-
Notifications
You must be signed in to change notification settings - Fork 0
/
fn_loss.py
140 lines (112 loc) · 5.43 KB
/
fn_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import tensorflow as tf
def weight_fg(label):
"""
label: [B W H 1]
"""
pos = tf.greater(label, 0)
neg = tf.equal(label, 0)
num_pos = tf.count_nonzero(pos, axis=[1,2,3], keepdims=True, dtype=tf.float32)
num_neg = tf.count_nonzero(neg, axis=[1,2,3], keepdims=True, dtype=tf.float32)
total = num_neg + num_pos
return tf.cast(pos, dtype=tf.float32)*total/(2*num_pos) \
+ tf.cast(neg, dtype=tf.float32)*total/(2*num_neg)
def build_dist_loss(dist, dist_gt, name='dist_reg_loss'):
with tf.variable_scope(name):
weights = weight_fg(dist_gt)
dist_gt = dist_gt * 10
loss = tf.square(dist-dist_gt)*weights
# loss = tf.square(dist-dist_gt)
return tf.reduce_mean(loss)
def build_embedding_loss(embedding, label_map, neighbor, include_bg=True, name='emb_loss'):
"""
:param embedding: [B W H C]
:param label_map: [B W H 1]
:param neighbor: neighbot list
:param include_bg: weather take background as an independent object
"""
with tf.variable_scope(name):
def cond(loss, embedding, label_map, neighbor, i):
return tf.less(i, tf.shape(embedding)[0])
def body(loss, embedding, label_map, neighbor, i):
loss_single = embedding_loss_single_example(embedding[i],
label_map[i],
neighbor[i],
include_bg)
loss = loss.write(i, loss_single)
return loss, embedding, label_map, neighbor, i+1
loss = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True)
loss, _, _, _, _ = tf.while_loop(cond, body, [loss, embedding, label_map, neighbor, 0])
loss = loss.stack()
loss = tf.reduce_mean(loss)
return loss
def embedding_loss_single_example(embedding,
label_map,
neighbor,
include_bg=True):
"""
build embedding loss
:param embedding: 3 dim tensor, should be normalized
:param label_map: 3 dim tensor with 1 channel
:param neighbor: row N is the neighbors of object N, N starts with 1, 0 indicates the background
:param include_bg: weather take background as an independent object
"""
# flatten the tensors
label_flat = tf.reshape(label_map, [-1])
embedding_flat = tf.reshape(embedding, [-1, tf.shape(embedding)[-1]])
embedding_flat = tf.nn.l2_normalize(embedding_flat, axis=1)
# weight_flat = tf.reshape(weight_fg(tf.expand_dims(label_map, axis=0)), [-1, 1])
# if not include background, mask out background pixels
if not include_bg:
label_mask = tf.greater(label_flat, 0)
label_flat = tf.boolean_mask(label_flat, label_mask)
embedding_flat = tf.boolean_mask(embedding_flat, label_mask)
# weight_flat = tf.boolean_mask(weight_flat, label_mask)
# grouping based on labels
unique_labels, unique_id, counts = tf.unique_with_counts(label_flat)
counts = tf.reshape(tf.cast(counts, tf.float32), (-1, 1))
segmented_sum = tf.unsorted_segment_sum(embedding_flat, unique_id, tf.size(unique_labels))
# mean embedding of each instance
mu = tf.nn.l2_normalize(segmented_sum/counts, axis=1)
mu_expand = tf.gather(mu, unique_id)
##########################
#### inner class loss ####
##########################
loss_inner = tf.losses.cosine_distance(mu_expand, embedding_flat,
axis=1,
# weights=weight_flat,
reduction=tf.losses.Reduction.MEAN)
##########################
#### inter class loss ####
##########################
# repeat mu
instance_num = tf.size(unique_labels)
mu_interleave = tf.tile(mu, [instance_num, 1])
mu_rep = tf.tile(mu, [1, instance_num])
mu_rep = tf.reshape(mu_rep, (instance_num*instance_num, -1))
# get inter loss for each pair
loss_inter = tf.losses.cosine_distance(mu_interleave, mu_rep,
axis=1,
reduction=tf.losses.Reduction.NONE)
loss_inter = tf.abs(1-loss_inter)
# compute adjacent indicator
# indicator: bg(0) is adjacent to any object
# 0 1 1 1 1 ...
# 1 x x x x ...
# 1 x x x x ...
# ...
bg = tf.zeros([tf.shape(neighbor)[0], 1], dtype=tf.int32)
neighbor = tf.concat([bg, neighbor], axis=1)
dep = instance_num if include_bg else instance_num + 1
adj_indicator = tf.one_hot(neighbor, depth=dep, dtype=tf.float32)
adj_indicator = tf.reduce_sum(adj_indicator, axis=1)
adj_indicator = tf.cast(adj_indicator > 0, tf.float32)
bg_indicator = tf.one_hot(0, depth=dep, on_value=0.0, off_value=1.0, dtype=tf.float32)
bg_indicator = tf.reshape(bg_indicator, [1, -1])
indicator = tf.concat([bg_indicator, adj_indicator], axis=0)
# reorder the rows and columns in the same order of unique_labels
# if background (0) is not included, the first row and column will be ignores, since 0 is not the unique_labels
indicator = tf.gather(indicator, unique_labels, axis=0)
indicator = tf.gather(indicator, unique_labels, axis=1)
inter_mask = tf.reshape(indicator, [-1, 1])
loss_inter = tf.reduce_sum(loss_inter*inter_mask)/(tf.reduce_sum(inter_mask)+1e-12)
return loss_inner+loss_inter