diff --git a/src/sage/algebras/fusion_rings/fusion_double.py b/src/sage/algebras/fusion_rings/fusion_double.py index 7ce086f70d0..954513572c3 100644 --- a/src/sage/algebras/fusion_rings/fusion_double.py +++ b/src/sage/algebras/fusion_rings/fusion_double.py @@ -133,7 +133,7 @@ class FusionDouble(CombinatorialFreeModule): sage: G = SmallPermutationGroup(16,9) sage: F = FusionDouble(G, prefix="b",inject_variables=True) sage: b13^2 # long time (4s) - b0 + b2 + b4 + b15 + b16 + b17 + b18 + b24 + b26 + b27 + b0 + b3 + b4 """ @staticmethod diff --git a/src/sage/categories/simplicial_sets.py b/src/sage/categories/simplicial_sets.py index e714a4571c4..a2b87a729d1 100644 --- a/src/sage/categories/simplicial_sets.py +++ b/src/sage/categories/simplicial_sets.py @@ -593,9 +593,9 @@ def _canonical_twisting_operator(self): sage: X = simplicial_sets.Torus() sage: d = X._canonical_twisting_operator() sage: d - {(s_0 v_0, sigma_1): f3, (sigma_1, s_0 v_0): f2*f3^-1, (sigma_1, sigma_1): f2} + {(s_0 v_0, sigma_1): f2, (sigma_1, s_0 v_0): f1*f2^-1, (sigma_1, sigma_1): f1} sage: list(d.values())[0].parent() - Multivariate Laurent Polynomial Ring in f2, f3 over Integer Ring + Multivariate Laurent Polynomial Ring in f1, f2 over Integer Ring sage: Y = simplicial_sets.RealProjectiveSpace(2) sage: d2 = Y._canonical_twisting_operator() sage: d2 @@ -677,10 +677,10 @@ def twisted_chain_complex(self, twisting_operator=None, dimensions=None, augment sage: X = simplicial_sets.Torus() sage: C = X.twisted_chain_complex() sage: C.differential(1) - [ f3 - 1 f2*f3^-1 - 1 f2 - 1] + [ f2 - 1 f1*f2^-1 - 1 f1 - 1] sage: C.differential(2) - [ 1 f2*f3^-1] - [ f3 1] + [ 1 f1*f2^-1] + [ f2 1] [ -1 -1] sage: C.differential(3) [] @@ -848,29 +848,29 @@ def twisted_homology(self, n, reduced=False): sage: # needs sage.graphs sage: Y = simplicial_sets.Torus() sage: Y.twisted_homology(1) - Quotient module by Submodule of Ambient free module of rank 5 over the integral domain Multivariate Polynomial Ring in f2, f2inv, f3, f3inv over Integer Ring + Quotient module by Submodule of Ambient free module of rank 5 over the integral domain Multivariate Polynomial Ring in f1, f1inv, f2, f2inv over Integer Ring Generated by the rows of the matrix: [ 1 0 0 0 0] [ 0 1 0 0 0] [ 0 0 1 0 0] [ 0 0 0 1 0] [ 0 0 0 0 1] + [f1*f1inv - 1 0 0 0 0] + [ 0 f1*f1inv - 1 0 0 0] + [ 0 0 f1*f1inv - 1 0 0] + [ 0 0 0 f1*f1inv - 1 0] + [ 0 0 0 0 f1*f1inv - 1] [f2*f2inv - 1 0 0 0 0] [ 0 f2*f2inv - 1 0 0 0] [ 0 0 f2*f2inv - 1 0 0] [ 0 0 0 f2*f2inv - 1 0] [ 0 0 0 0 f2*f2inv - 1] - [f3*f3inv - 1 0 0 0 0] - [ 0 f3*f3inv - 1 0 0 0] - [ 0 0 f3*f3inv - 1 0 0] - [ 0 0 0 f3*f3inv - 1 0] - [ 0 0 0 0 f3*f3inv - 1] sage: Y.twisted_homology(2) - Quotient module by Submodule of Ambient free module of