, …, N metabolites. Only approach B

I
 is scale invariant. Morton 

et al. use approach A
I
 in the original paper where they claim that 

correlation and proportionality underperform MMvec.
Why is approach B

I
 valid, but not approach A

I
? It is because 

the microbe and metabolite data are generated from two separate 
sampling processes: they are individually, not jointly, constrained 
to sum to 1. In other words, the abundance of microbe 1 is lim-
ited by the abundance of microbes 2 through M, but is not limited 
by the abundance of metabolites 1 through N. Consequently, the 
denominator from approach A

I
 has no meaning. In contrast, the 

denominators from approach B
I
 have the property that they can-

cel any constant factor multiplied with their respective numera-
tors. As such, they cancel the implicit sequencing biases that cause 
the samples to be on different scales. An additional property of 
these denominators is that they are useful normalization fac-
tors themselves9: under the assumption that the majority of fea-
tures are unchanged, approach B

I
 will make the transformed data  

proportional to the original absolute data and thus performs effective  
library-size normalization.

We repeated the authors’ analysis to measure the F1 score (pre-
cision and recall) for the top microbe–metabolite associations 
using approach B

I
. Figure 1 shows the performance of correlation 

and proportionality, both of which outperformed MMvec on their 
simulated benchmark. Interestingly, correlation performed best, 
suggesting that the ‘ground truth’ includes power-law relationships 
between microbes and metabolites (log–linear relationships with 
slopes other than 1, which could mean, for example, that although 
an increase in two microbe units associates with a doubling of 
metabolites, an increase of four units associates with a quadrupling). 
Because ϕ and ρ are designed for intercept-free linear relationships, 
these power-law relationships will usually go undetected. Note 
that, although SPIEC-EASI already implements B

I
 in ‘multi-source’ 

mode, it makes a strong assumption that the true ecological associa-
tion network is sparse10. This assumption does not appear to hold 
true for the simulated data (see ref. 6). If one instead calculates cova-
riance via a second inversion of the regularized inverse covariance 
matrix, the model performs well (see QUIC-cov in Fig. 1).

Data sparsity, by which we mean an excess of zero counts, 
presents a major challenge to microbiome data analysis. For one, 
a log-ratio transformation fails for a zero entry. Many methods 
have been proposed to address compositional zeros, including 
Bayesian imputation strategies11 and alternative transformations12. 
The simplest approach involves replacing all zeros with a very small 
number. Every zero-handling strategy has limitations; however, it 
remains unclear whether a neural network will necessarily perform 
better. For the simulated microbiome data used in Fig. 1, about 
14% of the values are zero (the data are 14% sparse). We increased 
the sparsity by sampling new counts from an equivalent multino-
mial distribution where we used the closed counts as parameters at 
one-twentieth the sequencing depth. This sampling generated new 
relative data with 71% sparsity, without any change to the corre-
sponding absolute data. Figure 2 shows how simple correlations at 
71% sparsity, despite a considerable drop in accuracy, still outper-
form the MMvec baseline at 14% sparsity. Interestingly, Spearman’s 
rank correlation is the method most impaired by data sparsity, likely 
because any change to small counts would distort ranks more than 
parametric covariance estimates.

It is worth noting that neither the precision nor the recall is high 
for any of these methods. This is consistent with how information 
is lost when producing compositional counts, especially if under-
sampling leads to an excess of zero counts. It is also worth noting 
that CLR-based correlations, by definition, describe how microbes 
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and metabolites behave relative to their respective sample means. 
Although the CLR can, under some circumstances, provide a useful 
normalization of the data, analysts must take care not to forget that 
the geometric mean is foremost a reference frame13, a kind of yard-
stick against which to compare the relative abundances to establish 
a scale-invariant analysis of the data. If the CLR transform does not 
perfectly normalize the relative data, then some discrepancies might 
be seen between the estimates and the true associations7.

Even when the CLR is not a perfect normalization tool, propor-
tionality is designed to still reveal some linear associations without 
having to make the relationship between the variables and the refer-
ence explicit. On the other hand, CLR-based correlations depend 
more on the chosen reference because any expression of power laws 
will necessarily involve that reference. To visualize this, we assumed 
that the correlation coefficient was high enough to detect a linear 
relationship between the logarithms of two features x and y, both 
having the same reference r. We have the log–linear model

log
y
r
¼ m log

x
r
þ bþ ϵ

(with offset b and error term ϵ). This implies that y = eb+ϵr1−mxm. From 
this, we can see how the reference (geometric mean from CLR) influ-
ences the relationship between variables when the slope m is not 1.

We do not disagree that neural networks can add value to 
multi-omics data integration. Their ability to learn nonlinear rela-
tionships could improve metabolite prediction by directly model-
ing complex microbe–metabolite interactions14. However, neural 
networks do not offer a magical solution to the problems of com-
positional data analysis15. They are merely a nested series of trans-
formed linear operators. As such, they may be prone to yielding 
spurious results whenever a simple linear method would yield spu-
rious results. It seems to us that MMvec’s primary advantage is how 
it handles compositional data, not its neural network architecture 
per se. For example, the use of a softmax transformation, which 
is equivalent to an inverse CLR transformation, might imply that 
the linear operations from previous layers actually occur in CLR 
coordinates6.

We conclude by reminding readers that not all problems in biol-
ogy are solved by adding layers of complexity: sometimes it is suf-
ficient to use the simplest solutions more carefully.
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Fig. 1 | Reanalysis of the simulated data from Morton et al. The top panels show agreement between absolute and relative metrics when using approach 
B. The bottom panels show the updated performances from the simulated data, where QUIC refers to the regularized inverse covariance matrix and pcor 
refers to partial correlations.
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Fig. 2 | Reanalysis of the sparsified simulated data. The leftmost panel shows a log–log plot of the new relative data with 71% sparsity (y axis) versus the 
original relative data with 14% sparsity (x axis), confirming successful downsampling. The top right panels show agreement between absolute and relative 
metrics when using approach B. The bottom right panels show the updated performances from the sparse simulated data.
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Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41592-020-01006-1.
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Methods
For Fig. 1, we performed a reanalysis of the simulated data by taking the following 
steps: (1) we loaded in the absolute and relative datasets provided by the authors  
in the ‘results/benchmark_output/CF_sims/data’ directory; (2) we replaced all  
zeros with the minimum non-zero value; (3) we performed a CLR of the microbe 
and metabolite data separately for each of the absolute and relative datasets;  
(4) we calculated proportionality (using propr package version 4.2.8) and 
correlation (using base R version 3.6.3) for each of the absolute and relative 
datasets; and (5) we measured and plotted the precision and recall of the relative 
data analysis against the MMvec results using a Python script from the authors. 
For Fig. 2, we repeated this same procedure but added a new step where we 
downsampled the relative microbiome data by using a multinomial distribution at 
one-twentieth the sequencing depth, where the expected proportions were set as 
the original relative microbiome proportions.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data used in Figs. 1 and 2 are available from https://doi.org/10.5281/
zenodo.3610709 and https://doi.org/10.5281/zenodo.3833174, respectively.

Code availability
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