From c901fa8b8acc23197aa46e885ce34a77c156b6e7 Mon Sep 17 00:00:00 2001 From: Boris Arzentar Date: Thu, 24 Oct 2024 12:37:06 +0200 Subject: [PATCH 01/25] feat: add falkordb adapter --- .../databases/graph/neo4j_driver/adapter.py | 1 - .../vector/falkordb/FalkorDBAdapter.py | 96 +++++++++++++++---- .../processing/document_types/__init__.py | 1 + examples/python/GraphModel.py | 62 ++++++++++++ poetry.lock | 41 ++++++-- pyproject.toml | 1 + 6 files changed, 173 insertions(+), 29 deletions(-) create mode 100644 examples/python/GraphModel.py diff --git a/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py b/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py index f072d60fe..0b8925cee 100644 --- a/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py +++ b/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py @@ -7,7 +7,6 @@ from neo4j import AsyncSession from neo4j import AsyncGraphDatabase from neo4j.exceptions import Neo4jError -from networkx import predecessor from cognee.infrastructure.databases.graph.graph_db_interface import GraphDBInterface logger = logging.getLogger("Neo4jAdapter") diff --git a/cognee/infrastructure/databases/vector/falkordb/FalkorDBAdapter.py b/cognee/infrastructure/databases/vector/falkordb/FalkorDBAdapter.py index 563219fec..744d79f53 100644 --- a/cognee/infrastructure/databases/vector/falkordb/FalkorDBAdapter.py +++ b/cognee/infrastructure/databases/vector/falkordb/FalkorDBAdapter.py @@ -1,57 +1,113 @@ - -from typing import List, Dict, Optional, Any - +import asyncio from falkordb import FalkorDB -from qdrant_client import AsyncQdrantClient, models -from ..vector_db_interface import VectorDBInterface from ..models.DataPoint import DataPoint +from ..vector_db_interface import VectorDBInterface from ..embeddings.EmbeddingEngine import EmbeddingEngine - - class FalcorDBAdapter(VectorDBInterface): def __init__( self, graph_database_url: str, - graph_database_username: str, - graph_database_password: str, graph_database_port: int, - driver: Optional[Any] = None, embedding_engine = EmbeddingEngine, - graph_name: str = "DefaultGraph", ): self.driver = FalkorDB( host = graph_database_url, port = graph_database_port) - self.graph_name = graph_name self.embedding_engine = embedding_engine - async def embed_data(self, data: list[str]) -> list[list[float]]: return await self.embedding_engine.embed_text(data) + async def has_collection(self, collection_name: str) -> bool: + collections = self.driver.list_graphs() + + return collection_name in collections async def create_collection(self, collection_name: str, payload_schema = None): - pass + self.driver.select_graph(collection_name) + + async def create_data_points(self, collection_name: str, data_points: list[DataPoint]): + graph = self.driver.select_graph(collection_name) + def stringify_properties(properties: dict) -> str: + return ",".join(f"{key}:'{value}'" for key, value in properties.items()) + + def create_data_point_query(data_point: DataPoint): + node_label = type(data_point.payload).__name__ + node_properties = stringify_properties(data_point.payload.dict()) + + return f"""CREATE (:{node_label} {{{node_properties}}})""" - async def create_data_points(self, collection_name: str, data_points: List[DataPoint]): - pass + query = " ".join([create_data_point_query(data_point) for data_point in data_points]) + + graph.query(query) async def retrieve(self, collection_name: str, data_point_ids: list[str]): - pass + graph = self.driver.select_graph(collection_name) + + return graph.query( + f"MATCH (node) WHERE node.id IN $node_ids RETURN node", + { + "node_ids": data_point_ids, + }, + ) async def search( self, collection_name: str, query_text: str = None, - query_vector: List[float] = None, + query_vector: list[float] = None, limit: int = 10, with_vector: bool = False, ): - pass + if query_text is None and query_vector is None: + raise ValueError("One of query_text or query_vector must be provided!") + + if query_text and not query_vector: + query_vector = (await self.embedding_engine.embed_text([query_text]))[0] + + graph = self.driver.select_graph(collection_name) + + query = f""" + CALL db.idx.vector.queryNodes( + null, + 'text', + {limit}, + {query_vector} + ) YIELD node, score + """ + + result = graph.query(query) + + return result + + async def batch_search( + self, + collection_name: str, + query_texts: list[str], + limit: int = None, + with_vectors: bool = False, + ): + query_vectors = await self.embedding_engine.embed_text(query_texts) + + return await asyncio.gather( + *[self.search( + collection_name = collection_name, + query_vector = query_vector, + limit = limit, + with_vector = with_vectors, + ) for query_vector in query_vectors] + ) async def delete_data_points(self, collection_name: str, data_point_ids: list[str]): - pass + graph = self.driver.select_graph(collection_name) + + return graph.query( + f"MATCH (node) WHERE node.id IN $node_ids DETACH DELETE node", + { + "node_ids": data_point_ids, + }, + ) diff --git a/cognee/modules/data/processing/document_types/__init__.py b/cognee/modules/data/processing/document_types/__init__.py index d751366b7..9682cc101 100644 --- a/cognee/modules/data/processing/document_types/__init__.py +++ b/cognee/modules/data/processing/document_types/__init__.py @@ -1,3 +1,4 @@ +from .Document import Document from .PdfDocument import PdfDocument from .TextDocument import TextDocument from .ImageDocument import ImageDocument diff --git a/examples/python/GraphModel.py b/examples/python/GraphModel.py new file mode 100644 index 000000000..01251fc20 --- /dev/null +++ b/examples/python/GraphModel.py @@ -0,0 +1,62 @@ + +from typing import Optional +from uuid import UUID +from datetime import datetime +from pydantic import BaseModel + + +async def add_data_points(collection_name: str, data_points: list): + pass + + + +class Summary(BaseModel): + id: UUID + text: str + chunk: "Chunk" + created_at: datetime + updated_at: Optional[datetime] + + vector_index = ["text"] + +class Chunk(BaseModel): + id: UUID + text: str + summary: Summary + document: "Document" + created_at: datetime + updated_at: Optional[datetime] + word_count: int + chunk_index: int + cut_type: str + + vector_index = ["text"] + +class Document(BaseModel): + id: UUID + chunks: list[Chunk] + created_at: datetime + updated_at: Optional[datetime] + +class EntityType(BaseModel): + id: UUID + name: str + description: str + created_at: datetime + updated_at: Optional[datetime] + + vector_index = ["name"] + +class Entity(BaseModel): + id: UUID + name: str + type: EntityType + description: str + chunks: list[Chunk] + created_at: datetime + updated_at: Optional[datetime] + + vector_index = ["name"] + +class OntologyModel(BaseModel): + chunks: list[Chunk] diff --git a/poetry.lock b/poetry.lock index acd56e02f..b8ff95c15 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,4 +1,4 @@ -# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand. +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. [[package]] name = "aiofiles" @@ -1490,6 +1490,19 @@ files = [ [package.extras] tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] +[[package]] +name = "falkordb" +version = "1.0.9" +description = "Python client for interacting with FalkorDB database" +optional = false +python-versions = "<4.0,>=3.8" +files = [ + {file = "falkordb-1.0.9.tar.gz", hash = "sha256:177008e63c7e4d9ebbdfeb8cad24b0e49175bb0f6e96cac9b4ffb641c0eff0f1"}, +] + +[package.dependencies] +redis = ">=5.0.1,<6.0.0" + [[package]] name = "fastapi" version = "0.109.2" @@ -3685,7 +3698,6 @@ optional = false python-versions = ">=3.6" files = [ {file = "mkdocs-redirects-1.2.1.tar.gz", hash = "sha256:9420066d70e2a6bb357adf86e67023dcdca1857f97f07c7fe450f8f1fb42f861"}, - {file = "mkdocs_redirects-1.2.1-py3-none-any.whl", hash = "sha256:497089f9e0219e7389304cffefccdfa1cac5ff9509f2cb706f4c9b221726dffb"}, ] [package.dependencies] @@ -5771,6 +5783,24 @@ files = [ [package.extras] test = ["pytest (>=3.0)", "pytest-asyncio"] +[[package]] +name = "redis" +version = "5.1.1" +description = "Python client for Redis database and key-value store" +optional = false +python-versions = ">=3.8" +files = [ + {file = "redis-5.1.1-py3-none-any.whl", hash = "sha256:f8ea06b7482a668c6475ae202ed8d9bcaa409f6e87fb77ed1043d912afd62e24"}, + {file = "redis-5.1.1.tar.gz", hash = "sha256:f6c997521fedbae53387307c5d0bf784d9acc28d9f1d058abeac566ec4dbed72"}, +] + +[package.dependencies] +async-timeout = {version = ">=4.0.3", markers = "python_full_version < \"3.11.3\""} + +[package.extras] +hiredis = ["hiredis (>=3.0.0)"] +ocsp = ["cryptography (>=36.0.1)", "pyopenssl (==23.2.1)", "requests (>=2.31.0)"] + [[package]] name = "referencing" version = "0.35.1" @@ -6292,11 +6322,6 @@ files = [ {file = "scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f60021ec1574e56632be2a36b946f8143bf4e5e6af4a06d85281adc22938e0dd"}, {file = "scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:394397841449853c2290a32050382edaec3da89e35b3e03d6cc966aebc6a8ae6"}, {file = "scikit_learn-1.5.2-cp312-cp312-win_amd64.whl", hash = "sha256:57cc1786cfd6bd118220a92ede80270132aa353647684efa385a74244a41e3b1"}, - {file = "scikit_learn-1.5.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9a702e2de732bbb20d3bad29ebd77fc05a6b427dc49964300340e4c9328b3f5"}, - {file = "scikit_learn-1.5.2-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:b0768ad641981f5d3a198430a1d31c3e044ed2e8a6f22166b4d546a5116d7908"}, - {file = "scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:178ddd0a5cb0044464fc1bfc4cca5b1833bfc7bb022d70b05db8530da4bb3dd3"}, - {file = "scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7284ade780084d94505632241bf78c44ab3b6f1e8ccab3d2af58e0e950f9c12"}, - {file = "scikit_learn-1.5.2-cp313-cp313-win_amd64.whl", hash = "sha256:b7b0f9a0b1040830d38c39b91b3a44e1b643f4b36e36567b80b7c6bd2202a27f"}, {file = "scikit_learn-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:757c7d514ddb00ae249832fe87100d9c73c6ea91423802872d9e74970a0e40b9"}, {file = "scikit_learn-1.5.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:52788f48b5d8bca5c0736c175fa6bdaab2ef00a8f536cda698db61bd89c551c1"}, {file = "scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:643964678f4b5fbdc95cbf8aec638acc7aa70f5f79ee2cdad1eec3df4ba6ead8"}, @@ -7766,4 +7791,4 @@ weaviate = ["weaviate-client"] [metadata] lock-version = "2.0" python-versions = ">=3.9.0,<3.12" -content-hash = "70a0072dce8de95d64b862f9a9df48aaec84c8d8515ae018fce4426a0dcacf88" +content-hash = "fef56656ead761cab7d5c3d0bf1fa5a54608db73b14616d08e5fb152dba91236" diff --git a/pyproject.toml b/pyproject.toml index 220749590..65d54978b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -72,6 +72,7 @@ asyncpg = "^0.29.0" alembic = "^1.13.3" pgvector = "^0.3.5" psycopg2 = {version = "^2.9.10", optional = true} +falkordb = "^1.0.9" [tool.poetry.extras] filesystem = ["s3fs", "botocore"] From 14e2c7efbe950a3943375eebe305304a1e7f7f5f Mon Sep 17 00:00:00 2001 From: Boris Arzentar Date: Thu, 7 Nov 2024 11:17:01 +0100 Subject: [PATCH 02/25] feat: add FalkorDB integration --- cognee/api/v1/cognify/cognify_v2.py | 42 +- cognee/api/v1/search/search_v2.py | 2 +- .../databases/graph/falkordb/__init__.py | 0 .../databases/graph/falkordb/adapter.py | 198 -- .../databases/graph/get_graph_engine.py | 23 +- .../databases/graph/graph_db_interface.py | 2 +- .../databases/graph/neo4j_driver/adapter.py | 115 +- .../databases/graph/networkx/adapter.py | 67 +- .../hybrid/falkordb/FalkorDBAdapter.py | 237 +++ .../databases/vector/__init__.py | 1 - .../infrastructure/databases/vector/config.py | 2 + .../databases/vector/create_vector_engine.py | 19 +- .../vector/falkordb/FalkorDBAdapter.py | 113 -- .../vector/lancedb/LanceDBAdapter.py | 75 +- .../databases/vector/models/DataPoint.py | 13 - .../databases/vector/models/ScoredResult.py | 3 +- .../vector/pgvector/PGVectorAdapter.py | 40 +- .../databases/vector/qdrant/QDrantAdapter.py | 46 +- .../databases/vector/vector_db_interface.py | 2 +- .../vector/weaviate_db/WeaviateAdapter.py | 35 +- cognee/infrastructure/engine/__init__.py | 1 + .../__tests__/model_to_graph_to_model.test.py | 72 + .../infrastructure/engine/models/DataPoint.py | 24 + cognee/modules/chunking/TextChunker.py | 54 +- cognee/modules/chunking/__init__.py | 2 - .../modules/chunking/models/DocumentChunk.py | 13 +- cognee/modules/data/extraction/__init__.py | 1 + .../extraction/knowledge_graph/__init__.py | 1 + .../data/operations/detect_language.py} | 30 +- .../modules/data/operations/translate_text.py | 41 + .../document_types/AudioDocument.py | 21 +- .../processing/document_types/Document.py | 8 +- .../document_types/ImageDocument.py | 20 +- .../processing/document_types/PdfDocument.py | 20 +- .../processing/document_types/TextDocument.py | 20 +- cognee/modules/engine/models/Entity.py | 12 + cognee/modules/engine/models/EntityType.py | 11 + cognee/modules/engine/models/__init__.py | 2 + cognee/modules/engine/utils/__init__.py | 2 + .../modules/engine/utils/generate_node_id.py | 4 + .../engine/utils/generate_node_name.py | 2 + cognee/modules/graph/utils.py | 5 - cognee/modules/graph/utils/__init__.py | 2 + .../graph/utils/get_graph_from_model.py | 81 + .../utils/get_model_instance_from_graph.py | 29 + cognee/modules/search/CogneeSearch.py | 33 - cognee/modules/search/__init__.py | 0 cognee/modules/search/graph/__init__.py | 0 .../modules/search/graph/search_adjacent.py | 43 - cognee/modules/search/graph/search_cypher.py | 15 - .../modules/search/graph/search_similarity.py | 27 - cognee/modules/search/graph/search_summary.py | 17 - cognee/modules/search/llm/__init__.py | 0 .../modules/search/llm/extraction/__init__.py | 0 .../categorize_relevant_category.py | 16 - .../extraction/categorize_relevant_summary.py | 15 - .../search/llm/get_relevant_summary.py | 17 - cognee/modules/search/vector/__init__.py | 0 cognee/modules/search/vector/bm25.py | 1 - cognee/modules/search/vector/fusion.py | 1 - .../modules/search/vector/search_traverse.py | 36 - cognee/modules/storage/utils/__init__.py | 46 + cognee/shared/utils.py | 58 +- cognee/tasks/__init__.py | 10 - .../chunk_naive_llm_classifier.py | 6 +- .../chunk_remove_disconnected/__init__.py | 0 cognee/tasks/chunk_translate/__init__.py | 0 .../tasks/chunk_translate/translate_chunk.py | 39 - cognee/tasks/chunk_update_check/__init__.py | 0 .../chunk_update_check/chunk_update_check.py | 26 - cognee/tasks/{chunking => chunks}/__init__.py | 1 + .../__tests__/chunk_by_paragraph.test.py | 2 +- .../chunk_by_paragraph.py | 0 .../{chunking => chunks}/chunk_by_sentence.py | 0 .../{chunking => chunks}/chunk_by_word.py | 0 .../{chunking => chunks}/query_chunks.py | 2 +- .../remove_disconnected_chunks.py} | 4 +- .../classify_documents/classify_documents.py | 13 - .../document_language_detection/__init__.py | 0 cognee/tasks/documents/__init__.py | 3 + .../check_permissions_on_documents.py | 0 cognee/tasks/documents/classify_documents.py | 13 + .../extract_chunks_from_documents.py | 7 + cognee/tasks/graph/__init__.py | 2 +- cognee/tasks/graph/chunks_into_graph.py | 213 -- cognee/tasks/graph/extract_graph_from_data.py | 121 ++ .../infer_data_ontology.py | 5 +- cognee/tasks/graph/query_graph_connections.py | 4 +- cognee/tasks/infer_data_ontology/__init__.py | 0 .../infer_data_ontology/models/models.py | 31 - cognee/tasks/save_chunks_to_store/__init__.py | 0 .../save_chunks_to_store.py | 96 - .../source_documents_to_chunks/__init__.py | 0 .../source_documents_to_chunks.py | 44 - cognee/tasks/storage/__init__.py | 2 + cognee/tasks/storage/add_data_points.py | 24 + cognee/tasks/storage/index_data_points.py | 81 + .../tasks/storage/save_to_vector_storage.py | 42 - .../tasks/summarization/models/TextSummary.py | 13 +- cognee/tasks/summarization/query_summaries.py | 2 +- cognee/tasks/summarization/summarize_text.py | 34 +- cognee/tests/test_library.py | 2 +- cognee/tests/test_neo4j.py | 2 +- cognee/tests/test_pgvector.py | 2 +- cognee/tests/test_qdrant.py | 2 +- cognee/tests/test_weaviate.py | 2 +- examples/python/GraphModel.py | 62 - notebooks/cognee_demo.ipynb | 1791 ++++++++--------- poetry.lock | 90 +- pyproject.toml | 2 +- tools/daily_twitter_stats.py | 4 +- 111 files changed, 2136 insertions(+), 2501 deletions(-) delete mode 100644 cognee/infrastructure/databases/graph/falkordb/__init__.py delete mode 100644 cognee/infrastructure/databases/graph/falkordb/adapter.py create mode 100644 cognee/infrastructure/databases/hybrid/falkordb/FalkorDBAdapter.py delete mode 100644 cognee/infrastructure/databases/vector/falkordb/FalkorDBAdapter.py delete mode 100644 cognee/infrastructure/databases/vector/models/DataPoint.py create mode 100644 cognee/infrastructure/engine/__init__.py create mode 100644 cognee/infrastructure/engine/__tests__/model_to_graph_to_model.test.py create mode 100644 cognee/infrastructure/engine/models/DataPoint.py delete mode 100644 cognee/modules/chunking/__init__.py rename cognee/{tasks/document_language_detection/document_language_detection.py => modules/data/operations/detect_language.py} (54%) create mode 100644 cognee/modules/data/operations/translate_text.py create mode 100644 cognee/modules/engine/models/Entity.py create mode 100644 cognee/modules/engine/models/EntityType.py create mode 100644 cognee/modules/engine/models/__init__.py create mode 100644 cognee/modules/engine/utils/__init__.py create mode 100644 cognee/modules/engine/utils/generate_node_id.py create mode 100644 cognee/modules/engine/utils/generate_node_name.py delete mode 100644 cognee/modules/graph/utils.py create mode 100644 cognee/modules/graph/utils/__init__.py create mode 100644 cognee/modules/graph/utils/get_graph_from_model.py create mode 100644 cognee/modules/graph/utils/get_model_instance_from_graph.py delete mode 100644 cognee/modules/search/CogneeSearch.py delete mode 100644 cognee/modules/search/__init__.py delete mode 100644 cognee/modules/search/graph/__init__.py delete mode 100644 cognee/modules/search/graph/search_adjacent.py delete mode 100644 cognee/modules/search/graph/search_cypher.py delete mode 100644 cognee/modules/search/graph/search_similarity.py delete mode 100644 cognee/modules/search/graph/search_summary.py delete mode 100644 cognee/modules/search/llm/__init__.py delete mode 100644 cognee/modules/search/llm/extraction/__init__.py delete mode 100644 cognee/modules/search/llm/extraction/categorize_relevant_category.py delete mode 100644 cognee/modules/search/llm/extraction/categorize_relevant_summary.py delete mode 100644 cognee/modules/search/llm/get_relevant_summary.py delete mode 100644 cognee/modules/search/vector/__init__.py delete mode 100644 cognee/modules/search/vector/bm25.py delete mode 100644 cognee/modules/search/vector/fusion.py delete mode 100644 cognee/modules/search/vector/search_traverse.py create mode 100644 cognee/modules/storage/utils/__init__.py delete mode 100644 cognee/tasks/__init__.py delete mode 100644 cognee/tasks/chunk_remove_disconnected/__init__.py delete mode 100644 cognee/tasks/chunk_translate/__init__.py delete mode 100644 cognee/tasks/chunk_translate/translate_chunk.py delete mode 100644 cognee/tasks/chunk_update_check/__init__.py delete mode 100644 cognee/tasks/chunk_update_check/chunk_update_check.py rename cognee/tasks/{chunking => chunks}/__init__.py (72%) rename cognee/tasks/{chunking => chunks}/__tests__/chunk_by_paragraph.test.py (97%) rename cognee/tasks/{chunking => chunks}/chunk_by_paragraph.py (100%) rename cognee/tasks/{chunking => chunks}/chunk_by_sentence.py (100%) rename cognee/tasks/{chunking => chunks}/chunk_by_word.py (100%) rename cognee/tasks/{chunking => chunks}/query_chunks.py (83%) rename cognee/tasks/{chunk_remove_disconnected/chunk_remove_disconnected.py => chunks/remove_disconnected_chunks.py} (84%) delete mode 100644 cognee/tasks/classify_documents/classify_documents.py delete mode 100644 cognee/tasks/document_language_detection/__init__.py create mode 100644 cognee/tasks/documents/__init__.py rename cognee/tasks/{check_permissions_on_documents => documents}/check_permissions_on_documents.py (100%) create mode 100644 cognee/tasks/documents/classify_documents.py create mode 100644 cognee/tasks/documents/extract_chunks_from_documents.py delete mode 100644 cognee/tasks/graph/chunks_into_graph.py create mode 100644 cognee/tasks/graph/extract_graph_from_data.py rename cognee/tasks/{infer_data_ontology => graph}/infer_data_ontology.py (95%) delete mode 100644 cognee/tasks/infer_data_ontology/__init__.py delete mode 100644 cognee/tasks/infer_data_ontology/models/models.py delete mode 100644 cognee/tasks/save_chunks_to_store/__init__.py delete mode 100644 cognee/tasks/save_chunks_to_store/save_chunks_to_store.py delete mode 100644 cognee/tasks/source_documents_to_chunks/__init__.py delete mode 100644 cognee/tasks/source_documents_to_chunks/source_documents_to_chunks.py create mode 100644 cognee/tasks/storage/__init__.py create mode 100644 cognee/tasks/storage/add_data_points.py create mode 100644 cognee/tasks/storage/index_data_points.py delete mode 100644 cognee/tasks/storage/save_to_vector_storage.py delete mode 100644 examples/python/GraphModel.py diff --git a/cognee/api/v1/cognify/cognify_v2.py b/cognee/api/v1/cognify/cognify_v2.py index 26134a4f7..be9ecd1ce 100644 --- a/cognee/api/v1/cognify/cognify_v2.py +++ b/cognee/api/v1/cognify/cognify_v2.py @@ -9,21 +9,15 @@ from cognee.modules.data.methods.get_dataset_data import get_dataset_data from cognee.modules.data.methods import get_datasets, get_datasets_by_name from cognee.modules.pipelines.tasks.Task import Task -from cognee.modules.pipelines import run_tasks, run_tasks_parallel +from cognee.modules.pipelines import run_tasks from cognee.modules.users.models import User from cognee.modules.users.methods import get_default_user from cognee.modules.pipelines.models import PipelineRunStatus from cognee.modules.pipelines.operations.get_pipeline_status import get_pipeline_status from cognee.modules.pipelines.operations.log_pipeline_status import log_pipeline_status -from cognee.tasks import chunk_naive_llm_classifier, \ - chunk_remove_disconnected, \ - infer_data_ontology, \ - save_chunks_to_store, \ - chunk_update_check, \ - chunks_into_graph, \ - source_documents_to_chunks, \ - check_permissions_on_documents, \ - classify_documents +from cognee.tasks.documents import classify_documents, check_permissions_on_documents, extract_chunks_from_documents +from cognee.tasks.graph import extract_graph_from_data +from cognee.tasks.storage import add_data_points from cognee.tasks.summarization import summarize_text logger = logging.getLogger("cognify.v2") @@ -87,31 +81,17 @@ async def run_cognify_pipeline(dataset: Dataset, user: User): try: cognee_config = get_cognify_config() - root_node_id = None - tasks = [ Task(classify_documents), Task(check_permissions_on_documents, user = user, permissions = ["write"]), - Task(infer_data_ontology, root_node_id = root_node_id, ontology_model = KnowledgeGraph), - Task(source_documents_to_chunks, parent_node_id = root_node_id), # Classify documents and save them as a nodes in graph db, extract text chunks based on the document type - Task(chunks_into_graph, graph_model = KnowledgeGraph, collection_name = "entities", task_config = { "batch_size": 10 }), # Generate knowledge graphs from the document chunks and attach it to chunk nodes - Task(chunk_update_check, collection_name = "chunks"), # Find all affected chunks, so we don't process unchanged chunks + Task(extract_chunks_from_documents), # Extract text chunks based on the document type. + Task(add_data_points, task_config = { "batch_size": 10 }), + Task(extract_graph_from_data, graph_model = KnowledgeGraph, task_config = { "batch_size": 10 }), # Generate knowledge graphs from the document chunks. Task( - save_chunks_to_store, - collection_name = "chunks", - ), # Save the document chunks in vector db and as nodes in graph db (connected to the document node and between each other) - run_tasks_parallel([ - Task( - summarize_text, - summarization_model = cognee_config.summarization_model, - collection_name = "summaries", - ), - Task( - chunk_naive_llm_classifier, - classification_model = cognee_config.classification_model, - ), - ]), - Task(chunk_remove_disconnected), # Remove the obsolete document chunks. + summarize_text, + summarization_model = cognee_config.summarization_model, + task_config = { "batch_size": 10 } + ), ] pipeline = run_tasks(tasks, data_documents, "cognify_pipeline") diff --git a/cognee/api/v1/search/search_v2.py b/cognee/api/v1/search/search_v2.py index b3d45d714..a82f14210 100644 --- a/cognee/api/v1/search/search_v2.py +++ b/cognee/api/v1/search/search_v2.py @@ -5,7 +5,7 @@ from cognee.modules.users.models import User from cognee.modules.users.methods import get_default_user from cognee.modules.users.permissions.methods import get_document_ids_for_user -from cognee.tasks.chunking import query_chunks +from cognee.tasks.chunks import query_chunks from cognee.tasks.graph import query_graph_connections from cognee.tasks.summarization import query_summaries diff --git a/cognee/infrastructure/databases/graph/falkordb/__init__.py b/cognee/infrastructure/databases/graph/falkordb/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/infrastructure/databases/graph/falkordb/adapter.py b/cognee/infrastructure/databases/graph/falkordb/adapter.py deleted file mode 100644 index 2c9dbbea9..000000000 --- a/cognee/infrastructure/databases/graph/falkordb/adapter.py +++ /dev/null @@ -1,198 +0,0 @@ -""" FalcorDB Adapter for Graph Database""" -import json -import logging -from typing import Optional, Any, List, Dict -from contextlib import asynccontextmanager - - -from falkordb.asyncio import FalkorDB -from cognee.infrastructure.databases.graph.graph_db_interface import GraphDBInterface - -logger = logging.getLogger("FalcorDBAdapter") - -class FalcorDBAdapter(GraphDBInterface): - def __init__( - self, - graph_database_url: str, - graph_database_username: str, - graph_database_password: str, - graph_database_port: int, - driver: Optional[Any] = None, - graph_name: str = "DefaultGraph", - ): - self.driver = FalkorDB( - host = graph_database_url, - port = graph_database_port) - self.graph_name = graph_name - - - - async def query( - self, - query: str, - params: Optional[Dict[str, Any]] = None, - ) -> List[Dict[str, Any]]: - try: - selected_graph = self.driver.select_graph(self.graph_name) - - result = await selected_graph.query(query) - return result.result_set - - except Exception as error: - logger.error("Falkor query error: %s", error, exc_info = True) - raise error - - async def graph(self): - return self.driver - - async def add_node(self, node_id: str, node_properties: Dict[str, Any] = None): - node_id = node_id.replace(":", "_") - - serialized_properties = self.serialize_properties(node_properties) - - if "name" not in serialized_properties: - serialized_properties["name"] = node_id - - # serialized_properties["created_at"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S") - # serialized_properties["updated_at"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S") - - # properties = ", ".join(f"{property_name}: ${property_name}" for property_name in serialized_properties.keys()) - - query = f"""MERGE (node:`{node_id}` {{id: $node_id}}) - ON CREATE SET node += $properties - RETURN ID(node) AS internal_id, node.id AS nodeId""" - - params = { - "node_id": node_id, - "properties": serialized_properties, - } - - return await self.query(query, params) - - async def add_nodes(self, nodes: list[tuple[str, dict[str, Any]]]) -> None: - for node in nodes: - node_id, node_properties = node - node_id = node_id.replace(":", "_") - - await self.add_node( - node_id = node_id, - node_properties = node_properties, - ) - - - - async def extract_node_description(self, node_id: str): - query = """MATCH (n)-[r]->(m) - WHERE n.id = $node_id - AND NOT m.id CONTAINS 'DefaultGraphModel' - RETURN m - """ - - result = await self.query(query, dict(node_id = node_id)) - - descriptions = [] - - for node in result: - # Assuming 'm' is a consistent key in your data structure - attributes = node.get("m", {}) - - # Ensure all required attributes are present - if all(key in attributes for key in ["id", "layer_id", "description"]): - descriptions.append({ - "id": attributes["id"], - "layer_id": attributes["layer_id"], - "description": attributes["description"], - }) - - return descriptions - - async def get_layer_nodes(self): - query = """MATCH (node) WHERE node.layer_id IS NOT NULL - RETURN node""" - - return [result["node"] for result in (await self.query(query))] - - async def extract_node(self, node_id: str): - results = self.extract_nodes([node_id]) - - return results[0] if len(results) > 0 else None - - async def extract_nodes(self, node_ids: List[str]): - query = """ - UNWIND $node_ids AS id - MATCH (node {id: id}) - RETURN node""" - - params = { - "node_ids": node_ids - } - - results = await self.query(query, params) - - return results - - async def delete_node(self, node_id: str): - node_id = id.replace(":", "_") - - query = f"MATCH (node:`{node_id}` {{id: $node_id}}) DETACH DELETE n" - params = { "node_id": node_id } - - return await self.query(query, params) - - async def add_edge(self, from_node: str, to_node: str, relationship_name: str, edge_properties: Optional[Dict[str, Any]] = {}): - serialized_properties = self.serialize_properties(edge_properties) - from_node = from_node.replace(":", "_") - to_node = to_node.replace(":", "_") - - query = f"""MATCH (from_node:`{from_node}` {{id: $from_node}}), (to_node:`{to_node}` {{id: $to_node}}) - MERGE (from_node)-[r:`{relationship_name}`]->(to_node) - SET r += $properties - RETURN r""" - - params = { - "from_node": from_node, - "to_node": to_node, - "properties": serialized_properties - } - - return await self.query(query, params) - - - async def add_edges(self, edges: list[tuple[str, str, str, dict[str, Any]]]) -> None: - # edges_data = [] - - for edge in edges: - from_node, to_node, relationship_name, edge_properties = edge - from_node = from_node.replace(":", "_") - to_node = to_node.replace(":", "_") - - await self.add_edge( - from_node = from_node, - to_node = to_node, - relationship_name = relationship_name, - edge_properties = edge_properties - ) - - - - async def filter_nodes(self, search_criteria): - query = f"""MATCH (node) - WHERE node.id CONTAINS '{search_criteria}' - RETURN node""" - - - return await self.query(query) - - - async def delete_graph(self): - query = """MATCH (node) - DETACH DELETE node;""" - - return await self.query(query) - - def serialize_properties(self, properties = dict()): - return { - property_key: json.dumps(property_value) - if isinstance(property_value, (dict, list)) - else property_value for property_key, property_value in properties.items() - } diff --git a/cognee/infrastructure/databases/graph/get_graph_engine.py b/cognee/infrastructure/databases/graph/get_graph_engine.py index 465b09b6b..038e878c0 100644 --- a/cognee/infrastructure/databases/graph/get_graph_engine.py +++ b/cognee/infrastructure/databases/graph/get_graph_engine.py @@ -2,7 +2,6 @@ from .config import get_graph_config from .graph_db_interface import GraphDBInterface -from .networkx.adapter import NetworkXAdapter async def get_graph_engine() -> GraphDBInterface : @@ -21,19 +20,19 @@ async def get_graph_engine() -> GraphDBInterface : except: pass - elif config.graph_database_provider == "falkorb": - try: - from .falkordb.adapter import FalcorDBAdapter + elif config.graph_database_provider == "falkordb": + from cognee.infrastructure.databases.vector.embeddings import get_embedding_engine + from cognee.infrastructure.databases.hybrid.falkordb.FalkorDBAdapter import FalkorDBAdapter - return FalcorDBAdapter( - graph_database_url = config.graph_database_url, - graph_database_username = config.graph_database_username, - graph_database_password = config.graph_database_password, - graph_database_port = config.graph_database_port - ) - except: - pass + embedding_engine = get_embedding_engine() + + return FalkorDBAdapter( + database_url = config.graph_database_url, + database_port = config.graph_database_port, + embedding_engine = embedding_engine, + ) + from .networkx.adapter import NetworkXAdapter graph_client = NetworkXAdapter(filename = config.graph_file_path) if graph_client.graph is None: diff --git a/cognee/infrastructure/databases/graph/graph_db_interface.py b/cognee/infrastructure/databases/graph/graph_db_interface.py index 37aae5c95..3b9e55ff0 100644 --- a/cognee/infrastructure/databases/graph/graph_db_interface.py +++ b/cognee/infrastructure/databases/graph/graph_db_interface.py @@ -3,7 +3,7 @@ class GraphDBInterface(Protocol): @abstractmethod - async def graph(self): + async def query(self, query: str, params: dict): raise NotImplementedError @abstractmethod diff --git a/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py b/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py index 0b8925cee..f0d62c78a 100644 --- a/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py +++ b/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py @@ -1,12 +1,13 @@ """ Neo4j Adapter for Graph Database""" -import json import logging import asyncio from typing import Optional, Any, List, Dict from contextlib import asynccontextmanager +from uuid import UUID from neo4j import AsyncSession from neo4j import AsyncGraphDatabase from neo4j.exceptions import Neo4jError +from cognee.infrastructure.engine import DataPoint from cognee.infrastructure.databases.graph.graph_db_interface import GraphDBInterface logger = logging.getLogger("Neo4jAdapter") @@ -40,7 +41,7 @@ async def query( ) -> List[Dict[str, Any]]: try: async with self.get_session() as session: - result = await session.run(query, parameters=params) + result = await session.run(query, parameters = params) data = await result.data() await self.close() return data @@ -48,9 +49,6 @@ async def query( logger.error("Neo4j query error: %s", error, exc_info = True) raise error - async def graph(self): - return await self.get_session() - async def has_node(self, node_id: str) -> bool: results = self.query( """ @@ -62,73 +60,42 @@ async def has_node(self, node_id: str) -> bool: ) return results[0]["node_exists"] if len(results) > 0 else False - async def add_node(self, node_id: str, node_properties: Dict[str, Any] = None): - node_id = node_id.replace(":", "_") - - serialized_properties = self.serialize_properties(node_properties) - - if "name" not in serialized_properties: - serialized_properties["name"] = node_id + async def add_node(self, node: DataPoint): + serialized_properties = self.serialize_properties(node.model_dump()) - query = f"""MERGE (node:`{node_id}` {{id: $node_id}}) + query = """MERGE (node {id: $node_id}) ON CREATE SET node += $properties + ON MATCH SET node += $properties + ON MATCH SET node.updated_at = timestamp() RETURN ID(node) AS internal_id, node.id AS nodeId""" params = { - "node_id": node_id, + "node_id": str(node.id), "properties": serialized_properties, } return await self.query(query, params) - async def add_nodes(self, nodes: list[tuple[str, dict[str, Any]]]) -> None: + async def add_nodes(self, nodes: list[DataPoint]) -> None: query = """ UNWIND $nodes AS node MERGE (n {id: node.node_id}) ON CREATE SET n += node.properties + ON MATCH SET n += node.properties + ON MATCH SET n.updated_at = timestamp() WITH n, node.node_id AS label CALL apoc.create.addLabels(n, [label]) YIELD node AS labeledNode RETURN ID(labeledNode) AS internal_id, labeledNode.id AS nodeId """ nodes = [{ - "node_id": node_id, - "properties": self.serialize_properties(node_properties), - } for (node_id, node_properties) in nodes] + "node_id": str(node.id), + "properties": self.serialize_properties(node.model_dump()), + } for node in nodes] results = await self.query(query, dict(nodes = nodes)) return results - async def extract_node_description(self, node_id: str): - query = """MATCH (n)-[r]->(m) - WHERE n.id = $node_id - AND NOT m.id CONTAINS 'DefaultGraphModel' - RETURN m - """ - - result = await self.query(query, dict(node_id = node_id)) - - descriptions = [] - - for node in result: - # Assuming 'm' is a consistent key in your data structure - attributes = node.get("m", {}) - - # Ensure all required attributes are present - if all(key in attributes for key in ["id", "layer_id", "description"]): - descriptions.append({ - "id": attributes["id"], - "layer_id": attributes["layer_id"], - "description": attributes["description"], - }) - - return descriptions - - async def get_layer_nodes(self): - query = """MATCH (node) WHERE node.layer_id IS NOT NULL - RETURN node""" - - return [result["node"] for result in (await self.query(query))] async def extract_node(self, node_id: str): results = await self.extract_nodes([node_id]) @@ -169,9 +136,9 @@ async def delete_nodes(self, node_ids: list[str]) -> None: return await self.query(query, params) - async def has_edge(self, from_node: str, to_node: str, edge_label: str) -> bool: + async def has_edge(self, from_node: UUID, to_node: UUID, edge_label: str) -> bool: query = f""" - MATCH (from_node:`{from_node}`)-[relationship:`{edge_label}`]->(to_node:`{to_node}`) + MATCH (from_node:`{str(from_node)}`)-[relationship:`{edge_label}`]->(to_node:`{str(to_node)}`) RETURN COUNT(relationship) > 0 AS edge_exists """ @@ -189,8 +156,8 @@ async def has_edges(self, edges): try: params = { "edges": [{ - "from_node": edge[0], - "to_node": edge[1], + "from_node": str(edge[0]), + "to_node": str(edge[1]), "relationship_name": edge[2], } for edge in edges], } @@ -207,16 +174,17 @@ async def add_edge(self, from_node: str, to_node: str, relationship_name: str, e from_node = from_node.replace(":", "_") to_node = to_node.replace(":", "_") - query = f"""MATCH (from_node:`{from_node}` + query = f"""MATCH (from_node:`{str(from_node)}` {{id: $from_node}}), - (to_node:`{to_node}` {{id: $to_node}}) + (to_node:`{str(to_node)}` {{id: $to_node}}) MERGE (from_node)-[r:`{relationship_name}`]->(to_node) - SET r += $properties + ON CREATE SET r += $properties, r.updated_at = timestamp() + ON MATCH SET r += $properties, r.updated_at = timestamp() RETURN r""" params = { - "from_node": from_node, - "to_node": to_node, + "from_node": str(from_node), + "to_node": str(to_node), "properties": serialized_properties } @@ -233,13 +201,13 @@ async def add_edges(self, edges: list[tuple[str, str, str, dict[str, Any]]]) -> """ edges = [{ - "from_node": edge[0], - "to_node": edge[1], + "from_node": str(edge[0]), + "to_node": str(edge[1]), "relationship_name": edge[2], "properties": { **(edge[3] if edge[3] else {}), - "source_node_id": edge[0], - "target_node_id": edge[1], + "source_node_id": str(edge[0]), + "target_node_id": str(edge[1]), }, } for edge in edges] @@ -299,14 +267,6 @@ async def get_disconnected_nodes(self) -> list[str]: return results[0]["ids"] if len(results) > 0 else [] - async def filter_nodes(self, search_criteria): - query = f"""MATCH (node) - WHERE node.id CONTAINS '{search_criteria}' - RETURN node""" - - return await self.query(query) - - async def get_predecessors(self, node_id: str, edge_label: str = None) -> list[str]: if edge_label is not None: query = """ @@ -437,15 +397,22 @@ async def delete_graph(self): return await self.query(query) def serialize_properties(self, properties = dict()): - return { - property_key: json.dumps(property_value) - if isinstance(property_value, (dict, list)) - else property_value for property_key, property_value in properties.items() - } + serialized_properties = {} + + for property_key, property_value in properties.items(): + if isinstance(property_value, UUID): + serialized_properties[property_key] = str(property_value) + continue + + serialized_properties[property_key] = property_value + + return serialized_properties async def get_graph_data(self): query = "MATCH (n) RETURN ID(n) AS id, labels(n) AS labels, properties(n) AS properties" + result = await self.query(query) + nodes = [( record["properties"]["id"], record["properties"], diff --git a/cognee/infrastructure/databases/graph/networkx/adapter.py b/cognee/infrastructure/databases/graph/networkx/adapter.py index 19bd50051..aac8c0c35 100644 --- a/cognee/infrastructure/databases/graph/networkx/adapter.py +++ b/cognee/infrastructure/databases/graph/networkx/adapter.py @@ -1,14 +1,18 @@ """Adapter for NetworkX graph database.""" +from datetime import datetime, timezone import os import json import asyncio import logging +from re import A from typing import Dict, Any, List import aiofiles import aiofiles.os as aiofiles_os import networkx as nx from cognee.infrastructure.databases.graph.graph_db_interface import GraphDBInterface +from cognee.infrastructure.engine import DataPoint +from cognee.modules.storage.utils import JSONEncoder logger = logging.getLogger("NetworkXAdapter") @@ -25,29 +29,34 @@ def __new__(cls, filename): def __init__(self, filename = "cognee_graph.pkl"): self.filename = filename + async def query(self, query: str, params: dict): + pass async def has_node(self, node_id: str) -> bool: return self.graph.has_node(node_id) async def add_node( self, - node_id: str, - node_properties, + node: DataPoint, ) -> None: - if not self.graph.has_node(id): - self.graph.add_node(node_id, **node_properties) - await self.save_graph_to_file(self.filename) + self.graph.add_node(node.id, **node.model_dump()) + + await self.save_graph_to_file(self.filename) async def add_nodes( self, - nodes: List[tuple[str, dict]], + nodes: list[DataPoint], ) -> None: + nodes = [(node.id, node.model_dump()) for node in nodes] + self.graph.add_nodes_from(nodes) await self.save_graph_to_file(self.filename) + async def get_graph(self): return self.graph + async def has_edge(self, from_node: str, to_node: str, edge_label: str) -> bool: return self.graph.has_edge(from_node, to_node, key = edge_label) @@ -55,18 +64,20 @@ async def has_edges(self, edges): result = [] for (from_node, to_node, edge_label) in edges: - if await self.has_edge(from_node, to_node, edge_label): + if self.graph.has_edge(from_node, to_node, edge_label): result.append((from_node, to_node, edge_label)) return result + async def add_edge( self, from_node: str, to_node: str, relationship_name: str, - edge_properties: Dict[str, Any] = None, + edge_properties: Dict[str, Any] = {}, ) -> None: + edge_properties["updated_at"] = datetime.now(timezone.utc) self.graph.add_edge(from_node, to_node, key = relationship_name, **(edge_properties if edge_properties else {})) await self.save_graph_to_file(self.filename) @@ -74,22 +85,29 @@ async def add_edges( self, edges: tuple[str, str, str, dict], ) -> None: + edges = [(edge[0], edge[1], edge[2], { + **(edge[3] if len(edge) == 4 else {}), + "updated_at": datetime.now(timezone.utc), + }) for edge in edges] + self.graph.add_edges_from(edges) await self.save_graph_to_file(self.filename) async def get_edges(self, node_id: str): return list(self.graph.in_edges(node_id, data = True)) + list(self.graph.out_edges(node_id, data = True)) + async def delete_node(self, node_id: str) -> None: """Asynchronously delete a node from the graph if it exists.""" - if self.graph.has_node(id): - self.graph.remove_node(id) + if self.graph.has_node(node_id): + self.graph.remove_node(node_id) await self.save_graph_to_file(self.filename) async def delete_nodes(self, node_ids: List[str]) -> None: self.graph.remove_nodes_from(node_ids) await self.save_graph_to_file(self.filename) + async def get_disconnected_nodes(self) -> List[str]: connected_components = list(nx.weakly_connected_components(self.graph)) @@ -102,33 +120,6 @@ async def get_disconnected_nodes(self) -> List[str]: return disconnected_nodes - async def extract_node_description(self, node_id: str) -> Dict[str, Any]: - descriptions = [] - - if self.graph.has_node(node_id): - # Get the attributes of the node - for neighbor in self.graph.neighbors(node_id): - # Get the attributes of the neighboring node - attributes = self.graph.nodes[neighbor] - - # Ensure all required attributes are present before extracting description - if all(key in attributes for key in ["id", "layer_id", "description"]): - descriptions.append({ - "id": attributes["id"], - "layer_id": attributes["layer_id"], - "description": attributes["description"], - }) - - return descriptions - - async def get_layer_nodes(self): - layer_nodes = [] - - for _, data in self.graph.nodes(data = True): - if "layer_id" in data: - layer_nodes.append(data) - - return layer_nodes async def extract_node(self, node_id: str) -> dict: if self.graph.has_node(node_id): @@ -240,7 +231,7 @@ async def save_graph_to_file(self, file_path: str=None) -> None: graph_data = nx.readwrite.json_graph.node_link_data(self.graph) async with aiofiles.open(file_path, "w") as file: - await file.write(json.dumps(graph_data)) + await file.write(json.dumps(graph_data, cls = JSONEncoder)) async def load_graph_from_file(self, file_path: str = None): diff --git a/cognee/infrastructure/databases/hybrid/falkordb/FalkorDBAdapter.py b/cognee/infrastructure/databases/hybrid/falkordb/FalkorDBAdapter.py new file mode 100644 index 000000000..effe9e682 --- /dev/null +++ b/cognee/infrastructure/databases/hybrid/falkordb/FalkorDBAdapter.py @@ -0,0 +1,237 @@ +import asyncio +from textwrap import dedent +from typing import Any +from falkordb import FalkorDB + +from cognee.infrastructure.engine import DataPoint +from cognee.infrastructure.databases.graph.graph_db_interface import GraphDBInterface +from cognee.infrastructure.databases.vector.embeddings import EmbeddingEngine +from cognee.infrastructure.databases.vector.vector_db_interface import VectorDBInterface + +class IndexSchema(DataPoint): + text: str + + _metadata: dict = { + "index_fields": ["text"] + } + +class FalkorDBAdapter(VectorDBInterface, GraphDBInterface): + def __init__( + self, + database_url: str, + database_port: int, + embedding_engine = EmbeddingEngine, + ): + self.driver = FalkorDB( + host = database_url, + port = database_port, + ) + self.embedding_engine = embedding_engine + self.graph_name = "cognee_graph" + + def query(self, query: str, params: dict = {}): + graph = self.driver.select_graph(self.graph_name) + + try: + result = graph.query(query, params) + return result + except Exception as e: + print(f"Error executing query: {e}") + raise e + + async def embed_data(self, data: list[str]) -> list[list[float]]: + return await self.embedding_engine.embed_text(data) + + async def stringify_properties(self, properties: dict, vectorize_fields = []) -> str: + async def get_value(key, value): + return f"'{value}'" if key not in vectorize_fields else await self.get_vectorized_value(value) + + return ",".join([f"{key}:{await get_value(key, value)}" for key, value in properties.items()]) + + async def get_vectorized_value(self, value: Any) -> str: + vector = (await self.embed_data([value]))[0] + return f"vecf32({vector})" + + async def create_data_point_query(self, data_point: DataPoint): + node_label = type(data_point).__name__ + node_properties = await self.stringify_properties( + data_point.model_dump(), + data_point._metadata["index_fields"], + # data_point._metadata["index_fields"] if hasattr(data_point, "_metadata") else [], + ) + + return dedent(f""" + MERGE (node:{node_label} {{id: '{str(data_point.id)}'}}) + ON CREATE SET node += ({{{node_properties}}}) + ON CREATE SET node.updated_at = timestamp() + ON MATCH SET node += ({{{node_properties}}}) + ON MATCH SET node.updated_at = timestamp() + """).strip() + + async def create_edge_query(self, edge: tuple[str, str, str, dict]) -> str: + properties = await self.stringify_properties(edge[3]) + properties = f"{{{properties}}}" + + return dedent(f""" + MERGE (source {{id:'{edge[0]}'}}) + MERGE (target {{id: '{edge[1]}'}}) + MERGE (source)-[edge:{edge[2]} {properties}]->(target) + ON MATCH SET edge.updated_at = timestamp() + ON CREATE SET edge.updated_at = timestamp() + """).strip() + + async def create_collection(self, collection_name: str): + pass + + async def has_collection(self, collection_name: str) -> bool: + collections = self.driver.list_graphs() + + return collection_name in collections + + async def create_data_points(self, data_points: list[DataPoint]): + queries = [await self.create_data_point_query(data_point) for data_point in data_points] + for query in queries: + self.query(query) + + async def create_vector_index(self, index_name: str, index_property_name: str): + graph = self.driver.select_graph(self.graph_name) + + if not self.has_vector_index(graph, index_name, index_property_name): + graph.create_node_vector_index(index_name, index_property_name, dim = self.embedding_engine.get_vector_size()) + + def has_vector_index(self, graph, index_name: str, index_property_name: str) -> bool: + try: + indices = graph.list_indices() + + return any([(index[0] == index_name and index_property_name in index[1]) for index in indices.result_set]) + except: + return False + + async def index_data_points(self, index_name: str, index_property_name: str, data_points: list[DataPoint]): + pass + + async def add_node(self, node: DataPoint): + await self.create_data_points([node]) + + async def add_nodes(self, nodes: list[DataPoint]): + await self.create_data_points(nodes) + + async def add_edge(self, edge: tuple[str, str, str, dict]): + query = await self.create_edge_query(edge) + + self.query(query) + + async def add_edges(self, edges: list[tuple[str, str, str, dict]]): + queries = [await self.create_edge_query(edge) for edge in edges] + + for query in queries: + self.query(query) + + async def has_edges(self, edges): + query = dedent(""" + UNWIND $edges AS edge + MATCH (a)-[r]->(b) + WHERE id(a) = edge.from_node AND id(b) = edge.to_node AND type(r) = edge.relationship_name + RETURN edge.from_node AS from_node, edge.to_node AS to_node, edge.relationship_name AS relationship_name, count(r) > 0 AS edge_exists + """).strip() + + params = { + "edges": [{ + "from_node": str(edge[0]), + "to_node": str(edge[1]), + "relationship_name": edge[2], + } for edge in edges], + } + + results = self.query(query, params).result_set + + return [result["edge_exists"] for result in results] + + async def retrieve(self, data_point_ids: list[str]): + return self.query( + f"MATCH (node) WHERE node.id IN $node_ids RETURN node", + { + "node_ids": data_point_ids, + }, + ) + + async def extract_node(self, data_point_id: str): + return await self.retrieve([data_point_id]) + + async def extract_nodes(self, data_point_ids: list[str]): + return await self.retrieve(data_point_ids) + + async def search( + self, + collection_name: str, + query_text: str = None, + query_vector: list[float] = None, + limit: int = 10, + with_vector: bool = False, + ): + if query_text is None and query_vector is None: + raise ValueError("One of query_text or query_vector must be provided!") + + if query_text and not query_vector: + query_vector = (await self.embed_data([query_text]))[0] + + query = dedent(f""" + CALL db.idx.vector.queryNodes( + {collection_name}, + 'text', + {limit}, + vecf32({query_vector}) + ) YIELD node, score + """).strip() + + result = self.query(query) + + return result + + async def batch_search( + self, + collection_name: str, + query_texts: list[str], + limit: int = None, + with_vectors: bool = False, + ): + query_vectors = await self.embedding_engine.embed_text(query_texts) + + return await asyncio.gather( + *[self.search( + collection_name = collection_name, + query_vector = query_vector, + limit = limit, + with_vector = with_vectors, + ) for query_vector in query_vectors] + ) + + async def delete_data_points(self, collection_name: str, data_point_ids: list[str]): + return self.query( + f"MATCH (node) WHERE node.id IN $node_ids DETACH DELETE node", + { + "node_ids": data_point_ids, + }, + ) + + async def delete_node(self, collection_name: str, data_point_id: str): + return await self.delete_data_points([data_point_id]) + + async def delete_nodes(self, collection_name: str, data_point_ids: list[str]): + self.delete_data_points(data_point_ids) + + async def delete_graph(self): + try: + graph = self.driver.select_graph(self.graph_name) + + indices = graph.list_indices() + for index in indices.result_set: + for field in index[1]: + graph.drop_node_vector_index(index[0], field) + + graph.delete() + except Exception as e: + print(f"Error deleting graph: {e}") + + async def prune(self): + self.delete_graph() diff --git a/cognee/infrastructure/databases/vector/__init__.py b/cognee/infrastructure/databases/vector/__init__.py index 604170f1d..0a6e3c1fa 100644 --- a/cognee/infrastructure/databases/vector/__init__.py +++ b/cognee/infrastructure/databases/vector/__init__.py @@ -1,4 +1,3 @@ -from .models.DataPoint import DataPoint from .models.VectorConfig import VectorConfig from .models.CollectionConfig import CollectionConfig from .vector_db_interface import VectorDBInterface diff --git a/cognee/infrastructure/databases/vector/config.py b/cognee/infrastructure/databases/vector/config.py index 1d79b3cb6..846bc5842 100644 --- a/cognee/infrastructure/databases/vector/config.py +++ b/cognee/infrastructure/databases/vector/config.py @@ -8,6 +8,7 @@ class VectorConfig(BaseSettings): os.path.join(get_absolute_path(".cognee_system"), "databases"), "cognee.lancedb" ) + vector_db_port: int = 1234 vector_db_key: str = "" vector_db_provider: str = "lancedb" @@ -16,6 +17,7 @@ class VectorConfig(BaseSettings): def to_dict(self) -> dict: return { "vector_db_url": self.vector_db_url, + "vector_db_port": self.vector_db_port, "vector_db_key": self.vector_db_key, "vector_db_provider": self.vector_db_provider, } diff --git a/cognee/infrastructure/databases/vector/create_vector_engine.py b/cognee/infrastructure/databases/vector/create_vector_engine.py index f0cbfcd5a..db5ef3129 100644 --- a/cognee/infrastructure/databases/vector/create_vector_engine.py +++ b/cognee/infrastructure/databases/vector/create_vector_engine.py @@ -1,9 +1,8 @@ from typing import Dict -from ..relational.config import get_relational_config - class VectorConfig(Dict): vector_db_url: str + vector_db_port: str vector_db_key: str vector_db_provider: str @@ -29,6 +28,7 @@ def create_vector_engine(config: VectorConfig, embedding_engine): embedding_engine = embedding_engine ) elif config["vector_db_provider"] == "pgvector": + from cognee.infrastructure.databases.relational import get_relational_config from .pgvector.PGVectorAdapter import PGVectorAdapter # Get configuration for postgres database @@ -43,9 +43,18 @@ def create_vector_engine(config: VectorConfig, embedding_engine): f"postgresql+asyncpg://{db_username}:{db_password}@{db_host}:{db_port}/{db_name}" ) - return PGVectorAdapter(connection_string, - config["vector_db_key"], - embedding_engine + return PGVectorAdapter( + connection_string, + config["vector_db_key"], + embedding_engine, + ) + elif config["vector_db_provider"] == "falkordb": + from ..hybrid.falkordb.FalkorDBAdapter import FalkorDBAdapter + + return FalkorDBAdapter( + database_url = config["vector_db_url"], + database_port = config["vector_db_port"], + embedding_engine = embedding_engine, ) else: from .lancedb.LanceDBAdapter import LanceDBAdapter diff --git a/cognee/infrastructure/databases/vector/falkordb/FalkorDBAdapter.py b/cognee/infrastructure/databases/vector/falkordb/FalkorDBAdapter.py deleted file mode 100644 index 744d79f53..000000000 --- a/cognee/infrastructure/databases/vector/falkordb/FalkorDBAdapter.py +++ /dev/null @@ -1,113 +0,0 @@ -import asyncio -from falkordb import FalkorDB -from ..models.DataPoint import DataPoint -from ..vector_db_interface import VectorDBInterface -from ..embeddings.EmbeddingEngine import EmbeddingEngine - - -class FalcorDBAdapter(VectorDBInterface): - def __init__( - self, - graph_database_url: str, - graph_database_port: int, - embedding_engine = EmbeddingEngine, - ): - self.driver = FalkorDB( - host = graph_database_url, - port = graph_database_port) - self.embedding_engine = embedding_engine - - - async def embed_data(self, data: list[str]) -> list[list[float]]: - return await self.embedding_engine.embed_text(data) - - async def has_collection(self, collection_name: str) -> bool: - collections = self.driver.list_graphs() - - return collection_name in collections - - async def create_collection(self, collection_name: str, payload_schema = None): - self.driver.select_graph(collection_name) - - async def create_data_points(self, collection_name: str, data_points: list[DataPoint]): - graph = self.driver.select_graph(collection_name) - - def stringify_properties(properties: dict) -> str: - return ",".join(f"{key}:'{value}'" for key, value in properties.items()) - - def create_data_point_query(data_point: DataPoint): - node_label = type(data_point.payload).