rank 0 over the integral domain Multivariate Polynomial Ring in f2, f2inv, f3, f3inv over Integer Ring + Quotient module by Submodule of Ambient free module of rank 0 over the integral domain Multivariate Polynomial Ring in f1, f1inv, f2, f2inv over Integer Ring Generated by the rows of the matrix: [] sage: Y.twisted_homology(1, reduced=True) - Quotient module by Submodule of Ambient free module of rank 5 over the integral domain Multivariate Polynomial Ring in f2, f2inv, f3, f3inv over Integer Ring + Quotient module by Submodule of Ambient free module of rank 5 over the integral domain Multivariate Polynomial Ring in f1, f1inv, f2, f2inv over Integer Ring Generated by the rows of the matrix: [1 0 0 0 0] [0 1 0 0 0] diff --git a/src/sage/groups/finitely_presented.py b/src/sage/groups/finitely_presented.py index 4bb52ee4efb..85f572fac6c 100644 --- a/src/sage/groups/finitely_presented.py +++ b/src/sage/groups/finitely_presented.py @@ -1344,8 +1344,8 @@ def abelianization_map(self): sage: H = G.quotient([g1^2, g2*g1*g2^(-1)*g1^(-1), g1*g3^(-2), g0^4]) sage: H.abelianization_map() Group morphism: - From: Finitely presented group < g0, g1, g2, g3 | g1^2, g2*g1*g2^-1*g1^-1, g1*g3^-2, g0^4 > - To: Finitely presented group < f2, f3, f4 | f2^-1*f3^-1*f2*f3, f2^-1*f4^-1*f2*f4, f3^-1*f4^-1*f3*f4, f2^4, f3^4 > + From: Finitely presented group < g0, g1, g2, g3 | g1^2, g2*g1*g2^-1*g1^-1, g1*g3^-2, g0^4 > + To: Finitely presented group < f1, f2, f3 | f1^4, f2^-1*f1^-1*f2*f1, f2^4, f3^-1*f1^-1*f3*f1, f3^-1*f2^-1*f3*f2 > sage: g = FreeGroup(0) / [] sage: g.abelianization_map() Group endomorphism of Finitely presented group < | > @@ -1394,10 +1394,10 @@ def abelianization_to_algebra(self, ring=QQ): Defining g0, g1, g2, g3 sage: H = G.quotient([g1^2, g2*g1*g2^(-1)*g1^(-1), g1*g3^(-2), g0^4]) sage: H.abelianization_to_algebra() - (Finitely presented group < f2, f3, f4 | f2^-1*f3^-1*f2*f3, f2^-1*f4^-1*f2*f4, - f3^-1*f4^-1*f3*f4, f2^4, f3^4 >, - Multivariate Laurent Polynomial Ring in f2, f3, f4 over Rational Field, - [f2^4 - 1, f3^4 - 1], [f2^-1*f3^-2, f3^-2, f4, f3]) + (Finitely presented group < f1, f2, f3 | f1^4, f2^-1*f1^-1*f2*f1, f2^4, f3^-1*f1^-1*f3*f1, f3^-1*f2^-1*f3*f2 >, + Multivariate Laurent Polynomial Ring in f1, f2, f3 over Rational Field, + [f1^4 - 1, f2^4 - 1], + [f1^3*f2^2, f2^2, f3, f2]) sage: g=FreeGroup(0) / [] sage: g.abelianization_to_algebra() (Finitely presented group < | >, Rational Field, [], []) @@ -1673,7 +1673,7 @@ def abelian_alexander_matrix(self, ring=QQ, simplified=True): [] sage: G = FreeGroup(3)/[(2, 1, 1), (1, 2, 2, 3, 3)] sage: A, ideal = G.abelian_alexander_matrix(simplified=True); A - [-f3^2 - f3^4 - f3^6 f3^3 + f3^6] + [-f1^2 - f1^4 - f1^6 f1^3 + f1^6] sage: g = FreeGroup(1) / [] sage: g.abelian_alexander_matrix() ([], []) @@ -1773,11 +1773,11 @@ def characteristic_varieties(self, ring=QQ, matrix_ideal=None, groebner=False): 3: Ideal (1) of Multivariate Laurent Polynomial Ring in f1, f2 over Integer Ring} sage: G = FreeGroup(2)/[(1,2,1,-2,-1,-2)] sage: G.characteristic_varieties() - {0: Ideal (0) of Univariate Laurent Polynomial Ring in f2 over Rational Field, - 1: Ideal (-1 + 2*f2 - 2*f2^2 + f2^3) of Univariate Laurent Polynomial Ring in f2 over Rational Field, - 2: Ideal (1) of Univariate Laurent Polynomial Ring in f2 over Rational Field} + {0: Ideal (0) of Univariate Laurent Polynomial Ring in f1 over Rational Field, + 1: Ideal (-1 + 2*f1 - 2*f1^2 + f1^3) of Univariate Laurent Polynomial Ring in f1 over Rational Field, + 2: Ideal (1) of Univariate Laurent Polynomial Ring in f1 over Rational Field} sage: G.characteristic_varieties(groebner=True) - {0: [0], 1: [-1 + f2, 1 - f2 + f2^2], 2: []} + {0: [0], 1: [-1 + f1, 1 - f1 + f1^2], 2: []} sage: G = FreeGroup(2)/[3 * (1, ), 2 * (2, )] sage: G.characteristic_varieties(groebner=True) {0: [-1 + F1, 1 + F1, 1 - F1 + F1^2, 1 + F1 + F1^2], 1: [1 - F1 + F1^2], 2: []} diff --git a/src/sage/groups/perm_gps/permgroup_named.py b/src/sage/groups/perm_gps/permgroup_named.py index c1f2683907b..d219e104a2c 100644 --- a/src/sage/groups/perm_gps/permgroup_named.py +++ b/src/sage/groups/perm_gps/permgroup_named.py @@ -3468,16 +3468,14 @@ class SmallPermutationGroup(PermutationGroup_generic): sage: G = SmallPermutationGroup(12,4); G Group of order 12 and GAP Id 4 as a permutation group sage: G.gens() - ((1,2)(3,5)(4,10)(6,8)(7,12)(9,11), - (1,3)(2,5)(4,7)(6,9)(8,11)(10,12), - (1,4,8)(2,6,10)(3,7,11)(5,9,12)) + ((4,5), (1,2), (3,4,5)) sage: G.character_table() # needs sage.rings.number_field [ 1 1 1 1 1 1] - [ 1 -1 -1 1 1 -1] + [ 1 -1 1 -1 1 -1] [ 1 -1 1 1 -1 1] - [ 1 1 -1 1 -1 -1] - [ 2 0 -2 -1 0 1] - [ 2 0 2 -1 0 -1] + [ 1 1 1 -1 -1 -1] + [ 2 0 -1 -2 0 1] + [ 2 0 -1 2 0 -1] sage: def numgps(n): return ZZ(libgap.NumberSmallGroups(n)) sage: all(SmallPermutationGroup(n,k).id() == [n,k] ....: for n in [1..64] for k in [1..numgps(n)]) @@ -3486,11 +3484,11 @@ class SmallPermutationGroup(PermutationGroup_generic): sage: H.is_abelian() False sage: [H.centralizer(g) for g in H.conjugacy_classes_representatives()] - [Subgroup generated by [(1,2)(3,6)(4,5), (1,3,5)(2,4,6)] of + [Subgroup generated by [(1,3), (2,3)] of (Group of order 6 and GAP Id 1 as a permutation group), - Subgroup generated by [(1,2)(3,6)(4,5)] of + Subgroup generated by [(2,3)] of (Group of order 6 and GAP Id 1 as a permutation group), - Subgroup generated by [(1,3,5)(2,4,6), (1,5,3)(2,6,4)] of + Subgroup generated by [(1,2,3)] of (Group of order 6 and GAP Id 1 as a permutation group)] """