__name__ - node_properties = stringify_properties(data_point.payload.dict()) - - return f"""CREATE (:{node_label} {{{node_properties}}})""" - - query = " ".join([create_data_point_query(data_point) for data_point in data_points]) - - graph.query(query) - - async def retrieve(self, collection_name: str, data_point_ids: list[str]): - graph = self.driver.select_graph(collection_name) - - return graph.query( - f"MATCH (node) WHERE node.id IN $node_ids RETURN node", - { - "node_ids": data_point_ids, - }, - ) - - async def search( - self, - collection_name: str, - query_text: str = None, - query_vector: list[float] = None, - limit: int = 10, - with_vector: bool = False, - ): - if query_text is None and query_vector is None: - raise ValueError("One of query_text or query_vector must be provided!") - - if query_text and not query_vector: - query_vector = (await self.embedding_engine.embed_text([query_text]))[0] - - graph = self.driver.select_graph(collection_name) - - query = f""" - CALL db.idx.vector.queryNodes( - null, - 'text', - {limit}, - {query_vector} - ) YIELD node, score - """ - - result = graph.query(query) - - return result - - async def batch_search( - self, - collection_name: str, - query_texts: list[str], - limit: int = None, - with_vectors: bool = False, - ): - query_vectors = await self.embedding_engine.embed_text(query_texts) - - return await asyncio.gather( - *[self.search( - collection_name = collection_name, - query_vector = query_vector, - limit = limit, - with_vector = with_vectors, - ) for query_vector in query_vectors] - ) - - async def delete_data_points(self, collection_name: str, data_point_ids: list[str]): - graph = self.driver.select_graph(collection_name) - - return graph.query( - f"MATCH (node) WHERE node.id IN $node_ids DETACH DELETE node", - { - "node_ids": data_point_ids, - }, - ) diff --git a/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py b/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py index 404634489..f3e193ffa 100644 --- a/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py +++ b/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py @@ -1,12 +1,25 @@ +import inspect from typing import List, Optional, get_type_hints, Generic, TypeVar import asyncio +from uuid import UUID import lancedb +from pydantic import BaseModel from lancedb.pydantic import Vector, LanceModel +from cognee.infrastructure.engine import DataPoint from cognee.infrastructure.files.storage import LocalStorage +from cognee.modules.storage.utils import copy_model, get_own_properties from ..models.ScoredResult import ScoredResult -from ..vector_db_interface import VectorDBInterface, DataPoint +from ..vector_db_interface import VectorDBInterface from ..embeddings.EmbeddingEngine import EmbeddingEngine +class IndexSchema(DataPoint): + id: str + text: str + + _metadata: dict = { + "index_fields": ["text"] + } + class LanceDBAdapter(VectorDBInterface): name = "LanceDB" url: str @@ -38,10 +51,12 @@ async def has_collection(self, collection_name: str) -> bool: collection_names = await connection.table_names() return collection_name in collection_names - async def create_collection(self, collection_name: str, payload_schema = None): - data_point_types = get_type_hints(DataPoint) + async def create_collection(self, collection_name: str, payload_schema: BaseModel): vector_size = self.embedding_engine.get_vector_size() + payload_schema = self.get_data_point_schema(payload_schema) + data_point_types = get_type_hints(payload_schema) + class LanceDataPoint(LanceModel): id: data_point_types["id"] vector: Vector(vector_size) @@ -55,13 +70,16 @@ class LanceDataPoint(LanceModel): exist_ok = True, ) - async def create_data_points(self, collection_name: str, data_points: List[DataPoint]): + async def create_data_points(self, collection_name: str, data_points: list[DataPoint]): connection = await self.get_connection() + payload_schema = type(data_points[0]) + payload_schema = self.get_data_point_schema(payload_schema) + if not await self.has_collection(collection_name): await self.create_collection( collection_name, - payload_schema = type(data_points[0].payload), + payload_schema, ) collection = await connection.open_table(collection_name) @@ -79,15 +97,26 @@ class LanceDataPoint(LanceModel, Generic[IdType, PayloadSchema]): vector: Vector(vector_size) payload: PayloadSchema + def create_lance_data_point(data_point: DataPoint, vector: list[float]) -> LanceDataPoint: + properties = get_own_properties(data_point) + properties["id"] = str(properties["id"]) + + return LanceDataPoint[str, self.get_data_point_schema(type(data_point))]( + id = str(data_point.id), + vector = vector, + payload = properties, + ) + lance_data_points = [ - LanceDataPoint[type(data_point.id), type(data_point.payload)]( - id = data_point.id, - vector = data_vectors[data_index], - payload = data_point.payload, - ) for (data_index, data_point) in enumerate(data_points) + create_lance_data_point(data_point, data_vectors[data_point_index]) + for (data_point_index, data_point) in enumerate(data_points) ] - await collection.add(lance_data_points) + await collection.merge_insert("id") \ + .when_matched_update_all() \ + .when_not_matched_insert_all() \ + .execute(lance_data_points) + async def retrieve(self, collection_name: str, data_point_ids: list[str]): connection = await self.get_connection() @@ -99,7 +128,7 @@ async def retrieve(self, collection_name: str, data_point_ids: list[str]): results = await collection.query().where(f"id IN {tuple(data_point_ids)}").to_pandas() return [ScoredResult( - id = result["id"], + id = UUID(result["id"]), payload = result["payload"], score = 0, ) for result in results.to_dict("index").values()] @@ -138,7 +167,7 @@ async def search( normalized_values = [(result["_distance"] - min_value) / (max_value - min_value) for result in result_values] return [ScoredResult( - id = str(result["id"]), + id = UUID(result["id"]), payload = result["payload"], score = normalized_values[value_index], ) for value_index, result in enumerate(result_values)] @@ -167,7 +196,27 @@ async def delete_data_points(self, collection_name: str, data_point_ids: list[st results = await collection.delete(f"id IN {tuple(data_point_ids)}") return results + async def create_vector_index(self, index_name: str, index_property_name: str): + await self.create_collection(f"{index_name}_{index_property_name}", payload_schema = IndexSchema) + + async def index_data_points(self, index_name: str, index_property_name: str, data_points: list[DataPoint]): + await self.create_data_points(f"{index_name}_{index_property_name}", [ + IndexSchema( + id = str(data_point.id), + text = getattr(data_point, data_point._metadata["index_fields"][0]), + ) for data_point in data_points + ]) + async def prune(self): # Clean up the database if it was set up as temporary if self.url.startswith("/"): LocalStorage.remove_all(self.url) # Remove the temporary directory and files inside + + def get_data_point_schema(self, model_type): + return copy_model( + model_type, + include_fields = { + "id": (str, ...), + }, + exclude_fields = ["_metadata"], + ) \ No newline at end of file diff --git a/cognee/infrastructure/databases/vector/models/DataPoint.py b/cognee/infrastructure/databases/vector/models/DataPoint.py deleted file mode 100644 index 5ad870b65..000000000 --- a/cognee/infrastructure/databases/vector/models/DataPoint.py +++ /dev/null @@ -1,13 +0,0 @@ -from typing import Generic, TypeVar -from pydantic import BaseModel - -PayloadSchema = TypeVar("PayloadSchema", bound = BaseModel) - -class DataPoint(BaseModel, Generic[PayloadSchema]): - id: str - payload: PayloadSchema - embed_field: str = "value" - - def get_embeddable_data(self): - if hasattr(self.payload, self.embed_field): - return getattr(self.payload, self.embed_field) diff --git a/cognee/infrastructure/databases/vector/models/ScoredResult.py b/cognee/infrastructure/databases/vector/models/ScoredResult.py index fcecbbe79..f9d8bec77 100644 --- a/cognee/infrastructure/databases/vector/models/ScoredResult.py +++ b/cognee/infrastructure/databases/vector/models/ScoredResult.py @@ -1,7 +1,8 @@ from typing import Any, Dict +from uuid import UUID from pydantic import BaseModel class ScoredResult(BaseModel): - id: str + id: UUID score: float # Lower score is better payload: Dict[str, Any] diff --git a/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py b/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py index b13346cfb..70359913a 100644 --- a/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py +++ b/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py @@ -1,17 +1,26 @@ import asyncio +from uuid import UUID from pgvector.sqlalchemy import Vector from typing import List, Optional, get_type_hints from sqlalchemy.orm import Mapped, mapped_column from sqlalchemy import JSON, Column, Table, select, delete from sqlalchemy.ext.asyncio import create_async_engine, async_sessionmaker +from cognee.infrastructure.engine import DataPoint + from .serialize_datetime import serialize_datetime from ..models.ScoredResult import ScoredResult -from ..vector_db_interface import VectorDBInterface, DataPoint +from ..vector_db_interface import VectorDBInterface from ..embeddings.EmbeddingEngine import EmbeddingEngine from ...relational.sqlalchemy.SqlAlchemyAdapter import SQLAlchemyAdapter from ...relational.ModelBase import Base +class IndexSchema(DataPoint): + text: str + + _metadata: dict = { + "index_fields": ["text"] + } class PGVectorAdapter(SQLAlchemyAdapter, VectorDBInterface): @@ -76,7 +85,7 @@ async def create_data_points( if not await self.has_collection(collection_name): await self.create_collection( collection_name=collection_name, - payload_schema=type(data_points[0].payload), + payload_schema=type(data_points[0]), ) data_vectors = await self.embed_data( @@ -105,7 +114,7 @@ def __init__(self, id, payload, vector): PGVectorDataPoint( id=data_point.id, vector=data_vectors[data_index], - payload=serialize_datetime(data_point.payload.dict()), + payload=serialize_datetime(data_point.model_dump()), ) for (data_index, data_point) in enumerate(data_points) ] @@ -113,6 +122,17 @@ def __init__(self, id, payload, vector): session.add_all(pgvector_data_points) await session.commit() + async def create_vector_index(self, index_name: str, index_property_name: str): + await self.create_collection(f"{index_name}_{index_property_name}") + + async def index_data_points(self, index_name: str, index_property_name: str, data_points: list[DataPoint]): + await self.create_data_points(f"{index_name}_{index_property_name}", [ + IndexSchema( + id = data_point.id, + text = getattr(data_point, data_point._metadata["index_fields"][0]), + ) for data_point in data_points + ]) + async def get_table(self, collection_name: str) -> Table: """ Dynamically loads a table using the given collection name @@ -137,8 +157,11 @@ async def retrieve(self, collection_name: str, data_point_ids: List[str]): results = results.all() return [ - ScoredResult(id=result.id, payload=result.payload, score=0) - for result in results + ScoredResult( + id = UUID(result.id), + payload = result.payload, + score = 0 + ) for result in results ] async def search( @@ -181,9 +204,10 @@ async def search( # Create and return ScoredResult objects return [ ScoredResult( - id=str(row.id), payload=row.payload, score=row.similarity - ) - for row in vector_list + id = UUID(row.id), + payload = row.payload, + score = row.similarity + ) for row in vector_list ] async def batch_search( diff --git a/cognee/infrastructure/databases/vector/qdrant/QDrantAdapter.py b/cognee/infrastructure/databases/vector/qdrant/QDrantAdapter.py index cc6d80b27..87d673a03 100644 --- a/cognee/infrastructure/databases/vector/qdrant/QDrantAdapter.py +++ b/cognee/infrastructure/databases/vector/qdrant/QDrantAdapter.py @@ -1,12 +1,20 @@ import logging from typing import List, Dict, Optional from qdrant_client import AsyncQdrantClient, models + +from cognee.infrastructure.engine import DataPoint from ..vector_db_interface import VectorDBInterface -from ..models.DataPoint import DataPoint from ..embeddings.EmbeddingEngine import EmbeddingEngine logger = logging.getLogger("QDrantAdapter") +class IndexSchema(DataPoint): + text: str + + _metadata: dict = { + "index_fields": ["text"] + } + # class CollectionConfig(BaseModel, extra = "forbid"): # vector_config: Dict[str, models.VectorParams] = Field(..., description="Vectors configuration" ) # hnsw_config: Optional[models.HnswConfig] = Field(default = None, description="HNSW vector index configuration") @@ -75,20 +83,19 @@ async def create_collection( ): client = self.get_qdrant_client() - result = await client.create_collection( - collection_name = collection_name, - vectors_config = { - "text": models.VectorParams( - size = self.embedding_engine.get_vector_size(), - distance = "Cosine" - ) - } - ) + if not await client.collection_exists(collection_name): + await client.create_collection( + collection_name = collection_name, + vectors_config = { + "text": models.VectorParams( + size = self.embedding_engine.get_vector_size(), + distance = "Cosine" + ) + } + ) await client.close() - return result - async def create_data_points(self, collection_name: str, data_points: List[DataPoint]): client = self.get_qdrant_client() @@ -96,8 +103,8 @@ async def create_data_points(self, collection_name: str, data_points: List[DataP def convert_to_qdrant_point(data_point: DataPoint): return models.PointStruct( - id = data_point.id, - payload = data_point.payload.dict(), + id = str(data_point.id), + payload = data_point.model_dump(), vector = { "text": data_vectors[data_points.index(data_point)] } @@ -116,6 +123,17 @@ def convert_to_qdrant_point(data_point: DataPoint): finally: await client.close() + async def create_vector_index(self, index_name: str, index_property_name: str): + await self.create_collection(f"{index_name}_{index_property_name}") + + async def index_data_points(self, index_name: str, index_property_name: str, data_points: list[DataPoint]): + await self.create_data_points(f"{index_name}_{index_property_name}", [ + IndexSchema( + id = data_point.id, + text = getattr(data_point, data_point._metadata["index_fields"][0]), + ) for data_point in data_points + ]) + async def retrieve(self, collection_name: str, data_point_ids: list[str]): client = self.get_qdrant_client() results = await client.retrieve(collection_name, data_point_ids, with_payload = True) diff --git a/cognee/infrastructure/databases/vector/vector_db_interface.py b/cognee/infrastructure/databases/vector/vector_db_interface.py index 10e268f1b..457b92f07 100644 --- a/cognee/infrastructure/databases/vector/vector_db_interface.py +++ b/cognee/infrastructure/databases/vector/vector_db_interface.py @@ -1,6 +1,6 @@ from typing import List, Protocol, Optional from abc import abstractmethod -from .models.DataPoint import DataPoint +from cognee.infrastructure.engine import DataPoint from .models.PayloadSchema import PayloadSchema class VectorDBInterface(Protocol): diff --git a/cognee/infrastructure/databases/vector/weaviate_db/WeaviateAdapter.py b/cognee/infrastructure/databases/vector/weaviate_db/WeaviateAdapter.py index 8aae831a1..a1b986ef2 100644 --- a/cognee/infrastructure/databases/vector/weaviate_db/WeaviateAdapter.py +++ b/cognee/infrastructure/databases/vector/weaviate_db/WeaviateAdapter.py @@ -1,13 +1,23 @@ import asyncio import logging from typing import List, Optional +from uuid import UUID + +from cognee.infrastructure.engine import DataPoint from ..vector_db_interface import VectorDBInterface -from ..models.DataPoint import DataPoint from ..models.ScoredResult import ScoredResult from ..embeddings.EmbeddingEngine import EmbeddingEngine logger = logging.getLogger("WeaviateAdapter") +class IndexSchema(DataPoint): + uuid: str + text: str + + _metadata: dict = { + "index_fields": ["text"] + } + class WeaviateAdapter(VectorDBInterface): name = "Weaviate" url: str @@ -74,9 +84,13 @@ async def create_data_points(self, collection_name: str, data_points: List[DataP def convert_to_weaviate_data_points(data_point: DataPoint): vector = data_vectors[data_points.index(data_point)] + properties = data_point.model_dump() + properties["uuid"] = properties["id"] + del properties["id"] + return DataObject( uuid = data_point.id, - properties = data_point.payload.dict(), + properties = properties, vector = vector ) @@ -100,6 +114,17 @@ def convert_to_weaviate_data_points(data_point: DataPoint): logger.error("Error creating data points: %s", str(error)) raise error + async def create_vector_index(self, index_name: str, index_property_name: str): + await self.create_collection(f"{index_name}_{index_property_name}") + + async def index_data_points(self, index_name: str, index_property_name: str, data_points: list[DataPoint]): + await self.create_data_points(f"{index_name}_{index_property_name}", [ + IndexSchema( + uuid = str(data_point.id), + text = getattr(data_point, data_point._metadata["index_fields"][0]), + ) for data_point in data_points + ]) + async def retrieve(self, collection_name: str, data_point_ids: list[str]): from weaviate.classes.query import Filter future = asyncio.Future() @@ -143,9 +168,9 @@ async def search( return [ ScoredResult( - id=str(result.uuid), - payload=result.properties, - score=float(result.metadata.score) + id = UUID(result.id), + payload = result.properties, + score = float(result.metadata.score) ) for result in search_result.objects ] diff --git a/cognee/infrastructure/engine/__init__.py b/cognee/infrastructure/engine/__init__.py new file mode 100644 index 000000000..26f567da9 --- /dev/null +++ b/cognee/infrastructure/engine/__init__.py @@ -0,0 +1 @@ +from .models.DataPoint import DataPoint diff --git a/cognee/infrastructure/engine/__tests__/model_to_graph_to_model.test.py b/cognee/infrastructure/engine/__tests__/model_to_graph_to_model.test.py new file mode 100644 index 000000000..5d3908fac --- /dev/null +++ b/cognee/infrastructure/engine/__tests__/model_to_graph_to_model.test.py @@ -0,0 +1,72 @@ +from enum import Enum +from typing import Optional +from cognee.infrastructure.engine import DataPoint +from cognee.modules.graph.utils import get_graph_from_model, get_model_instance_from_graph + + +if __name__ == "__main__": + + class CarTypeName(Enum): + Pickup = "Pickup" + Sedan = "Sedan" + SUV = "SUV" + Coupe = "Coupe" + Convertible = "Convertible" + Hatchback = "Hatchback" + Wagon = "Wagon" + Minivan = "Minivan" + Van = "Van" + + class CarType(DataPoint): + id: str + name: CarTypeName + _metadata: dict = dict(index_fields = ["name"]) + + class Car(DataPoint): + id: str + brand: str + model: str + year: int + color: str + is_type: CarType + + class Person(DataPoint): + id: str + name: str + age: int + owns_car: list[Car] + driving_licence: Optional[dict] + _metadata: dict = dict(index_fields = ["name"]) + + boris = Person( + id = "boris", + name = "Boris", + age = 30, + owns_car = [ + Car( + id = "car1", + brand = "Toyota", + model = "Camry", + year = 2020, + color = "Blue", + is_type = CarType(id = "sedan", name = CarTypeName.Sedan), + ), + ], + driving_licence = { + "issued_by": "PU Vrsac", + "issued_on": "2025-11-06", + "number": "1234567890", + "expires_on": "2025-11-06", + }, + ) + + nodes, edges = get_graph_from_model(boris) + + print(nodes) + print(edges) + + person_data = nodes[len(nodes) - 1] + + parsed_person = get_model_instance_from_graph(nodes, edges, 'boris') + + print(parsed_person) diff --git a/cognee/infrastructure/engine/models/DataPoint.py b/cognee/infrastructure/engine/models/DataPoint.py new file mode 100644 index 000000000..222b11ad7 --- /dev/null +++ b/cognee/infrastructure/engine/models/DataPoint.py @@ -0,0 +1,24 @@ +from typing_extensions import TypedDict +from uuid import UUID, uuid4 +from typing import Optional +from datetime import datetime, timezone +from pydantic import BaseModel, Field + +class MetaData(TypedDict): + index_fields: list[str] + +class DataPoint(BaseModel): + id: UUID = Field(default_factory = uuid4) + updated_at: Optional[datetime] = datetime.now(timezone.utc) + _metadata: Optional[MetaData] = { + "index_fields": [] + } + + # class Config: + # underscore_attrs_are_private = True + + def get_embeddable_data(self): + if self._metadata and len(self._metadata["index_fields"]) > 0 \ + and hasattr(self, self._metadata["index_fields"][0]): + + return getattr(self, self._metadata["index_fields"][0]) diff --git a/cognee/modules/chunking/TextChunker.py b/cognee/modules/chunking/TextChunker.py index a8dc34784..4717d108d 100644 --- a/cognee/modules/chunking/TextChunker.py +++ b/cognee/modules/chunking/TextChunker.py @@ -1,18 +1,18 @@ -from uuid import UUID, uuid5, NAMESPACE_OID +from uuid import uuid5, NAMESPACE_OID -from cognee.modules.chunking import DocumentChunk -from cognee.tasks.chunking import chunk_by_paragraph +from .models.DocumentChunk import DocumentChunk +from cognee.tasks.chunks import chunk_by_paragraph class TextChunker(): - id: UUID + document = None max_chunk_size: int chunk_index = 0 chunk_size = 0 paragraph_chunks = [] - def __init__(self, id: UUID, get_text: callable, chunk_size: int = 1024): - self.id = id + def __init__(self, document, get_text: callable, chunk_size: int = 1024): + self.document = document self.max_chunk_size = chunk_size self.get_text = get_text @@ -29,10 +29,10 @@ def read(self): else: if len(self.paragraph_chunks) == 0: yield DocumentChunk( + id = str(chunk_data["chunk_id"]), text = chunk_data["text"], word_count = chunk_data["word_count"], - document_id = str(self.id), - chunk_id = str(chunk_data["chunk_id"]), + is_part_of = self.document, chunk_index = self.chunk_index, cut_type = chunk_data["cut_type"], ) @@ -40,25 +40,31 @@ def read(self): self.chunk_size = 0 else: chunk_text = " ".join(chunk["text"] for chunk in self.paragraph_chunks) - yield DocumentChunk( - text = chunk_text, - word_count = self.chunk_size, - document_id = str(self.id), - chunk_id = str(uuid5(NAMESPACE_OID, f"{str(self.id)}-{self.chunk_index}")), - chunk_index = self.chunk_index, - cut_type = self.paragraph_chunks[len(self.paragraph_chunks) - 1]["cut_type"], - ) + try: + yield DocumentChunk( + id = str(uuid5(NAMESPACE_OID, f"{str(self.document.id)}-{self.chunk_index}")), + text = chunk_text, + word_count = self.chunk_size, + is_part_of = self.document, + chunk_index = self.chunk_index, + cut_type = self.paragraph_chunks[len(self.paragraph_chunks) - 1]["cut_type"], + ) + except Exception as e: + print(e) self.paragraph_chunks = [chunk_data] self.chunk_size = chunk_data["word_count"] self.chunk_index += 1 if len(self.paragraph_chunks) > 0: - yield DocumentChunk( - text = " ".join(chunk["text"] for chunk in self.paragraph_chunks), - word_count = self.chunk_size, - document_id = str(self.id), - chunk_id = str(uuid5(NAMESPACE_OID, f"{str(self.id)}-{self.chunk_index}")), - chunk_index = self.chunk_index, - cut_type = self.paragraph_chunks[len(self.paragraph_chunks) - 1]["cut_type"], - ) + try: + yield DocumentChunk( + id = str(uuid5(NAMESPACE_OID, f"{str(self.document.id)}-{self.chunk_index}")), + text = " ".join(chunk["text"] for chunk in self.paragraph_chunks), + word_count = self.chunk_size, + is_part_of = self.document, + chunk_index = self.chunk_index, + cut_type = self.paragraph_chunks[len(self.paragraph_chunks) - 1]["cut_type"], + ) + except Exception as e: + print(e) diff --git a/cognee/modules/chunking/__init__.py b/cognee/modules/chunking/__init__.py deleted file mode 100644 index 4e1d87a84..000000000 --- a/cognee/modules/chunking/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -from .models.DocumentChunk import DocumentChunk -from .TextChunker import TextChunker diff --git a/cognee/modules/chunking/models/DocumentChunk.py b/cognee/modules/chunking/models/DocumentChunk.py index b6a924a97..975edb27e 100644 --- a/cognee/modules/chunking/models/DocumentChunk.py +++ b/cognee/modules/chunking/models/DocumentChunk.py @@ -1,9 +1,14 @@ -from pydantic import BaseModel +from typing import Optional +from cognee.infrastructure.engine import DataPoint +from cognee.modules.data.processing.document_types import Document -class DocumentChunk(BaseModel): +class DocumentChunk(DataPoint): text: str word_count: int - document_id: str - chunk_id: str chunk_index: int cut_type: str + is_part_of: Document + + _metadata: Optional[dict] = { + "index_fields": ["text"], + } diff --git a/cognee/modules/data/extraction/__init__.py b/cognee/modules/data/extraction/__init__.py index e69de29bb..b6419282d 100644 --- a/cognee/modules/data/extraction/__init__.py +++ b/cognee/modules/data/extraction/__init__.py @@ -0,0 +1 @@ +from .knowledge_graph.extract_content_graph import extract_content_graph diff --git a/cognee/modules/data/extraction/knowledge_graph/__init__.py b/cognee/modules/data/extraction/knowledge_graph/__init__.py index e69de29bb..0939b2b34 100644 --- a/cognee/modules/data/extraction/knowledge_graph/__init__.py +++ b/cognee/modules/data/extraction/knowledge_graph/__init__.py @@ -0,0 +1 @@ +from .extract_content_graph import extract_content_graph diff --git a/cognee/tasks/document_language_detection/document_language_detection.py b/cognee/modules/data/operations/detect_language.py similarity index 54% rename from cognee/tasks/document_language_detection/document_language_detection.py rename to cognee/modules/data/operations/detect_language.py index e2e8fdb67..e82675736 100644 --- a/cognee/tasks/document_language_detection/document_language_detection.py +++ b/cognee/modules/data/operations/detect_language.py @@ -1,36 +1,36 @@ - import logging +logger = logging.getLogger(__name__) - -async def detect_language(data:str): +async def detect_language(text: str): """ Detect the language of the given text and return its ISO 639-1 language code. - If the detected language is Croatian ('hr'), it maps to Serbian ('sr'). + If the detected language is Croatian ("hr"), it maps to Serbian ("sr"). The text is trimmed to the first 100 characters for efficient processing. Parameters: text (str): The text for language detection. Returns: - str: The ISO 639-1 language code of the detected language, or 'None' in case of an error. + str: The ISO 639-1 language code of the detected language, or "None" in case of an error. """ - # Trim the text to the first 100 characters from langdetect import detect, LangDetectException - trimmed_text = data[:100] + # Trim the text to the first 100 characters + trimmed_text = text[:100] try: # Detect the language using langdetect detected_lang_iso639_1 = detect(trimmed_text) - logging.info(f"Detected ISO 639-1 code: {detected_lang_iso639_1}") - # Special case: map 'hr' (Croatian) to 'sr' (Serbian ISO 639-2) - if detected_lang_iso639_1 == 'hr': - yield 'sr' - yield detected_lang_iso639_1 + # Special case: map "hr" (Croatian) to "sr" (Serbian ISO 639-2) + if detected_lang_iso639_1 == "hr": + return "sr" + + return detected_lang_iso639_1 except LangDetectException as e: - logging.error(f"Language detection error: {e}") + logger.error(f"Language detection error: {e}") + except Exception as e: - logging.error(f"Unexpected error: {e}") + logger.error(f"Unexpected error: {e}") - yield None \ No newline at end of file + return None diff --git a/cognee/modules/data/operations/translate_text.py b/cognee/modules/data/operations/translate_text.py new file mode 100644 index 000000000..411712648 --- /dev/null +++ b/cognee/modules/data/operations/translate_text.py @@ -0,0 +1,41 @@ +import logging + +logger = logging.getLogger(__name__) + +async def translate_text(text, source_language: str = "sr", target_language: str = "en", region_name = "eu-west-1"): + """ + Translate text from source language to target language using AWS Translate. + Parameters: + text (str): The text to be translated. + source_language (str): The source language code (e.g., "sr" for Serbian). ISO 639-2 Code https://www.loc.gov/standards/iso639-2/php/code_list.php + target_language (str): The target language code (e.g., "en" for English). ISO 639-2 Code https://www.loc.gov/standards/iso639-2/php/code_list.php + region_name (str): AWS region name. + Returns: + str: Translated text or an error message. + """ + + import boto3 + from botocore.exceptions import BotoCoreError, ClientError + + if not text: + raise ValueError("No text to translate.") + + if not source_language or not target_language: + raise ValueError("Source and target language codes are required.") + + try: + translate = boto3.client(service_name = "translate", region_name = region_name, use_ssl = True) + result = translate.translate_text( + Text = text, + SourceLanguageCode = source_language, + TargetLanguageCode = target_language, + ) + yield result.get("TranslatedText", "No translation found.") + + except BotoCoreError as e: + logger.error(f"BotoCoreError occurred: {e}") + yield None + + except ClientError as e: + logger.error(f"ClientError occurred: {e}") + yield None diff --git a/cognee/modules/data/processing/document_types/AudioDocument.py b/cognee/modules/data/processing/document_types/AudioDocument.py index a794b361b..d3ae0974d 100644 --- a/cognee/modules/data/processing/document_types/AudioDocument.py +++ b/cognee/modules/data/processing/document_types/AudioDocument.py @@ -1,34 +1,15 @@ -from uuid import UUID, uuid5, NAMESPACE_OID from cognee.infrastructure.llm.get_llm_client import get_llm_client from cognee.modules.chunking.TextChunker import TextChunker from .Document import Document class AudioDocument(Document): type: str = "audio" - title: str - raw_data_location: str - chunking_strategy: str - - def __init__(self, id: UUID, title: str, raw_data_location: str, chunking_strategy:str="paragraph"): - self.id = id or uuid5(NAMESPACE_OID, title) - self.title = title - self.raw_data_location = raw_data_location - self.chunking_strategy = chunking_strategy def read(self, chunk_size: int): # Transcribe the audio file result = get_llm_client().create_transcript(self.raw_data_location) text = result.text - chunker = TextChunker(self.id, chunk_size = chunk_size, get_text = lambda: text) + chunker = TextChunker(self, chunk_size = chunk_size, get_text = lambda: text) yield from chunker.read() - - - def to_dict(self) -> dict: - return dict( - id=str(self.id), - type=self.type, - title=self.title, - raw_data_location=self.raw_data_location, - ) diff --git a/cognee/modules/data/processing/document_types/Document.py b/cognee/modules/data/processing/document_types/Document.py index 1e841682d..7d5545cfc 100644 --- a/cognee/modules/data/processing/document_types/Document.py +++ b/cognee/modules/data/processing/document_types/Document.py @@ -1,10 +1,8 @@ -from uuid import UUID -from typing import Protocol +from cognee.infrastructure.engine import DataPoint -class Document(Protocol): - id: UUID +class Document(DataPoint): type: str - title: str + name: str raw_data_location: str def read(self, chunk_size: int) -> str: diff --git a/cognee/modules/data/processing/document_types/ImageDocument.py b/cognee/modules/data/processing/document_types/ImageDocument.py index e12b3cd1f..5571b3bd8 100644 --- a/cognee/modules/data/processing/document_types/ImageDocument.py +++ b/cognee/modules/data/processing/document_types/ImageDocument.py @@ -1,33 +1,15 @@ -from uuid import UUID, uuid5, NAMESPACE_OID from cognee.infrastructure.llm.get_llm_client import get_llm_client from cognee.modules.chunking.TextChunker import TextChunker from .Document import Document - class ImageDocument(Document): type: str = "image" - title: str - raw_data_location: str - - def __init__(self, id: UUID, title: str, raw_data_location: str): - self.id = id or uuid5(NAMESPACE_OID, title) - self.title = title - self.raw_data_location = raw_data_location def read(self, chunk_size: int): # Transcribe the image file result = get_llm_client().transcribe_image(self.raw_data_location) text = result.choices[0].message.content - chunker = TextChunker(self.id, chunk_size = chunk_size, get_text = lambda: text) + chunker = TextChunker(self, chunk_size = chunk_size, get_text = lambda: text) yield from chunker.read() - - - def to_dict(self) -> dict: - return dict( - id=str(self.id), - type=self.type, - title=self.title, - raw_data_location=self.raw_data_location, - ) diff --git a/cognee/modules/data/processing/document_types/PdfDocument.py b/cognee/modules/data/processing/document_types/PdfDocument.py index 5bbff0857..2d1941996 100644 --- a/cognee/modules/data/processing/document_types/PdfDocument.py +++ b/cognee/modules/data/processing/document_types/PdfDocument.py @@ -1,19 +1,11 @@ -from uuid import UUID, uuid5, NAMESPACE_OID from pypdf import PdfReader from cognee.modules.chunking.TextChunker import TextChunker from .Document import Document class PdfDocument(Document): type: str = "pdf" - title: str - raw_data_location: str - def __init__(self, id: UUID, title: str, raw_data_location: str): - self.id = id or uuid5(NAMESPACE_OID, title) - self.title = title - self.raw_data_location = raw_data_location - - def read(self, chunk_size: int) -> PdfReader: + def read(self, chunk_size: int): file = PdfReader(self.raw_data_location) def get_text(): @@ -21,16 +13,8 @@ def get_text(): page_text = page.extract_text() yield page_text - chunker = TextChunker(self.id, chunk_size = chunk_size, get_text = get_text) + chunker = TextChunker(self, chunk_size = chunk_size, get_text = get_text) yield from chunker.read() file.stream.close() - - def to_dict(self) -> dict: - return dict( - id = str(self.id), - type = self.type, - title = self.title, - raw_data_location = self.raw_data_location, - ) diff --git a/cognee/modules/data/processing/document_types/TextDocument.py b/cognee/modules/data/processing/document_types/TextDocument.py index 774d1f050..32d3416b9 100644 --- a/cognee/modules/data/processing/document_types/TextDocument.py +++ b/cognee/modules/data/processing/document_types/TextDocument.py @@ -1,16 +1,8 @@ -from uuid import UUID, uuid5, NAMESPACE_OID from cognee.modules.chunking.TextChunker import TextChunker from .Document import Document class TextDocument(Document): type: str = "text" - title: str - raw_data_location: str - - def __init__(self, id: UUID, title: str, raw_data_location: str): - self.id = id or uuid5(NAMESPACE_OID, title) - self.title = title - self.raw_data_location = raw_data_location def read(self, chunk_size: int): def get_text(): @@ -23,16 +15,6 @@ def get_text(): yield text - - chunker = TextChunker(self.id,chunk_size = chunk_size, get_text = get_text) + chunker = TextChunker(self, chunk_size = chunk_size, get_text = get_text) yield from chunker.read() - - - def to_dict(self) -> dict: - return dict( - id = str(self.id), - type = self.type, - title = self.title, - raw_data_location = self.raw_data_location, - ) diff --git a/cognee/modules/engine/models/Entity.py b/cognee/modules/engine/models/Entity.py new file mode 100644 index 000000000..c43774e38 --- /dev/null +++ b/cognee/modules/engine/models/Entity.py @@ -0,0 +1,12 @@ +from cognee.infrastructure.engine import DataPoint +from cognee.modules.chunking.models.DocumentChunk import DocumentChunk +from .EntityType import EntityType + +class Entity(DataPoint): + name: str + is_a: EntityType + description: str + mentioned_in: DocumentChunk + _metadata: dict = { + "index_fields": ["name"], + } diff --git a/cognee/modules/engine/models/EntityType.py b/cognee/modules/engine/models/EntityType.py new file mode 100644 index 000000000..b4f495857 --- /dev/null +++ b/cognee/modules/engine/models/EntityType.py @@ -0,0 +1,11 @@ +from cognee.infrastructure.engine import DataPoint +from cognee.modules.chunking.models.DocumentChunk import DocumentChunk + +class EntityType(DataPoint): + name: str + type: str + description: str + exists_in: DocumentChunk + _metadata: dict = { + "index_fields": ["name"], + } diff --git a/cognee/modules/engine/models/__init__.py b/cognee/modules/engine/models/__init__.py new file mode 100644 index 000000000..24abb8b13 --- /dev/null +++ b/cognee/modules/engine/models/__init__.py @@ -0,0 +1,2 @@ +from .Entity import Entity +from .EntityType import EntityType diff --git a/cognee/modules/engine/utils/__init__.py b/cognee/modules/engine/utils/__init__.py new file mode 100644 index 000000000..9cc2bc573 --- /dev/null +++ b/cognee/modules/engine/utils/__init__.py @@ -0,0 +1,2 @@ +from .generate_node_id import generate_node_id +from .generate_node_name import generate_node_name diff --git a/cognee/modules/engine/utils/generate_node_id.py b/cognee/modules/engine/utils/generate_node_id.py new file mode 100644 index 000000000..db086a19c --- /dev/null +++ b/cognee/modules/engine/utils/generate_node_id.py @@ -0,0 +1,4 @@ +from uuid import NAMESPACE_OID, uuid5 + +def generate_node_id(node_id: str) -> str: + return uuid5(NAMESPACE_OID, node_id.lower().replace(" ", "_").replace("'", "")) diff --git a/cognee/modules/engine/utils/generate_node_name.py b/cognee/modules/engine/utils/generate_node_name.py new file mode 100644 index 000000000..84b266198 --- /dev/null +++ b/cognee/modules/engine/utils/generate_node_name.py @@ -0,0 +1,2 @@ +def generate_node_name(name: str) -> str: + return name.lower().replace(" ", "_").replace("'", "") diff --git a/cognee/modules/graph/utils.py b/cognee/modules/graph/utils.py deleted file mode 100644 index 55a048cdf..000000000 --- a/cognee/modules/graph/utils.py +++ /dev/null @@ -1,5 +0,0 @@ -def generate_node_name(name: str) -> str: - return name.lower().replace(" ", "_").replace("'", "") - -def generate_node_id(node_id: str) -> str: - return node_id.lower().replace(" ", "_").replace("'", "") diff --git a/cognee/modules/graph/utils/__init__.py b/cognee/modules/graph/utils/__init__.py new file mode 100644 index 000000000..18e7ac29c --- /dev/null +++ b/cognee/modules/graph/utils/__init__.py @@ -0,0 +1,2 @@ +from .get_graph_from_model import get_graph_from_model +from .get_model_instance_from_graph import get_model_instance_from_graph diff --git a/cognee/modules/graph/utils/get_graph_from_model.py b/cognee/modules/graph/utils/get_graph_from_model.py new file mode 100644 index 000000000..ef402e4d6 --- /dev/null +++ b/cognee/modules/graph/utils/get_graph_from_model.py @@ -0,0 +1,81 @@ +from datetime import datetime, timezone +from cognee.infrastructure.engine import DataPoint +from cognee.modules import data +from cognee.modules.storage.utils import copy_model + +def get_graph_from_model(data_point: DataPoint, include_root = True): + nodes = [] + edges = [] + + data_point_properties = {} + excluded_properties = set() + + for field_name, field_value in data_point: + if field_name == "_metadata": + continue + + if isinstance(field_value, DataPoint): + excluded_properties.add(field_name) + + property_nodes, property_edges = get_graph_from_model(field_value, True) + nodes[:0] = property_nodes + edges[:0] = property_edges + + for property_node in get_own_properties(property_nodes, property_edges): + edges.append((data_point.id, property_node.id, field_name, { + "source_node_id": data_point.id, + "target_node_id": property_node.id, + "relationship_name": field_name, + "updated_at": datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), + })) + continue + + if isinstance(field_value, list): + if isinstance(field_value[0], DataPoint): + excluded_properties.add(field_name) + + for item in field_value: + property_nodes, property_edges = get_graph_from_model(item, True) + nodes[:0] = property_nodes + edges[:0] = property_edges + + for property_node in get_own_properties(property_nodes, property_edges): + edges.append((data_point.id, property_node.id, field_name, { + "source_node_id": data_point.id, + "target_node_id": property_node.id, + "relationship_name": field_name, + "updated_at": datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), + "metadata": { + "type": "list" + }, + })) + continue + + data_point_properties[field_name] = field_value + + SimpleDataPointModel = copy_model( + type(data_point), + include_fields = { + "_metadata": (dict, data_point._metadata), + }, + exclude_fields = excluded_properties, + ) + + if include_root: + nodes.append(SimpleDataPointModel(**data_point_properties)) + + return nodes, edges + + +def get_own_properties(property_nodes, property_edges): + own_properties = [] + + destination_nodes = [str(property_edge[1]) for property_edge in property_edges] + + for node in property_nodes: + if str(node.id) in destination_nodes: + continue + + own_properties.append(node) + + return own_properties diff --git a/cognee/modules/graph/utils/get_model_instance_from_graph.py b/cognee/modules/graph/utils/get_model_instance_from_graph.py new file mode 100644 index 000000000..82cdfa150 --- /dev/null +++ b/cognee/modules/graph/utils/get_model_instance_from_graph.py @@ -0,0 +1,29 @@ +from pydantic_core import PydanticUndefined +from cognee.infrastructure.engine import DataPoint +from cognee.modules.storage.utils import copy_model + + +def get_model_instance_from_graph(nodes: list[DataPoint], edges: list, entity_id: str): + node_map = {} + + for node in nodes: + node_map[node.id] = node + + for edge in edges: + source_node = node_map[edge[0]] + target_node = node_map[edge[1]] + edge_label = edge[2] + edge_properties = edge[3] if len(edge) == 4 else {} + edge_metadata = edge_properties.get("metadata", {}) + edge_type = edge_metadata.get("type") + + if edge_type == "list": + NewModel = copy_model(type(source_node), { edge_label: (list[type(target_node)], PydanticUndefined) }) + + node_map[edge[0]] = NewModel(**source_node.model_dump(), **{ edge_label: [target_node] }) + else: + NewModel = copy_model(type(source_node), { edge_label: (type(target_node), PydanticUndefined) }) + + node_map[edge[0]] = NewModel(**source_node.model_dump(), **{ edge_label: target_node }) + + return node_map[entity_id] diff --git a/cognee/modules/search/CogneeSearch.py b/cognee/modules/search/CogneeSearch.py deleted file mode 100644 index 8c9245f6a..000000000 --- a/cognee/modules/search/CogneeSearch.py +++ /dev/null @@ -1,33 +0,0 @@ -import asyncio -import nest_asyncio -import dspy -from cognee.modules.search.vector.search_similarity import search_similarity - -nest_asyncio.apply() - -class AnswerFromContext(dspy.Signature): - question: str = dspy.InputField() - context: str = dspy.InputField(desc = "Context to use for answer generation.") - answer: str = dspy.OutputField() - -question_answer_llm = dspy.OpenAI(model = "gpt-3.5-turbo-instruct") - -class CogneeSearch(dspy.Module): - def __init__(self, ): - super().__init__() - self.generate_answer = dspy.TypedChainOfThought(AnswerFromContext) - - def forward(self, question): - context = asyncio.run(search_similarity(question)) - - context_text = "\n".join(context) - print(f"Context: {context_text}") - - with dspy.context(lm = question_answer_llm): - answer_prediction = self.generate_answer(context = context_text, question = question) - answer = answer_prediction.answer - - print(f"Question: {question}") - print(f"Answer: {answer}") - - return dspy.Prediction(context = context_text, answer = answer) diff --git a/cognee/modules/search/__init__.py b/cognee/modules/search/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/modules/search/graph/__init__.py b/cognee/modules/search/graph/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/modules/search/graph/search_adjacent.py b/cognee/modules/search/graph/search_adjacent.py deleted file mode 100644 index 7295ebe76..000000000 --- a/cognee/modules/search/graph/search_adjacent.py +++ /dev/null @@ -1,43 +0,0 @@ -import asyncio -from cognee.infrastructure.databases.graph import get_graph_engine -from cognee.infrastructure.databases.vector import get_vector_engine - -async def search_adjacent(query: str) -> list[(str, str)]: - """ - Find the neighbours of a given node in the graph and return their ids and descriptions. - - Parameters: - - query (str): The query string to filter nodes by. - - Returns: - - list[(str, str)]: A list containing the unique identifiers and names of the neighbours of the given node. - """ - node_id = query - - if node_id is None: - return {} - - graph_engine = await get_graph_engine() - - exact_node = await graph_engine.extract_node(node_id) - - if exact_node is not None and "uuid" in exact_node: - neighbours = await graph_engine.get_neighbours(exact_node["uuid"]) - else: - vector_engine = get_vector_engine() - results = await asyncio.gather( - vector_engine.search("entities", query_text = query, limit = 10), - vector_engine.search("classification", query_text = query, limit = 10), - ) - results = [*results[0], *results[1]] - relevant_results = [result for result in results if result.score < 0.5][:5] - - if len(relevant_results) == 0: - return [] - - node_neighbours = await asyncio.gather(*[graph_engine.get_neighbours(result.id) for result in relevant_results]) - neighbours = [] - for neighbour_ids in node_neighbours: - neighbours.extend(neighbour_ids) - - return neighbours diff --git a/cognee/modules/search/graph/search_cypher.py b/cognee/modules/search/graph/search_cypher.py deleted file mode 100644 index 39a09542a..000000000 --- a/cognee/modules/search/graph/search_cypher.py +++ /dev/null @@ -1,15 +0,0 @@ - -from cognee.infrastructure.databases.graph import get_graph_engine, get_graph_config - -async def search_cypher(query: str): - """ - Use a Cypher query to search the graph and return the results. - """ - graph_config = get_graph_config() - - if graph_config.graph_database_provider == "neo4j": - graph_engine = await get_graph_engine() - result = await graph_engine.graph().run(query) - return result - else: - raise ValueError("Unsupported search type for the used graph engine.") diff --git a/cognee/modules/search/graph/search_similarity.py b/cognee/modules/search/graph/search_similarity.py deleted file mode 100644 index dd48ce382..000000000 --- a/cognee/modules/search/graph/search_similarity.py +++ /dev/null @@ -1,27 +0,0 @@ -from cognee.infrastructure.databases.vector import get_vector_engine - -async def search_similarity(query: str) -> list[str, str]: - """ - Parameters: - - query (str): The query string to filter nodes by. - - Returns: - - list(chunk): A list of objects providing information about the chunks related to query. - """ - vector_engine = get_vector_engine() - - similar_results = await vector_engine.search("chunks", query, limit = 5) - - results = [ - parse_payload(result.payload) for result in similar_results - ] - - return results - - -def parse_payload(payload: dict) -> dict: - return { - "text": payload["text"], - "chunk_id": payload["chunk_id"], - "document_id": payload["document_id"], - } diff --git a/cognee/modules/search/graph/search_summary.py b/cognee/modules/search/graph/search_summary.py deleted file mode 100644 index 79ca4ee12..000000000 --- a/cognee/modules/search/graph/search_summary.py +++ /dev/null @@ -1,17 +0,0 @@ -from cognee.infrastructure.databases.vector import get_vector_engine - -async def search_summary(query: str) -> list: - """ - Parameters: - - query (str): The query string to filter summaries by. - - Returns: - - list[str, UUID]: A list of objects providing information about the summaries related to query. - """ - vector_engine = get_vector_engine() - - summaries_results = await vector_engine.search("summaries", query, limit = 5) - - summaries = [summary.payload for summary in summaries_results] - - return summaries diff --git a/cognee/modules/search/llm/__init__.py b/cognee/modules/search/llm/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/modules/search/llm/extraction/__init__.py b/cognee/modules/search/llm/extraction/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/modules/search/llm/extraction/categorize_relevant_category.py b/cognee/modules/search/llm/extraction/categorize_relevant_category.py deleted file mode 100644 index 2134780ed..000000000 --- a/cognee/modules/search/llm/extraction/categorize_relevant_category.py +++ /dev/null @@ -1,16 +0,0 @@ -from typing import Type -from pydantic import BaseModel -from cognee.infrastructure.llm.prompts import render_prompt -from cognee.infrastructure.llm.get_llm_client import get_llm_client - -async def categorize_relevant_category(query: str, summary, response_model: Type[BaseModel]): - llm_client = get_llm_client() - - enriched_query= render_prompt("categorize_categories.txt", {"query": query, "categories": summary}) - - - system_prompt = " Choose the relevant categories and return appropriate output based on the model" - - llm_output = await llm_client.acreate_structured_output(enriched_query, system_prompt, response_model) - - return llm_output.model_dump() diff --git a/cognee/modules/search/llm/extraction/categorize_relevant_summary.py b/cognee/modules/search/llm/extraction/categorize_relevant_summary.py deleted file mode 100644 index 1ed09e69c..000000000 --- a/cognee/modules/search/llm/extraction/categorize_relevant_summary.py +++ /dev/null @@ -1,15 +0,0 @@ -from typing import Type -from pydantic import BaseModel -from cognee.infrastructure.llm.prompts import render_prompt -from cognee.infrastructure.llm.get_llm_client import get_llm_client - -async def categorize_relevant_summary(query: str, summaries, response_model: Type[BaseModel]): - llm_client = get_llm_client() - - enriched_query= render_prompt("categorize_summary.txt", {"query": query, "summaries": summaries}) - - system_prompt = "Choose the relevant summaries and return appropriate output based on the model" - - llm_output = await llm_client.acreate_structured_output(enriched_query, system_prompt, response_model) - - return llm_output diff --git a/cognee/modules/search/llm/get_relevant_summary.py b/cognee/modules/search/llm/get_relevant_summary.py deleted file mode 100644 index f5a3c8efb..000000000 --- a/cognee/modules/search/llm/get_relevant_summary.py +++ /dev/null @@ -1,17 +0,0 @@ -import logging -from typing import List, Dict -from cognee.modules.cognify.config import get_cognify_config -from .extraction.categorize_relevant_summary import categorize_relevant_summary - -logger = logging.getLogger(__name__) -async def get_cognitive_layers(content: str, categories: List[Dict]): - try: - cognify_config = get_cognify_config() - return (await categorize_relevant_summary( - content, - categories[0], - cognify_config.summarization_model, - )).cognitive_layers - except Exception as error: - logger.error("Error extracting cognitive layers from content: %s", error, exc_info = True) - raise error diff --git a/cognee/modules/search/vector/__init__.py b/cognee/modules/search/vector/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/modules/search/vector/bm25.py b/cognee/modules/search/vector/bm25.py deleted file mode 100644 index 134feb819..000000000 --- a/cognee/modules/search/vector/bm25.py +++ /dev/null @@ -1 +0,0 @@ -""" Placeholder for BM25 implementation""" \ No newline at end of file diff --git a/cognee/modules/search/vector/fusion.py b/cognee/modules/search/vector/fusion.py deleted file mode 100644 index 48ecb7eda..000000000 --- a/cognee/modules/search/vector/fusion.py +++ /dev/null @@ -1 +0,0 @@ -"""Placeholder for fusions search implementation""" \ No newline at end of file diff --git a/cognee/modules/search/vector/search_traverse.py b/cognee/modules/search/vector/search_traverse.py deleted file mode 100644 index 5c1d07924..000000000 --- a/cognee/modules/search/vector/search_traverse.py +++ /dev/null @@ -1,36 +0,0 @@ -import asyncio -from cognee.infrastructure.databases.graph.get_graph_engine import get_graph_engine -from cognee.infrastructure.databases.vector import get_vector_engine - -async def search_traverse(query: str): - node_id = query - rules = set() - - graph_engine = await get_graph_engine() - vector_engine = get_vector_engine() - - exact_node = await graph_engine.extract_node(node_id) - - if exact_node is not None and "uuid" in exact_node: - edges = await graph_engine.get_edges(exact_node["uuid"]) - - for edge in edges: - rules.add(f"{edge[0]} {edge[2]['relationship_name']} {edge[1]}") - else: - results = await asyncio.gather( - vector_engine.search("entities", query_text = query, limit = 10), - vector_engine.search("classification", query_text = query, limit = 10), - ) - results = [*results[0], *results[1]] - relevant_results = [result for result in results if result.score < 0.5][:5] - - if len(relevant_results) > 0: - for result in relevant_results: - graph_node_id = result.id - - edges = await graph_engine.get_edges(graph_node_id) - - for edge in edges: - rules.add(f"{edge[0]} {edge[2]['relationship_name']} {edge[1]}") - - return list(rules) diff --git a/cognee/modules/storage/utils/__init__.py b/cognee/modules/storage/utils/__init__.py new file mode 100644 index 000000000..7073e6470 --- /dev/null +++ b/cognee/modules/storage/utils/__init__.py @@ -0,0 +1,46 @@ +import json +from uuid import UUID +from datetime import datetime +from pydantic_core import PydanticUndefined + +from cognee.infrastructure.engine import DataPoint + +class JSONEncoder(json.JSONEncoder): + def default(self, obj): + if isinstance(obj, datetime): + return obj.isoformat() # Convert datetime to ISO 8601 string + elif isinstance(obj, UUID): + # if the obj is uuid, we simply return the value of uuid + return str(obj) + return json.JSONEncoder.default(self, obj) + + +from pydantic import create_model + +def copy_model(model: DataPoint, include_fields: dict = {}, exclude_fields: list = []): + fields = { + name: (field.annotation, field.default if field.default is not None else PydanticUndefined) + for name, field in model.model_fields.items() + if name not in exclude_fields + } + + final_fields = { + **fields, + **include_fields + } + + return create_model(model.__name__, **final_fields) + +def get_own_properties(data_point: DataPoint): + properties = {} + + for field_name, field_value in data_point: + if field_name == "_metadata" \ + or isinstance(field_value, dict) \ + or isinstance(field_value, DataPoint) \ + or (isinstance(field_value, list) and isinstance(field_value[0], DataPoint)): + continue + + properties[field_name] = field_value + + return properties diff --git a/cognee/shared/utils.py b/cognee/shared/utils.py index f6b75f4e0..f3272357f 100644 --- a/cognee/shared/utils.py +++ b/cognee/shared/utils.py @@ -1,6 +1,6 @@ """ This module contains utility functions for the cognee. """ import os -import datetime +from datetime import datetime, timezone import graphistry import networkx as nx import numpy as np @@ -25,7 +25,7 @@ def send_telemetry(event_name: str, user_id, additional_properties: dict = {}): host = "https://eu.i.posthog.com" ) - current_time = datetime.datetime.now() + current_time = datetime.now(timezone.utc) properties = { "time": current_time.strftime("%m/%d/%Y"), **additional_properties, @@ -86,30 +86,36 @@ async def register_graphistry(): graphistry.register(api = 3, username = config.graphistry_username, password = config.graphistry_password) -def prepare_edges(graph): - return nx.to_pandas_edgelist(graph) +def prepare_edges(graph, source, target, edge_key): + edge_list = [{ + source: str(edge[0]), + target: str(edge[1]), + edge_key: str(edge[2]), + } for edge in graph.edges] + + return pd.DataFrame(edge_list) def prepare_nodes(graph, include_size=False): nodes_data = [] for node in graph.nodes: node_info = graph.nodes[node] - description = node_info.get("layer_description", {}).get("layer", "Default Layer") if isinstance( - node_info.get("layer_description"), dict) else node_info.get("layer_description", "Default Layer") - # description = node_info['layer_description']['layer'] if isinstance(node_info.get('layer_description'), dict) and 'layer' in node_info['layer_description'] else node_info.get('layer_description', node) - # if isinstance(node_info.get('layer_description'), dict) and 'layer' in node_info.get('layer_description'): - # description = node_info['layer_description']['layer'] - # # Use 'layer_description' directly if it's not a dictionary, otherwise default to node ID - # else: - # description = node_info.get('layer_description', node) - - node_data = {"id": node, "layer_description": description} + + if not node_info: + continue + + node_data = { + "id": str(node), + "name": node_info["name"] if "name" in node_info else str(node), + } + if include_size: default_size = 10 # Default node size larger_size = 20 # Size for nodes with specific keywords in their ID - keywords = ["DOCUMENT", "User", "LAYER"] + keywords = ["DOCUMENT", "User"] node_size = larger_size if any(keyword in str(node) for keyword in keywords) else default_size node_data["size"] = node_size + nodes_data.append(node_data) return pd.DataFrame(nodes_data) @@ -129,28 +135,28 @@ async def render_graph(graph, include_nodes=False, include_color=False, include_ graph = networkx_graph - edges = prepare_edges(graph) - plotter = graphistry.edges(edges, "source", "target") + edges = prepare_edges(graph, "source_node", "target_node", "relationship_name") + plotter = graphistry.edges(edges, "source_node", "target_node") + plotter = plotter.bind(edge_label = "relationship_name") if include_nodes: - nodes = prepare_nodes(graph, include_size=include_size) + nodes = prepare_nodes(graph, include_size = include_size) plotter = plotter.nodes(nodes, "id") - if include_size: - plotter = plotter.bind(point_size="size") + plotter = plotter.bind(point_size = "size") if include_color: - unique_layers = nodes["layer_description"].unique() - color_palette = generate_color_palette(unique_layers) - plotter = plotter.encode_point_color("layer_description", categorical_mapping=color_palette, - default_mapping="silver") + pass + # unique_layers = nodes["layer_description"].unique() + # color_palette = generate_color_palette(unique_layers) + # plotter = plotter.encode_point_color("layer_description", categorical_mapping=color_palette, + # default_mapping="silver") if include_labels: - plotter = plotter.bind(point_label = "layer_description") - + plotter = plotter.bind(point_label = "name") # Visualization diff --git a/cognee/tasks/__init__.py b/cognee/tasks/__init__.py deleted file mode 100644 index e19b49d8d..000000000 --- a/cognee/tasks/__init__.py +++ /dev/null @@ -1,10 +0,0 @@ -from .summarization.summarize_text import summarize_text -from .chunk_naive_llm_classifier.chunk_naive_llm_classifier import chunk_naive_llm_classifier -from .chunk_remove_disconnected.chunk_remove_disconnected import chunk_remove_disconnected -from .chunk_update_check.chunk_update_check import chunk_update_check -from .save_chunks_to_store.save_chunks_to_store import save_chunks_to_store -from .source_documents_to_chunks.source_documents_to_chunks import source_documents_to_chunks -from .infer_data_ontology.infer_data_ontology import infer_data_ontology -from .check_permissions_on_documents.check_permissions_on_documents import check_permissions_on_documents -from .classify_documents.classify_documents import classify_documents -from .graph.chunks_into_graph import chunks_into_graph diff --git a/cognee/tasks/chunk_naive_llm_classifier/chunk_naive_llm_classifier.py b/cognee/tasks/chunk_naive_llm_classifier/chunk_naive_llm_classifier.py index 83b495450..3a9d957d0 100644 --- a/cognee/tasks/chunk_naive_llm_classifier/chunk_naive_llm_classifier.py +++ b/cognee/tasks/chunk_naive_llm_classifier/chunk_naive_llm_classifier.py @@ -5,7 +5,7 @@ from cognee.infrastructure.databases.graph import get_graph_engine from cognee.infrastructure.databases.vector import get_vector_engine, DataPoint from cognee.modules.data.extraction.extract_categories import extract_categories -from cognee.modules.chunking import DocumentChunk +from cognee.modules.chunking.models.DocumentChunk import DocumentChunk async def chunk_naive_llm_classifier(data_chunks: list[DocumentChunk], classification_model: Type[BaseModel]): @@ -66,7 +66,7 @@ class Keyword(BaseModel): "chunk_id": str(data_chunk.chunk_id), "document_id": str(data_chunk.document_id), }), - embed_field="text", + index_fields=["text"], ) ) @@ -105,7 +105,7 @@ class Keyword(BaseModel): "chunk_id": str(data_chunk.chunk_id), "document_id": str(data_chunk.document_id), }), - embed_field="text", + index_fields=["text"], ) ) diff --git a/cognee/tasks/chunk_remove_disconnected/__init__.py b/cognee/tasks/chunk_remove_disconnected/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/tasks/chunk_translate/__init__.py b/cognee/tasks/chunk_translate/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/tasks/chunk_translate/translate_chunk.py b/cognee/tasks/chunk_translate/translate_chunk.py deleted file mode 100644 index 7a7f15807..000000000 --- a/cognee/tasks/chunk_translate/translate_chunk.py +++ /dev/null @@ -1,39 +0,0 @@ - -import logging - -from cognee.base_config import get_base_config - -BaseConfig = get_base_config() - -async def translate_text(data, source_language:str='sr', target_language:str='en', region_name='eu-west-1'): - """ - Translate text from source language to target language using AWS Translate. - Parameters: - data (str): The text to be translated. - source_language (str): The source language code (e.g., 'sr' for Serbian). ISO 639-2 Code https://www.loc.gov/standards/iso639-2/php/code_list.php - target_language (str): The target language code (e.g., 'en' for English). ISO 639-2 Code https://www.loc.gov/standards/iso639-2/php/code_list.php - region_name (str): AWS region name. - Returns: - str: Translated text or an error message. - """ - import boto3 - from botocore.exceptions import BotoCoreError, ClientError - - if not data: - yield "No text provided for translation." - - if not source_language or not target_language: - yield "Both source and target language codes are required." - - try: - translate = boto3.client(service_name='translate', region_name=region_name, use_ssl=True) - result = translate.translate_text(Text=data, SourceLanguageCode=source_language, TargetLanguageCode=target_language) - yield result.get('TranslatedText', 'No translation found.') - - except BotoCoreError as e: - logging.info(f"BotoCoreError occurred: {e}") - yield "Error with AWS Translate service configuration or request." - - except ClientError as e: - logging.info(f"ClientError occurred: {e}") - yield "Error with AWS client or network issue." \ No newline at end of file diff --git a/cognee/tasks/chunk_update_check/__init__.py b/cognee/tasks/chunk_update_check/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/tasks/chunk_update_check/chunk_update_check.py b/cognee/tasks/chunk_update_check/chunk_update_check.py deleted file mode 100644 index 1c1a534d0..000000000 --- a/cognee/tasks/chunk_update_check/chunk_update_check.py +++ /dev/null @@ -1,26 +0,0 @@ -from cognee.infrastructure.databases.vector import get_vector_engine -from cognee.modules.chunking import DocumentChunk - - -async def chunk_update_check(data_chunks: list[DocumentChunk], collection_name: str) -> list[DocumentChunk]: - vector_engine = get_vector_engine() - - if not await vector_engine.has_collection(collection_name): - # If collection doesn't exist, all data_chunks are new - return data_chunks - - existing_chunks = await vector_engine.retrieve( - collection_name, - [str(chunk.chunk_id) for chunk in data_chunks], - ) - - existing_chunks_map = {str(chunk.id): chunk.payload for chunk in existing_chunks} - - affected_data_chunks = [] - - for chunk in data_chunks: - if chunk.chunk_id not in existing_chunks_map or \ - chunk.text != existing_chunks_map[chunk.chunk_id]["text"]: - affected_data_chunks.append(chunk) - - return affected_data_chunks diff --git a/cognee/tasks/chunking/__init__.py b/cognee/tasks/chunks/__init__.py similarity index 72% rename from cognee/tasks/chunking/__init__.py rename to cognee/tasks/chunks/__init__.py index 6c6728d58..e92658562 100644 --- a/cognee/tasks/chunking/__init__.py +++ b/cognee/tasks/chunks/__init__.py @@ -2,3 +2,4 @@ from .chunk_by_word import chunk_by_word from .chunk_by_sentence import chunk_by_sentence from .chunk_by_paragraph import chunk_by_paragraph +from .remove_disconnected_chunks import remove_disconnected_chunks diff --git a/cognee/tasks/chunking/__tests__/chunk_by_paragraph.test.py b/cognee/tasks/chunks/__tests__/chunk_by_paragraph.test.py similarity index 97% rename from cognee/tasks/chunking/__tests__/chunk_by_paragraph.test.py rename to cognee/tasks/chunks/__tests__/chunk_by_paragraph.test.py index cecea4812..b63be0eb7 100644 --- a/cognee/tasks/chunking/__tests__/chunk_by_paragraph.test.py +++ b/cognee/tasks/chunks/__tests__/chunk_by_paragraph.test.py @@ -1,4 +1,4 @@ -from cognee.tasks.chunking import chunk_by_paragraph +from cognee.tasks.chunks import chunk_by_paragraph if __name__ == "__main__": def test_chunking_on_whole_text(): diff --git a/cognee/tasks/chunking/chunk_by_paragraph.py b/cognee/tasks/chunks/chunk_by_paragraph.py similarity index 100% rename from cognee/tasks/chunking/chunk_by_paragraph.py rename to cognee/tasks/chunks/chunk_by_paragraph.py diff --git a/cognee/tasks/chunking/chunk_by_sentence.py b/cognee/tasks/chunks/chunk_by_sentence.py similarity index 100% rename from cognee/tasks/chunking/chunk_by_sentence.py rename to cognee/tasks/chunks/chunk_by_sentence.py diff --git a/cognee/tasks/chunking/chunk_by_word.py b/cognee/tasks/chunks/chunk_by_word.py similarity index 100% rename from cognee/tasks/chunking/chunk_by_word.py rename to cognee/tasks/chunks/chunk_by_word.py diff --git a/cognee/tasks/chunking/query_chunks.py b/cognee/tasks/chunks/query_chunks.py similarity index 83% rename from cognee/tasks/chunking/query_chunks.py rename to cognee/tasks/chunks/query_chunks.py index b19a560c9..93f32a640 100644 --- a/cognee/tasks/chunking/query_chunks.py +++ b/cognee/tasks/chunks/query_chunks.py @@ -10,7 +10,7 @@ async def query_chunks(query: str) -> list[dict]: """ vector_engine = get_vector_engine() - found_chunks = await vector_engine.search("chunks", query, limit = 5) + found_chunks = await vector_engine.search("DocumentChunk_text", query, limit = 5) chunks = [result.payload for result in found_chunks] diff --git a/cognee/tasks/chunk_remove_disconnected/chunk_remove_disconnected.py b/cognee/tasks/chunks/remove_disconnected_chunks.py similarity index 84% rename from cognee/tasks/chunk_remove_disconnected/chunk_remove_disconnected.py rename to cognee/tasks/chunks/remove_disconnected_chunks.py index 0c39ed5d1..4a36a33ec 100644 --- a/cognee/tasks/chunk_remove_disconnected/chunk_remove_disconnected.py +++ b/cognee/tasks/chunks/remove_disconnected_chunks.py @@ -1,7 +1,7 @@ from cognee.infrastructure.databases.graph import get_graph_engine -from cognee.modules.chunking import DocumentChunk +from cognee.modules.chunking.models.DocumentChunk import DocumentChunk -async def chunk_remove_disconnected(data_chunks: list[DocumentChunk]) -> list[DocumentChunk]: +async def remove_disconnected_chunks(data_chunks: list[DocumentChunk]) -> list[DocumentChunk]: graph_engine = await get_graph_engine() document_ids = set((data_chunk.document_id for data_chunk in data_chunks)) diff --git a/cognee/tasks/classify_documents/classify_documents.py b/cognee/tasks/classify_documents/classify_documents.py deleted file mode 100644 index 0c71ecc8a..000000000 --- a/cognee/tasks/classify_documents/classify_documents.py +++ /dev/null @@ -1,13 +0,0 @@ -from cognee.modules.data.models import Data -from cognee.modules.data.processing.document_types import Document, PdfDocument, AudioDocument, ImageDocument, TextDocument - -def classify_documents(data_documents: list[Data]) -> list[Document]: - documents = [ - PdfDocument(id = data_item.id, title=f"{data_item.name}.{data_item.extension}", raw_data_location=data_item.raw_data_location) if data_item.extension == "pdf" else - AudioDocument(id = data_item.id, title=f"{data_item.name}.{data_item.extension}", raw_data_location=data_item.raw_data_location) if data_item.extension == "audio" else - ImageDocument(id = data_item.id, title=f"{data_item.name}.{data_item.extension}", raw_data_location=data_item.raw_data_location) if data_item.extension == "image" else - TextDocument(id = data_item.id, title=f"{data_item.name}.{data_item.extension}", raw_data_location=data_item.raw_data_location) - for data_item in data_documents - ] - - return documents diff --git a/cognee/tasks/document_language_detection/__init__.py b/cognee/tasks/document_language_detection/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/tasks/documents/__init__.py b/cognee/tasks/documents/__init__.py new file mode 100644 index 000000000..248bb04df --- /dev/null +++ b/cognee/tasks/documents/__init__.py @@ -0,0 +1,3 @@ +from .classify_documents import classify_documents +from .extract_chunks_from_documents import extract_chunks_from_documents +from .check_permissions_on_documents import check_permissions_on_documents diff --git a/cognee/tasks/check_permissions_on_documents/check_permissions_on_documents.py b/cognee/tasks/documents/check_permissions_on_documents.py similarity index 100% rename from cognee/tasks/check_permissions_on_documents/check_permissions_on_documents.py rename to cognee/tasks/documents/check_permissions_on_documents.py diff --git a/cognee/tasks/documents/classify_documents.py b/cognee/tasks/documents/classify_documents.py new file mode 100644 index 000000000..64ed808d6 --- /dev/null +++ b/cognee/tasks/documents/classify_documents.py @@ -0,0 +1,13 @@ +from cognee.modules.data.models import Data +from cognee.modules.data.processing.document_types import Document, PdfDocument, AudioDocument, ImageDocument, TextDocument + +def classify_documents(data_documents: list[Data]) -> list[Document]: + documents = [ + PdfDocument(id = data_item.id, name=f"{data_item.name}.{data_item.extension}", raw_data_location=data_item.raw_data_location) if data_item.extension == "pdf" else + AudioDocument(id = data_item.id, name=f"{data_item.name}.{data_item.extension}", raw_data_location=data_item.raw_data_location) if data_item.extension == "audio" else + ImageDocument(id = data_item.id, name=f"{data_item.name}.{data_item.extension}", raw_data_location=data_item.raw_data_location) if data_item.extension == "image" else + TextDocument(id = data_item.id, name=f"{data_item.name}.{data_item.extension}", raw_data_location=data_item.raw_data_location) + for data_item in data_documents + ] + + return documents diff --git a/cognee/tasks/documents/extract_chunks_from_documents.py b/cognee/tasks/documents/extract_chunks_from_documents.py new file mode 100644 index 000000000..ec19a786d --- /dev/null +++ b/cognee/tasks/documents/extract_chunks_from_documents.py @@ -0,0 +1,7 @@ +from cognee.modules.data.processing.document_types.Document import Document + + +async def extract_chunks_from_documents(documents: list[Document], chunk_size: int = 1024): + for document in documents: + for document_chunk in document.read(chunk_size = chunk_size): + yield document_chunk diff --git a/cognee/tasks/graph/__init__.py b/cognee/tasks/graph/__init__.py index f9c39e4ce..94dc82f20 100644 --- a/cognee/tasks/graph/__init__.py +++ b/cognee/tasks/graph/__init__.py @@ -1,2 +1,2 @@ -from .chunks_into_graph import chunks_into_graph +from .extract_graph_from_data import extract_graph_from_data from .query_graph_connections import query_graph_connections diff --git a/cognee/tasks/graph/chunks_into_graph.py b/cognee/tasks/graph/chunks_into_graph.py deleted file mode 100644 index 7ba22e842..000000000 --- a/cognee/tasks/graph/chunks_into_graph.py +++ /dev/null @@ -1,213 +0,0 @@ -import json -import asyncio -from uuid import uuid5, NAMESPACE_OID -from datetime import datetime, timezone -from typing import Type -from pydantic import BaseModel -from cognee.infrastructure.databases.graph import get_graph_engine -from cognee.infrastructure.databases.vector import DataPoint, get_vector_engine -from cognee.modules.data.extraction.knowledge_graph.extract_content_graph import extract_content_graph -from cognee.modules.chunking import DocumentChunk -from cognee.modules.graph.utils import generate_node_id, generate_node_name - - -class EntityNode(BaseModel): - uuid: str - name: str - type: str - description: str - created_at: datetime - updated_at: datetime - -async def chunks_into_graph(data_chunks: list[DocumentChunk], graph_model: Type[BaseModel], collection_name: str): - chunk_graphs = await asyncio.gather( - *[extract_content_graph(chunk.text, graph_model) for chunk in data_chunks] - ) - - vector_engine = get_vector_engine() - graph_engine = await get_graph_engine() - - has_collection = await vector_engine.has_collection(collection_name) - - if not has_collection: - await vector_engine.create_collection(collection_name, payload_schema = EntityNode) - - processed_nodes = {} - type_node_edges = [] - entity_node_edges = [] - type_entity_edges = [] - - for (chunk_index, chunk) in enumerate(data_chunks): - chunk_graph = chunk_graphs[chunk_index] - for node in chunk_graph.nodes: - type_node_id = generate_node_id(node.type) - entity_node_id = generate_node_id(node.id) - - if type_node_id not in processed_nodes: - type_node_edges.append((str(chunk.chunk_id), type_node_id, "contains_entity_type")) - processed_nodes[type_node_id] = True - - if entity_node_id not in processed_nodes: - entity_node_edges.append((str(chunk.chunk_id), entity_node_id, "contains_entity")) - type_entity_edges.append((entity_node_id, type_node_id, "is_entity_type")) - processed_nodes[entity_node_id] = True - - graph_node_edges = [ - (edge.target_node_id, edge.source_node_id, edge.relationship_name) \ - for edge in chunk_graph.edges - ] - - existing_edges = await graph_engine.has_edges([ - *type_node_edges, - *entity_node_edges, - *type_entity_edges, - *graph_node_edges, - ]) - - existing_edges_map = {} - existing_nodes_map = {} - - for edge in existing_edges: - existing_edges_map[edge[0] + edge[1] + edge[2]] = True - existing_nodes_map[edge[0]] = True - - graph_nodes = [] - graph_edges = [] - data_points = [] - - for (chunk_index, chunk) in enumerate(data_chunks): - graph = chunk_graphs[chunk_index] - if graph is None: - continue - - for node in graph.nodes: - node_id = generate_node_id(node.id) - node_name = generate_node_name(node.name) - - type_node_id = generate_node_id(node.type) - type_node_name = generate_node_name(node.type) - - if node_id not in existing_nodes_map: - node_data = dict( - uuid = node_id, - name = node_name, - type = node_name, - description = node.description, - created_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), - updated_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), - ) - - graph_nodes.append(( - node_id, - dict( - **node_data, - properties = json.dumps(node.properties), - ) - )) - - data_points.append(DataPoint[EntityNode]( - id = str(uuid5(NAMESPACE_OID, node_id)), - payload = node_data, - embed_field = "name", - )) - - existing_nodes_map[node_id] = True - - edge_key = str(chunk.chunk_id) + node_id + "contains_entity" - - if edge_key not in existing_edges_map: - graph_edges.append(( - str(chunk.chunk_id), - node_id, - "contains_entity", - dict( - relationship_name = "contains_entity", - source_node_id = str(chunk.chunk_id), - target_node_id = node_id, - ), - )) - - # Add relationship between entity type and entity itself: "Jake is Person" - graph_edges.append(( - node_id, - type_node_id, - "is_entity_type", - dict( - relationship_name = "is_entity_type", - source_node_id = type_node_id, - target_node_id = node_id, - ), - )) - - existing_edges_map[edge_key] = True - - if type_node_id not in existing_nodes_map: - type_node_data = dict( - uuid = type_node_id, - name = type_node_name, - type = type_node_id, - description = type_node_name, - created_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), - updated_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), - ) - - graph_nodes.append((type_node_id, dict( - **type_node_data, - properties = json.dumps(node.properties) - ))) - - data_points.append(DataPoint[EntityNode]( - id = str(uuid5(NAMESPACE_OID, type_node_id)), - payload = type_node_data, - embed_field = "name", - )) - - existing_nodes_map[type_node_id] = True - - edge_key = str(chunk.chunk_id) + type_node_id + "contains_entity_type" - - if edge_key not in existing_edges_map: - graph_edges.append(( - str(chunk.chunk_id), - type_node_id, - "contains_entity_type", - dict( - relationship_name = "contains_entity_type", - source_node_id = str(chunk.chunk_id), - target_node_id = type_node_id, - ), - )) - - existing_edges_map[edge_key] = True - - # Add relationship that came from graphs. - for edge in graph.edges: - source_node_id = generate_node_id(edge.source_node_id) - target_node_id = generate_node_id(edge.target_node_id) - relationship_name = generate_node_name(edge.relationship_name) - edge_key = source_node_id + target_node_id + relationship_name - - if edge_key not in existing_edges_map: - graph_edges.append(( - generate_node_id(edge.source_node_id), - generate_node_id(edge.target_node_id), - edge.relationship_name, - dict( - relationship_name = generate_node_name(edge.relationship_name), - source_node_id = generate_node_id(edge.source_node_id), - target_node_id = generate_node_id(edge.target_node_id), - properties = json.dumps(edge.properties), - ), - )) - existing_edges_map[edge_key] = True - - if len(data_points) > 0: - await vector_engine.create_data_points(collection_name, data_points) - - if len(graph_nodes) > 0: - await graph_engine.add_nodes(graph_nodes) - - if len(graph_edges) > 0: - await graph_engine.add_edges(graph_edges) - - return data_chunks diff --git a/cognee/tasks/graph/extract_graph_from_data.py b/cognee/tasks/graph/extract_graph_from_data.py new file mode 100644 index 000000000..36cc3e2fc --- /dev/null +++ b/cognee/tasks/graph/extract_graph_from_data.py @@ -0,0 +1,121 @@ +import asyncio +from typing import Type +from pydantic import BaseModel +from cognee.infrastructure.databases.graph import get_graph_engine +from cognee.modules.data.extraction.knowledge_graph import extract_content_graph +from cognee.modules.chunking.models.DocumentChunk import DocumentChunk +from cognee.modules.engine.models import EntityType, Entity +from cognee.modules.engine.utils import generate_node_id, generate_node_name +from cognee.tasks.storage import add_data_points + +async def extract_graph_from_data(data_chunks: list[DocumentChunk], graph_model: Type[BaseModel]): + chunk_graphs = await asyncio.gather( + *[extract_content_graph(chunk.text, graph_model) for chunk in data_chunks] + ) + + processed_nodes = {} + type_node_edges = [] + entity_node_edges = [] + type_entity_edges = [] + + for (chunk_index, chunk) in enumerate(data_chunks): + chunk_graph = chunk_graphs[chunk_index] + for node in chunk_graph.nodes: + type_node_id = generate_node_id(node.type) + entity_node_id = generate_node_id(node.id) + + if str(type_node_id) not in processed_nodes: + type_node_edges.append((str(chunk.id), str(type_node_id), "exists_in")) + processed_nodes[str(type_node_id)] = True + + if str(entity_node_id) not in processed_nodes: + entity_node_edges.append((str(chunk.id), entity_node_id, "mentioned_in")) + type_entity_edges.append((str(entity_node_id), str(type_node_id), "is_a")) + processed_nodes[str(entity_node_id)] = True + + graph_node_edges = [ + (edge.target_node_id, edge.source_node_id, edge.relationship_name) \ + for edge in chunk_graph.edges + ] + + graph_engine = await get_graph_engine() + + existing_edges = await graph_engine.has_edges([ + *type_node_edges, + *entity_node_edges, + *type_entity_edges, + *graph_node_edges, + ]) + + existing_edges_map = {} + + for edge in existing_edges: + existing_edges_map[edge[0] + edge[1] + edge[2]] = True + + added_nodes_map = {} + graph_edges = [] + data_points = [] + + for (chunk_index, chunk) in enumerate(data_chunks): + graph = chunk_graphs[chunk_index] + if graph is None: + continue + + for node in graph.nodes: + node_id = generate_node_id(node.id) + node_name = generate_node_name(node.name) + + type_node_id = generate_node_id(node.type) + type_node_name = generate_node_name(node.type) + + if f"{str(type_node_id)}_type" not in added_nodes_map: + type_node = EntityType( + id = type_node_id, + name = type_node_name, + type = type_node_name, + description = type_node_name, + exists_in = chunk, + ) + added_nodes_map[f"{str(type_node_id)}_type"] = type_node + else: + type_node = added_nodes_map[f"{str(type_node_id)}_type"] + + if f"{str(node_id)}_entity" not in added_nodes_map: + entity_node = Entity( + id = node_id, + name = node_name, + is_a = type_node, + description = node.description, + mentioned_in = chunk, + ) + data_points.append(entity_node) + added_nodes_map[f"{str(node_id)}_entity"] = entity_node + + # Add relationship that came from graphs. + for edge in graph.edges: + source_node_id = generate_node_id(edge.source_node_id) + target_node_id = generate_node_id(edge.target_node_id) + relationship_name = generate_node_name(edge.relationship_name) + + edge_key = str(source_node_id) + str(target_node_id) + relationship_name + + if edge_key not in existing_edges_map: + graph_edges.append(( + source_node_id, + target_node_id, + edge.relationship_name, + dict( + relationship_name = generate_node_name(edge.relationship_name), + source_node_id = source_node_id, + target_node_id = target_node_id, + ), + )) + existing_edges_map[edge_key] = True + + if len(data_points) > 0: + await add_data_points(data_points) + + if len(graph_edges) > 0: + await graph_engine.add_edges(graph_edges) + + return data_chunks diff --git a/cognee/tasks/infer_data_ontology/infer_data_ontology.py b/cognee/tasks/graph/infer_data_ontology.py similarity index 95% rename from cognee/tasks/infer_data_ontology/infer_data_ontology.py rename to cognee/tasks/graph/infer_data_ontology.py index 6415eb005..58fddce84 100644 --- a/cognee/tasks/infer_data_ontology/infer_data_ontology.py +++ b/cognee/tasks/graph/infer_data_ontology.py @@ -20,7 +20,7 @@ from cognee.modules.data.extraction.knowledge_graph.add_model_class_to_graph import add_model_class_to_graph from cognee.tasks.infer_data_ontology.models.models import NodeModel, GraphOntology from cognee.shared.data_models import KnowledgeGraph -from cognee.modules.graph.utils import generate_node_id, generate_node_name +from cognee.modules.engine.utils import generate_node_id, generate_node_name logger = logging.getLogger("task:infer_data_ontology") @@ -116,7 +116,6 @@ async def add_graph_ontology(self, file_path: str = None, documents: list = None name = generate_node_name(node.name), type = generate_node_id(node.id), description = node.description, - created_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), updated_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), )) for node in ontology.nodes]) @@ -128,7 +127,6 @@ async def add_graph_ontology(self, file_path: str = None, documents: list = None source_node_id = generate_node_id(edge.source_id), target_node_id = generate_node_id(edge.target_id), relationship_name = edge.relationship_type, - created_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), updated_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), ), ) for edge in ontology.edges) @@ -160,7 +158,6 @@ async def add_graph_ontology(self, file_path: str = None, documents: list = None "source_node_id": row["relationship_source"], "target_node_id": row["relationship_target"], "relationship_name": row["relationship_type"], - "created_at": datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), "updated_at": datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), }, ) diff --git a/cognee/tasks/graph/query_graph_connections.py b/cognee/tasks/graph/query_graph_connections.py index 3f1b52264..36d535147 100644 --- a/cognee/tasks/graph/query_graph_connections.py +++ b/cognee/tasks/graph/query_graph_connections.py @@ -27,8 +27,8 @@ async def query_graph_connections(query: str, exploration_levels = 1) -> list[(s else: vector_engine = get_vector_engine() results = await asyncio.gather( - vector_engine.search("entities", query_text = query, limit = 5), - vector_engine.search("classification", query_text = query, limit = 5), + vector_engine.search("Entity_text", query_text = query, limit = 5), + vector_engine.search("EntityType_text", query_text = query, limit = 5), ) results = [*results[0], *results[1]] relevant_results = [result for result in results if result.score < 0.5][:5] diff --git a/cognee/tasks/infer_data_ontology/__init__.py b/cognee/tasks/infer_data_ontology/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/tasks/infer_data_ontology/models/models.py b/cognee/tasks/infer_data_ontology/models/models.py deleted file mode 100644 index b62bf3ac0..000000000 --- a/cognee/tasks/infer_data_ontology/models/models.py +++ /dev/null @@ -1,31 +0,0 @@ -from typing import Any, Dict, List, Optional, Union -from pydantic import BaseModel, Field - -class RelationshipModel(BaseModel): - type: str - source: str - target: str - -class NodeModel(BaseModel): - node_id: str - name: str - default_relationship: Optional[RelationshipModel] = None - children: List[Union[Dict[str, Any], "NodeModel"]] = Field(default_factory=list) - -NodeModel.update_forward_refs() - - -class OntologyNode(BaseModel): - id: str = Field(..., description = "Unique identifier made from node name.") - name: str - description: str - -class OntologyEdge(BaseModel): - id: str - source_id: str - target_id: str - relationship_type: str - -class GraphOntology(BaseModel): - nodes: list[OntologyNode] - edges: list[OntologyEdge] diff --git a/cognee/tasks/save_chunks_to_store/__init__.py b/cognee/tasks/save_chunks_to_store/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/tasks/save_chunks_to_store/save_chunks_to_store.py b/cognee/tasks/save_chunks_to_store/save_chunks_to_store.py deleted file mode 100644 index 435fd0208..000000000 --- a/cognee/tasks/save_chunks_to_store/save_chunks_to_store.py +++ /dev/null @@ -1,96 +0,0 @@ -from cognee.infrastructure.databases.vector import DataPoint, get_vector_engine -from cognee.infrastructure.databases.graph import get_graph_engine -from cognee.modules.chunking import DocumentChunk - -async def save_chunks_to_store(data_chunks: list[DocumentChunk], collection_name: str): - if len(data_chunks) == 0: - return data_chunks - - vector_engine = get_vector_engine() - graph_engine = await get_graph_engine() - - # Remove and unlink existing chunks - if await vector_engine.has_collection(collection_name): - existing_chunks = [DocumentChunk.parse_obj(chunk.payload) for chunk in (await vector_engine.retrieve( - collection_name, - [str(chunk.chunk_id) for chunk in data_chunks], - ))] - - if len(existing_chunks) > 0: - await vector_engine.delete_data_points(collection_name, [str(chunk.chunk_id) for chunk in existing_chunks]) - - await graph_engine.remove_connection_to_successors_of([chunk.chunk_id for chunk in existing_chunks], "next_chunk") - await graph_engine.remove_connection_to_predecessors_of([chunk.chunk_id for chunk in existing_chunks], "has_chunk") - else: - await vector_engine.create_collection(collection_name, payload_schema = DocumentChunk) - - # Add to vector storage - await vector_engine.create_data_points( - collection_name, - [ - DataPoint[DocumentChunk]( - id = str(chunk.chunk_id), - payload = chunk, - embed_field = "text", - ) for chunk in data_chunks - ], - ) - - # Add to graph storage - chunk_nodes = [] - chunk_edges = [] - - for chunk in data_chunks: - chunk_nodes.append(( - str(chunk.chunk_id), - dict( - uuid = str(chunk.chunk_id), - chunk_id = str(chunk.chunk_id), - document_id = str(chunk.document_id), - word_count = chunk.word_count, - chunk_index = chunk.chunk_index, - cut_type = chunk.cut_type, - ) - )) - - chunk_edges.append(( - str(chunk.document_id), - str(chunk.chunk_id), - "has_chunk", - dict( - relationship_name = "has_chunk", - source_node_id = str(chunk.document_id), - target_node_id = str(chunk.chunk_id), - ), - )) - - previous_chunk_id = get_previous_chunk_id(data_chunks, chunk) - - if previous_chunk_id is not None: - chunk_edges.append(( - str(previous_chunk_id), - str(chunk.chunk_id), - "next_chunk", - dict( - relationship_name = "next_chunk", - source_node_id = str(previous_chunk_id), - target_node_id = str(chunk.chunk_id), - ), - )) - - await graph_engine.add_nodes(chunk_nodes) - await graph_engine.add_edges(chunk_edges) - - return data_chunks - - -def get_previous_chunk_id(document_chunks: list[DocumentChunk], current_chunk: DocumentChunk) -> DocumentChunk: - if current_chunk.chunk_index == 0: - return current_chunk.document_id - - for chunk in document_chunks: - if str(chunk.document_id) == str(current_chunk.document_id) \ - and chunk.chunk_index == current_chunk.chunk_index - 1: - return chunk.chunk_id - - return None diff --git a/cognee/tasks/source_documents_to_chunks/__init__.py b/cognee/tasks/source_documents_to_chunks/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/cognee/tasks/source_documents_to_chunks/source_documents_to_chunks.py b/cognee/tasks/source_documents_to_chunks/source_documents_to_chunks.py deleted file mode 100644 index c3cdcb0e2..000000000 --- a/cognee/tasks/source_documents_to_chunks/source_documents_to_chunks.py +++ /dev/null @@ -1,44 +0,0 @@ -from cognee.infrastructure.databases.graph import get_graph_engine -from cognee.modules.data.processing.document_types.Document import Document - - -async def source_documents_to_chunks(documents: list[Document], chunk_size: int = 1024, parent_node_id: str = None): - graph_engine = await get_graph_engine() - - if parent_node_id is None: - documents, parent_node_id = documents - - - nodes = [] - edges = [] - - if parent_node_id and await graph_engine.extract_node(parent_node_id) is None: - nodes.append((parent_node_id, {})) - - document_nodes = await graph_engine.extract_nodes([str(document.id) for document in documents]) - - for (document_index, document) in enumerate(documents): - document_node = document_nodes[document_index] if document_index in document_nodes else None - - if document_node is None: - nodes.append((str(document.id), document.to_dict())) - - if parent_node_id: - edges.append(( - parent_node_id, - str(document.id), - "has_document", - dict( - relationship_name = "has_document", - source_node_id = parent_node_id, - target_node_id = str(document.id), - ), - )) - - if len(nodes) > 0: - await graph_engine.add_nodes(nodes) - await graph_engine.add_edges(edges) - - for document in documents: - for document_chunk in document.read(chunk_size = chunk_size): - yield document_chunk diff --git a/cognee/tasks/storage/__init__.py b/cognee/tasks/storage/__init__.py new file mode 100644 index 000000000..156ae6965 --- /dev/null +++ b/cognee/tasks/storage/__init__.py @@ -0,0 +1,2 @@ +from .add_data_points import add_data_points +from .index_data_points import index_data_points diff --git a/cognee/tasks/storage/add_data_points.py b/cognee/tasks/storage/add_data_points.py new file mode 100644 index 000000000..b803c9dfd --- /dev/null +++ b/cognee/tasks/storage/add_data_points.py @@ -0,0 +1,24 @@ +from cognee.infrastructure.engine import DataPoint +from cognee.infrastructure.databases.graph import get_graph_engine +from cognee.modules.graph.utils import get_graph_from_model +from .index_data_points import index_data_points + + +async def add_data_points(data_points: list[DataPoint]): + nodes = [] + edges = [] + + for data_point in data_points: + property_nodes, property_edges = get_graph_from_model(data_point) + + nodes.extend(property_nodes) + edges.extend(property_edges) + + graph_engine = await get_graph_engine() + + await index_data_points(data_points) + + await graph_engine.add_nodes(nodes) + await graph_engine.add_edges(edges) + + return data_points diff --git a/cognee/tasks/storage/index_data_points.py b/cognee/tasks/storage/index_data_points.py new file mode 100644 index 000000000..a28335e24 --- /dev/null +++ b/cognee/tasks/storage/index_data_points.py @@ -0,0 +1,81 @@ +from cognee.infrastructure.databases.vector import get_vector_engine +from cognee.infrastructure.engine import DataPoint + +async def index_data_points(data_points: list[DataPoint]): + created_indexes = {} + index_points = {} + + vector_engine = get_vector_engine() + + flat_data_points: list[DataPoint] = [] + + for data_point in data_points: + flat_data_points.extend(get_data_points_from_model(data_point)) + + for data_point in flat_data_points: + data_point_type = type(data_point) + + for field_name in data_point._metadata["index_fields"]: + index_name = f"{data_point_type.__name__}.{field_name}" + + if index_name not in created_indexes: + await vector_engine.create_vector_index(data_point_type.__name__, field_name) + created_indexes[index_name] = True + + if index_name not in index_points: + index_points[index_name] = [] + + indexed_data_point = data_point.model_copy() + indexed_data_point._metadata["index_fields"] = [field_name] + index_points[index_name].append(indexed_data_point) + + for index_name, indexable_points in index_points.items(): + index_name, field_name = index_name.split(".") + await vector_engine.index_data_points(index_name, field_name, indexable_points) + + return data_points + +def get_data_points_from_model(data_point: DataPoint, added_data_points = {}) -> list[DataPoint]: + data_points = [] + + for field_name, field_value in data_point: + if isinstance(field_value, DataPoint): + new_data_points = get_data_points_from_model(field_value, added_data_points) + + for new_point in new_data_points: + if str(new_point.id) not in added_data_points: + added_data_points[str(new_point.id)] = True + data_points.append(new_point) + + if isinstance(field_value, list) and isinstance(field_value[0], DataPoint): + for field_value_item in field_value: + new_data_points = get_data_points_from_model(field_value_item, added_data_points) + + for new_point in new_data_points: + if str(new_point.id) not in added_data_points: + added_data_points[str(new_point.id)] = True + data_points.append(new_point) + + data_points.append(data_point) + + return data_points + + +if __name__ == "__main__": + class Car(DataPoint): + model: str + color: str + + class Person(DataPoint): + name: str + age: int + owns_car: list[Car] + + car1 = Car(model = "Tesla Model S", color = "Blue") + car2 = Car(model = "Toyota Camry", color = "Red") + person = Person(name = "John", age = 30, owns_car = [car1, car2]) + + data_points = get_data_points_from_model(person) + + print(data_points) + \ No newline at end of file diff --git a/cognee/tasks/storage/save_to_vector_storage.py b/cognee/tasks/storage/save_to_vector_storage.py deleted file mode 100644 index e77ae02c1..000000000 --- a/cognee/tasks/storage/save_to_vector_storage.py +++ /dev/null @@ -1,42 +0,0 @@ -from cognee.infrastructure.databases.vector import get_vector_engine, DataPoint - -async def save_to_vector_storage(data_chunks: list, collection_name: str, embed_field: str): - if len(data_chunks) == 0: - return data_chunks - - if not all(isinstance(chunk, type(data_chunks[0])) for chunk in data_chunks): - raise ValueError("All data chunks must be of the same type.") - - vector_engine = get_vector_engine() - - PayloadSchema = type(data_chunks[0]) - - await vector_engine.create_collection(collection_name, payload_schema = PayloadSchema) - - await vector_engine.create_data_points( - collection_name, - [ - DataPoint[PayloadSchema]( - id = str(chunk.id), - payload = parse_data(chunk, chunk_index), - embed_field = embed_field, - ) for (chunk_index, chunk) in enumerate(data_chunks) - ], - ) - - return data_chunks - -def parse_data(chunk, chunk_index: int) -> dict: - from uuid import UUID - - data = { - "chunk_index": chunk_index, - } - - for key, value in vars(chunk).items(): - if isinstance(value, UUID): - data[key] = str(value) - else: - data[key] = value - - return data diff --git a/cognee/tasks/summarization/models/TextSummary.py b/cognee/tasks/summarization/models/TextSummary.py index ed4471830..5e724cd63 100644 --- a/cognee/tasks/summarization/models/TextSummary.py +++ b/cognee/tasks/summarization/models/TextSummary.py @@ -1,5 +1,12 @@ -from pydantic import BaseModel +from cognee.infrastructure.engine import DataPoint +from cognee.modules.chunking.models.DocumentChunk import DocumentChunk +from cognee.modules.data.processing.document_types import Document -class TextSummary(BaseModel): +class TextSummary(DataPoint): text: str - chunk_id: str + chunk: DocumentChunk + + _metadata: dict = { + "index_fields": ["text"], + } + diff --git a/cognee/tasks/summarization/query_summaries.py b/cognee/tasks/summarization/query_summaries.py index 871e1b31b..896839143 100644 --- a/cognee/tasks/summarization/query_summaries.py +++ b/cognee/tasks/summarization/query_summaries.py @@ -10,7 +10,7 @@ async def query_summaries(query: str) -> list: """ vector_engine = get_vector_engine() - summaries_results = await vector_engine.search("summaries", query, limit = 5) + summaries_results = await vector_engine.search("TextSummary_text", query, limit = 5) summaries = [summary.payload for summary in summaries_results] diff --git a/cognee/tasks/summarization/summarize_text.py b/cognee/tasks/summarization/summarize_text.py index b52f07356..a1abacccf 100644 --- a/cognee/tasks/summarization/summarize_text.py +++ b/cognee/tasks/summarization/summarize_text.py @@ -1,14 +1,13 @@ - import asyncio from typing import Type +from uuid import uuid5 from pydantic import BaseModel -from cognee.infrastructure.databases.vector import get_vector_engine, DataPoint from cognee.modules.data.extraction.extract_summary import extract_summary -from cognee.modules.chunking import DocumentChunk +from cognee.modules.chunking.models.DocumentChunk import DocumentChunk +from cognee.tasks.storage import add_data_points from .models.TextSummary import TextSummary - -async def summarize_text(data_chunks: list[DocumentChunk], summarization_model: Type[BaseModel], collection_name: str = "summaries"): +async def summarize_text(data_chunks: list[DocumentChunk], summarization_model: Type[BaseModel]): if len(data_chunks) == 0: return data_chunks @@ -16,23 +15,14 @@ async def summarize_text(data_chunks: list[DocumentChunk], summarization_model: *[extract_summary(chunk.text, summarization_model) for chunk in data_chunks] ) - vector_engine = get_vector_engine() + summaries = [ + TextSummary( + id = uuid5(chunk.id, "summary"), + chunk = chunk, + text = chunk_summaries[chunk_index].summary, + ) for (chunk_index, chunk) in enumerate(data_chunks) + ] - await vector_engine.create_collection(collection_name, payload_schema=TextSummary) - - await vector_engine.create_data_points( - collection_name, - [ - DataPoint[TextSummary]( - id = str(chunk.chunk_id), - payload = dict( - chunk_id = str(chunk.chunk_id), - document_id = str(chunk.document_id), - text = chunk_summaries[chunk_index].summary, - ), - embed_field = "text", - ) for (chunk_index, chunk) in enumerate(data_chunks) - ], - ) + add_data_points(summaries) return data_chunks diff --git a/cognee/tests/test_library.py b/cognee/tests/test_library.py index 495339391..f20080a5c 100755 --- a/cognee/tests/test_library.py +++ b/cognee/tests/test_library.py @@ -32,7 +32,7 @@ async def main(): from cognee.infrastructure.databases.vector import get_vector_engine vector_engine = get_vector_engine() - random_node = (await vector_engine.search("entities", "AI"))[0] + random_node = (await vector_engine.search("Entity", "AI"))[0] random_node_name = random_node.payload["name"] search_results = await cognee.search(SearchType.INSIGHTS, query = random_node_name) diff --git a/cognee/tests/test_neo4j.py b/cognee/tests/test_neo4j.py index feff647c7..31bff65ff 100644 --- a/cognee/tests/test_neo4j.py +++ b/cognee/tests/test_neo4j.py @@ -36,7 +36,7 @@ async def main(): from cognee.infrastructure.databases.vector import get_vector_engine vector_engine = get_vector_engine() - random_node = (await vector_engine.search("entities", "AI"))[0] + random_node = (await vector_engine.search("Entity", "AI"))[0] random_node_name = random_node.payload["name"] search_results = await cognee.search(SearchType.INSIGHTS, query = random_node_name) diff --git a/cognee/tests/test_pgvector.py b/cognee/tests/test_pgvector.py index 02d292d67..b58b87516 100644 --- a/cognee/tests/test_pgvector.py +++ b/cognee/tests/test_pgvector.py @@ -65,7 +65,7 @@ async def main(): from cognee.infrastructure.databases.vector import get_vector_engine vector_engine = get_vector_engine() - random_node = (await vector_engine.search("entities", "AI"))[0] + random_node = (await vector_engine.search("Entity", "AI"))[0] random_node_name = random_node.payload["name"] search_results = await cognee.search(SearchType.INSIGHTS, query=random_node_name) diff --git a/cognee/tests/test_qdrant.py b/cognee/tests/test_qdrant.py index 2ea011eb5..9766938e2 100644 --- a/cognee/tests/test_qdrant.py +++ b/cognee/tests/test_qdrant.py @@ -37,7 +37,7 @@ async def main(): from cognee.infrastructure.databases.vector import get_vector_engine vector_engine = get_vector_engine() - random_node = (await vector_engine.search("entities", "AI"))[0] + random_node = (await vector_engine.search("Entity", "AI"))[0] random_node_name = random_node.payload["name"] search_results = await cognee.search(SearchType.INSIGHTS, query = random_node_name) diff --git a/cognee/tests/test_weaviate.py b/cognee/tests/test_weaviate.py index 7ad29a9af..175c9ecd1 100644 --- a/cognee/tests/test_weaviate.py +++ b/cognee/tests/test_weaviate.py @@ -35,7 +35,7 @@ async def main(): from cognee.infrastructure.databases.vector import get_vector_engine vector_engine = get_vector_engine() - random_node = (await vector_engine.search("entities", "AI"))[0] + random_node = (await vector_engine.search("Entity", "AI"))[0] random_node_name = random_node.payload["name"] search_results = await cognee.search(SearchType.INSIGHTS, query = random_node_name) diff --git a/examples/python/GraphModel.py b/examples/python/GraphModel.py deleted file mode 100644 index 01251fc20..000000000 --- a/examples/python/GraphModel.py +++ /dev/null @@ -1,62 +0,0 @@ - -from typing import Optional -from uuid import UUID -from datetime import datetime -from pydantic import BaseModel - - -async def add_data_points(collection_name: str, data_points: list): - pass - - - -class Summary(BaseModel): - id: UUID - text: str - chunk: "Chunk" - created_at: datetime - updated_at: Optional[datetime] - - vector_index = ["text"] - -class Chunk(BaseModel): - id: UUID - text: str - summary: Summary - document: "Document" - created_at: datetime - updated_at: Optional[datetime] - word_count: int - chunk_index: int - cut_type: str - - vector_index = ["text"] - -class Document(BaseModel): - id: UUID - chunks: list[Chunk] - created_at: datetime - updated_at: Optional[datetime] - -class EntityType(BaseModel): - id: UUID - name: str - description: str - created_at: datetime - updated_at: Optional[datetime] - - vector_index = ["name"] - -class Entity(BaseModel): - id: UUID - name: str - type: EntityType - description: str - chunks: list[Chunk] - created_at: datetime - updated_at: Optional[datetime] - - vector_index = ["name"] - -class OntologyModel(BaseModel): - chunks: list[Chunk] diff --git a/notebooks/cognee_demo.ipynb b/notebooks/cognee_demo.ipynb index c2c249538..396d7b980 100644 --- a/notebooks/cognee_demo.ipynb +++ b/notebooks/cognee_demo.ipynb @@ -1,908 +1,889 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "d35ac8ce-0f92-46f5-9ba4-a46970f0ce19", - "metadata": {}, - "source": [ - "# Cognee - Get Started" - ] - }, - { - "cell_type": "markdown", - "id": "bd981778-0c84-4542-8e6f-1a7712184873", - "metadata": { - "editable": true, - "slideshow": { - "slide_type": "" - }, - "tags": [] - }, - "source": [ - "## Let's talk about the problem first\n", - "\n", - "### Large Language Models (LLMs) have become powerful tools for generating text and answering questions, but they still have several limitations and challenges. Below is an overview of some of the biggest problems with the results they produce:\n", - "\n", - "### 1. Hallucinations and Misinformation\n", - "- Hallucinations: LLMs sometimes produce outputs that are factually incorrect or entirely fabricated. This phenomenon is known as \"hallucination.\" Even if an LLM seems confident, the information it provides might not be reliable.\n", - "- Misinformation: Misinformation can be subtle or glaring, ranging from minor inaccuracies to entirely fictitious events, sources, or data.\n", - "\n", - "### 2. Lack of Contextual Understanding\n", - "- LLMs can recognize and replicate patterns in language but don’t have true comprehension. This can lead to responses that are coherent but miss nuanced context or deeper meaning.\n", - "- They can misinterpret multi-turn conversations, leading to confusion in maintaining context over a long dialogue.\n", - "\n", - "### 3. Inconsistent Reliability\n", - "- Depending on the prompt, LLMs might produce inconsistent responses to similar questions or tasks. For example, the same query might result in conflicting answers when asked in slightly different ways.\n", - "- This inconsistency can undermine trust in the model's outputs, especially in professional or academic settings.\n", - "\n", - "### 4. Inability to Access Real-Time Information\n", - "- Most LLMs are trained on data up to a specific point and cannot access or generate information on current events or emerging trends unless updated. This can make them unsuitable for inquiries requiring up-to-date information.\n", - "- Real-time browsing capabilities can help, but they are not universally available.\n", - "\n", - "### 5. Lack of Personalization and Adaptability\n", - "- LLMs do not naturally adapt to individual preferences or learning styles unless explicitly programmed to do so. This limits their usefulness in providing personalized recommendations or support.\n", - "\n", - "### 6. Difficulty with Highly Technical or Niche Domains\n", - "- LLMs may struggle with highly specialized or technical topics where domain-specific knowledge is required.\n", - "- They can produce technically plausible but inaccurate or incomplete information, which can be misleading in areas like law, medicine, or scientific research.\n", - "\n", - "### 7. Ambiguity in Response Generation\n", - "- LLMs might not always specify their level of certainty, making it hard to gauge when they are speculating or providing less confident answers.\n", - "- They lack a mechanism to say “I don’t know,” which can lead to responses that are less useful or potentially misleading." - ] - }, - { - "cell_type": "markdown", - "id": "d8e606b1-94d3-43ce-bb4b-dbadff7f4ca6", - "metadata": {}, - "source": [ - "## The next solution was RAGs \n", - "\n", - "#### RAGs (Retrieval Augmented Generation) are systems that connect to a vector store and search for similar data so they can enrich LLM response." - ] - }, - { - "attachments": { - "df72c97a-cb3b-4e3c-bd68-d7bc986353c6.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABGcAAAISCAYAAABh6KIgAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAeGVYSWZNTQAqAAAACAAFARIAAwAAAAEAAQAAARoABQAAAAEAAABKARsABQAAAAEAAABSASgAAwAAAAEAAgAAh2kABAAAAAEAAABaAAAAAAAAAEgAAAABAAAASAAAAAEAAqACAAQAAAABAAAEZ6ADAAQAAAABAAACEgAAAADwIQMWAAAgAElEQVR4nOzdd5wV1dnA8d+ZuXc7uwtLh4VdEKQIrAVQqQZQE1RAjf21J7HGEmNiYowmeVPeJGqM0RQLYOyFbkwURMWCgAIiIG0XEFjKwvZ675z3jyl35t5dJCbCLveZz4d7Z+aU73nOXLacPXNGaa01zWwaUHEntIqd0xqU8uf1lXB3NaA0GhWsK7F28cUXX3zxxRdffPHFF1988cUXX/yk9I3YgQ4kqvgxGxVXndL+pCDmpim7EV6KW0SruBPiiy+++OKLL7744osvvvjiiy+++MnpK21pHVTtIl5xrVHOEJH/fPyWkBZ3ormyOtZ+8cUXX3zxxRdffPHFF1988cUXX/yk9I3EGv15Yw2DhDEcN3tCGcAZHNJeniDjc8QXX3zxxRdffPHFF1988cUXX3zxk9hX2t4CjQhUp8Ed3olLIXY2eCZh086LaiYNEF988cUXX3zxxRdffPHFF1988cVPVl9prXV8A1R8Kw5hCxT5gvIJyeKLL7744osvvvjiiy+++OKLL774Seob2sulnALa3vUUHajRrTgI2VN+AkGpYCb/gjcKd4qQc1Z88cUXX3zxxRdffPHFF1988cUXP0l9pbWlnVPu4E3C1sLpQ94C5f0B+FLFF1988cUXX3zxxRdffPHFF1988ZPRN9yjlhpmp2mvHt18lkNomG+UKOCIL7744osvvvjiiy+++OKLL7744ievryytdbNt0trJ3HyLDxJLMILmK7cTNGjVUhbxxRdffPHFF1988cUXX3zxxRdf/KPfN5S/pkClCgikxjK47Q4m+sraGdxRn4RsboKKE8QXX3zxxRdffPHFF1988cUXX3zxk8yPzZzRdmbv/SCb9prdfMbElPgzsWNvT3zxxRdffPHFF1988cUXX3zxxRc/CX3DK+LueEsOa+efs+/bVU4B91Qsv/2e2GQVl0s5O7684osvvvjiiy+++OKLL7744osvvvhJ6BtupsSKVGBfq7jkQPN0XDnnrI6la3+qxqkv1kjxxRdffPHFF1988cUXX3zxxRdf/GT0ldZ2FV6V2leDvyUH2dycWoNSsfeEDF9QXnzxxRdffPHFF1988cUXX3zxxRc/2XyDuHK6mYZp3yveaFBsc3O6DQo0DO1l0M5LfA3iiy+++OKLL7744osvvvjiiy+++MnqK639mq9R3m5iQ90jb6QIDvqc8Pg6Wt7EF1988cUXX3zxxRdffPHFF1988ZPLjxucicMPWqWd+u+xsdwtBSS++OKLL7744osvvvjiiy+++OKLn0y+4T9JXF63Gh3I4e4qoLmViePyBupSXppCBzDxxRdffPHFF1988cUXX3zxxRdf/GT0jVjm+Hpj2VV8MeXm8FelfU1Sce3T3rFOWPZYfPHFF1988cUXX3zxxRdffPHFFz95fSM+UwxuDg1uKpCggjX52q1RXnuVUygQiPjiiy+++OKLL7744osvvvjiiy9+kvoG4CxArALNUC2M8Gh/zco5cJetCdbvpMWOVcKrk0t88cUXX3zxxRdffPHFF1988cUXP0l9+1Hayi3sLxLbVPy+0r5GKn8F4Ce0igXga2/gWHzxxRdffPHFF1988cUXX3zxxRc/iX0jtqt9rzakA0nBgsp98WEa0H7Cm/ejvLq0VzB+E1988cUXX3zxxRdffPHFF1988cVPPt+InbBb4y+m3Ok6B2uoCpZVLeRTThDK34TAm/jiiy+++OKLL7744osvvvjiiy9+UvpOC7TGm1/j27RDuO/NbbG0lnNpt4Eq4Sziiy+++OKLL7744osvvvjiiy+++MnqxwZnWihzcDMx4WBB+DNpFZgAJL744osvvvjiiy+++OKLL7744ouflL6RUAhf7b5pPc1XEkvQzmsgq/a/ayC2WI4idh+W+OKLL7744osvvvjiiy+++OKLL36y+vbMGZ3YgOAp31Ezeb/05tYlvvjiiy+++OKLL7744osvvvjii5+kvj1zJgGLGwFC2bmby6u9F99x8JxOOOPsu3WJL7744osvvvjiiy+++OKLL7744iepb4D2Zu/EKlBxWYPtC4AqLr+K39G+NujEbOKLL7744osvvvjiiy+++OKLL774Sez7FgTWsRYElhX2n/cdf8nNX41WwUaKL7744osvvvjiiy+++OKLL7744ieb71sQWPneWhrjiR0njvYknHDetT/FLQ0qPkTxxRdffPHFF1988cUXX3zxxRdf/OTzvcGZYBWg4p+wHV+Zim++SkxzRoC8FK/RKu6E+OKLL7744osvvvjiiy+++OKLL35y+kpbOn71G7SP0lqjlEo4H78lpMWdaK6sjrVffPHFF1988cUXX3zxxRdffPHFFz8pfSOxRn/eWMMgYQzHzZ5QBnAGh7SXJ8j4HPHFF1988cUXX3zxxRdffPHFF1/8JPaVtrdAIwLVaXCHd+JSiJ0NnknYtPOimkkDxBdffPHFF1988cUXX3zxxRdffPGT1bef1hTXABXfikPYAkW+oHxCsvjiiy+++OKLL7744osvvvjiiy9+kvqG9nIpp4C2dz1FB2p0Kw5C9pSfQFAqmMm/4I3CnSLknBVffPHFF1988cUXX3zxxRdffPHFT1JfaW1p55Q7eJOwtXD6kLdAeX8AvlTxxRdffPHFF1988cUXX3zxxRdf/GT0DfeopYbZadqrRzef5RAa5hslCjjiiy+++OKLL7744osvvvjiiy+++MnrK0tr3WybtHYyN9/ig8QSjKD5yu0EDVq1lEV88cUXX3zxxRdffPHFF1988cUX/+j3DeWvKVCpAgKpsQxuu4OJvrJ2BnfUJyGbm6DiBPHFF1988cUXX3zxxRdffPHFF1/8JPNjM2e0ndl7P8imvWY3nzExJf5M7NjbE1988cUXX3zxxRdffPHFF1988cVPQt/wirg73pLD2vnn7Pt2lVPAPRXLb78nNlnF5VLOji+v+OKLL7744osvvvjiiy+++OKLL34S+oabKbEiFdjXKi450DwdV845q2Pp2p+qceqLNVJ88cUXX3zxxRdffPHFF1988cUXPxl9pbVdhVel9tXgb8lBNjen1qBU7D0hwxeUF1988cUXX3zxxRdffPHFF1988cVPNt8grpxupmHa94o3GhTb3JxugwINQ3sZtPMSX4P44osvvvjiiy+++OKLL7744osvfrL6Smu/5muUt5vYUPfIGymCgz4nPL6OljfxxRdffPHFF1988cUXX3zxxRdf/OTy4wZn4vCDVmmn/ntsLHdLAYkvvvjiiy+++OKLL7744osvvvjiJ5Nv+E8Sl9etRgdyuLsKaG5l4ri8gbqUl6bQAUx88cUXX3zxxRdffPHFF1988cUXPxl9I5Y5vt5YdhVfTLk5/FVpX5NUXPu0d6wTlj0WX3zxxRdffPHFF1988cUXX3zxxU9e34jPFIObQ4ObCiSoYE2+dmuU117lFAoEIr744osvvvjiiy+++OKLL7744oufpL4BOAsQq0AzVAsjPNpfs3IO3GVrgvU7abFjlfDq5BJffPHFF1988cUXX3zxxRdffPHFT1LffpS2cgv7i8Q2Fb+vtK+Ryl8B+AmtYgH42hs4Fl988cUXX3zxxRdffPHFF1988cVPYt+I7Wrfqw3pQFKwoHJffJgGtJ/w5v0ory7tFYzfxBdffPHFF1988cUXX3zxxRdffPGTzzdiJ+zW+Ispd7rOwRqqgmVVC/mUE4TyNyHwJr744osvvvjiiy+++OKLL7744ouflL7TAq3x5tf4Nu0Q7ntzWyyt5VzabaBKOIv44osvvvjiiy+++OKLL7744osvfrL6scGZFsoc3ExMOFgQ/kxaBSYAiS+++OKLL7744osvvvjiiy+++OInpW8kFMJXu29aT/OVxBK08xrIqv3vGogtlqOI3Yclvvjiiy+++OKLL7744osvvvjii5+svj1zRic2IHjKd9RM3i+9uXWJL7744osvvvjiiy+++OKLL7744iepb8+cScDiRoBQdu7m8mrvxXccPKcTzjj7bl3iiy+++OKLL7744osvvvjiiy+++EnqG6C92TuxClRc1mD7AqCKy6/id7SvDToxm/jiiy+++OKLL7744osvvvjiiy9+Evu+BYF1rAWBZYX9533HX3LzV6NVsJHiiy+++OKLL7744osvvvjiiy+++Mnm+xYEVr63lsZ4YseJoz0JJ5x37U9xS4OKD1F88cUXX3zxxRdffPHFF1988cUXP/l8b3AmWAWo+Cdsx1em4puvEtOcESAvxWu0ijshvvjiiy+++OKLL7744osvvvjii5+cvtKWjl/9Bu2jtNYopRLOx28JaXEnmiurY+0XX3zxxRdffPHFF1988cUXX3zxxU9K37fmTHNVBJp58CjiTnqvwRurnCwaVHNhii+++OKLL7744osvvvjii38wf9u2bXz66afktc/jpBEnYhhmUsUvvvhHo6+0vXmjQ3YGYpk0uMM7cSmBZhyktU6VLTUIxBdffPHFF1988cUXX3zxxf9if86sV7jl1tuc85pjBwzk9/f/nuMGH3dY/CMdv/jiH62+PXMmrgEqvhWHsAWKfEH5hGTxxRdffPHFF1988cUXX3zxD7rtP7Cf44tOQAGWU6vtK37+859x+RWXf6V+i3UmSf+LL/5X6Rvay6WcAtre9RQdqNGtOAjZy9YEglLBTP4FbxTuMjfOWfHFF1988cUXX3zxxRdffPFb9Ovq6rj7x3dj/23d4onHH2fBvPlMnjwZlOaee37C3Hlzj9r4xRf/aPeV1pZ2TrmDNwlbC6cPeQuU9wfgSxVffPHFF1988cUXX3zxxRc/0a+oqOCSSy5hzZo1oOD4ouN58YUXCKekoLXmDw/+gQcefIDMzEzeWryYjp07H1Xxiy9+MvixBYEP1gJ3ARtNs+vbHFrDNBrVclnxxRdffPHFF1988cUXX3zxA37EinLhBRewfPkKQPPXv/6V008/3bdmBVja4qorr2Lx4sVcfc3V/PSen/7H/kcff8ynaz6la/dujBg+nJycnECW0tLdPPrnR1i1chVNkSYKCwq56KKLGDV6NE2NTcyfN5d+A45liH8tHKChoYF1a9fSv/+xZGRmfGH8R7r/xRf/cPnK0lo3W0BrJ3Pz1R0sFrRfOEjpgwUrvvjiiy+++OKLL7744ouf5P7cufP47s03YQGP/e1vnH766c1Wv3DhQq6++hp69c7nnXfeAeD3v/89O3fu5Pbbb6NHj54BPxKJsP3z7RQWFAb8HTt2cvfdd/PmokVeWAp47IknmDhhAmDP5JkyZQrFW4rtRC9+xaWXXUJRURF3fv/7HNOvH2+88UYg/utvvIFXF7zK0KFDmDdv3hfGH9eDzW9H8fUXP3n8kPIzftEZiQ02IlapUgmJvgbZCW5yQja3RcqfS3zxxRdffPHFF1988e1TaI1lWUSjEbRl/yJpactuhxGr2Z09oJQGDOxXsABDKZQyUAoMZaJMhaHsf609fvHFdzPMmT0breHGm27k9EnBgZn9+/fzwQcfMGnSBAoKC9BKU1tTgwYqKyp46KE/AprTJ51hD874/Keffpp7fnIP8+bPY+jQoaAUu3eXcuFFF7F92zY0cNbkb7Bu7Xq2bNnCnd//PsuXLccwDZ566imKi4tBwS233EL//sewdet2ZsycyTNPP827772HBs488+uB+Gvrann11fmAon///m2i/8UX/3D5IW+qTQs1BW3lq1t7AcRvbp2ek1Bp7Fh88cUXX3zxxRdf/KPDHzlyBLt27aJ3r958/PFHGIaJUsoZQHF+eNUaywKto1hRC600WPZtGdrSgCZiaXuYRSlM064DpTAN+50odjnAvUPf0tqeha61TaFxkuwFVLXl+VrHekGZCixQhrKPFWhleD6AUm5vapRhoCxljwC5PeSkG86gkXI6VSnDS/d3stYKw3BOGaDcH9y1XYeFwlROsmG4iNf/hja8+APtcy+NhoSLGucrZfeT2//e5wCNhUJp+1lA/v7FOacshYXlpWmt7XScY0tz3HGD6dy5S2xmRBJ8/r8q/6OVH6MVnH3W5PhE7rnnHubNm8fFl1zCyJEjUAq6duuGQrN582bcazJo8ICEts6bOw8M2LRxE0OHDkVrzY033Mi2bdsZNGAAM2bOpEuXLqxZs4ZvTJ5MWdk+9pfvp2NeR55//nkAbrvtNm699VYvhGuuvYZXF7zKc889S0lxMUVFwwLxL168GG0ZKKW5+aab20T/iy/+4fJDXhEVX1D7ErTbImJtiidj5RLvrIrP5Xy3Ub684osvvvjiiy+++OK3ab90Vyk11TV8vmMnXbv1IBqNAmBZFgpNNKrROkrU0mRlZVJRUYFlWVjRCFFLoy0Ly7JINQwiTY1oC5RpEG2KoJXGitjjCNrSKAOsqEX8FgqFPBeIDZwoZden8AZ73H5Qhv0EDY1FenoGtbV1RJ34NdrpCo07jpGelk5dfW2su/y97vzwbpqm1w7bx+lPu8/SM9Kpq63D7VXt63938Mjf//YgjjNIglOPdk27Ftc2DINwOExjY6MXq+srA0wzhKUtlFPGUIAzw8g0TbSG1NQUrIiFMhSmEcIIKUKGiTJNTMPEDBmETNObmWS/K28wqaxsPx9+uOywfv7irkRcrrbrp4RSUAr27N7DwEGDAzVXVVUBmmefeYZnn3kGgHPPPRdQVFZWAtAhL4/8/F4Bf/mK5Sxbbl+fU049GYBXX13AsuXLUCjWrV/HtddcS36vfBbMfxVlQP9j+pOX15Fo1GLb9m2A5qKLLw7En5aaxrnnnsucOXMAyM7O9uKPNEW4//7fo5TmmmuvoaCwoE30v/jiHy4/5GbypSZUCCp2b5QKnPUFklhOa+39pSAwmuTFGmuk+P9d3/1BQilFfV0tqekZAb+6thbQZKZnYP9R5+iKX3zxxRdffPHFP/z+nr17aKhvYNDg47jxltvRSoFlYU+60GhlD4IoS6NMRTSqAW3fpqTtOr3blJxXwzTxZmwoE6XsPHZcBsowMAxFJBIhEm0i0hRFWxYayx7IsCy0VlhaY1lRLDRENWBhRXFmgFhELdDaImyEaIo22YMMCkxn9ouhFPYAhoWhTCd+QCl7lo0GS0E4FCbS1GTPTDEMFMqeQaSdY6UxtEKZoDBB2bNlNHY9yjDs27GcQQ7TUN6gh1ImhrJQhmkPiGC3CR1FW5qotrCilj0wFGmiIdJEtClKJBLFikZpikbt28SiFk2RBhoaIjQ2NtAUaaKxoYnGxgZCoTAHDuynoaGB6poa6uvqqKuro7GxkerqGqqrK6mpqaWmppqamlqO6dePigMHyMnJITs3h+x22eTk5NBQX8fmLZspKysjLy8vKT7/X5V/4kknsGDBAn5//wMMKxpG+/YdPH/KlKm8tXixbSv7/9n5558PaNIz0wFoqG+gtqaW9MwMFIqyfWXc9cMfeHHkdewIwEsvvQwYnH32WSxatIhVn6xm9SerQcFJJ57Eb37zfyg0FRXl4AwSpoRTmo0/KzMDrWDt2rWMGDECNPzxT39i46bNZGZkcst3bw7E2pr7X3zxD5cfstN9Yz3aV4MP8jeVuLNueW9RY+fdW0Fcq+AMIOWrT/yvxO/QoQMVFRX2BwSFYRr2DxeG/c09JRxGAykpKXTIy6No2DCOG3wcGRkZZGe3Iz0jndTUNGpra6mvq8MwTWrrau2/lJj2v5BpkpKaRkpaCu1zcsnN7UDnzh3p2rUbaWmpSd3/4osvvvjii5+MfkZ6Bo0NjXzz/G8yYMBx9mwTp1a3pG6uRu22KfgXSI0Tj9ZxdSi8mSM6th/766ZGaZWUvlLOoBIGynAGsrx/gDKcmTI4g1wKA+c2K6UC6/SgFMqw03HzOreW2YyivraeAwfK2LdvH/vL9rFvbxnl5WV8suoT0LDfHZxJgs//V+VfffXVLFiwgNWrVzF61GiuuvoahgwbQk1VNa+/vtAecNR2feedd579VCUNA/oPICsjk+qaau74/h384M47Kd29m+9+97vsKi316l/50UpOPPEEFi1aCCh++9vfooB3lixhV+ku+hT2YdSoUV5sDQ2NaKVQGioqKunQoX1C/EXDTmD+gle5956fUl5+gJKSrcyeNQuAiy6+iOyc9rG+aeX9L774h8uPPUo7kBZsWOCcKx/yFqtL43zvUC0FK/6h+JGoRV19LZWVlWzetJnly5ezctVK9pSW8vHKVZTt20dex47s2buHvA4dGDp0mH1/NdAhtz0l20rYX7afyooKKquqAAiHw/To2ZOysjKikSYaGyM0NDaSmZlOZmY7OnXKI6ddNkopMrOyyMjMICM9nfbtO7B3717KK8oxlcG69esp3bWL3gUFpKWnUdC7NwMGDCQ/P59+/fsz8NgB9OyV36b7X3zxxRdffPHFb37r0aMHe/ft5aGHHmLE6AneeaXh/Q/eZeuWLfTs2ZNR406zzwMo5axdolHKQGtY+sESijcX07Nnd8aM+5qdruz7epTbOLcCHfyR2p6AE4wlPn5/8eZ8pTT280ztW3/E//f87p3z+O4N1/Hiiy/yzpIljD51VFJ8/r9K/4EHH+TBPzwYS8ROUjo2pKedcyuWL6djx04APP/CC9x5x/edgcJYvpNOOons7GwWvfkm3/zmN/nfX/yc/v0HoIGXXnqB4cNHtBj/tm3bGDNmDCiY8eR0xp92WkJEVVXVTJw40R4E0gT8F196meHDT/q34j/S/S+++IfDD8UneZNvvDoDE3LsUVI3t9NOF21edL8EOOUO0jDxm/f37tnLgvnzeWfJEjZv2cKWzZvZs2c3YJCenkZ9QyOd8vLI753PmWeeyahRo9i1axfz58+ne/cedO3amW7dutOtezd65/eiXbscOnRsT/v27enQvgMpKSme77VO2wvz7djxOTt27GTH5zuoqKpk7dq1bN+2je3bt1FSso09e3aT36s3o045hVBKiJEnn8yAAQPIzs4mFApRW1vHjh3bWbt2HXPmziHaFOHDZcsZMvQ4Jk2aRH7PfIYPH86wYcNabf+LL7744osvvviH5mdkZGBFLayoxvvBVsGqd5fw1gO/49QUk4+iUSKluxh34SVOHc4AAAoszaplb/P2cz/k5MIyVq7MJVr1HcadfTVoZxaK5fp2/qVL36V4sz3oM3rcaaBBec9r8gduz2RxQvbe4n0b0U4JZWPOueZ85Szsq2PdmfR+yAgRiTShlLJ/Zk2Sz/9X6d92222MHzeOh//0CG+88ToaRZ/eBRT2LeSss85m/LhxXHnllaxevZqbb76FmTOnEw6ncOEFF9Cze3f+/Je/8vY7b3HiSScx5ZwpXHjhhZSXl3PLd28mGomQmprGhK99jYWLFvLdm27ilVmz6d69e0L8paW7qa+vJyMzi9rqanI75DYbf7t2Wbz66qv8+je/ZtEbC8nIzGLb9q10yMvjxBNPaHP9L774h8NvYeZM4n5zFUH8GFPLW3zulgISH/75z9d4auZTvLNkCeUHDlBbW0dGRgZdu3Vh0MBBFA0bxvEnHM9xxw0hv1cvUsLh/6r/78QfiUb5fNs2duzaycaNmyjZUkxlVSXLli1jy5YtZGVlkZmRwXFDh9KnsIDBgwZT2KcPjU1NFG/azOK332LZ8mVsLdnKiOEjOHX0KLp06czJI09mWFFRUl5/8cUXX3zxxW+r/tChQ1m3bh2//e3/MW7S2Wg0H7y/hE8feZgHCwu8Kn60eROdr/oWEyedgXYLK1j63rt8suBH/OGKPShlooG7nk6j66n/y4RJZ6B9sgLeX76E+5/7PfRLha0NnD/mAi74+sVeDneZX+W0GV/8vruBPN/7C6cGe0YJKF+meB+FO47RTP8lr1/YsysXnDeNNxYt4tFH/sR1110fa9tR/Pk/0v6ePXs4++yzKS0t5Zvnn8+v/+//CJnGIftbt27lzK9/ndqaGkBx/fXXMWToEBobGvlk9Se8/sa/2LZtOxp441//YsXHH3HxRRcfUmufe+457vzBD7j+29/hrh//6CuJ/4tyH+3XX/y274fiT/rzutXEvqQrX2aF+8W+pab4t9iXcTtNofFPDxIfrr3mWl577R/s27uXUaNHM+Wcczj//PMYO258M37zzuGOP2SaFBQWUlBYyKhTRyX49fX1rF+/no0bN7F27ae89PJLKKV4/vkXGDJkKKeccjJXXH4lQ4cNpaa6hrVrP+Vvf/krj/3tMQYPHsy0aVOZMnVaUlx/8cUXX3zxxW/rfnpGOkoZ1NXVEQoZNEUsthWX0D/a5DRDgzKI1NaxYO4cJkw6w2uf0lBSXMyATqWgDCytUCqC1VDJ/HmzmTDxTOwnL1kopfjgvfd45LU/kf/D45w6LGY9Nou8UB4TJp3uDCoop3aNt3aLM9VDaXfwIuZrcN7tsmAvJowCZamAr7VdX6yPLbRS4NSbzL5pmuzeuwdDGZSV7T9sn78j/fk/0n7nzp35+9+fZsqUc3jx5ZdIS8/gF7/4+SH7vXv35p+vvcaNN97AqtVrePTRR+zPgQFYCqUgL68Dd999N/2PPZb+xx57yPG/+uoCFJop06Z9ZfEf6f5vy/7WkhJmz5nD4sWLKSkpZuXK1U4OKCgsoKBXAaeddhrnTDmboqLjj7r4W4sfimWOrzeWPVZxQIprmn8JMxXXPucLvALtLY6jYmlJ7t9++/d49NFH6dfvGKY/OYNJp08k8QK3zfjT0tIoKhpG0bAiUOd7U8Gee+55PlnzCWs++YRly5azevUqXnzxBU6fdAbHn3ACgwYPpLqqhttv/x4zZ/6dZ595mtS0tDYXv/jiiy+++OInk5+WkoZpGkQtTThk0NQUpXvPnhQbYZzFUABNZnYWk848ExT2mhnO4rk9enaneEMe6CoMIqBDZOZkMmnU173Fdd04S4q3UN8j6rVYo6huqGbB3FlMmHQ6aG1zhrIfo+To9uiDs8BunI83oOG21b8NOaMAACAASURBVJlxoknw3VjchVE1CmXhu3Uoef1wyCQzPR3TMKiuqUmaz39r8Pv1O4bX/vlPHn7oD1juo9z/Db9Xr17MnTuP9957j2XLlrF9+3ay2rWjT2Ehw4cP59gBAzCdJ4kdavzbt+/krbfeoV+/fgwaNPCo7v+25i9evJj77r2PxW8tdr+QJmwlxSWUFJew+K3F/PTen1JUVMStt97KFVdc3ubjb21+KD5TDHZ349eN97Ux0AAVrMlXQKNi92ap2Bf6YNDJ59fX1XHBBRewYsUKvve92/nFL/7XV+boj3/IcUMYctwQLr74EkDz5JNP8tlnn7Fkybu8+94SVn68itraGuob6+l/7AAWLn6bjMwM0lJSSEtNJT01xf6Bo43GL7744osvvvhHm5+RmUEkEkEBZiiMUk2MHjseq3QHN7z4PGMyMllZ30D6uNP4xuRz8BaudSodPfY0olXXcuNjDzH62AY+Ks4is+8FfOOsc+yfdR1fK+jRoyepS8JeewFy2+Vw+klfR7mxKtBaowzH0QrlXyw3zsdbXDU2C8T+aycJvteTOubHujK5/ZRQmPUbNhIKmVRXVyfN57+1+L3y8/nNb3/nXrZ/21cKTh01ilGj3Fnxvk0HWnNI8c+e/RKguejiS71yX2X88X6yXf9D8cvLy7nvvnt58ME/eGXOmXIu06acQ1HRUIYVHe/VXbK1hFlz/8GGdWt47umnWblyJVdeeRXTp09n+pNP0rugoM3F32p9re1VZ+zCvmb4v277qnO/KMcapWOtCZx30xTNRubPlYT+WWedRWVlJQ0NDYwZM5bf/e63SRX/ofq7d5fy3vsf8Pyzz7Bt+w7OOvd8OnfszCmjRzH4mIKjPn7xxRdffPHFb0v+1KlTmT9/Hj//2S+46H+u5EBlNcqpa+Hr/6R48yZ65vfi65PP9m6XcZ8IhMJbbPaN1//Jls2byM/P5+uTp3i+NrR3243S8Pw/nuX5JS+SOjQLa2MD43uP5brLb0RpBYayByYc393cEA7mayenwgKMFn3tZLbf7IEMOy25/eMH9qNdTjZozYUXXsjjjz9+WD5/sbTk/P/XGn1tWZx8yimUlpby4Ycf0qVLl6SKvzX6JSUlTJ06jVWrVpGd047bbr2NW2+9laaIZseeMooGHRPwV68vplP7HLp16QDA9OlPcustt1JRWUluTi5vLn6ToqKiNhN/a/ZDOPUCsYS4TcXvK6cat1HKn+gjvIbFRxqMIhn9NWvWcNVVV/Hkk09y++23JV38h+p36dKVSCRCaloa/fr3474f/5BoNMJri5YwuG/BUR+/+OKLL7744rclPz0tDW1BTm4OoZCJwr5dRlkwcdLp6ElnoJzmoLTdBu3eOuP+cq+YMOkMZz0a+5d9O9n5oVdjDzwouHDyJXQM51G8eSPdT+jNNyafbd/NowBtoTA8320/h+DbOTy5RT/WRzrWWVolta8wUIaiprqa9u3bU1NTkzSff/ET/fc/+IDSXaUMH36iNzCTTPG3Nr+8/ADDioqorKhgWNEwZs+aTUFBgZcvIyODjz7dSP/CnmRlpLF+yzays9Lp1qW9V82VV17F1GnTuPLKK5kzew5fO208C99czPFFRa0+/tbuG7Fd/5dfu6wOJAULKvdFB8sGpgAp7eV29/zTIINbcvldu3ZjzNgxVFRUOo+pS674D9V/8oknWfr++5x37nn861//RFsWKSkpvLnwX0kRv/jiiy+++OK3JT+ckoLWFl27dSMlHHJ+off7yttXgPfnQ6e12rDbr7B/CFYolFJOSefFfUq0s6bK1yadwTXX3WQPzChQTvxKqcPi++MXH0Kmori4mMyMDMKpKdTW1ibN51/8RH/u3LloBScNH3FEfEju/o/3x592GpUVlQwZMpS33nyTgoKCgJ+RkcoJg/uxccvnrN+4DQUU9Oya4Ofm5DB71mwuv+IKDpRXMG7sOHaW7m718bd2P+SeUE5rlK+ccr9gKzePm9mfKRaJ/3R8PnuwyPvSjb/SZPRffPEF3n9/KUXHD2Pauefys/t+xpDjjkua+L/Ir6ur43u338627dsJh8PsLSsjPT2TzKwG7rjrxxQWFh7V8Ysvvvjiiy9+W/RNw0SjKCwoIBwKoSyFM23DqQSwQBnaeQSzAZaO1aHBHjDA+YHWPrYnbdie2xSN8i206Mz4sDTu04jQoHTy+IYyQIEyDUwFSikMpVCGQikDQxF7NxVg2OlKYRr2O0phYteBU97w6jFidSqFYSgUhv2uQBkGBqAMxYMPPohhmoSNMHV1tfbHJQk+/+In+qmpKSigR4/uvjzJE39r8u+99z5WrVxFQUFv3nr7LXJyc1v0O3fuwO69++nYPueg/ozp09m+/XPeXLSIG6+7jlmzZ7Xa+NuIb39r8I+c+ze3UV7jmtliaS3n0l4Dmy+ZjP6AgQO55OKLeemll0hPS+OEE0/k7LPO4huTJx8W/0jH35y/tWQrt952K/96/XW0ZXHb7bczddo00tvl8Z1rLqeivJyZz71CbrsM+vTqftTFL7744osvvvht2b/i8suZ+dRT5Ofns69sH6BQ2L/IG4bzC783WOAMDpjOvmGAoTANE5TCNA3QCsNUGCiUYQLYT4pRNmkoE6U0Stnp9sCBQXpGBo1NDSgMTMOwBw4Md19hGCaGYfuGaXp5lDJs13l3jw2lMIwQylCYTl3KUITMEIZpPzraUKZ9K5dhkpOTQ119LUoZhA3THjAxTEKmGcvvtNc07XKGaWKaIQzDPmeaplfGNAyMkP1umiG8x1ZbljNQA1ZUg7aIWs6jrtE0NjahoxZRbaGd85FIk/10Jm3hPrXJNE0sy0IpA6XAME0MQxEyw4RCJinhMCmpaYTDIdJSU0lJTSUtPZ30tDRA232HgXJ+07j++uvZvGUz9fUN9C3sYz8J5jB8/prNk0T//1qjv2b1J7z8ysvccMMNdO7c+bD7Rzr+1uKXl5dTWFhIeXk5z700iwvPm9qiX15Zw/Zduznu2D58tmUbIaU4pjC/WX/tphIiTY2MPWUklRXlLHrzTcaPH9/q4m8rfsjb8yf4yijnuJl2exljSarF5il8CRr7/ld/ziT0o5EoDz30EI/NfIbX5s/mr3/5C7Nmzab8wAG+cdY3GDd2PFdccTm5OblHZfwKxfr161myZAnFJcU8+sijpKSk0r1bN+bMmc0JJ45kX3k51dX1NDU1Ud9QT1pqOgpt/wB3FMQvvvjJ7lc01POnD99h5sfLuWnkGC4fdhLZaWlfyn998wZ2VVVwedHwNhO/+OIfbX7UslCG4qyzzqK6upq9ZftpbGyisbGRxoYGGiINWA0RGpoaaWxsIhJtorGhkYaGRvLy8tixczuRpgiWZRGNRu3Bj7CJqUxCoZA9GyNkYIbDFPYuZMfOHXZLDINwyLQHeUImDfV1zoBNbHAlM7Md1TWVGNoeELIsjWEqe+aKYYLWKFORmZ5JTU012gKw7KdQR0ETtRfRxUIDOe1y2H9gP9rS3uCH1hpLW4TMEA0NDbRr147y8nIsy8KKWkSJoixF1Ip6eRWKSCSKFY1iYaEtjWXZ71lZmVRUVaKjdl6tQWu7j01lorFnzNjr/7qzXyAjPYNoNEpTU5NzmRVoMMKGE4v2LrRCEQqFaWpstG9Z0qCdW5ZSUsLUNzago/baP1pDSkqIuvp6sMDSFoYyCKemEI1E7EEn06CxoZHU1FRyc3OJWtHD9vmL3w71819aupsVy5cz+azJR8T3VXvU+UOGDmHI0CG2T/LF31r82bNmU15Rzvhx4xk8ZBgbt35Ov949E/ympihbtu/khEH9ABjQpxcbSz5n7cYSBvUrCPgln+8iJRxm4DEF3HrrLdx3331MnzHdG5xpTfG3FT82c8Yr5Ku8hdGk5oLQzTXNPdTg3n8VW0iHxECSzO9VWEhNZSXPvjyHTp26gtZ8umYlmzesZ8H8+Xy+bSu7du8hIyOdbt260a9fP/oe05dRp46if79+9OyZT5euXdpE/Hv27mbturWsWbOWzRs3s2z5hyz/aAXDhgxh//79pITTOPGkk/jenT8gIyuL6pp60PbUYPeOvSsvu5D0jHQe+et08nLb0bt71zZ9/cUXP9n9WetW86u3XqeqsRF3Gn+PdrncNXYiE/v0O2R/6edb+dMHb/Phzs9BaY7N68qvJ05mYOcurTp+8cU/Gv2bb76Zv/z5LzQ2NRKNWuzZfyB2+4syMAzAsOdYGIbCUIZd0tk3DOXcGmOiFESiEaKRCE2RJpoam4hGIjQ2NtEUacKyNA2NDVjRCNGoRVM0QjQSxYpEiVpRopEoUStC1IoSiVgYGDQ2NWCh0VF7cERb2ANBziwSy7JIDYepb2yye03FOsxde8U+gPT0DOob6r3ZLxgK05kRZJoGoEhLTyVqRTGMECHDxAzZs2hChmHPmDHDhEIh+5xpD0CFTRMjZM9YCYfD9uyZlBDhUJhwKIRhmK3q+tfWVFNf30B5RTkHDpRTcaCc8opy0tPSueXW79KxU0fee++DVvn5X/zmYmbOnMknn65h3NixjB07lnPOPrvN/v8TX/yW/GlTpjFn7myemP4kV11xJRu2bMfSmgF9egX81es2MfCYQsJhM8BuL93L/gOVDBvQFxR8vmsfByorGXJsIaAo2VpCYUEhBb0LKC4pbnXxtxU/FKjEl6Cxvwm10Ap789Ws4k8Qn0/F78am+SSpH2lotA+0vZI+wKAhRQweUsTZ511EeloK7TIz+HDpu7z79hI+XvUxr85/lccfe5ymSBPhUJjGxkays7Pp168faampdO3WjYKCAgoLCujarRudO3emY8eOtM/NJSe3PampKV9J/NFIhF07d7Jp82aKi4udfyXU1FTz9ttvo4Ce+b3Jzm6HUoq0tHSijRH69hvAlCFFnHn22aAhClTX1KPB+Y+h7VFGrYhqi5CyP7LKndL8H/T/kb7+4oufrP76vbv51Vuvs3TndtAwPD+fK4aN4I9L3+GzfXu4acHLjOiRz68mnU2P7OwW/R2VFfzy7ddZuGUDoMhKSSU7NZXP9pUy7bknuGnkaG4aOabVxS+++EezbxgGkWgUbVmYpkG3TnkkbPF+M0nukWmmQEpKs3m/9PZv+M3G34r81nD9MzOzyMzMIi8v8VrffvttRCO6VX3+a6qqeervTzFzxlN07d6FcChMbU0NHTp04GsTJkAb/v8nvvgt+StXfYwCThs7HoD+hflsK93N6s+2MHRAHwBWrttM7+5dnIGZoJ/ftRPpaal8vG4TBd27sr+igqED+npsQe8CcnJyKNm6lfLycnJzc1tV/G3FDzVXJ8RNuUEFKojL6lP8jY+da+57kB18YpDJ5EejEbQzhVZpfz7br6tvpK6+kcJjBlPYdzCXKUVmZpr9F526Wkp37mDL5i2s/XQ1+w8cYPXq1Xy49ENWfPQRW4u3YJghbwpwpKmJxqYmTMMgLS2N9MwM+hQUUlVVRUpqKulpaWRkZBAOhQinhElLTaOxqYloNIphGNTX1tEUjZKRkc7u0lKqqqtoaGik/EAF9fU11Dc0kpGRQVpqOqGUEOlpqVRV1VBfX09GZibp6enkde5M+/bt6dP3GAYMGsRv//BIoAvj49du77uPbbSwF7UDjMCFbJvXX3zxk82vbKjnT0uXMHPVh6DtwZS7xk7kvEFDAZjYtz8zVi7ljx+8y4c7tjH1mce44vgR3DRiTMDfUVnBw0vfYdbaT0BpslLSuPL44fzPsOGgFI8sfZsZK5fx8NIlvL5pA78+/SwGdOpyxOMXX/xk8K1ohNTUFKqqq2mXnZ108Ysf9A3TJBKNBIsdofjfffdd/v7M01RXVmFZFuHUMCEzxGWXXcY555xDsKf++/6Rjl/85Pa3bt0KCgoKC7zqe3XrQnpKOSvXbiIcNunSIZf2Oe1a9DvmZpMaCrGpZCd9e3eNaw8cXzSMxW+9zcqVKxk3fnyrir+t+CHQvpXe3QpUXFa7ooTKwZmG48uv4ndigfqn/cRKJK8fiUQBK6ip4ECNV8rQaK2prqmjmjoAsvO6MCyvK0UjT8W9O00B4XCYlBST6spq9u3bzYHyCioOHKCyspzaunp2bN9O+YH9lJdXkJqeTk11LTU1taBM9pXtwIpGadeuHXU1NZihMKGUFJTSGGYIDIPM7Fw6detBx44dCaekkZOTS277HEKhMBnp6WRkZJLZLpOcnA7k5LQjMyvbCc3pa18fgiYwl+sg8YOO/T9R9lS7tnz9W6O/es0aHrz/fn72s5/Rs2fPpItf/K/OX7TlM3751hvsqKoE4PKi4dw4chTZKekB64qikUwdOIxfv/0Gs9Z9wsNLlzBr3Wp+OdEeYHlq5TKmf7yM6sYGUDB10FDuGjORnNQ0r567xk5iQp9j+eHrc/msbDfTnn2cm04ezU0jxh6x+I90/4sv/uHym6IWaalp1NRUk52dnXTxix/0DcMgGm1KzHaY/IqKCp599mn+/vdnyMvLo2PHPD744AMuvfQS7r33Pvr1O+Yr9e0zyXv9xW9dPjrR75SXy54DFTQ2NJLdLuML/c1bdzDo2D6s31RC5471dOvU0ctgr6ClHN9tUeuJvy34IXATnNMaAiNBbuWaYL74trS4qcC+V7OOBZasflM0Yt9zbBhoJ0VbGuX49iMUnccvWmCvvG9/7J3PvV2jdh27XJMzS4ZQiE5detCpaw87WE/Bfnyjsuu0V+p3TmjsQRTXcOO1gGZ8d9Pef8SYg/J1pTv7xc3v+YaT/4vj93+wTTP+Q/7v9/+Rvv6t0V/x4TIWLnyDYcOGccsttxx2H0vbixH+G/Fry7Jvc/sv+Ee6/49Gf0dVBT/653yW7twKKIb3yOdHYyYxoHMXX/mgn5Oaxq8mncXUQcfxy7ff4LM9e7jilWe8fCjN1IFDuHnkWHpk5zQrj+jZi9mXXMvDHy5h5sfLePiDJby+aRO/mTSZAR27JE3/iy/+4fataJSUtBSqq2uSMn7xg75hmEQj0cPuv/vue8x8aibvv/cBp556Ch3y8og0NTHlnKk89vgTvvJHd/+LL77rF/TuTcnWrRSXlFBYUODVu3XnHkLKYPDgY/h47WZ6du1Ipw45zfqfbiimd89upIZNhg3syyeflVDX0ESfnt0AWLVyJVppCgoKW138bcU3EipRsUriK9e+Y98yws75hBPOu/anuKVBxQeWfH40EiFqaVD2onEKZ9e5LEpDYFBD4X5C0JZCO+3UKJSyPNRex0g5Axr2sfa1QysdG6nTsbjahO/u6thHt61e/9boWzqKwmD/gQOH1W9oaOTSSy/lpJNOpKR46yHHX1xczJhx47nooguoq6v7j+M/0v1/NPkV9fU8vPRtJjz5CEt3biUrJZX/nTiZp867lIGBgZmW/ZE9Cphz8bXcOHIMyrmXcXiPfGZMvYxfTzqbHtk5B40/OzWVu8ZMZMa5l9C/Yxc+21fK1Oce5+EP36Gyof4rjf9I97/44h8pPxKNkJZiz5xJxvjFD/pKQWwh5a/W37xpM7/+za858YQTeeWVl8nOziErK5NoNMqPf/QjFry6gHOmnJNU/S+++G7pYccPQwFvLV7snS8tK6eysoZj++YDiqJBx7B3fzklO/Yk+Gs2FJPbrh3tc7K880OO7U1TYxPrN2+lpLiEispKctrlUFDQu9XF31Z87zfcYBWgdPA4oTIV33yVmOaMAHkpXqNV3Ink9KORCKCdi2C3QLvl3NuUlO+iae3d8oOyUErHLrZWMcK7L0gHWqe0U5/lDH44oluytfsGoC3nm73Z9q9/a/SrqqrRSvPaq6/ygzvv5MKLLuSMM87gvPPP490l73xlfl19HUuWLGFfWRlXXn0lVRUVhxT/1pIStm/byvvvL+UHP/jBfxx/rPrkvP7/LX/h5o2c++zjPLz0XUAzbeBQFl15o722zJfwbz55DNqyB4CfOu8yRuTnH9SPvdvxj+zZm7kXX8ONJ48BS/Hw0iWc+8zjLP1861cSf7wfCDcJrr/4ye1Hm6KkpadSXV2TlPGLH/RNw4gV+Qr8hoZGnn76aaZMmcK3vn0tphHi9DMm8dJLL5OZkcFLL77I3/76N0aOHJmU/S+++C4x9ZxpaGDGjOkAVNfUUbqnjCHOYsCuP+iYAurq6/mseLvnb976OVkZ6fToFlv02/WP7dOLcEqY395/P2iYOm1Kq4y/rfgh+zfdQBX2KXeGhNaxfV8TVLCpgTRQbiVxdQaiwf9YqWT0I9EoKZZGmQb2JCZ3lomTWWHfsqGcW3ycW5NirzHX/45SYGmUoZwxDoXGma3iPK5WxzrBib/1+1rZt38pwFTBx7u1xevfGvy9u/fwq1//il07d7Fh4wbKyvahUZTu3s1zLzyPtjSGUmRkZbJt2w6f8N+NPzcnl7lz5zJjxnSWvPse6z/7jBEjRnxh/ONPO41HHnmE5194gXeXLKGuro709PQ20/9Hm7+jsoJfvvM6CzdtBAP6d+zEj8eezoievWIlvqTv+wrzpeO/ecQYJhb25wevz2fDvt1c8fIzXH78cG4aOYbs1NT/OP4v8v+T+MUXv634kUiE9PR0ampqkjJ+8YM+RuyJpP9N/7XXXmPFihVMnzGDC84/n3OnncvbS95m3dq1jB4zyl78FPe7xpGL/0j3v/jiu4dTp03l1ttuY/Hit1j85mJyOvfg+MH9mvUH9OnF1u2lrNlQTFZ6Og1NEQb17kn85vp5WRn8/amZgOaqq65qlfG3FT8UNDTx2fyPk4pvkL9FcVU791Np3MVeg4wG5dSWxH40EkFj72tntohtKMBeABhvYEQ7jsL9VqOd5Vhi33gUYOE+mtv1leHMStHKOadRhtcM26D1+wYejWGo/7j/j/T137d3L2X79lHYty+pKSkJfmNjA4888igrPlrBrp07yc/vxZlnnMn555+HGQol+B+v+JhP1n5C9249OGn4SeTmZH9h/HPnzuGVV15xutyu0EDRIa8Dl156CcOGFdH/2P7k9+yJvT5QbHvl5Vf41+v/YtOmTeR1yOPUU07lyquvICcn90v1/7BhQ7n//gcCHRzf/9FIlKrqKvvxfE78kydPZvLkyb7+J8Gvr68jGrHIyspsNdf/aPN3VlYy5ZnHqG5sJCs1hZtPHs0Vw0YSX+zL+vHfAr9s/AM7dmbuJdfwx6Xv8Kel7zBz1TIWbtnALyd+g5E9C9ps/39Zv76hgQUL5tO/Xz+GDBmadPGL/9/3m6IRTNOkqbEpLj054hc/zlfgPsThP/UXLVzInLlzmTd3HpNOn8T5559PQe8Cpj85neKSYq6++lomTJyAtx5ja4hffPFbiZ+bk8Ott93Cfffex3XXX8/CN988qF/QqxsbS7ZzoKqa4wcdc1D/yquuoLKiglNHj2bcuHHy/+8/8EN2XrcRysngllJOfgf0pQCxBsTOePveq1el3SD7dDDIZPSjUQvDmwlij6DZww+W8xcGBdqwp1cpDdh57cEcp04DZ/qVvf4L3mK99gwUu4HKXmQXbQ9yKOfyO7NgtALc2Smt3MdQRC3LqVa12euvtebJJ6dz3733ggEZ6Rlce801fOvb3yE7O8tT7rjjTubOno02NGiDDRs3sXDRIl546QUeuP8B8nv1QqHZsWMnd999N28uWmhfB8d88okn+NqECQeNf+QpJ9OhQwcGDxrEpNNPZ+vWEh5/4nFOHXUq3/veHS3G/8wzz/DDH92Foe1P8EY2snTp+8x4agYPP/wwp556KqAor6jgmaefZv36dRimSV7HPP7n0ssoKCz8wv6PRjV/fOgPjDh5OKeeMopP1qzh8ssvZ//+Mn7+s5/zP5df3mz/7969m6eeeooLvvlNevXuzYsvvMgdd3wPlGLO3DkUDStKuP4N9fVUVVfTqVPHr/z6H+nP31flb6/cT3VjA92zs5l18bWxpyf9l3xfZYcU/8LNG/nl22+wo7KcHu1yuGvcJCb27e/5N48cw8Q+/fjBv+azoWwPV7zyLJcXncSPxk5sk/3/Zf2//fWv/P53v0Oj6NevL+NPG09hYR/GjhlHfs+eR3384v/3fSsaJSWcYj+YIAnjFz/Ot3Ss7n/Tr6qp5InHp/OP1/7Bhg0b6N27FwMHDOTab3+LNatX8e1vf5uioiImTDyNLl26sv3zbcycMQPTMMjMakd9XR2GoTBME8M0UCgMw8Q0DQzTIBwKoy0LwwxhGKAMJ92w/3ZthBSmCqFMg3A4DFgYykSZBiGlUIaJaYYwlMY0QyjDwDAMQqaJMkwMpVDKfpy4GTIxlQHK8HyFImSaGGYIpSxfXxxF1/8w+hptL3+gNVFLO7PvwXJm7WNpLA1aW2g0VtR+Yq4yTPuJYgrv9xelNdrQ6ChgKCzLwv4DtMLSGqXtz0379u1bTfyH4t96y23MfmU2qz5ZxY3XX8eM6dPJyc1t1q+qq6WmtpHePbry0acbGTKwD2HDTPCvuvIK5syZS05uDk8/9VSrjr8t+CH7zT1p/5Kt4toXBGOb/6wmVlNCFMp/0Fxy8vlNkSbC4RDaAqUMnNEZNIZ9SxAKlDN4gX8+ifNZcb4IxZYNcm/4ASw7pzawv8oYoJ373GK30tm53fNtwTeU/VVTaTBNs81e/3vuvZcZM6ZjKIXWitqaWh56+CH+9frrPPf8C7TPyWHZsmXMmTMbFJx/3jcZPWo0NbU1zJo1ixXLlnHmmV9nxUfLqSiv5OKLLqZk21ZAcdbkyaz9dB3FxVv43p13sGLZCgzDYOXKVSxevJjU1FTad+hAVVUVKeEwXbp05aMVHzkLMSs+WPohjz/2BDVVNQltdyOoqa7mrrt+hFJw0vCRnHfuuaSkpbJo0SLmz5vHxRddwpw5s8lsl8mFF1xI2f6yWJ8Ab7yxkEcffZRBAwcG+r++voEZM5/ijEmTKCgoYO/ePTzw4AMMGDCAZ595lisuv5z9ZWUo28nGVQAAIABJREFUND/5yT1MmTqFnOwcSneV8sJLL/Ktb32L9LQ0Ply6jD8+9EfqGur4+hlf54477/C+IP7k7p8wd948L56Skq08+MADzJrzCmjFNy+4kPt++lMyMzOP6q8/X5UP0COrPTkpaXEZE/1Fmzc4gycV9MjJ5q4xk5jQt3+Lfvx2sPjf2LyBm/7xkp1gKHZUV3LTgpd4ePL5TOjb3ys5sFNX5l5yLQ8ve5uHP3iXmSuXM6GwPyN79m6T/f9l/GpnnSk0bNi4mY0bNnkZRo8ezSWXXsKkCZNISU05KuMX/7/vR5oihFJTaHQed59s8Ysf9A3ThEjkS/kffbSSh/7wB9Iz0hk6ZAgK+OCDpYQ/WkGXzl054/QziFhRNmzazGcbNqItsKwoKmSQnppGRWUFVtTCspx/WmNZUbDsX97bZWVRUVVONGLZD+iwLLTWWNrOr9HoqEYpSE1Lo7qqyv7lHgsrqkFrIlbUnumtNdoCrS06de1E6c5S/IMFdr0a54dd+zZ+y0Iri/a5HdhXtt9b70IZyv6lTYGB4XWYoQBlgtJ07tSFvXv2eH+wtLvMXiIA054F7XavOwsgt317yssP4P1UrzXKBLTb/zrh+uW0y6GyssL5PdMCZaKdQQoFWO5V1Rq0wjAUHTrlsXf3Hs93Nzd+hXIGQTQYmpRwKnX1DQFfewMq9m8YWtt/6LW0ol//Y/hs/QbQ2vPd+JUCTLvflKHI75nPjh3ObfnKbpA7SOZ258ABg1i3/jOU+8uy06cajYHBkCHHsebTT+2f21Eow7a6d+vG3PnzDvr5P9L//+L9nNwcps+YzvjxpzFnzhzGnjaOObPm0LugIMHfsr2UokF9AcjKKGDNui0U5ncnNzsTUFSUV3DLbbcyY8ZMAKY/MYOC3gVxDW1d8bcFP6RxPqsepYmN7Piq0YG3AORUGUuMj0Lj3ObiM5wGaVRS+pYVxTQNLMuyb9HBcGzLyaE9X2nlfZFSzgCFRjvjGdprhTfhRGnf5ca500ijfAMh2v7KZx8q2oRvKIOoc85wZ6G0seu/d+9eZs6c7vXjqNGjue473+HHd9/N+vXr+dWvfsH//ea3zJo9C9AMHz6c3/3ud3b9Ci657DLeWbyYtevWETJD3HDDDWzdVsLAAQOZOWMmXbp2Yc2aNZw1eTJlZfvZv38/2tKcM/UcDO2M/roLVWn7wegL33iDfv3se04zMlJBQWVVRYvxL1q0CNBkZmTy5z//mY4dOwCK86ady4033MB7771HefkBLr7sEmqraxg3Ziy33H4r/foewyOPPsqjf36EG264noWvv44RCnv9v337dn75y5+zu3QX99xzDxkZ6YBm+/btXHzxxZSVlZHfuzcH9u2juqaGtZ+u5eRTTmHRmwv5/e9+x7H9+nPGmWeQ1S4TpeCdd5bw7NPPggWDhw5m7Sefsnr1ahoa6khLTefVBfO57v/ZO+/ALIr0j39m933TCyUk1CQQEooKRCkiIKEJikqx4NkIoicdbHcWlOLv7AUPPNshQYXzDrugqEhXQRBC7yWhl9BCAnnLzu+P2d33fZOAlAAJySrJm92Z+cx3Zt4tzz7zzKDB5rlT3dBMm/Yp6X3vx+124fV6ad68eYn2/6UefxecD2p8FUpUmD9r6yaGzPhMlSYku3KPMWTG50y4uTed6zUong8UeetwCv0vLvgJgCGt2jGkZTvG/z6ftxf/woTFC+mclFxE/5CW17N4RzZLdmdjv8Qoi+1/lvxNm7fww48/ULduEnf/5S8kJMZz5PBR1q5dy7Rp/2PhwgUsXLiQ8LBwxk8YT8dOnS4r/RX8C8M3DC9OpxOXy1Uu9Vfwi/Kte7az5bsKCkhJSWHX7l0sy8xEk5Ko6Gjq108iPDwCt8eFpuk4NB3N6UQIgSYEVavFcPjQYWKrVgOHQEN5tNheLEIghUZUZCT5J06gCYGmCwQammkY0TQNTdMRCKKiozien49DCDCPIQSawE5jGVQ0IYiIiiI/Lw9daEjTUODPV3ccyoNGaBohwcG43S71stZue1/7SyQGoJtHpZQ4g4Jwuwqw7D1ew4umaaZRCZSxSGKYXu1SSnRdw+3xIKTEa66oihDKSIRhvjAWGJbBCYEmNNweN1IIpMdjGrgshoGhrFW2QSs0JIS8EycwvF5lGFPWFdM45lU97fXiMT1bHE4nBSdPYkivaVwzMAyvYkgwvMpI5pUSYRhUi41l9+7d1KhRE8PrwTCUTq+ZxzAMDCSVoqLJOXAQD16S69fH4/WqcqXE8Hhsflz16uzcuZPw8BDbuGeVgxQEBQWxbPlyvFKC12vr//TT/9KixTX+X4ZS+/0rzG/WrClz5syhV6+erFyxitTUVEaPGUXf+9NV2AAky9dupkHdeLtsp9NJ6hXJrFi/hfwT0fzw/XTGjhnN9u1ZREdFM+6tcWYg4NKvv7TzHcIuHvOZzb9k4auA8N9TOMUpDlp1E9gVU3qFmVZQXvketwfN4cRwu5R11vQIsepi5xDCnKIm1eDwuZ74mNJKGzh4LAucFPgMIxKkND11bEOL+l3a+ZouwKsuCNayumWt/7O3Z6nVqkwD1YQJ46lSuQrvvfceN3btxv8+/R+DBg5mx46dCAT9HugfUCcNaJ+WRvu0NL6bMYM/li0FBBvWr+fBBx+kTnwdZsyYAUBK/WRiYmLweL0MGTSEdevWUbVyFRLr1iMo2ElWdhapqakkJyfb+j1uLwBer68nC+vfab6B6N27NzExvqjtCGjcuDGNGzema9eu5B/PI71vX0aPHauGiZT8/NMsMDS2bd3GtM8+5667+tjt73Q4EVKwbds2AI4cOQpC43heHhs2rCMiIoKpn3zCvHnzGDlyJOvWrqV169Y4nUEIICs7C4DDhw4jgQ3r1iOAa1o05z9Tp/LII4/w3fQZbNqwBYdTZ+CgwQgk117bmlGjR9MwpQE7d+1E0zTatGmLQLIsM5PKlStfduefC8I3tyW7smn4zxetnEhpuWr785X59a4rmzGm440q/suiBUxYtNDPOFOIrwbRGenflXsMUMYZCQxtdT1vL17I+gN7rQYpoh/zBlcWKr3MtP858KdO+YRt27ZRpWpV+j/QH93hC7T+7MiR/PDTT7zxxhts2bSR/v0f4KWXXuauu+66bPRX8C8M3+3xEORw4nG7y6X+Cn4gPy83j6CgoLPm/98//sGUKVNomJLC88+PpUePngD89NNPfPnll3z3/Xc82P9B2rVtS/u0tOL5/lWzTu4i8KiP/yf5z2Gr4JcTfin+/p2Kn5ralMzMTPqmp/PN11/zyPBHGPXcaHr16sU1LVtz0403EhoabJd19MgRVqxYwVdffcX/pn3G7t07QUKzpk2ZNCmDZqnNzop/qfWXZr7DLv40I1CYAWyQfve1Z7j5ivW3EhUjr5zxvV4vDl3H7fILbqv5nj0s3xFhuUoKAQZ+40ClML3RkQjsqUEC/ycMszTDr+PVQeUMI+zPpZ0v0PAYynigFQpOe7bt7183uHj9n7UjG8tqVbduXapUrgJA44aNSL0mleV/LGf79u3s2bMbCQQ5HKfkT/tMTdu45ZZbmD17DitXrWTlqpVIAS2uac7LL7+MBBy6zt/+9gQ+221xGlVFg4KCkMDx47n2MY/LRcdOnbix24089czTHDhwAFBvE4rbdu/dw/r160lOTubpkSNt/f/576ds3LzJFvDKK6/Qo0cPQkNDERKqVquKlLBo8WKklBw4eDCg/z/5eAp14uPteDaZK1YAEBMTg0SwctVKAPYd2GfXpXZ8PBP/PZHg4CDatb+eGTNmsHrNKvbtU2nCwyP4aPJkgoNDQEB8fDwjR44EJGHh4URFRFyW558Lwd91/Cj2hcc2okjfm0Bh8Xx3SHdddTWgVlF6+/eFrD+4/9R8v/PPn201IyPZnXuM8YvnM7TV9YxfNB8EpMTEFSqjsP6igLLS/ufCT05OQQCHDuYg9MCDDqeT7jfdRLcbbuCRRx/l66++5m9//zt33HEHuh64Wt7Z8E+cOMGaNWtAwjXNr0GI0jf+vV4vGzZs4PChQzRr1ozwiIjLsv8vFN9aremky1Uu9VfwA/mRERG4vJ5iMp+e37J5czwuF78tWsSLL7zE70uWckOXLnQx/0kp+f777/lwUgaDhwyhR48e9OzdixbXNC9V+iv4FfzSyq9UqRJff/kVc+fNZfSo0cybP4+MjAwyMjIYRqFHuYB6S+Lj4xkzZgzp6ennzFcaKbftfyq+45T3pNZcPwT+ZiMr2Wm0BPSmrzL+D4Zmbn+x5Yzv8XjUNB1DouaPBpZpTSNSHWp2r7DKMacVFYJahhJh+JjWG2rl0mhJkkgpVHpROF3p5WuahvS4EcBpbTOluP+zs03jjBRs27qVKVOncs/dd3P4yGHzmHLjLTh5EpAcOXq0WL7b4zGnF8Grr74KwMKFC9mzew/16tWjTZs2Pm+Fs9AfGxuLBuzetcv0eNBYvWYNO7Kz2Z61HQEUnDyJRHL06NFi5RfknwQJu3ftYdOGDdSuU4cpn3zCK2Y977v/Xr74/EtyDh7k8See4I3X3yA4OIjIiEgQcCIvj+ysLPaaBiqE4PXXXiP16lQA6iYmIpEsXLgQUMYZkPy68FcA9uzaY/aBYPKkSVSuXAmAKxtfAcDSpUvo2LETSMnxvDzGjH2eDh3S2LlrJz/+8CO//forSMmdd96Bw+n0b8LL5vxzIfi7jqqpcINbtGNoq3YANBz/AgDrhz0dUMGOk95m97Fj/Lx1I42qxTH+9wWApEFM7Gn5vkvd6fU/3e4Ghsz4nLcXL+Ttxb+YF1gY3qrdqfULlVmco35/vrWV9v6Pio5GIgiPCCMnJ4cRw0fQoEEDhg8bRnSlaECwZetWuyoR4eHmnPtA/rJly1izeg01atagRfMWREdHB/DXrF7DT7NmsXDhQpYs/V0Jl5L/e+EF7rv33iJi8o4fJys7i1q1attlnUr/0aNH2bdvH3FxcSrtn+j3eN0cz82jkr2qnCpsz949/PD9TBb+8gu//vILefl5gKB79+7861//OiV/2bJlrFmzhho1atCiRQuio6LPuP0vdf9fKL7X48XpCMLjcl0Svq26nLZ/aeMLYcY/OUv+DV27ckPXrgDs2bOHWbNm8eHEifRNT6dfejopKSl06NCBm266idzcXL7+6mte+seL7Nq1ix49etK7d08aNGx4yfVX8Cv4pZ2flpbG3HlzmZQxmQ8/nMSKzGXk5uZaaLvYZk2b0qp1a+7q04e04rzVyqj+0sZ3BNxm+ROtB/KAfL5ChShy0K9G6oB1uEgyq0bCP1X54nsNA93pALzqzSFYQcDNMjSEUKse+fo6cG6b9Cs4gKNJM9CuZUCRZhmmP4qhmcYNaTPKAl/TBGYkNhXMqwz2/6FDh8DQSG6QzKaNG3n66Sd5/bXXyMlRQXPDIsJp0aoVLrcHIQSbt2zxr7jNN7xe+89Vq1bRsmVLunTpEpDuXPRXqVIFCeTln+Dbb78lIjKKF/7xDwygazd1k+R2exDAxg0bixEPdeslkJySzMZNm7j55pv9HB4E/3jhH9x79z3cdNPN/OWuu5g+/Rv27tnDK6+8QlK9JOrEx7MjO1tN+TPnNF+dmsptt99uK9E0nWuvvZbFvy1i8+bNxMaqB3pnkDKkeA0VcX/goAEk1a9vK0xOVoFg58yex0svv0Jahw7MnTeHKVM+YcqUTwqdLDXS09Mv2/PPBeGbVxmhSSuZXw0C+U+378qQ6Z8x4fcFTFi8wC53aKvrT8P3VePP9Heun8L4m29jwuIFbDi4DylgQvc76JSU7MtXWL/hU1km2/8c+G53ASAJCQlh5nczWbBwIQsXLmTixA+JiAgj93ieXxmSCeMnmJ5Qaueu3bsYOXKkbShWVZdMnDiJjp06YXg89O3XjwXz5/tqIzXiE+OJiowkOTnJr14qyYKFCxk+bDiHDh3EkNCzRw8effRREhMTbP2G4WXatGlMmjSJ9evX20Vcf/313HPPX+jW7SYkIL1e3ho/nlYtW3LdddexevVq7r+vLzmHc3h+7Fjuv/8+QDBu3DjefONNvzdjgpiYGKrGVOOaa64ptv137tzJs88+G6AdYNKkiXTs2LlM9P+F4nu8HpzBKuZMedRfwQ/kI9R1+3z4NWpU57777uO+e+/DkAbz589n5syZjBs3jujoaDp27EjHjh35/IvP2LNnL199/TWPP/44BW43f7nrLu68sw/h4WHlsv0r+BX8P+NPzpjMqDGjydq+HRAIKy4Fvjs4gfJY356VRY246jRr1syMT1P29Zc2viYLH5AEbKKYv9QDtCy+YoBVps0pUqgskra88b0eDw5dx/AKc9UezKWpbYp1VTP/s0qSZt9KM1q43yBS48aM6YI1jmxRwqyZEIYdO0ZK9T6jLPA1Tfctpa0V6Zyzav/CaS9u/xuMHjWKZ599lrjYmuTk5FC1SlXuvvdufpz5A5UrVaJx40YgoWqVqv4ZbX5wcBCdunRCSMHQoUPZvXt3sfx9+/axc0f2Get36A6uv/56kJJhQ4eRnt6PzZs20fraa+nVsxcAScn1AUlMbAzFbRKNd959h0aNGmKdppKTk/n448nce889ICTXtW7NxIkTkYbG0qVLmZwxGQR07XID4eHhVI+L5ebuN/P3v/2dl196Gd9Sc0r/sKFDQFNvaGNjY2nYsKH9EPXE355i4KCBDBw4MKD9Q0KCGTF8BAi1dOK///1vRo0aS58+fUhrn0bv23vTuWMnABo2aEBiYt3L9vxzIfjWn9YKbKeoHghJ53rJTOh+GylV4gBBStVqTLjldjrXS/kTvjxj/V2SUvj67v52XhUImFPr15Q4/2LLUvufC99VoKaJOh1Ormlxje+QlOQdV54jAujdqxcLFv5Cx04dbf7e/Xv5y11/sY0T3bt3p27duhhS8MTfnkBKg9+XLGHB/Hl2zUaPHs2SpYtZMH8+M2bMoFWr1gH6Z0yfwb333EPOwYP2+f+br7/mpptuYvXqNQDs2beX227rzd+f/Dsb1m0AoGHDhoSHhzN//nz++vBAnhn5DF6vh/0HDjDuzTcYM2YMOTkHuf/++8k5dACk5Nlnn+XI0VwKCgp484037etPnz59mDXrJ/74Yxk//vAD/fv7xpDV/nv37uEvd/+FOT/PCdAO8Njjf8OQRpno/wvF9xpegoPVUtrlUX8FvyhfM+MElgRf0wRpaWm89NJLLF68mPHjxxNdKZpXX32VlAYNeftfb1O1ahUmfvgh/3xrHFlZWbRo0ZyBAwcyd96cS6LfV0z57P8Kfunkz507l7qJdUl/IJ2s7dtJSEhg+PBhzJk9h63bslm2ehPLli1n0qRJPDNyJE2aNuXIkSOMHjuaeon1GDNmDEeOHCmz+ksr32GXL/wz+qcyP1vWHolpVCrs2uzLVzSyReFUwvzgl7ac8T1ujzlv37Dn+luBb1UJfr0kJBhqvpqU5ptpKXxhHQQIWchbRZoxYfAbAJj7hDDjN8iA6pV2vqZrGOaShrrQym7/C4FDd/Dgg/3p168fOYdyiKkao6L/m9zXX3+Nr776ijvv7HNK/nPPjWLRb4vZu28vrVtfy4CBg2hy1ZW4XG5WrVrFTz/9pKZKAVlZWWes/+mnn+aPP5aSl5fH1amp9OlzJ7f1vl3VT0L//g8QGR7Otddd56cxUH9y/WRmfj+Tffv2ERoaak9N8Od37tyJNWtWsWnzJpo1VYHEnn1uJEOGDsHpdAAwePAgUz8B+tu2bcfmzVtwOlS6b7/9hoICFyCpFB3Fk39/stj2H/7ICIaPGIZmLkX5QL/0gJ6aPDmDn2f/TKtrWwZoutzOPxeCL83fRa9ZxfM7JyXTOSmlUNrT8M3f1qWvxPWb5yRppzw7/Ze6/c+F73arpY7dHjeNGzXm559/ot8D/cnOzkICjz/2GA8P+CvBzpBAvoRBgwaTlZ1Nw0YN+WjyZOLiqrN69Sq6d7+ZnIM5HDp4iBYtWtCiRUuWLFkCwMQPPyQmpirdb7rZXBklUP+4cW/Y7RBXvTqvv/4GH3zwPnPnzGPgwIHM/nkOS5b8TubyTCQQHhHO+x+8R9s2bTAMyZw5sxk9egyffPwJuqbz+OOPA2oluLvvvoeDOTkkJiRw8EAOefnHWbd2Da1bt2bosKGMHz8eISTTp08nPr4ONWvWIDw8okj7IyRDBg8hKyubRo0a8tHHHxEXG8vq1Wvo3v0mDuXkcCjnkDndsnT3/4Xie9wegpxBarWmcqi/gh/IV6uSaheM36BBCg0aNGDggAGcPFnALwt/YeYPM3n1lVepUqUKaWlpfPjhh+QcOkRGRgZPPP43Hvrrg9x++x1UqVLlsm//Cn4FvzD/yNHDPPLIo2RMzgAJCQkJjBv3Jj179grg5xecZMOmHTRt0Yb0vuk8//xY5s2dy3OjRzN/3nxGjxnNuHFv8uWXX5GW1r7M6C/tfIeVyO9okQJBFDs3qnjHHb+KSPNBHGlXWeCv1VfJ8sb3GAa6OXVDec6Y6YRAGTawy5Y+X2t7qo/aofzwhTm/yH9FFCkkGFYgXatc0+xhmCNMCIQhTf1aqedrQsPAay9hWDb7X6ilCnUdEOiaTmy1akXyV6lSlQce6O8rqxh+YkI8M2d+z+DBg1i5chXvvvuu2RcqvTQkMTExjHzmabuGZ6K/UaNGZGauID8/33ZZtE5VCOVdc/c99/jtLV4/QPXq1U39xfMjIyK5OjU1IH/lypUJ3Ipvf6e9sowkKCiYoKDggFzFtb9azlM/pf7tWVmAoFmzwDpdbuefC8EXiIDjvpXdTt3/Z8NXHyUN//lCId3m74DCpWlsUcdjIyN9pZ6Kb1fQ/nBW+gvXuyz0v9ulPBtOniwAoH5yCtOnz2DEiOHMnj2H119/HafTyYCBAwP4M777nj+WLgEE69et48EHH6JOfDzfTZ+OAOqnJFM1pipCCP776X/48puvefXlV9mRvYMhg4cyvtG/eOKJx+nUoaNahQ+Bx+Nh4+bNNuT119+gbdu2NGvWjG433kh2djbffPsVcXHVTT0GU6dOoVmzpoBA0wSdOnWmYYOGXNe2DRkZGdx///0IJMfz81i/fj0R4RF8/PEU5s2fz7PPjmTtmrW0bn0tjz/+OG3btuXV115l6ZI/ePXV1/jwwwyGDx/GnXfeSUhoqK3/uxnfsWTpHwgk69ev58H+/alTJ54Z332HQJCcrFbJKwv9f6H41pK+6hxQ/vRX8AvxBei6flH4ISEhdOrciY6dOiKEYMP6dcyeN48333yTZcuW0759ewYPHUpu7jE6dexEWofreeihAcpb+XJt/wp+Bd+Pv3zFCu697z7Wrl5FpUpRjBo1lhEjhgcwrS0sOMS+/zpw6DDVqlamfVoa8+bOYe7ceYwePYp58+bToWNH3hr3JsOGDS/1+ssCX1PH/YiyyIciVS2818pv3YvbK+7YD+uFbEnCr7xyypdeD5pQBg3LMAMgDKvTJfY0IAqVZ1PVUSnMHIZiS6n62xcbQLPlSKSpXyKlumiWFb7m0DEMQ8WbOc/2v1T9Hx4eCgJyjx4pEX58fDxff/stU6dOZcTwR+h9+230Te/H2DFjmTnzB5YuXUrv3reftf6gIGfAXNLL7ft3Kv7WzVsRSJo0ueqS8C+1/nPl7zp2lJ82b1QXngC+LDm+PbVNBB63shvmbitQlR8/IapyQPpi+VKVYZ1/zkY/lM3+DwkNwZCCvLzjystBQnR0FP/+9wcMGzYUgJdfeonHH3sMl9ttF/HZZ9MQCG655VbCIiJYuXIl07+dgYHk6mua894779p8XXdye+/bWTB/Pi+88H/EJ8Szcf06Huzfnxu63sCChb8AsGf3noD2T0lRXlURERH07NEDBGzevMUeVwnxCTRr1qyI/rz8EyCV/sOHD4PU1PVIwpQpH5OQEE/b61qDlKxYucLOf+211/L5tM+ZnDGJFi2ak5NzkOeee47m11zDR5Mn2z3y2WefAZJbb7mV8PAIVqxaxYwZM5AGXN38Gv71zrtn3P6Xuv8vFN/r8eJwOJRxphzqr+AX4ktwWDFnLjK/QYNGDHx4AP/9739Zs2Y1d955B4dzDvLJxx9TLbYaR47mMnDgAO666y5+nvXzhdFfKFu56/8KfqnhZ67IpGNae9auXkVyg4Z89uV0n2GmGP6KdVtIrBXH1Vcks//QUbbv2mvz09LSmDN3HqNGjQIJw4ePID29X6nWX1b4jsJgZdGRAXvVX+Y+Nfek2IpbuwMP+9JL1A2SFIHM8sj3mEtpWwYMYWaU5o2pEJpvmo8UqGi5qJsdYU6OB+UpYVdX+p5JQHmvSCtGQyDfYlpjoSzwdaEhvV6Edv7tf6n6v3pcDSSSvfv2Fcl/rnwNQZs2bWjTpg1FNxnw6VLrL238/fsPULVqFXtp4HUb1hMWHka9pPrlQn9J8D/OXML4xQvILThJRFAwXQpPVSrm+39OfAlIyfrh/is/qa3h+BcBWWhVKF/uM+JrgBD8viuLlrUTzlj/pW7/8+HHxsban/fu20udOvEIJLru4LHHHuOKK6/gr38dwLTPpnHs6FHeeecdEBqz58wGAa+++goAC39ZyN7du6lbL4m2bdr4VUKd0bOzsolPSOCeu+/lzj53Mf3bb3nzjTfYtGkT995zD//85z+JjYs1rw0S0HjxxZd49bVXAI01a9cgpFopLiamGgjI2pHNhg0baNCgAQBej5ulf/zBU0+qKY2Dhwxm//596joEvPL6a6Q2uxoJJCQmIoCFCxba+rdnbSchIZG0DmmkdejA4t+XMG7cG/zyy288+9yzbNq4kdGjRzN79hyl/bVXkdJcJW/vHpLq1uW6Nm2LvMQozf1/ofgejwfdoWMY3pL7/pch/RX8QL6UEnT1ku5S6g9yBtHlhhu44YYbeOTRR9mwYQOzZ88m99gxli1fzt+GAMDDAAAgAElEQVSfepI6b9di6n8+JTQkpMT55bX/K/ilg79ieSZpHdM4evQo6X378sab48jel0P27v3E14wtwl+3ZTsxlaOpUkl5Hl9RP4H1W3awfls2DevG2/xnn3uOqKpxjH32KT6anMGKFZnMmTuHStHRpUp/WeIXWpDYsuEIfM90fvsA6Ue2LUX2j+I2YR8U5g9xqqTliO81vAiHZgdJU2UYPpYh1V7TLVhNGRCgCbtO0l5dRE2V8b8JsuqknKNMDxThq4QU2EaSssLXNB2vlD7jTxns/4SEeAQa38/8/pLwL7X+0sTPmJxBixbNuffeeykoKCD32FH27d3LNdc0D1j283LVf778nUeP0vfzT3hh/ixyT56kY1J9fu43mIbV4i4MX4D/FStAvyFPUfCZ82tHRgOSCYt/oe9nn7B4Z9Zp9V/q9i8JflycX18ZRhF+t65d+WHm90SERfDjTz/x3Q8z8Xo99vl/1apVhISG0qVTF+67vy9t27YtdHciyMxczvXXX8/w4cNYv34dToeDXr16MXvuHIYPV2/shg0bxp5duxBA3br1QEq++OJzmlx1FU2uupLZs2Yjga433kiDBim0ue46pAE33HADt91+B33u7ENScn369OnD1m3buOeee3ji8SfwetX1IzU1lTvuuN3Wr+s6rVpfS86hHDZv3ozH4yHt+uvp1bMnc+bMxfAatGrZgv9MncpHkzMQUvDxJ5/w66JFdp+sWLGK0NBQOnfpwv333k+btu0KGWb+vP0Dt7L1/T8d3+PxoGt6oFfsReT7tgp+aeBLKXE49FKnv0GDBgwcOJDPPvuMFcuXMWb0aOLiqjPhn+MvCj9wu3z7v4J/6fkrVmTSsWMHjh45Rt/0vkzKyKBy5Uo0bZhEXl4+G7dlB/A3btuB06FTq3pMAL9h/XiCHA5Wb9xu81es3cKgh/szZ+5c4hMSyMzMpG5iXY4cOVZq9Jc1vqNwQdKvEPVZFErhV5AITH/qzUpnp1affH+WO77H48WBrm7mhKqL7d4k8P2W1tQnlV9YA8K04Nnlar7BYmWX9k8NiQRpTUWSIH36ZRnhaw4NaRg4hHbe7X+p+v/aa68FJAsWLCR7exbxiQkXlX+p9Zcm/rrVawH49bdf6dOnDynJKUigXlK9cqH/fPjjF8/n7cW/AJKIoGBeuuGWIistWfUsOb7EZ9EtpN8XS/uc9b/Y5Raa10rgxQWzWLw7m8VfTqVXwyY81b4zUWY8o9LS/iXFr1OnDtVrVCemagw1a9Uult+oUSO++PJLet/Wi9CgYIKDg+nYsSM//zybIUOH8tWXX1KzZs0i1H379uFyFVClchUk8PVXX/HNV19TPzmZ2Lg4DLeHlatXYV0SXC4PEri1x62kNkvl1ddeY83q1YCga7euPPDAA7Rq2RKAN8eN45WXX+G7779n6ZLfVX0ldLuhK/f3vZ82bdoghODmm7uzc8cOOnTqWHgkMWzwUBb9tgiP14OmadSpk8Cy5ctJ75dO9bjqJCQm4nQ4WLduPQh1kfK4XHTu1IlZP89i2LChfPHFl9SqVbNI+yvtLurUqVOq+/9C8T0eteCBYXjLpf4KftFyNf8Hm0vA/zP9oWHh3NS9O927d/eluYzav4JffvmTMjJ49JERHD1ylL59+zJpUgZ+1aFRciKbtu9k9cZtXJlSl6zde3F7vVxRN7FYfr06Ndi9/zDL125GE4LEOnGEBAWR2qwZmZmZpKWlsWLFCnr16smcOXMuuf6yyLeNM9ZOEZBUHVGP1H4lSVBvx2SRygeWVrgsgU+yhMIn63LEN7wehENHaBpCCnwhM6VpqMD8Lc0HEgMrMK4wTIMFBnbMGulv4TPwBdaVCNOXSlhqhEovLSNHGeHrQsNA4ltHu+z1f0hoCL179+KLL75gz759tnGmvI3/0sB/5LHH2LJtK0uWLGXZ8uUsX56JANq3u75E+AUFLp5/fiwjRowwV24pXfrPhb/uwD6e+nEG63P2AZK+qS0Y3PJ6ooL9gzFLZm3dxIvzZgEQ5ND5ecsmcynrc+e3qBHPkj07WLwji1Z1EgL1y5LRf1vjJnRJSmFy5hLeXryQL9et4KctG+ib2pyhra73S1z2xz9CEB0dzS8LfwUBDl0vJo/iN2yYwsoVK3E4HCBh9KgxLFq0iP379tK69XUMHDCAq5pcZa4Ut4KfZs0iO2sHIMnKyuLnWT/z5ptvMGPGdDZv3sSmTRuxLGrx8Qk88ugjBAcFI1CxKTp06ECHDh04ePAAEZHRhAQ7A/THxcbx+uuv8dprr3Lw4CEE2AGI/fVrmsagwYOKtI1A0qZdW7Zs2aJiowBff/M177//Pu++8w579+5l7969pn6NiPBQ7r+vLx06dSQpqT6LFi1m7949tGnTmgEDBnHVVVficrlYtWo1P/30A9k7doAUZGVtL9X9f6H4XsOLw+FEmu615U1/BV8U2aXrjnKrv4Jfwb9U/IyMDB7o9wAg6dv3fjIyMlSaQvzkxNpk79lP5trNOJ0OrkhOPC2/ZmxlDh4+gsdjEBEWZpdVqVI0c+fNJTGhLnPnzmXEIyMY9+a4S6bfV1YZ40tZyB/cLreYE+xpqyADqxpwUGJNtCo6ZasQp5zw//hjKf0e6M+mjRv4Zal6e6hCtJgfhDJaFOZZm/BDSOuoELahIzC2i4rbIjShVgoSqrYqs1lKGeCPeubvrFiRyc9zFlA/sVaZ7f9jx44xb95cbr7lZvNtUvkb/6WFL6XBl19+xciRI8nLO861rVozZeoU5YJ9nnyJpEOHDmzftpWYmFhuurk7Tzz+NyIjw0uN/rPhT878nRfnzwIENSMjebHLLbSyY7P4+LO2bGTI9M/sC5hV7oRb7qBT3eQA/n2ff8ySXTt8JxJrQq7/CcSsiy7AKyWTe99Dq9oJdg1nbdnIkBmfgYBaEZV46vrOyovnPPXvOnaMf8z/kdlbNwGCWpHRDL62Lb0bNbkk7V94u9T8rOxshgwezMqVK/34ZkdKZSx5+plnuP223jb/4MFDbN+2jQMH9xMZGUmVKpVp2LARmqYxY8YMBg0cxONPPM7QoUMumf68/Dy2btvCrp27CQ4OJjo6msaNGhESGmony87OZtDgwaxaubIQX+mvWqUqz4x8httuu+2s+WWl/0/Hr12rNun90nG5XLzyysvlTn8FP5Cf2uxqqteswXczviuX+iv4FfxLwd++fTtXpzbj8JGj9E1PZ9KHk07Lz8srYMP2bIQGTRskqZVxT7Gt35qNU9eJrxnHqo1bSaxTgypRkXaxmSsySU1NRQAffjiJ9H7p5a79z4fv8B0w94rCWQpB/bZAtxwRWFIAT5gP5CgvCvztUOWT7/FKNE1DCGt5QYtv/pYW1+eFoqxtCiBNvnp+Eb76IK3q2Pqs+uzZs5vNWzazd88+DENSKTqKFi1aUKVKlYvCl1IiNKt8gbUEN2eoX9d1pDSwzhdltf+jo6O45dZbC5VZvsZ/aeELodG7d286dEhj7tx53HTTTeabdHnefIFg7ty5nCwoYMI/32L6d9/zUcYkYqrF0rNXb4YOGUx0dPQl1X827f/i/Fkg4P6mzRncqh3RQSH+tbFL+sf8H0EIhrRqy5BW7Ri/eAFvL17A+EXz6VyvfgB/ya6dWN/3wO+/r/a+c446bnGEhFlbNzJkxud2nl25Rxgy4zMmdL+dzmZg4nPVXysqmn/dfDuLd2bzj/mz2HhwH0/Pmk6jmDgaVYu7LMb/+fAT6sTzzTff8Ouvv7Fkye/s3LGDiMhIEusm0rJFSxo2bKiWUzbrI4GYmMrExFQp5tZHEh4eDgKOHDlySfWHh4dz5ZVXcdWVTU7Jj4+PZ/rX3/DLb7+yZMlSduzIJioyksS6dWneogWNTO0Xsv0vdf+fju9yu3A6nRQUFJRL/RX8QD5IhBDlVn8Fv4J/Kfj9+vXj8JGjdO/eneFPPPOn/A3bs7n6imROFBSQuW4r9RNqEBkRXoSfvXsfuoSkhFoAXH1FCivXb+HEiQJqxsUgBDRr1oxJkybRr18/HnlkBE1Tm5HarOlF1a/+Lpv97wBMa44IqIawQwoHZpb+lRLmfv+7L+FXXyQqZohV/cI/zVTlkC8NrzLOaOa0ICEAQ/GFRBrqQiYRqgwMwFzBSAKatBlCSqQQflY5gRpU0p4aNPXT/7B2zVr7mEolqFy5Mi1atPpT/rFjh/n+ux84evQYHo+HqtWqkFAngVbXtkBDOy1faTQv0QFvw632PzP9mq5jeA3sONZluP8r+KWLX7lyFXr26nlB+CHBwTz+xN94/Im/AfDqa68xf948Pnj/PapWrUrXrt0YMWIEsXHVSn37I+Hpdl38CijK35ObC0iGtGoLEoa2asfbixew4eC+YviqjuuHPx14GfS78FnK7/t8Ckt27fCdQwS8MP9HkJLB17ZjaMt2TPh9ARMWL2TC4gVqGlUJ6G9ZO4Fv7n6AHlM/ZMPB/Rw7WeBX4OUx/s+VL4A217WmTZvrAvrMx+eM+dViqwGwd++esqFfE7Rpcx1trrsugB+o//Lu/1Px3W4XDod1vS5/+iv4gXxDSpy6zxu1vOmv4FfwLzZ/3Lg3mTt3LtGVKvHJJ5/gDApm2ZrNpNStTURYaBF+5tpNJCfWASA0KJirr6jP8rWbqRFbheoxlW3+gQNHOJx7nKYNkgL4TRoksWbTNk6eLDCNNpIWrdtzR5+/MO2//+GBfv1Yvnx5uWn/8+VrmOWqDP5ZfJso/FlIpFVfBIF08xjgWzNK+gqQhf4up3yv14smNDWtRUiEUB0jQU0BAnzviFWZ9k+hlrW2BoXU1AAQNkvafClg5szvWbdmnapgQFUkcdWrnxH/xImTrFq9ih07stm9ZxerVq5m+vQZvPTyKxw8lHNavpTK6GLPWPKrhDTb80z0a5rynBG6KPP9X8Evv/wnHn+Mb7/9lqysLNLT01m+fBktW7UgtWkznnzySfbt219K9Zv5/oRfIzIKEIxftBAEjF80HxCkxMQVyzdd7v6Ub+cShl3M7uPHQBMMbdUOBMogBKw/uL/E9UdacXX8+GVx/JVWfp1atQGYM2ceJ/LzLzr/Uuu/nPhulxtdc5Rb/RX8QL5hSIS5lHZ51F/Br+BfTH7W9u2MGT0WgIwPP6RSpUqEh4VydeNkNm3bwb6cIwH8VRu2UjMuhshwf29oSG1cn/05R9m2Yw8Aefkn2HXgAE0aJBXLvyIlEbfXy7rNWazfspOQkCD+9+kUEhISyFyRacaeufzbvyT4/guT+v1UIBlwKDCjsH74wSQQ4AIkpJ3a+uQ/DSZwK198w5BoeqFpTWYvCSRSU/kFwjRoCIRQZdtsDTDMvDKQr5xRJFJKfv31N0wfFBBQLaYabdu25Zrm11C9eo0z4leLifWNIj99ebn5fPTRx6fkA8oqKMw62pUX9ucz1e9w6kjDQLfylOH+r+BX8EEtITxz5kyytm/nrwMGsDwzk7ZtrqNpalOGPzKCHdk7So9+v+//6fjPXK88a97+fQEN//kiby9ZCEIyrFW7YvjW5z/nC7+kVjE1w6NBSiYsXoAExi9eCEhSYmJLXH9x/LI+/koTPyo6mtbXXUd+3nG+/2FmudN/OfELXC50XZhTu8qf/gp+Ib6Qamn18qq/gl/Bv4j89H79OHr0CH379qVnr14B/NQrUth38DBZu/cCsG7zdqLCw4itWrlYfpOUupwscLNp+w42bdtJauP6p+U3rBePlJITJ0+YHjRqtSgkjB47hiNHjl5w/SpR2e5/h7VDmLXxf/4W1gOzsNJYif0T+ZQEPLsXSqdcgexHd/wLLY98w/CioaHpVodoYMiABwBz/Wqkvc+cpmS6UFkIiZoaZXmuSAQYEik0DuUcVMteS3WBbNKkCX3uvEOlkSDsJbBPz9d0je433URIcDBZO7JZvmwZXq8EITmUc4jtWTtITIgvwrcqqtzEDPxGNBggNHlGfABd6Iqp+9kUy2j/V/Ar+IX5gwYMZNDAgQC8++67TPvf/0jrkEZ4eDidOnfmqSefJLZa7CXTb38nOT2/c1IKE268jX/+voCNB/fToGosQ1u2p3NSff/Kmb+k+QU/C75foqfbd2HIjM+ZsGghE0zDDAiGtWwXUM8S1X+Zjr/SwO/Zowe//forO3fuLJf6Lwe+lOD1eEHoCOuFywXg79mzhxo1apyz/pMnTnLSdRKXy82J/HwKThZwsuAkXq+XvLw8XAUFuNxupJTkHj+Ox+3G7XKjOXTyjh/H6/ViGAZerxddc5h53RiGxPAaBAUH4/G40XUdTejoDkFYWDgejxunMwiH7sAZ7ETXHYSHhYEEZ5CT4OBgnE4nQU4noWFhOBwOQkJDCQsNJcgZRFBwEMHBakn70tj/xfHxgq5r5hn58h7/FfwK/qXkZ2RkMHfuXBISEhk3blyx/CYN6rJm43ZWb9xGSHAQCbWrn5bfsH4Cy9dsIkh3WNBT8vcePIzbY1CzeizL124mtXF9OrRPo0ePW/n6628YMWI4GRmTL9v2Lym+wy6/aBhhEP6Ba/wrE7j56uGXulA6NaVF+MT4alwu+V6vF6GDwLxgSTPwrR9ICF/Zgc9EqoN9Ha20SKS6GZK++uzbvw9rPhtS0LRpU7sg5VmjIZBnxG99XWuEhNSrr6FO7Xi++vJLpPnfrt07SEioXYQvzeqq+DPm1KZz5OtOHaRhrnB0fu1vtVl5HX8V/NLNHzBgAAMGDEAC77//Hp/+57+0aNmCugmJtL6uDQ8+2J+kpKSLq78Y7afid66fQuf6KQFpfIf9+Jbl9Rzbv3NSCuO738b4xfOVISgmlqGt2pvLdpew/lO0weU4/i4V/8477iAsLIy0tA7lUr//NuHtt+l2443UN7/nF5t/rvpdLhdBQWoZbcs4U9L8ZcuWMXrUaJZnLqdqTFUcugOv10N+fj4ulxu3ywVCkJeXh8frITg4hNyjx/Casf7cbreJEzgcDjxuN6FhYZzIz7fuqFTdhUDXNaQBmq7u1jTdoRYmEJqqjwCnw4lheFFBb3XCQkNwud14PB4kaloPhkR36LhNg4+UhnJ6lhJNCLyGAVJimP8E1t2dxOkIwuUuUKdM80iQMwiX24XQBLqmo2nKU0nXnTh0jdCwMAzDICg4CIfDSZDDSXBIMCHBweQcOkRISDAFBS6SkpKY9r//EWUHpz+//i8unVcqA1bAwVL+/avgV/DLIv+tt95CoGLOVKpU6ZT8SlHh7D90DE3z/Cl/5fot1KpeDcPrJXPtFpo19l2T/Pm5+SfYsy+H1CvUi7jwkGCWr91ESt06jHvzLebOncfkyR+Rnt6PlEZXIHQHNWIqX1btX1J8h/3J/0BhRjH19k/oO1SMGH9N1gEJ0rYilU++dbES5gBAE6peCNVRmvXgIv2Wn7aI1k91QJjpVMBgifAzini9hrlPGUaioiPNpBJMw8i58K+88kq+/PILMAddzsGDiGL4fpl8g9g4N76uO/AaBrrm15BltP8r+BX8M+U//NDDPPzXhwGYMGECU6ZMYdq0aURGhnNrjx707NGT1NTUi6BfXgD98sz5wj+BL2GXpBS62CsznZ5/3+efsGTnjoDzi53A31Ck4Ttunrgig4OK5V/u4+9i8jVd59Zbbi23+v35UVFR/PWhh6hSuQp33HE7fe6666Ly7Sxnqd/tduEMCsKQhr1iVUnzx417i5DQYDp36cyCefO54soriYyIxBkcRHhYGOHh4URGRRIWGkZERATR0dFqX2QklaIrERoRSmhQqO2poowWIQihBda1UH2K03/6PcVnK6L/dIX4/V1QUIDL5aKgwEVBwUny8vM4nnuc3Nxc8vPyyc07Tt7x4+Tn53Pi5Alyj+WSl5en/j5xQv3LP8G+g/tpfW0HmjRtwvfff09axw7M/nm2epi7AOMfqabxn1J/Kfz+VfAr+GWNP2fuXDIzM0lISKBnz56n5OfkHuPg4VxSGyexY+8BMjdspVnDpGL567ZkUSU6kriqytATGhLM8jWbaZRch5Cg4AD+pm27uPoK34uxiPBQUhsns3ztJmrHxTBixAjGjBnDoCGD+fyr72hUP6FE9V/q9i9Jvs84Y2fyS+fn1lPsJn3HpFm1AKBVUwmY86+sFKI4IeWIb3gM0AXWyxekAClVp1l5pAFCw47dIu1kimU+TEgb6Au8iwQM0DSBNaVJCDC85oAyBwjy3PghwUFmXl8QX1kMX5jpQZqfBeIc+bqmI5EgrIv82bX/mrVr+PnnOco4JCQG5jQxaVApurJawlVge+ao5zPNHg8RERHkn8hHINCEUM9wuoYwO1EToAmN0IhwTuafQBNqNS5NaGi6qqsQOrrQ1I2KpiJyh4WF43a5VRvrKki0pmnoQiB0hxqC5j7rX5DTiddroDt09QZPE+iahkPXzTLUP4dDrZCg6QKH04GUwuZrDh0NFEtzqBtpsxxN03BoGphv5ByOwFPF+Y7/S/39+zO+lBIMAwNhvuFU8ZuUB5rKZxjqg2FIDGmo8SrBQCIN85/1We1V3xOvofKhGFIqA6RhGGqfVB5w0ustwu92Yze6du3K3j17+O9//8cPM3/g88++wGt4adumDQ0aNKDbjd2oUaMmVStXKdn2L5yhBNo/sD//hG/NirShZ89fsitb7bTyWpXwnVh9+0+p/9z5ZWX8V/AvDf/Y8VwW/fYbbrebqIgInnzyKY4fz2X+/Pk8/cwzPPzww9xxxx3UrVu31OovcLsICgpCepVHSEnzPR4Pixf9RseOnXjn3XcC+JyJfnP/qfi+v0vf+LOmM0VGEiDgdPqP5x4nIjKcvPw8QkLC0M37FSt18+bXcO8997F7126iK1W6IONfSgPdodm7Suv3r4JfwS/L/I8yMkBAeno6W7N2US+hVhG+2+1hx859NG2sjCh1qlcjLCSEzDWbubJRPXXfb/K37NiDQ9OpUyPWxlaKiuCqhnVZtW4rCbWrU6VSJBLIXLORhvXii9Wf2rg+qzZu5YG/DmTixEmsW7OWRb/MoVH99Muq/UuS7wgoxK8eEhAi4K8iH/1LFoV3UDidKPzRvkiWR740DDQp0ISOlMJvaWwfxrJSSOGbEmQ9oATcRKjU9sAwxwFSCHM1KPOYVDc2ymoHwsB8JjlHvrDIEmu1pcJ8kH58v/LOga+ZS3NqlufMWba/1yM5cviQCkglpT1VTBoQFnGAE/kn8Hg86iFZSqRhAMrLCQOCQoJxn3Th8XowpIE0JIb5cG2YLskSCAkJsd9wGWYZ0jAwJBiGmqcu8D3Uh4dFcNJ1gpMnTiqjANguzlJKDAzU/xK86oE/NDTUfINWYOeRVr3tf4qnDkqcQcEUFJxQRgVprqCgCWVTEEqPVZah/K1VOULi0By4vR6EAULzjSk7poAwe9/vbxCEhYbg8XrxuN34O2oLzHOfaTxUngz+fSfA0uU//rzS/q4SOGTsk6mUkoiICI4fz0MgbS2GBDWVDrv9rel+UhjEVotl//79Nl9YOjTM5eJB8zsha5pGcnIymzdvDtAv7H8amioEXdMQmk5ychKbN2+xx6umawg0NIcyWmqahhCChMREsrOyAvhoAk0K1WZAo0aNiIqKwuv1cujQIX768UfmzZvHnDlzGDZ0KF27dQsY/4U+nv35z/r+231U+OM5nH99J5E/5UsrAPp58K2/1w97qtDFMzBr4C71171ffMLSHdnnxS8t158KfunkHz50iGnTpuFwOgkOCsLlcpG1I4vdO3fTvGULfvzhR6ZOnUqd+Do89uhjpKWllTr97gJlnLE9Z0qY/9xzz5Fz+BDj3hpXLP9S6y9VfCmZ9tk0oqOi+OjjT5g0aSKVK1cJ4L/4wss4g500vqKxnbXE9UvQhKP8tX8Fv4J/Eflfff01SGWcqVK1CplrN9GscXIAf/WmbTRJqRvAr1opkvCwYFau20JSQk2iIsLZufcAJ066uDIlwQcy8zh0ndQrk1m5fiv5BQUcOnSUWtWrERYaUrhStuirUpJYs3E7/QcMYuzIJxk7agz9+qZfVu1fknxHcWVCIQsQIqCAQkn9KP6V9+0r7h5YiS8qsrzw3YZXPZhpAoTpwWGnM6chWXSp+MorxXzElX7HhGE++Jr7hUBYTzHCR5aoQH0CbKOf+nzufPu5zfRmKcy3kmGWazX3ufAdmgMpJY4iLmBn1v5XNbmK3bt3MXHiRISuKQ8STUNoGo4jGvEJCezetcs3h1tXAQ2dmhNdaAhdp3a9WhzKyUFo1sO3jhAGQtNVWagH7iqVK3H46DF00wqt6zqYxjJN05R3Cz5vmEqVKpGbm2sb09R8dt+Dvi400DSfIVcIwsPDOXmiAF0H5WGk9Gq6ji5QXi+mscLiOx2qDZXXjs8YoAmB0LQifOu4QKA7HMrYIyVew2saOTTAi9cy7EjLsOPFsDtQ4PV47H6wPESU15IybFlz7gXgNbyACDB8GV61fLGUBobXiyENZVwxsPlerxdpSHSHA7frJF7TeOb1epFS4vF6lQHLMPBKA8Oj9nsNg6jISA4dOoQ0DDxeD9JQ6a28hseLxzCUcc3rxWt4qV27Dtu2bqdpk6tsvsetDHeG14PHq1gWt35yMmvXrEHTNJPvwXAbeA1Tk2EgDYPklGQWzp+PNMeNrus4NB3N4UDXNXRNI/XqVBYsWEB+3gm8Xhea7sBrvqV+oH9/unbrGvgVCfhGnOP5z88wdS7fv/PlC/O1gghMelZ83xnm0vBLy/Wngl86+QkJCXzwwftFQVKtgPT774v5Y+lSFv++mH79+hEcFMKNN97AmLHPExUVVSr0u9xugpwOdR0QosT5U6dMIbl+fRUQ9zLr/5LmT8rIYNjw4eiaxjMjR9qGGX/+gl8W0PWGGy6ofq9h+KY1XUT9/p/KY/9X8MsPPzMzkyNHjhCfkEBiYgIgSKlbh2VrNpGSWJvw8FBWrNtCUnxNdKcjoHiAkH4D3uwAACAASURBVKAgrr4imZUbthIeGkJu3gmaNSo01akQv0mDeixfuxGH00ls1cp/qr/A7ebee+/hP1Mms3HdOjIyMkhPTy8R/QGwy6D/HaBc7UVA2aJQUlVQkcLBvF/3Sy8Kf/DzqPArwZejfPKlVwWU07RCBQsRYKiwc2k+rwbpR1DPC2rJJV89LfOGMD0BVGQXIbDfulsMkAQ8dJ0hX3l/iAD9xfGVv4dZhlBtfa583aFjSAOhaefc/t26daOb5VFgHi/a/4HbKb9cp0hffO5Tl17Br+Cfim94DdxeL4bhweNRhqHp06fz3vvvExQURHhEBAkJCXS9oQsdOnTEMAwqV64cwCyp81+xF5wSOP/aJ7Q/4VvGXXle/MKEszn/lwS/dFx/Kvhljx8UHES7du1o164dEvC43UyZOpXJGZNp1qwpdevW46GHHuKuu+66pPrdLheOoGAwJJrmO1pS/KuaNGH/gQPqWDnq/3Phv/rqKyQmJPDwww/z8isv8a+332bRokXExcWxdOlS1qxZTZ3addRqURdQv3pBJIomu8zbv4Jfwb9Y/Llz5wLQIS3NThkWGszVVySzfO1mNE0SV6Uy0ZHhAaUX5icn1mLd5myqREX8KX9T1i4iwsOQhsG6zVm+GDLF6F+5bhONkuoQGhLC88//H31uv40xY0bTo0dPKleudN76Axu27Pe/BtYBdeOpXM397pYxfTKkVaAMKDxQRnGbCPhslyx9JZVHvuE1QNPQND3wxt+wbv1Vx0thqEoZVqeZU4KEX4nSf9j4hsqq1auYM2eu6W2hvCASEtSXx/a8MWOqnAtf5VGmmL179xbhS9OiaPH952KdC1/XHEjDUFNEzrP9L3X/V/Ar+GfC13RBcJCT48eO88F7H9Cnz528/tprSMPLQw89xPfffcfUKVPo2zed+Ph4EhMTiQ5YdaPk9JuXo5LVLwQ+774/aX/pd/45R77997n0fwnwy9r4q+CXXr7T6SS9b1/mzJnNli3baN68OWPHPk9KSjJPPPEE+w/svyT6XS4XQU4nBgaWR21J8kNDQuxFAcpz//8Z/6dZPxEfn0C9pHqAoGGDRtSoWZO4uDiQMH7CBLZvzyLn4AFmz5ld4nz/FNJATeG/iPqLpihf/V/BL198ZZwR9lRX/xRhIUFgCE56PH/KX785i2aNkjjhdrFha9Yp+Tv37MflcpOcWJuUevGEhYawcv22YvWvXLeVmnHVCAlR057u7N2b1te1ISsri7fGvVki+ovfym7/a/4Zfb/8gzX6CvevlvSrv/T7GfDRBPlLtQWKwsLKF18txQhCaL5OAjPWrbnCgQTMKT12ZmFd7FT4IYkaPkJYwRgkv/z6K2PGjOXT/3yKx+PGnG1C69Zt0DTNF3TX1HEufIFOUFCQfSArazvfffcdbneBGfpDmPEhpMnwtcO58vUgBxIzTkoZ7/8KfgX/TPgLF/7CHXfeSbu2bXn3g/do2KgR/544kfnzF/LQQw8RFRV10fQHnH9KQP/PWzaqWEJAp0nvMGvLxtO3v3b+fMU+x/4vAX5ZG38V/LLBF0Ly8ssvs3btGsb/cwKbNm+mVYtWpKW157PPP7/gfH/9bpeboOBgDI+KD1fS+vPy8wkJCS+0v3z3f3H8Lp264Ha7+OKLLzl58gTbt28nLjbW5k/OyGDUqFHUiY8nOroSR48evWD6DenF4XCUq/av4FfwLyZ/3rx5gCStfVoAf/vOvSCgaeP6nDhxko3bsk/JX7lxC0kJtRGaRqN6CQQ5g1i5YWsR/sHDueQcOc4VKYk2P6FWHNWrVSZzzeYA/upN24mOCqNalUoB+l/4x/8hpeCNceM4mpsPQIHHdc76C+0o8/1vTzyzJqLYSa1IxX55Awrzm2fl/zPgmOU54V9pAb5pLL4yyhvfiq9hBRK1pgIBCCExo5cihHIJVYn8QqoKQxlApNn90u52duzcgcftNussSE6pT8+ePYiOrARCIA1VN2EOnHPl33LrzXzx+VdIFVGWX3/9lV9//ZWkpHo80K9/0TaSgHbufKemYxjmChBlvP8r+BX8U/ELXAV88N77TJw4EZfHTVxsHGP/73nuvPNOfEVdfP0BV6Tz1P/z1o0MmfGZnXNX7mGGzPicCTffRud6KcW3v/QF3fbn/7xlIy/On8Wu3CPUiozmqes70zmpwSn4wi+o8Fn2/yn4F6P9//WvtylwFaBZsa00QWREBCdPnAThi12lYlSBpjlwOnXbUK5rGrqmIxwaQgocDp2Q0BDcbo/KY8fZMmNQIdB1Hc2h43QGYXi9aJrF0RGawKHr5op0vlXkdF0HJA7dqVYiNON66ZpaPc7i6w4dXdcAYespji+slSPK0ff/fPldu91A125dOXBgP889N4rHHn2UcW+8wZVXXEn3W2/hpm43oTvEBeO73AU4HU4kBsIKAluC+vPy8tAduv+hAP6lbv/SxH/33ffoceutpDZrhsfl5oN/f1CEL6Uk9erUAI/LEtcvpYqbx8XVf6nbv4J/6fmDBw2iS+fO9OrV+7LVn5m5giNHjpCQkEBi3QQ7zZ79h8g9ns9VDeuBhMb1E9myfTerN2zjygaJAfxVG7YRU7kSURFhWItr1K1Tg937c1i1cStXNagHwMkCFzv27CXVXO3JX39s1UqEh6qltlPq1WLP/kMEO3USalUvoj8trT3t21/PvHnzGDd+PLf0uI2G9euUyfa/EHyHddz/gLqHNTNJ6fvsV4Vi52X5K7FuhAPK9B1W+4RPRznjG4ZhBmw1vUTUws0+TxI1FwhpKCOMtDoVy0ASWCf/3w6Hbq+EI6Vk48b/Z+/M46worsX/re6+y+wbwzYMMzDMwIACbmAMIArGFzFxz2aiMSYviYK+5JdNzUs0i0mMiRrBvLzE9akxilsSTRSMCrgAhkWBYWdYhn1k9rlLd9fvj+ruu8wMsogwc7v5MPfe7qrzPaeqbt/u06dObeS++/6HGRdcwNixYx31BMkCjoR/6imnMm7seObPm8+ChQsRKI9f4/vvg0yOcEnkvHGXyjkSvmaoaU2a0Hp9//t8n5/OX7RoEbNn38t7q1YTj8W49LJL+c+v/SfDhw8/Iex3zzAt0Qj5oaSs/EfA//mCeQBcP2Eys86czOzFC5m9eBGz317ItOE13be/1Dxhrr7zN7lOHgEIGlpbmPni08z+5OVMH1HTlS9BGX0E/d8N/0jtP1y+EQwQjZlYlkU8Flcr4QhBc1MLEpXUWrrLsiOxTZtgKEBHRydSqiTbtmWqJNpSYlk2Jf1K2LNrNxKJtFWSb9tWibzVym82ZtyksqKCzVu2qKTftoVtqWNS2lhO0muXn5eXR1NzE1bcQqKSdtuObGlbSXyLk8eOZcWy5d7Kd93xLdNSznhNUFExjJ0NO7zk5YahI5xE6JquYzjJ3TVdQ0Oj/4BS3n//QJIzSUs4i3QD4SRF1w0dXdPJzculs7MDTTeUM8vQEThOKF1HaDqGk5C7sKiI9vY2T55Kwq70cPm6oTnONOUIM+MxdN3w+JqTFF43dAxHn5ycbCLRGIaudNaEhqHpCF1DCB3DUPxwVhaWZaJpKmG4puueA84IGuhCRzc0rr/+embNuoGnn3mahx58gDVr67jxhhs477zzOGPCBKZMmkxp/1IM3cAIGGRlZR31+S9umgQDAVUuue6HdP7NzclJ+W59FN+/w7H/ROJXV1dz//0P8JOf/oRwdpg9u/fQr6RfCr+jowMrbh1T+y0p0YyEo/Wjsj9VZuKwz88cfjicxQ9uvpkf/vcP+frXv8ENN9zQ5+zfUl+PAMaPH+/xW9o72L3/AKeMHpHCr6oczPbd+1hRt5nxo6pAwLpN28nLzmJw/5Iu/MH9S8jNyWLZ6o2MHjGUuo1bGecmCu7G/pzsLE4ZPYLldRvQNI1xo6p6tP/LV3+Z119/nb88+igXX3IFsahJVqj3tf+x4BupDEl6seTlpNIVStYoTbTjHJK4XqJUjAThSMtQvrtCjabmNqGiX1yGAJwEvJ5jRDoc4TBQK9UI95Orhc1ll17Bf5z/H7z1xpu8vmAhCElbWztPPjWX0bW16IaBk0NYDZgj5G/eVM9fnnyCtra2JL4kGAil2C80JzuNdNw3Uh4RP2DoIEkspd2L+9/n+3wB7Ny1kz/+8Y88+dSTxKJRzjzzY/z2zt84qy0ln/KPv/25wSCtsRgT/uDMEXb4E8qGglQ1pbA9oQLJ4LwiygoL+NL4MygIhj3+zrZmQDDrzMkAzJyoHDRr9+/tuf3dJxGJXdy+4GUArp8wiVlnTubexQuYs/gNvjfvr3T8I6aiZDTHUKkq2e5Cdodof0NrM7PfXsg7O7d24R/r9t+4cSNLli4hLzeXosIiDF2t2JWVnU0sGkMblohYUVEsEAyGsKVEEyrPg+skEEJDd6JfjGBArWymqVXo3MStmqYcFWo1OjCMAAiUQ0Ro3jFVXnPeJ/jqasPdDxo6mi5SDU1/KpVmf3efpbSVk8m0lFPIVo4b5SSSar8tMaXpOHpskDaWaSNxyzv7LEutlmapSKi4pWRK23E2WTaWbWE5zizlJHLeW2rFNqFpRCNRtZKc40RCQtyOe3wpLay44mu6TjQScFZxszDNSMoqcu4qcIWFRTTub1QrxrnOL3eFuiT+gIED2L5th6On5a1UF7fiShchiMeiWKaNLS1M06KycjjvN+7Hsiz+vezfvP766/z8Zz8DIQgEDPqVlPDmm28d9fkvFo0RCAWxLCvp4dORjf/u+CtWrKCgsLBPnP8/Cv6AAf2ZM3s2a9eu4/rrvskrr7ySwt+4cSPDhg87pvZLaaPrgeNi//Fuf59/fPm//e1vuPnmm5g9ew5/+J//4e677+bcc8/lzjvvpLCwsE/Yv3LFCkAwaMhQdUiofIWn1I5I00/xyweWkhMOs3zNBvJzc0DAsPKBXWxx+fk5WYyvHc7Kus2UlhSiadpB7d93oFndp9mwdeduKgYP7Nb+L1/zZW754Q+pW7uaA3u2MWRQaa9s/2PBN1RZVwnhFHBrCae8A0w6AiQUSOzx3nt/PZFJF2TpTz0ykG+7KxnoWiI6BA2wvUS6SM0Jr1IXvNL558nUUMdR+WdAraCEkOTk5HLeJz5BJBbj7bfeBqfurj17KB8yBDcKRgrgCPlPPPkE7UmOmQkTzmDatHPJyc1VvhwpQAikLREuSzjD7wj4mq5jSdtbcao397/Pz2z+Sy+9zK/vuINtO7ZRXFTMF79wJdd+9av071+apNmJZf+cCy/n6397kogZd379ASlZ0rAtta73VgA7QEryAkGuPmWixx+cW8DO1mZmL17A9RMmM2fJIkAwsl9pkh3d2S+d84NSYWdrC4Dj5JHMmjiFOUsW0RGPJex3k4wLxU73C/Rkf0NLK3PeXsgz61biThu9qPZkRvYf8JG1f3NTM6tXr8K2JHFTRc7YtkVpv1J27t4FVmIZeZzl5QcPKaN+Sz1IqZaTt5SjQYK60TctyoaUs3VrvbfUPFJiS+lEriSWqQ8Hg7R1tmFbTl1bRczYlq3W4bNtLFtSU1ND3ZrVKvJR4Dk+VLSNqoNQ7aELjaLiEpoOHFBP06Xj/NF0hJDO1CYNgYYGlPQv4f3GJsdh5DqGBGgCHZx6QjmjNJ3c/DzaWtuc6a+a2+0IZ/qUGk7Ofk0QCASwLUvtE9L5fREeHx2E+oMQgkGDBrJn9x7QBJoKUfX4EqEYuBdfGkWFhTQ1HfDsF9Ipl9TlmhDk5RewefNmZ/AIkAIhJVKTINXvL8CQIWVs2LBRjT/bWQ1RghCSoBFABgIMKRvC9m3bvCgkKW0kUFRcyDlDylmy9B327dlHv/79MOMmba2tWJY86Pf/UM8/sbhKCIxUbf5hn39H1FSDhAWLFjJl8qRj+v07kc6/R8sfNWokf/jj//KNb3yD//nDHwB46eWXkFLy7NPPHFO+tOzEQ7UMbX+ff/z4/UpKuPXWH3PrrT/mzTff5Oc/v51xY8cxtHIon//c5/nG17+O5kzJ7Y32q2TAko+dOZEVdRsZXzuC3KzshFrd8IsL82iPdLJvfxNVQwd9IH/1hnoGlhax70AzEhgysLRb+zujMbbv2supY9S0pzXr69m8tYHhFWVd7N9Qv51ZN36Lm7//HR566BEeemhqUjv2nvY/FnxDvbg71U2+SNMvFZjYkvdKEpK6WCGSP3R3OPP4trRQk3PUvHvnig2JBrbjpROO84LkeBJnrOBmbNE8qdJl2Kqk1KCqqorFixc7gS/qqZZ0ygvAXdr6SPgdHe2uxQwaPIhPffrTSnISHylBS3Ck2zZHwA8YBtLNOXOU7Z96OPPGn8//6PlLly7l3nvv5fUFC5DSZuqUs/n57bczccIEkn8ATlT7Jw6pYMU3v8sza97l9gXzaYtHAMEltSdz3oiR5AScBOGO4xVN8uya93hu7SpaYrEU/k1TzmPWC08ze/EbzH77DdAUf+bEs8E7J/Rgv0wcHpxXwM7WFmYvXsj1TvQNtqCmXyl/vfKrpG9Pr3nXE9GT/Uu2b+W5ulU8u/ZdtV/AJbUnM3PiZMryk/IyfATtf/oZp3P6Gad3sSN9S5GZDjhYWXdHT+PvELfD4Vtu6JLj2JG2DZrEtqRyJliWM73Vxs03Ji1napSUKCeUitKSNirixYmgkbaNQMO2LaRQ07XcaVtSOv9xLoik4gnAkibSdvx4tu20hZJpS4mQeFE6hq4Rj9sqSkwKkNLjC1A6SVs5VWzQDR0zbqa1lXTeCM9+TejETct54JLafirmVO0PBgxMU32/1MSs1K8MUkXCmNJEc6KYBMqx5U4BG1ZVxSvz5rFu/QY62tuZeu7Z3H3XPR/K+S8eNQkGgpjSciKDU2sf7fn3tVdf4/LLr+Daa79Cv5JS7vjVr8gryCc/P9/Jg6TyGelBHWyUsy/Jft0wVD9qGq6TTjMEmtDVeHAeeCEkmqZhSxt3pTb3vCER2NJK6X8hhHLySaH6X6jrGMtWUVXuRbjpRGqpfcoxZ9pxbEs5M7EdJyjueJXoQsc042osAkLTMa24ip5WQrAsy+t/TRNqtSwSzkJd12lvb+esSZN44MEH2bplC2+8+RbXfuVajIDh9M2x+f2zpXTyUWXu77/PPzH4HzvrLP7+wt8RwI9/fCv3zbmPX93xS86eMpVvfPM6zjrzzF5nf/3WrUhg7EljqKksZ9mqDVQPLyMvO7tHfmtrOwea2jh1TA0r1m6gfzTGoNKSbvnrNm8nLyfMoP4lDOpfwur1W9kUb2BEeVkX++s2bGO8E7EDMLqmkk3bd7J6Qz1jqis9/o6de4nHbb7xtWu56Qff4eGHH+LBhx7s8+PvUPmGBMeR46IkCc9OkhiZ8pICckQmDqZbIfF+qDyGo5D3BCnD+OqHGi98HDSH7V4YSo8vpPAuUoUQ4PxgK3+G9LTwAk6E9LobdS0LDl/N03ccOe5UpSPgm5YFtsuHioqKbvkCVDlNOhc4Spcj4etGABvphUr35v73+ZnB3759O7+753f84+V/EO2IUFFZyW/u/DWXX36Fx/cYvcT+S0ePZVpVDXMWL+KRFUt4tu5d5m9ax81TzuOS0WNT0Et3bPdWbcOTJjmvqoY5My7lnrcXsb5xDyP7DWDWhMlMrxqRVDuND6hw0ISByskzV+WseXsRCKX/jWdO6db+y0aPTZLb1f5ZLzzF/E0bvKoX157MrIlTKMsrOGHav7fzdScyBSfni0gvzOHzuz3YA590+zOE/87Sd5g7dy5z5z7FyWPH0tR0gEAwwKenf5phw4dTVFSkCh9l/8fiUYLBgBPNI47J+Js79ylWr17NZZddztRzzgaEmiruJMXWNI1QVph4NIZAIDWJJhV50KCB7Nq9GyEllnQ1gf6lpezdtwfPuQyMGjWKdevWJ/hCRUuV9u/P/v37lV/ESXw9ZvQY6tbWKY2FGt+VQyvYvm27xy8oLKSltVlFhkmJjWDc2LG8t2qV+upoYOgBLCvhzBNCo2xwGdt3bMcGhG1T2r8/u3fvxlbeRHJycmltaQUBpqmSfMfMONKdpoflXFoJNF1Fbp88Zgw1o2q54cYbDrv9D9b/3X3/bWx0zZ3iltnnP59/4vBvve1WbrvtVt5evJg7fvUrvvSlL5CTnctXvnIN1113nbMi7Ylv/9b6esDNOQOnnlTN8jUbKBvQj/7FRV34li3ZtK2B8WNUXr7xtdWs3bSNSGeE4UPLUvhbtu3Ctm0qhwzy+GNqKthQv8NxuFR49q9cu4nqysHOVOaEmOHlg2jYtZ+VdZsYVzucfU2tNLe2MWbkcARw0UUX8/xzz/H8c89y8cWXHLb9x7v9jwXfEJ54nJvrZMkioYBI3pNeooeDrm4CTzFlr3DKCjKVb1u2Cst2l5p0ns65ung1hPBClhEoJ0m6AtItmzp4hHTKi0QdTehI28kN4Dl6xGHzdV1zhxbuE57u+J79MmG/lEfGDxiGmgKlJRq6t/a/z+/7/Ndff52vXHMNpQMG8PWvfZ0rr7yS4qLilNq91f6CUJibp0znktqTuX3BPJY2bOem+X+nbv8ebp5yXpqSslv+tKqRTKuqSeV3Y53LFwLnfJHYzquqYfaMy7l38ULW7d/DyH79mTVxiiP38O13HTPXT5zM1ePPID8UTuGdKO3v833+ofA3b9rE//7pT6xcsYKGhgbaW9s45dTTmHHhBZx+xumcfNJJHp8PiR+NRAmGQkhL3ZAfK/vHjBnD2rV1NDY2UlJSgpSSpqam1P8HDtDe2UlLczMdHR10tLXT3tFJR2c77e3tdHS0E4vFaWltJR6NUT5kCNFYjFgsTjwWpaW1jeKSEsxYlOqaGt57bxVSShobG72olnhc5St65513GDBwALt37/byMG1Yvx40DUPXkZpGS1MzQtMpKMgnEokQCBhs376d0tJSgkaAYDBAIBgkEAgQDAYJBINUVlZyoLGRcePHEgqFycrKIisri3A4RFZWNuFwmOysLEKhMPkF+YTDYXJycsjNzSU3J4ds9zU7O+V+Y9PmTYRCIYaUDTnm419FMOkZ9/3z+b2DP3HiRJ55+hlaWpq5d/ZsnnjiSe65+x7OmjSJO+64g7LBg09Y+1977XUEMHbsuJRjp4yuZvX6LbRHogwrG5jCX1m3kdHVlSn8UcOHsn7zVtZsrGf0iEpA0LC3kbbOKCePHNaFX105hPqGPby7bgtjRw5n1YYt9O9XRF5udrf2DxlUSnYoyLJVm0BIZ9qT4l900UWOc+b5JOdM5oy/7viGJ172LNxbVkq6oEPfEmKTvUTdmJdhfNu21dMToSNABZE4SXKVVk4IrZTqhkQI9QTaGweqhDMbSDk43KlBAu9H2LItVdaZu64bbtJGxXIHzZHwEy3hyHC4yfyENDtp4B0ZX9MNFdbbtRMPu/2TdYPMG38+/9jzhw8fzptvv8WA/gM8fjfSjxkfjr39taUD+L/Lvsi9ixcxZ8kC6vbtSeM7Pz6OU+Vo+NLu/vj0qhqmJzljUvmHa7/6PGvi5C78E7H9fb7PT9/WrlvLQw8+xIsvvkhrWytFhcVcOOMCvvv97zH545MIOCsppTI+PH5nLEI4HFbfeXHs7S8pKVHlhKCoqMiJAMKhpvF7UvogfD7M/j+u/NTzb9XwxIorx3r825aF0LVuKve975/P7738/IICbrnlFm655RYWLlrEnXfcwVlnnknZkCHMvH4mn7/yCyec/QeampAIKodXdqk7umYYazduZWP9dqoqyxECVtRtYmjZAMLBYBJD8WuqKqjfvptV67dQPqg/+/cfSKzM1A2/smwAexubWLZ6I8UFOQwqLU7hp9tfXFxA/S616ENzazsFeTkAXHLRxXyFa3juued50Knb2NRCZ2eUIQP7Zcz4S940mVomSarEu8NOchu5xSQH2WTif0Js8g+T9F4ylW/btgoe0VRQFCLRkQKcCBX3BzURGePK6Xqr50aegLBVZwuZYLrhxXHTVFEwkObYOXx+ohUS9vTIdwACjpgfDBi43pve3v8+v+/zy4eUO46Z48P/KO2fUFaewk05PZB0DjlKfuL8c5DtqOx3j/Wu9vf5mc1/4403uPqqq6mtreWT53+SjRs28rVrv8aSxYtZtuzf/OSnP+Xcqec4jplja3+0I0I4FEYkP23p4+3v8z+IrxKBHz/+8bbf5/c2/uRJH+f5v/6Vrdu28YnzzuNXd/yKkTU1/PCWW1i1evUx5x+q/WqlJsn4seO75deOqEDTDVav20LdxnpKi/LoV5jfI7+yfCDFBXls2tbAuNEjPpDf1t5OVtCgqaWdtvaOg9q/Ys0GRlQO5pQx1WzZtovd+w8AUFhUyNlTz6apuYkVK1awZ/8BGnbtZcig0owdf+6kmq5EIQCRpkRCqDiYhu4UGNGDITLZ2Mzk204SN13XAOVoEXaiX90VINz60nmXzJVJnSuc3QJAU0+spJAUF5fgrbKEYN3adUjbkS1wHCWHz7csO2VwJQK0UvluC0inlIQj5qsVMTTMuNnr+9/n+/y+xBcJgSn8ZFfu0fJdKfKY2y97Xfv7/Mzj//vf/+aqq66ipqaGa665hpbWFn784x+zpX4zc5+ey8wbZ1Fa2v8jtz8S7SArOwuh4yRk/mj5mdL/vYmvEgIbx42fKsbn+/zD4996222sXLmCn9z2E/72t7/zxSuvZMrkKfz2t79l06ZNx5yfUiDN/qamJkA5OHriDy8fhEQQiZmUDej/gfzd+5uoLBvAstUbiERjqQWS+Dv3NtIZjVNbXcn40SPYWN/A3gPvd2v/u2u3MKC0hPxsFS0zfswIGg8cYMv2nQBUDq1U7D172bm3kbG1I06Y/j8efMMLtZSqsPeKV5/0T9IV2sP0Elem8GqlC018zlS+dFasEBgKK0FouPlwkUins7yJP0icyT4uX1MjwHO9CByHX2LqUumAUlwpEsnSd5YwcmQNQysqsgLzEwAAIABJREFUHK5KxHu4/E0bNyCUXwmJOjF0x1cPzqSngVLGRjpRNYfDV5n3IG6ZGAG9V/e/z/f5fYkvPbmp/G5/v46Q78XMuBUO0/75m9bziwXzaGhtpiyvkJumTGdaVU0aX/TK9vf5mcO/+Ye38MLf/0ZnJELtyFruvPNOPu2slJgs6njZ39EZJZwVBnBWF+pb7e/zD5+vkjUfG/7WbduoW7MmsSqZpqNpEAwGicfiCAEqhQAINHWdKTSCwQCxmOVcVgqELlS0t7e6GQjdANtSS8ILgbfimQChaWioa1K1CpiOtNWFrCouvJ8pIRKJqoUAXTfUinJSlUXi8RFKH7XilkB3WMm/pR5fakhNrfjl6iYRGIbmrB4nUvjqv2pLt6zm8PSAWt2sa07H1E82Ets01QNmW61iZ5qmWs3Olli2jZQ2lmUhbYltW9i2xLLcFfEsQDh1QNoWtmVjYyMtiS1VEmspbSwJ2Ba2swiJ7dw3SWefW16tqqfqGYEg0WinWvEsiS+l7awIqD4HgwE6OqJI6ejp8KUzXqVto+kGZjzuMaSUXPu1r/Leuyt56+23+evzf+WRRx7BMAxGjhxJTU0N+QUFlJUN5jNXfMYb/8fy+7dixQogkQy4u+/ftp370DUo69+f5WvWc/KoKpUHqxv+yrWbqBw8gOLCPArz83l37WaGDOpHv6KCFP6B1jb2NTYlpj0B48dU8+66LXR0xqh08twIJHUbt5GfE3amPSWMHF09nHUbt7Fh8zbGnzqehx95mGef/xt/uO/eQ7Y/fTsRz39Hwje8KiK9okw6IBMXrZ5O6chEPUG60umlhPMmqWyG8aU6K6HrwjvsJr510+wmqkuwheP8EAhN6ZMUMYyQ0lmW2o1uUY6UoBFg8OAydu3ciUDQ0dHJH//0J4RQqxv8v29/i2Jnzvah8hsb9/LPl15O5IcRMHBAf88Rk8xP0shpMydnjO22NYdsv/sjYppxINyr+9/n+/w+x08+/6SQPyQ+gDdV8vDsn79pPTNfeNozoKGliZkvzGX2jMtVvpq+0P4+v8/yF7+9hJ/f/nPeXfkeQ4aW8e1vfZurvvzlE9L+aCRCVjiLaDTq3Ez1/vb3+UfHl1Kiafox4W/fvo0nn/wL+/c3qhtwW91EFxYW0tTU5N1Uq+XJAWkjbSgqLuTAgSYsW92cSylB2sph4CQ4KywsoqnpALZz0y5tkMIGW2JJ90rVuZHXdKS0MU1LtYjDTV7Ew3VW5uXm09beimWpJdOROM4U5yGow3fTXeTm5NHe0Y5l2qCpFAbJfHXx7dZTy6a7q3Yl6yBRjh3bkom2dtpV13Vsy0QetP2Fx7cBXdMRGlimqXpWpI639PyQKim0jUBTeqOcYapfnet+96kvCSeWrhleOwldrfJng1q5VbjXHIKcnGwsyyYejyc5o0RCDyEwdI3srBziZgzLspOcceoeQznXBKFQSM0QQCLQ0HQNTegIXa0tO2bMSWzftp229jYGDRzIunXreOutN8nKyuZHP/pRyvhP/ZZ8uOO/uaUZgILCQrr7/u19v5mmljbGjhqOBPJys3hv7RaGlQ+gMD8vhb96w2aKi/IpLsoFJJomGD96OCvXbCISjTFkQClCgBm32LJ9t5PUN2EZSMaOHMaaDfVsqm+gqrKMzdtUgvTK8kHd2j9qxFC2bN9JXlF/BDhOoL51/jsSvuEWSjraRSCIxANFkbI3yZCu9aSXvDWRDE2QbGtCyUzj2wBCRxNufXVCkkKgHBt4smXS01whpOMEEThSEM6J2TsBSdSUIlvJ++xnruDu392DtJ2Tue0cF4Ldu/ZQXFJ8SPz//u//9uxKtjMQCFBVVd0jX3hyXb4zwoVA2O6PxCHYL9SJ3Iybvb7/fb7P71P8pCd+yXzvklAkvtHp/Fe2rOP211+hobWJsvwCbpr8CaZXVZNC8tRKTJPozv6rnn6MJQ3b8a4e3fOrOv0w68wpzJwwiXuXLGLOkoXMfnuhw3JPsI643tb+Pr/P8U3T4pFHHua+++5j7759XH7ZZTzxxBNq1R1I4p5Y9kcjEQqLi4jFYo5zpne2v8//8Pg2UkWNHAP+pI9/nPKycn79mzvVzbXEiSqH8vJyYtEIUtPQhZaIINE0dF2jpKiYpub3EcJACNB0DYG6OXcjXbKysojGYuiau19Dc6Jz1KuzT9fJy8khEol4fF3X0TUBuoqy8SJodJ3s7CxikSiaDkIYaJpI4SdkK33DoRCWZTr7U/ma0NEMxdKEhtA1BALDMFSb6HqK/ZquYxgaQgp0Q3h8I2CAFB4fp98QAs15oCs9R5CFlGDbltcbONEzNlJd5zv7LNTvsRAapmk6v+FupIqFbSvHkopQEeA42YQAy7KwbBsBHl9xTZXaQdpeigdNgBk3sRw9pJRI28JCRdmoejZGIEAsFsE2bRA2ti1UhI3juLNtC103iMWiWJaK0rEtC8sysW2JbUvC4SCtrW0sX76MefPmE4+bTJwwkXPOOYfPfvazH9n3b8VyFTlDMJe2zgi5WVne96+jM0rDrr3ektkCCBgBxo8ZwbtrN9PZGWXQgBJAsH7zNoLhIOUDS0ndBGNHj2DNhnoi0SgjKobw7vp6bwWn7r7/o6sr2bxtJ+/WbcIwdGqrKxNHu7F/WPlg1Y8CJy9a3zr/HQnfUMeTLqllkoQkULKqpO1163tJjZ3XxM2661FNVBNJ7zORj20BEk3XvYgXwJnWI0lP+Ctx5HleeNdrLvCquw+ppDuQ1HLX/UpK+d53v8cTf36CnTt3OidH5Q3ujEYOid/c0uKNI8fd4h275NJL0HQN2QMfmfCEJ0/L8nw8h2i/rukAxOPxo27/493/Pt/n9yW+OqepkOfu+AnvSip//mY3okVtDc3NzHzhKWbPuIzpVSNTSYk/Pdq/pGGbeyrBc8x4bMnMiZMAmDVxEnMWL2Rt495U+72Ivt7V/j6/7/EnTfo4kUiET114IT/92c96jf3tHZ0MGjSINq3NiUbone3v8z88PrZMJAQ+BvyKygru/d29KXxvkz0K6Hq4B/7BNu8yNs1+n993+bt37+Hxxx7l4Uf+j+EjhnP55ZfT0LCLBQtf49xp04GP5vvX1NTsGA/ja0ewcu1GBvUrYUBpEUII1tfv4JTRNenVEMC4UcNZtW4LHdEohq5jSUlt+ZDuWgUBjKmuZEP9Dpat3kDlkIEEDMMp2f33v6ggn+a2DoSZei/Xnf11G+s50NgIEvbsazxk+w/GP5HOf0fCN9LB3nyqpL3qk7Ovy8hPlHR3px5OlJeAkCS8UN0Ynil8W0o0UF5pV4ZwnR4SITS8aT5SAE4CXilBJHK6CNdl7HSoTOJLIUGq5Lx5eXl87T+/hpAQs+JoQnPmHHJI/NbWVgRO2KQQCE1QUlzM5ZdfQfmQIR/IT7ffZR4qH2w0lPfeNM2jbv/j3f8+3+f3Jb4QSrhAdMNPkpPGv33BPABmTpzMzImTuXfxQuYsXsjsxW94zhmXr3wmkvQt3X6EYO0NN6Vof+6Ds9nZ2srstxdy/ZmTmbN4IQA1Jf3TLhyEV+dw7E/mZ2L/+/wPlz/rhhsZO248v/vd3YRCYU+L3mB/LBohnJWFpmvqqfpBvv/Hgn+87ff5Xfm2bYOuqWvYDLTf5/d+/soVK3n88cd56+3F7NzVgGVZlA0uIz83D6EJpkz+OFde+XkKCws/MvtXrFgOEs6eejZCKAfNqvVbiEQjvN/aTnXF4IOef08aOYz31m/BMi3Gjx6RyuqGH43GyAoH2b57H8UFeT22fyweZ0vDLk4dPYLGA60sX7ORk0cOx9C0LvZv3tqAoeu8sfA1AM44bfwh298T/6Nq/2PJN1IoJAXfePqlBOSgpqk4pR2uCyVV5yS0Oiicj90WyzC+xJlx6ThnlAwbNxoGWzoFpSNFKJizTwCOn8Qrn5yg1xUq0PBCahz9AkYQb3qA5JD4Q8rK+NnPfkokEkHTBMFg8Ij5IPBWcjpEvmu/FMKLnOnN/e/zfX5f4ntRc13o6qQwZ/FC5ixZSMIzq77X6hwimDlxMiCZNXEycxYvYu2+3V10kqBmPx7U/nQllP03T/kEM1+cy+wli5i9ZBFOCCA3nDk5xX7P8F7W/j6/b/DjsTi1tbXc9du7+PRFnybxa9p77O+MqKW0NaElReX2jvb3+ceGL6VUK5NmqP0+v/fx33zrTd5++y3mz3+F1atWo+kaQ8rLOW/6dC699BJGjRqNYejH1X6PYSeknFQzjOVrNmIYOrk52Qflt7dHsC2bwvwc3lu3iZNHVvXI31C/g6zsMFXlg9nf2MSOXfsZMqhft/av3rCVk2uGAYKSojxyc7JYtX4zw8sGkO/muQEa9uwnFjcZ1K+Avz73HACXXnrpCdH/x5uf5pxJ8hmJFJEpKE+QSC3f8+aWS1jQvUGZw7dt9SRYU1lulUfNFSJIvEqhOFLV93wazsjw5GqJL6s3eLy/7vQiLwALZMJ+eRj8cCh0/PgCZynt+FG3//Huf5/v8/sS33XM7mxpYcmOrUwYUgHAqH79yQ+GaYlFnRNE0pdeSoqysmiKdjJ78UIvcgYBI/v175av6n2Q/TK1DoJpVTXMvuAy7l28kHX791FTMoAbJ0xmWlUi5Hfx9m1KUMrvc+9of5/fN/idkQjr1q/D0I1ea38kEiGcFUYIgWUl8lH0hvb3+ceGb0vp5Fd0a2eW/T7/xOc3HWjm5fnzmD9/Hm++8SZFxcW0tbZSXFzCz2//OVd85gpCwZDHT9f3eNj/6muvAZKp5071jqzZWE9xQS62JVmzoZ7R1ZU98tfXb+cUJ6nvrr3vs3zNRk4ZPaILv75hN6ZlUltZCUC/kgJMy+7W/hVrNlJZNsCb9gSCYDDA+Noq3l27mX7RGINKS2huamX/+81UDCrhnHPOQQJXXX21F3mUaeMvne85Z9ydIqWoOqJuqZMkSVChOrKL8qnS0mUJEiZLSD9ZZxAfqQa2pqmkXNKrIx1HBc6rVDckOImyBAjbcVhgO44LgRtNo2TYJBLrSoQTSyVca4QqL507qt7CB4HQBPG4lSjbS/vf5/v8vsQf2W8Ag/PyaWht5qpnHuOqU87g+glTmF5Vw/Sqb3ejm3p1V1GavXgRsxcvcvbDrIlTuvJTzDqY/V03AUyvGqlWZko+DwMNLS3cvuBlXtm8AZCMLOl/2PanbpnX/z7/w+EX5Of3evs7OzsIZ4XRNN2Lcu0t7e/zjw0fiZdgNhPt9/knJt80TZ599jmefe5Z2tvaEQLa29o47bTTGDVqFFdccTlVI6pPWPvVqufCvWyifvtuQsEAFc4y1g179rOibiPja0d04S9bs4maYeWeyEH9i8nNDrN89QZGVg0lOxwCJHv2N9PS1s7YkVUpfENPCmN2tlXr6iktzqeoIC9lv2v/2FHDWb2hns6OTlraIjTv28GXv3AFK1asYNy48dxz992HZf/xbv9jyTcShdPlJoonBKeQ0lSTSZ9Fmn4Sd6KV9JLjiMSxDORLCQiVCd1LkitVfhW1kpKq47o0cIaHEiVTOUjFF8KLQBHuikygYBJnDT13yOEwnOlNvYAvdKVD3Iz1+v73+T6/L/ELQiFeuWYmcxYvYvbiBTyybCnPrn6PX5x3oVoNqQf+9KpqZs+4jN8tXsD6/XupKRnADWdOTlqtKcEvKyhk6c5t7GhtZmIP9id9/ED7m2MRHlm+hDmLF4GA3GCIq8dPYNaZk3td+/t8n3+i8CORKFmhLOc6R2ac/T6/K9+2LG/xi0y03+efWPylS5fy6GOPMe/ll6murqG9vY3m5mZmXHAhF37qQk4//bRU5glq/6uvvgZIxo8fx/bde2nvjDKmpsKrXjagHznhIMtWbeDkUcMxdB0hYNX6esoH9iM3O5QiPS8nm3G1I1ixdgNDBw4gFAqwe18j42qrPtD+jVt3kpubRdnA/j3av2XLNt55YyEv/+tfLFrwKtu2bgOgoqKChx56gMKCwkSdPjz+DoVvpBdKgN23Mk2JJB1TFBCpkpIqSJRCar+qlKiamXxbAlItV6f6wuU7r9LlJqJQlLdNAaTDl0kdrXwh0lXHs8/VR0qJ0Fz5AncJbnoJXxMCXUskBO7N/e/zfX5f5M+cOImLa0/mpnl/Y2nDNma+8DQTysr55XmfYlB+Qbd8FV1TnSyMhKslwR+SXwACdrU2H8T+xPnnYPY/U/cec95eQENrCyC4eNRJ3DzlPPJD4aOy36ubof3v831+pzOtSdM0tZxthtnv87vyQSKEyFj7ff6JwX/yL3/mL08+xc5duykqLCA3N49TTz2VCy+cwWmnnZ5Up+v1xwlpvyOjbu16Gls6GVFRhqypSOEXFOQzNjuLd9dtZnj5AHbufZ/cnGxKS9ISFzt8TQhOGV3NyrotSNv0luE+mP3vrdnI8hXLqSgbQP3GOrbWb6W+vh6AV197jZamJpavWOGcCVy7JePGjePLX/4y//VfNyY3Zp8df4fDNwAnn4dIUUN4KYVTK8tkpYSz39UmVb5zTHiKii5/nVIZyZdIaaPrTtI8IQCVEBchkbb6IZMIJQMbcFYwkoAmPYaQKmolkUhaDXyJREgQmlCOEXAS9Ln2uPb3Dr4QGhJBPGYmNWhv7X+f7/P7Jn9IfgH/d9kXeXrNSn7x+iss2bmdix7/E1efMsFJ/Htk/E0HGkEKIqaVZFAaP1VyF/sX79jGnMUL1ZLbCM4oK2fmhMlMLK9AJp2TenP7+3yffzz50UiUcDiEpqmcM66ETLHf53fl21KiC69Sxtnv848ff/fuXdx2223MmzcP27Y5+eST+dIXr2Tq1KmMGTMmKbFr77P/9ddfB+Dmm36QJFE45d2PgqTswT1sgnHjx1JUWKSq25L2zog6oussfevNJIkCL/dED7J64teMquXksWOZ8cn/YOrUqVRWVnqq9cb2P5Z8w207VSG5SlLbpr93bpqFq5RIPpiE8AyUCSkp1jnVMpIPUko1D1dIpYN0pw4J3K5SFdzbBuevG7IiAU0kMEllnIIqskXaCDQ1HclO6O+V7jV8xYmb0aRu7K397/N9ft/mX1Y7julVI/nFgnk8V7eK2UsWMn/jBm46+1wmDqk8ZP6SHVuZs3gBixu2IxA8tXoZ4wYO5rzhNd3yE7Ym7G+JxvjFwvk8u/pdEJLcYIibp5zHpaPHJtnWt9rf5/v848Hv6OwgOysb4S4EkGH2+/yufCklmqFnrP0+//jwW1pbOPPMiZxyymnc87t7OP+88wkEjT5j/8cnT+KNRYs4++yzQYJA8trrCxAk3Yklr9QiST3mCZa8u2Kls98t0W1Jtc+V4yiXzLcRnDt1KlJC5bBKKisrqKwcRkxqGLrB8KGDPjT7j3f7H0t+0mpNqoJXTSSJlEkSUpRMhbkd65VMcjF5XS16aoRM46t9KdOahFrySCCRmgILKfBcu0keSCkcgXb3fMVxBorjlUOm8R0ni0D2Dr6moaGW0u79/e/zfX7f5xeEwvzyvE9xSe1Ybpr3d9Y27uHqZ/7MVePP4PozJ1EQDPfI39HazH1vv8Eza1aAEGQHQxSFs9jZ0sSsF59m4uByfjD5PGr790/iu7ISes1evJCHVyylNRoFoZbt/tL4CRSEQpBSp++1v8/3+R81PxqJEMoKo+sC27Yzzn6f35VvOyt1Zqr9Pv/48IUQbN26LcHvhtyb7V/0+sI0PknSPQkp9ndHd4+8+tprOAtvIgUMrxhGRUUFlm2h63oXuctWbeDUk0Z8IH9Lw26szgjVwwZ3S++t7X8s+UZit9ImWQfh3ZQfRNEkS1L0TysnHCNE8hBJeck0vsQ2LXRDdzpVA1smqkhw1q/2vJNINU1IOiFULkIikhINOREntsRdDQmJcnKosBW8U5QNQpOOv+XE57tOHdOd1nBU7X+8+9/n+/zM4U8sq+Bf11znrMq0kEdWLOXZ1Sv55fmf4tzhNSn8lmiER1Ys5eFlS2iNx0DA9RMncfX4M8gPhnm67l1+sWAeixu2cckT93PV+AnMnDCZ/HAooZSExQ3buXne32lobQIpOLdqBLdMOZ+y/PyMa3+f7/M/Kn4kEiUcDCM0w3HOZJb9Pr9rOWlJNM29Lck8+33+8eHn5eVltP2Hyz9n6tQkGQmhmuuYSZK7bPUGRlWVfyDftm0G9+tHKJTm3DkB7T+R+IYnX6ZLV8I9pVKUSd0SeiSVTisnBXSZxyU8tTKWr3uRM07i2ySQEAnZMkUR1cGJjlayJMpTnOhkZzqQUO+ETH1yIYRESg0VuXLi84UQaBrE4+aH1v7Hu/99vs/PJP7MiZO5pHYsP3ASBl//96eZWFbO7dMvpKygkGfr3mX22wudRL2Sc4ZX88OzP8HgvAJP5GWjxzK9qob7Fi/i4RVLeGTFEp5ds5Kbzp7unpq4+plHWdygVgIYnF/AL6ZfyMSyilS9MrD9fb7PP9b8SCTCpk0befLJv9DZ2cm3vv0tAoEgoUCQQChIOBQiGAwSDAYIBsOEQkGCgQDBUIhwKISR9D4QDBIKBTGMAKGgKmc4r6FgCCNgYAQCB7U/bsZpb++go62djs4OopEInZEIkUgn0WicSKSTSGcnkWiUWDRKp3PcjMeJxeOYZpxYNI5pxTFjcWJxk3g8hhk3iZtxLNvCtmxs28K2bSzLRto2lm1j27ZzFSTQUO2vCeE0mEQIDU3T0DUNIxAgYBhouo6m6wQMA90wCAYDBIwg4awQoUAQIxgkFAwSDoUJhoKEs8JkZ2WTlRUmKyubcDhMdlYWObm55ObmkpuXS3Z2zvEdf9howr0569vj3+f7/L7OX1m3iYpBpWRnhT+Qr2kawZCWdLj32/9R8IWU3WQKSteoi4Y9H+ixaFoh6XmRDkFsH+Tfdc9dvPTPlwmEs7jt579SlSSqtpSgqc50pwMJgZO/xZUvkNgghOp0h5ycqYWk8l5dAdggNYmQKrIlueyJzK9bu4ZvXnMVjz72KJ/61KeOqv2Pd//7fJ+f6fxn16zi9gUv0xaLkhcKkR/MoqG1GaTkjPKhzJowmQlDKg7Kr9u/l9tfn8dSJ8FvdiBARzwGQG4oxKyJk7l6/IQT0n6f7/P7Ij8vN5fdu3cz57457N61m4qKCmKxGLFYjGg0SiwaI2pGMaMmkWhEHYvHiEVjdHR00tnRQWe0k0hnhEgkQjQSxTTjROMxzJjjELFsLCuOZdvO1GrQhJaY5o+6srAt23mo4zhBdF09EDMEQT2IpmsYhoERMNA1nUAgSMAwCIQCGLpBIKBeg8EARjBpnxEgENAJBIMYmoFu6Bi6gWY4ThVdV44jXb1P1kEgQANd6O7Vj6erlCBtGxvbcfjYWKaFZZnELZN4TDmL4nGLWCxCNBYjHo3TGelU7RfpJBaNEolE6Ix00tHeQXt7O5FIhOzsbPU/K5twTpjcrFzCWWHC4TBZ2VlkhbPIycklKxwmKydLlQuHCYfCZGdnEcoKEw6GCYWD2DZYloktlZ6WZSFtSdwylWPKsrCl0n38+PEYhsFZZ531kYy/4z3+fb7P78v8fY0HCIfC5OWGjwv/YAf6Et/oWomEAycprKd7IYljSl4a0NVUgvIS4ZUQdOOVyjC+JS3Cbqink1tFCuk+VAFpg9AQTl0hvWKK5cz3kR5QrXbk+UqU78SZNiSd9wKBcGRJkPQaviYFQlc5Zz6M9j/e/e/zfX4m8y8ZfTLTqqq9hMGtkSiD8guYNXGyStSbnMiuB35tvwHOylBqqlNbTE2DumjUWG6ZPJ38cPiEtd/n+/y+yI9EI2RlZfH9736fuU/PpbmpmeaWJto7YrS0ttLS1EJzSxNNLc20NDXR1NRES3MrTU1NGMEABfn55OXlkZ+bS/HgMnJzc8jLy1P/8/PIzcklPy+P3Fz1OScnl2AoSCgYIBAIYgQDBIwAAd0gEDCwbUksHiXuODXMWBzTMomZcSwnCsYybWKxGHHLxIzHMU0TMxYjbtmOMySOGTcxbRMzbmJbFqZpYVomlmVjOvXikTgdtqUcKq5TJW5iS1XWNG2kJbGlhSVtpKWibaSNcmggsS0LKSXSsrAkXkSOlBJb2s61kUyKZhbY0lY96vQhQDgYJisUprioGImK4JFSPUyz4hZNZjOipQkpVaVkvm3b2KaJaUtMM45lWapNHAdR0HVQOW0eCAYIBQKEQiECoSDBYIhwMERWVpi6NXX8/n/uA2RGjH+f7/P7Mr+0pChVfobZ/1HxjRQhSXpIQIiUT13eJksW6TtILyfS37pRPRnJ14TAjlvouoGUImlp6gTG9VJIkZgS5D4lkqJLaW9gOOMA6Xo5hHNMJskDhI3jE+kdfHQBNphm8lLayW97T//7fJ/v81EJg6d/iktGj2Xtvj1cUjuW/FD4sPmXjR7LeVU1PLJiKdOG11BbOiBNjxPTfp/v8/sa/+GHHvaSRz7xxBMUFBRQWFBAfkEhwyorKCwsUp/zCygoLKAgv5CConwK8gsIBoNdMD3yj3ZLt7+bQz6/e35LawstzS20tCT+t7a00NySuq+lpYWm5iZe/dernHPuuRkx/n2+z/f5Pv9o+UZ3MiE95EakCEgrmkRJVj6xr7vfAGV8VyMzhW8LkEh03QAhcYJInHKKL126VHwVleJMG5JJx4SNdFmOYQLbYydUlZ65rtNPve8lfCkQmsAyzWShvbL/fb7P9/kJ8RPLKlROmKPg54fCzJwwuVfa7/N9fl/hX3nllR5t7ty5PfPTsR8S/3jbnwn8/Lx88vPyM9Z+n+/zfb7PP5Z8DaR3o+1WSi8tk/RLLYcTQZFUXqS/kSR0kF2LZShfFxq2baPrWqpgoab9JMaCCpZyeiqFLVy+0Lz9whkYqnsTLg51LMl+qfa5OV16C18IQSwe7/X97/N9vs/3+T7f5/t8n+/zM5MfiXQyd+7TrHrvvePCP972+3yf7/O75xsgvBtqEI4TSKYJV5qllOs33TYNAAAgAElEQVQC6WkTKe89yRIneiIz+QKBaVkYAQMhwM3oL23pODGcaUTuPCIbhFBJeAVCCZGORHf0eLopae50IDU7KHV0ufOVhXCT8p74fA0NIcAyzV7f/z7f5/t8n+/zfb7P9/k+PzP599//AL++4w4kkurqGqaePZVhwyuZMuVsysvL+7z9Pt/n+/zu+UYXISJNSJLwZLWSV36SaTW8tw5IdjFGVU41LLP4uq4hbVvlnHGOCAANcFYxUtElSVo6uiFB2iLRywiEsFXuFpQnTmjK0YGQ3n7PDpGYNpTw2p34fKmB0DTiptnr+9/n+3yf7/N9vs/3+T7f52cmv6WlBekc2bBhAxs3bAAENpLJkybxhS98genTpxMKhvqk/T7f5/v87vmecyZVBIj0dbcFqcJEuvqi6zGRbE6y0q6whIxM42uahmnGMYyA04/uItQghATb6UAhVDZ9AUjp9TlCLRGJVHXdDL3S5UvRVUcJaMJxrEjcCJdew7fVSgWmafb6/vf5Pt/n+3yf7/N9vs/3+ZnH37hxAy+99BLDhg3j81/4PJUVlTQ1NbGmbg1P/eVJ3li0iEVvLCInO4fZ997LudOm9Sn7fb7P9/k98zV1N50iwrnBdiolTYhKvEstn34MhCskTWbisNonyFS+phuYlk3ACDi7NK+/3KS6CJC27fWncmekDgavv5NpQoCUyrHhlPX4UoLjzUu1/8Tng4YQwpnW1Lv73+f7fJ/v832+z/f5Pt/nZx7/0cceZ8vmLbS0tPC1a7/G+eefz2c/+1luvfU2Vr77LnN+fx8jqkbQ0d7ONdd+hT//+S99yn6f7/N9fs98LZUhk+uq6p73SKapk6pRmmjnZlomwZPrJXEylK8bGmY8TigUBCGQIhE7Ipyuko73Ts0Kko4OSSQ7XQ3hMEUKXwjpjBfh8d3kvELQi/g2uqYTd1dr6sX97/N9vs/3+T7f5/t8n+/zM49fU12NENDY2Kim8yfxA4EAMy64gJdffplPX3wRSMkPfvA9bMs+Kn6ks5OlS5fyzjvvKD1OwPaXls2aNWtYtGghHR0dHzn/eNv/YfDXrl/H83997qD8f7/zDg899CAdnZ0fOv94298X+IYq6yohkojOZwlueE7yEVeBlLlWSe+9v55IiRcmJFLNzER+wAgSj8UJhkMqOkQIJBpgI92wKKk54VUS0JDOP0+mhjqOE4XiJet1MkBLAULlfhFINWAEqoybH0YAvYSPUOVNK97r+9/n+3yf7/N9vs/3+ceHb9s2mqZlrP0+//jyCwoKkAKys7J5f38jN/7Xtxg5spob/+tGCvILAcHmjZscARrZOdlu9oAU/rJly1m9ejWDBw3kjDMmkF9QkMJf9d4q5s+fx6I33mDpO0sREiSCn//sp3zxS1/qYn97Rztbt26jbPAQCvLzD2p/a3MTu/fsZcCAgRQU5H2g/aZl0tbaRmFhYUr779m9m3/88yXeeGMhb771Ju3tHSAFF15wAXN+P6dH/opl/2bV6jUMGjSYCWecRn5BYa/p/2PFNy2T2lGjEMD+xvcpLirqlv+jH/2If/zzH+zZu5fvf//7fcb+vsI31Iu7U91kizT9UoGJLXmvJCGpixUi+UN3hzOPHwgaRGNRssLZ6pg6YyLRwHYiVBxnhCvX01Li6KpO2q5Uz7dnq5Iqr65Uy1C7OWFkQgtBYn+v4EvQNQ0rbh51+6cezrzx5/N9vs/3+T7f52ci/9e/voPf3vkbFr3xJiOqqjLOfp9//PmxWAykICucxT9e+geLFi1k4aJF3P+nB8jJyaG9o92rLxDMufdedE3z5Ozc2cAPb/lvXv3Xv7A9DeCB+x9k2rRzMW2Ta758DQsWLkhAgSFDh5Kfn8eI6uou9i9c9CY3zpqlonkEXHTRRXz729+msrLSs8C2LJ566mkeeOh+1tatQwA2kilTpnDlF77AJ//jkwBY0uLe393LhIkTOOtjZ7Fq1Squuuoq9jc28tOf/oSrr7oagHvuvoe77vktSLf9JSUlJZT2L+XU00/rtv0bduzkhz+6hX+98qrHB3jwgQeYdu60Q2r/493/x4r/3spVAOTk55KTk90j/2Mf+xj/+Mc/qVtT16fs7yt8TaZVFsgkpWRCVOpLGkjdaHc1KlFIJtV04yy8vRnID4VCxGNRsnNyHEeammEmhI0QeNN8QCq/hXSS54qE5sKRK1Ghjs7sIRAy4aQDhO3scz97BR35vYRvSYlmGJimddTtf7z73+f7fJ/v832+z/f5Hy3fNGPce++97N27l3379vXIb2lpxratPme/zz8x+GY8hkQSCAY47bQz1DFhg4D2jjaPf8nFl7Bw4ULOnTbNk7J7924+99nP8corryCxuXDGDIZXDgPgu9/7DlLaLFmylAULFoANUkhuu/VWli5dyqKFC3jxhRc588yJKfa/8MILfPGLn6fx/UbHGMnzzz/HBRdcwKr31A3/rj17uOyyy/je97/L2rq1SCkZOaqG3JwcFr6+gG984xvc8sNbsCyTvXv3cdddd3Hbj29jf+N+rr7qKhobGxFC8qMf/YiW5iYi0Sh33X0X7kPez33uCua/Mp9ly5fx0kv/5Nprv9Kl/ffs3s3nPv9Z/vXKv5BScsGMTzJ82DCEhO9+97vY0u4V/X+s+HOffgqA6667nlAo1CPf0NWquE3NTd3yGxv3M3/+PNasWdOr7O8rfE144t0/yVKFW9zbnXw0WWS3B13dBHi5SqSzw6mQqfzsrGw6OiMUFRaqXVJ6x6Snm0AIDYlACJTTQsrUASLcsuq9TFLDHSxSgJAJvrQ1p6DAHSC9gW9bcQxNIxaPH3X7uxUydfz5fJ/v832+z/f5vZnfdOAAti0Pi/+XJ+ayY/sOakeP5qSTRnfLr6tbS2FBIbNuuPGo7d/XuJ9//uOfLF++/EO1f+/ePbz44gsfyO/L/d+b+dFYHIEkHo9TW1vL/HnzqSivcGppfOf/fYf1GzZy1913Uz603ENIKbn++uvZtm0btbWjWLJkKffddx+z58wGVA6bxvffZ8IZZzDhjDO86+/7H3iAxW+9je0920y1/67f3uVdpw8cOJjHHnucqeecS1t7O9dd9w1MM87SxYtZtnw5ADk52Tz++GO89NLLrF61igcefIChQ4fy6KOPcttPfkJOdjYC2LZjO1d+4Ur2NzZSUT6UnKw8kLB6TR3hUJBZs2Z51/8v/O0FXnrpJTWtqZv2R0quc2wfNWokS5cu4b77fs+c2Qnb3298/5Da/3j3/7HiP/HEEwBccdnlB+Xv298IQKFzD2rGTea9PI9vfetbjBlzEqX9SjnvE+czZswY3nvv3R75pmnx4gsvMOe+OSxatEhFhKXZ/+j/Pcrll1/OSaPHcM7UafzkJz/hwIGmPtn+HxZf88TLnoULdy6KdOofxpYQm+QlSuFkJj8nJ4dIJEJRcYk6LlHTfzytnPJSglRBezIpF5jbrZ4DBOH1uRTOGMCVp6RJ4YwLp5LKByZ6DT8ejWMEAkSj0UNrfE7c/vf5Pt/n+3yf7/N9/uHzN2/ewrhx4yguLqaiooKnnpp7SPxoLMpNN32fvLw8Fi5YSF5efrf8p556Egl0tLUdkf2xWIy//e1vXHTxxfQv7c8FF1zAqaedSlt724fW/o8++hgXzriQhp07e9Sjr/Z/X+DH43FAEI1EEBKqa6r529//zrnnngtI7vzNb3jw/vu78F988UXeeeffAKxdu5avfvWrXHfd9cyYMQOAETXV9OvXD8MwePyJJ7jrt3cxcMAAtm7fxswbZvHJC/6DefPmYdu2p4wVN9mwcQPuM9Lf/OZOJk2axH2zZ1NRXs7Wbdt5/rm/UlRc7LXb44//mUmTJqlPmsa0adP485//jBTw8MMPs3fvXmygo72DtXV1ZOfm8Ojjj3HTzT8AUBEZCL7zne/w5BN/4fQzTqetrZ07fv1rJk+exEMPP0ykszPF/hdefFElM0awdu06x/bruGDGhSCgurqafqX9Dqn9XTtUH6fvTyrRi8ZfZ2cnm7dsBuCUU045KH/JkiUADC0vZ1fDTsqGlPGJ88/n7rvvZs2a1UhgZHU1Hz/rLAYNHtwtf+GChYwbN44ZF36KmTNnMnnyZIaPqGLTpk2e/X/83z9y1VVX8fQzT7O6bg2vvf4qP/7xjxk1ahSvvvrah2p/+tab+1+TqWWSpEo8VZLmqLjFDqqkTPxPiBVJ77sxNsP4CxYsoLOjg0Flg5GOYLd/BDhLeCWmEglPR3eGmkxTWXqOEmGrzhYywRQOQADeSknSVbN38C3LJBgIsGf37l7f/z7f5x9Pfn19PXf++tc8+thjbNlSj2mZHynffcnU9vf5Pt/nHzn/m9d9k3ffVU9zd+zYwWc+cwVfvfardHZ2HpT/pz/+kR0NO3jwwQcpLi7ulm+Zpvckvrik5LDsb2tr41e//BX9Svrx6U9fxF+ff54ZM2bw0IMP8vv7fk9OdvaHYr8ETGfVyq319Wl1e7Y/Rfte3P99gR8OhZBAW3sHsbiKNigoKOD+P/2JG2bNAiS/+OUv+X/f+Q7xWMzjPz13LhLJ/2fvvuOjKN4Hjn82hQSSCzVBJCAgBKQE6SAWikDoRVFBOqj0LvD1hzQb0pUqRRCw0EGk9xIMRZBiIKGnENIIyaWQ5HLP74+7XO5SEBUIkNnXK2Rvd2be88zOJblhdrZt27a4uLhw7tw5tm37DQRq167NdwsWWXxHBwfeeqsTR44c4asvvqR06dJcCrhIv379aN6sGUeOHgUg7HaYqXDNdIORV4UKgODi6kr7Dh3QgCtXr2Bn/lu8VOlSvPzyy1lCT0pKMi1jIBBz564lZk3T+Gn1j5QuXZpXGjYA4OyfZy3tWL9BfTZs2MAPP6ygbp06REdFMXHCp9SsVYsfVq4k/clSG9avRwPatG1jFfs2QKhdqzaLFi16aq7/o/Bj7sSAQLmy5bC3s8/Rj4qKwtfXF4AqVauydNlSIiIjAHDT6di8aRPx8XouBQRw1NeXYsWKZfEPHDjA62+8jr+/PzqdK127dEWn0xEaHMLkSZNBIEGv56OPPkIDXnv1NRZ/9x2rVq3kvffeIyIigiZNmpgGiZ6R9n+YvoN5/kNGnox3U5ZDlldC+h0pWQsF0oeB0k9nSSaa5QdBXvU/+/xz0DT+unCO558vhWep0uZ7Q9PLsEPTxDKSne6nD3KgmftPRr/JcOzEvNBupnvbMM9HMdqhmR/dl25o8MT7G9evJSQ4hNCQUFP6p/j6K1/5uekfOHiQj8eMyUgAeFXwolad2lSrVo0GDV6h0RuvPbPxK1/5yn/6fDHC5MmT2b1rF2AamElKSqJPnz4s+34ZRYsV5euvp2br370by/8++YQWzXx46623TEw2/roNG4iIjELToKDVU2X+Lv45c+YwYsQI8+3f8MGHHzB08BCqVKuWKX7+ffuLRlhYGDeDgzj751kAunfvTkpKCiEhIeh0Ovbu3U3duvWfyev/LPkexYub/qNSTGvIlC5VGjSws7dn1OjRVK1WlQ8+/Ij169dzNzaW7xYtRMOOffv2o2kwfdp00ODo0aOEhYVRrlw5GjZsaPksKYAmwo2gIMq88ALvv/8+7777Llt//Y1Zc2Zx+coVunXryrffzMXDw8Pm7++vpn7NjBnTEDT8/f0xAveS7+FezB0RCA4KIuBSABUrVQRMs4D++OMPxo0bh2YnDBw4mPDIcDRMi/XOmDGDGjVqAFCmdDnQNI76HrW00o0bNyjzQhkaNW5Mo8aNOX7iJN/MmcVR32NMmDCBgMBApkyexIH9BxCBGdOng8BR38yxZ7T4k379H4WfakhF0yAlNcXCZOdv37HD7MDrr79OgwYNmD9vPhGREcTp9cycNZvnSjxH3Xr1s/UjoyJp3649YPr5s2TJEpycnPjmm28YMWI4f5z+A9GwDJy56nRs2LARd/diINCtW3fGjRvH/gP7TAM/z0j7P0zfTjKfkExONq9Mb2DJvmJAepkWJ0uhkiVtXvMnTZwIwKAPP2Ti/40zDXSYnhadrpjrYl57xVKSWB7hpdlhOSOYOowAInaWiy+Ws+Y8gKYZzTNTTGk1eOL9lORkdu3cQZOmTYhPTMBgSH2qr7/ylZ+bfpPGjenfvz9vNm1uORx4JZCff/qJT/73Pxo3eoOqVaqyYvkKku8lW0p6WH7mtI8z/nPnz7Jz584H9s+fO29O/+C+Ic3wxMavfOU/jb4IDB4ymMlTJuPh4c7yFcspWbIk5cuXZ+/evdSvX59p06Zx0nzLR2Z/6tSv0Ov1zJw1PUc/5k4Mw4YOJf3vj/Tbnh4k/p9++slST/+L/iz+bjFVq1X7V/FHR0Wzfds2xo37H53ffpsDBw4AGn0/6MfzJZ+nQf36/PTLT2hoXLt2jXz58tG1a1c+/fRTypR9Mdv409LSHti3jfjB4s9c5rPW/x62X7x4cdP6i4AYJYvfooUPu3buwtXFhb179rBjx04MaQaLf/6v8+TPn59mzZrRo0cPXn31VTRNs/HP/Pknb7z+GkOHDuXixYs4ODjQsVN7Duzfz7BhQxGjHUOHDuVW6C2ww7Ko8MYNG/Cu5k21at7s37cPDfDxaYlXRS8aNHwFEJr7NKfzW5155913KV++PO+++y7Xr1+nS9dufDzmY4zGNASoWeNl3n77bUtc9g4a9evVIzo6mstXrmEwGHjj9Tfo0KkDB/YfwGg0Uq9uHX766WdW/rASDfhx9WqO/e5H+ueP8+fPkb9A1tj/Sftbp31W+p+bmxsiEBIaQqp5NlZmPzEpgS8+/xyA5s18KFGiBKVLlSbgcgCTJk4C4MiRwzSo34BOnd7iT/MaQ9b+Z1Mmo0/Qo6GxefNm2rZtS5s2bRg+fDgi0MKnBRpw4+ZNwDSA455+u5k5/urVqzN8+EjKlSv3zLT/w/TtLOVrmTOKVUqx2U2nbcmMBFnrrGVKpZl3rNLmMX/smLE0bdqE0qU9uR1+i9Onjptnophv5bH4ApoxwxXNPKinZcwq0UzpxRKToJkXfsm2m2gZ8VsSaTyx/uXAiwwd8AH58+fn9B+n+fbbb3BwcHyqr7/ylZ+b/gulX2DhwgXs2bMLnZuOFi1acO3qNfbu2c28efNo3boVf/n706dPb1q1bkliQuIzEX/orVBefvll3un8zgP5t27dwru6tzn9g/nRUVEUKVyEXr16mW89MOU4e/YcQ4YO5eSJk7l+/ZWv/KfN37p1KwsWLMCzlCcXzl+gZ89elnLz5XNk1uzZAKxauTKLf/XqVb7++msGDR5MlSpVc/RHjRpBREQE06dPQ8h4osmDxD9t2jR0OlcA6tWtx8SJEwkLC7OJPzgkmPLlyzPt62k2/vwF82nQoAE//rQaHx8firkXo3WbNkz7eirrN2xg107TTKHoSNMjjqtUrky1at4IsH7Deq5evcKPP/7Ixx+PxsPd3aZmJ06cpGnTpjg4OOBVsSILFy58oPbX6+Ns2v/v4k///qz2v4ftlyrlSYkSxalarSolPUtm67/0UiU2bNqASwEXnJyccMrnxJtvNkVDY/DgIaZBlWz88PBwgoOCKVy4MKCxZcsWfHx8aPrmm3Tr1o33u77P0qVLLU9OTTWkgkC79m1ZsWIFVatVIT4hnsSEeJq3aM6aX9ZQr25dEPj2m2/o/HZnChRw4cSpkxw/7gcIzVu04McfV/PlF1+godGmdRvGjBnD1KlfWw2cmOIfMth021aaIRU7eztKv1CaM6fP0Lt3Txo0aMC7777D++93ZeTIEYi5/VNTUmjapCmaBkOHDM201lJG/BHh4QQHB/9t++f29X8UfuHChfDy8gKBlT+k/xzM8FMNBj788EMCAwMBmDJlkiVJoYKFmDhpAhEREYwf/3+46lzZvGkjNWrWpF3bdly5cgXEtLzE/HnzQaBP3z7o4/Xs2bPHPEsGevXqxaQJpnLDw8MBTE+Negzx53b7P0xfE6PIfVfDsSo0a4r0ozmcFbFMMzPfEGPJlj6zx5Q17/q//PwLo0aPICkphVGjx/D6m01xcSmUqeyMLeOIBpgW9LJMjUqfa2UuH6OAZjovmma+7ppp1opmHmQxivk2JPMfIRrmzLnvJyYmMXbEYPx+96VI0aJMmjSJQQMHPtT2z+3rr3zl56affC+Z/AWcqVGjFn/8ccomv5+fH507dyYkJIRWrVuz7bffnvr4z5+/gLd3Ndq178CWzZv+1j9//jze3t60a9+eLZs3P5C/a+dOfFq1BIEFCxYwYEB/BI3+H33E4sVL0Lm6cuv2bVxdCuT69Ve+8p8Wv6WPD7t27eL06dPmWyRM+S5duoibriDFPNxxzpePjh07smHjRhv/rc6d2bNrN1evXsO9WLFs/eXLl9Onbx+GDhnGwIEDqFTpJRYsmM+AAQMeOP6YO3dYsmQJM2fPIiLctIbDgP4f8flXX1KkUBG2bdtOmzatWfb9cvr07gUCRjFQooQnERHheFf35tzZ84BpsKdNmzaULFkSF1dX7O3suHfvHomJiRQpUoTffttK27bt2Lr1V9q0aZtt+2/dupUO7dsjmmnNhz//PIteH8ehw0d4/bVX2bF9B7Vq1yApKYVBgwZSuUplpn09jVWrVtGjR08WL/6ODz744Im4/s+ib0g1YGcPdnYO9/VTDQYcHUxpbt68ScuWrUhI0AMaAwb0p1o1b1JSUrlw/hx79uzhZnAQYhSCgoK4cjmQmXPmsP0385O9xPz3uAalPUsxavQIHB2dGThwACNHjWTY0GEAREVFodPpcDKvjZM5QqMxjejoO2gaFC1azDIA86Dxp6Wl4WBnD5pw585dFi/+joWLFpL584eLiwvde/Rg3NixBAWlx54IGBkwYCDVqlUlJTmV8xcusHfPboKCghANbly/8cRf/0fhz541i5GjR4HA0qVLeafz2zg6O3P44CEmTpyEn9/vgMbCRQvp/+FHFj82NpZUQyrFippmuNy9e5cFCxYwdepU9Ho9Op2Oo0ePYjAYqFWrNg0bNuDoUV9u3Qrl0MHD6BPiqV+vLt7e1S3xDxw4kO8WLaJH716s+H75Y4nfcvYpeP/fz7dDA5uxHsmyAzlWXTOnNH8XbL5b3qxWC8OmZ9Os9vOy/16X9wgJDaNWrZrMmD6VZq+9Sv9eXVj343IC/c8ihlRLWtsffumXW0M08zwTo8kWMV1vzbSwC0jGY5AEMftieiy2hmV9GMC0mK+pNCy3IT1m/+yZUwzo25036tcgJCSI5d9/T2RERKaBmYfT/rl9/ZWv/Nz0E5MSEYG7d2Oy+PXr1+fgwYO46XRs37aNy1euPHT/ccd/7JhpEbzXX234QP6xY8fQgNfMT6V4EP+P02cs5ZgWKDT5hw4cBAR9vJ6/zI+mzO3rr3zlPy3+mT/P4O3tbVm7AjTS0ozUqVePSi9V4ret2xCgxPMlbfx1azewcf0GvvryS9PU+mz8M2fO0KdPH2q+XJNpX0813TZtVYcHjb9wkSJ8PGYsocEhrF27ljp16rBo0WIa1GvAzRs3CA4OAqBhg/qWIo4cPUZERDgNGzZk/CfjSf8/2S1bthAVFYWbmxv2dqa/pZydnSlifmJOgfwFAI27cXHZtv+NGzdp3749oPH7sd85fPgwo0ePBOD6VdPP8g8/+pBv587n66+nsm3bNn5Y/gOHDh6kR48egDBlypR/FL/192et/z0K38HRAc16YCYHP31gBuCFF15gx44dVPeuDmgsWLSIgQMHMmzYcJYsW8qNm0EULVKU2eaZZOXLe7Fw/gLO/HGaDRvWsei7Rfz842p2bN/OocOHaN+hk8Wzw87iFytWzDLjIbv47ezscXd3p2gxd9PtVP8wfgd7e0v7FylSmHHjxuF/wZ9tv23lu+8WsWLFcjZt2sTpP/7gf+PGoWkaL7xQhp07d+LtXQ0NjYULFzFg0CCGjxjO0qXLuBF0k8JFijJr5qyn4vo/Cn/goMF4V/MGoF+/fhQsWJj8Ts74tGhhHpiBpUsW0/+jj2z8JYuX4F7MnfH/93+Ehd2iUKFCfPLJJwTdvEnLli3Rx+sZNmwYsbGxgHDM9xhxcXpKPF+SLl278EG/D/D2rm4Tf/oTyfwv/PXY4s/t9n9YvkNmOH09EeujplfmY+ZZD9lVPP2w7emM9AKmJ/RotqbyYc+ePezctYv58+ezd89uQkJvISt+IDIynNKly+Bd3ZuqVarhWaYs5cqVp1jx4qa86fcWaSZBrHzRBMwDIJn9dFes6oCmmUsQNM3OHGr64r6mW5tMs17Mi8M8JP/evXuc+/M0J/x+Z8umDSQm6Cldugw//fwL777T2VzHZ/v6K1/5ueGnppqe+BEfH5+tX7ZcWYq6exCn13P3zp2H5hvT0vjrwgUio6KoV68erq6ujyX+Des3ANDK/NhR6/zZ+Rs2bkDQaN26lTnB3/uXLvpbTpw7d44bN2+g0+kIuBxoyROfkPBA/sOO/0nrf8pX/oP6OhdXrl+7RmxsHAULmtaCsbMzzcjVx+t5+62OAHTr9r4lb0hIMH379aFJkyZ8NGCA6W+YTP6d6GjatWsHmsbrjd7g62lfs3v3HkBj4KCB3LgZxNdTv/xH8Ts4OtK5c2c6derIiBEjmTt3LgsWLaKAc34AnJydTbGJ8On48QDMmDmDevXqc7PBTb78aiqLFi7i9Tdex8enFePHf0LDVxra+GnGNECQNKPFDQgIwNM802ay+ZYFQWjQoAHuHh5ERphm87Tv0MFS/2+/+Qa9Xg+aRkRkBG3btUWnc6NKlSr4Hf+dOzExFClc6B/Fb3VFn5n+9yT5L7xQml+3/oqv7zFOnjxJcEgwbq46ypQtS906dahYqRJ2dumz0U1lFS5WlNpFi2bxAVxcXEDTiIm9axFzI/4Cri5UrVaVqtWq2fjWf/+XLm2K/dixY5w8cZLg4GB0bjrKlSlD7Tp1ealSJTS7jNaWo0cAACAASURBVEGmZ/H63893csrHoUOHGDFyBCuWryD9cSwuOh3vdn6HIcOGUt3bO0t+z9KeAHzx5Zd88eVX1KlThyJFC3P3bhzH/X5HA+JiY6lduw4exT2IiIigW7f3WbNmDfnz57eJ32AwEBwSTOnSpRAEDw+PPNP+D8vXJH1lVqtq2O5mV1HzvtlNR7O847PNdb9N+enpDuw/wLnz5/D3/4vjx08QdDOImLsx5HNywmg0oiG4uhakcJHCFH/ueUqWLIln6dKUKVOGMi9WwE3nhs7NDXs7e9JvP0IzEYKG5d42q6uvWXdDyegolilZ6YM36XEb0+M3dVrNDqx7k6lMzeIb0gzcvnWLW2G3uH37FlcCAzh7+gwXzp+lRInnibkTTcNXX2Xs2LG82fTNPH39la/8x+FHR0dTrFgxdDodcXGxNn5sXCyTJk1kzpxv0LnqiI65g4ODw7/2Q0JD2LxxE3v37Wf/gX2mDwQC77zzDmvWrMkx/mvXrnPo4EEc8+XjjUaNKOXp+a/8yKhIirt7UMGrIgEBl+7fTmJ6IkFxDw8qeHkREBCQpSVz8itWrGi5pxs05s37FhcXV3r36W36uYrG3n17aNqk6X39vND/lK/8B/VHjhzJ7NmzadKkCbNnz6JqVW+MxjR69+nL6lUrQYOGrzTkqPnxwCJCixY++Pkd46+//ClVqlQWMTk5mfbt27Nr1670P48A8HD3ICIygiZNGrNhw0YKmZ/alFP8C+bNZ8rnU/jmm2/p2KGDZcaBwZDG0aOHady4CR07daRFs+b0HzCQUaNHMn78eD4d/ynz5s2jffv2bN68ySb+Gzdv8M03c5gz5xsA3uvShe+Xf09+J9PAzokTJ6lXry7fzp3HkEGDSLyXiEsBF2bMmMHw4cMpXLgwr7zSkCFDBjF37jwuX7lMg3r1mTzlM158sRwApUqVIiQkBIAqlV/iL/+LAPj97sdf/n/Rr29fTv3xBzVr1rxv/Hmh/z3Lvr+/P61a+tCqdRsWLFiQ5+J/Vv34+ATu3r1DvnxOuHu4o923HsLOnbuYMGECJ0+eBHOR6T8TGzZsyOw5c6hTuzabN22iY6dOAJT0LMWwIUOoULE8UZHRHD16lI0bN6LX6+nQoSM+Ps1p0qQpFSpUeOzxZ8319PiZbnS0GjNKRzMVal1N08rgGelz3mw+9mdUI0udlZ9+qHGTxjRq0tjmtCAEBwUTGhLK5auXueh/kUsBgQQF3cTPz5fYndu4l5hEqiEVOzs7jEYjDg4OpoXE8hdA5+pCwYKFcCtYEFddQVzzF8CpgDPOzvlxdnYmn5Mz9vb22DnYYa/ZYWdvj72dHXZ29hjT0jAYDaQZ0kxfaamkpRlJNRgwpqWRZkzDkGo6fy85iXi9nvh4PXp9HAn6BO7G3SU6MhJ3d3fcChYiISEB1wIuhIQGU6NmDd5s+iZ9+vTBq2LFjM6fi+2f29df+cp/HL6DgwNooNfr+erLqdg7OuDgYI//X/6sWbuWeL3pvvbxn463mVoNQkxMDN99t5i/LpxHs7fD3d2DAf37Z/NLWGPylClMmjgR61/2xd09KF7iORo0aJBt/EnJ9/i//33C7NlzTLnMmSdOmMCkyZP+cfxr16wB4L333n2g9l+zbi0CdOnSxSpFRvzZ+QEBAZaBGZ1Oh16vZ8nipdy6HZYROKb1tLL+zs57/U/5yn9Qf8yYMfz4448c2L+f6tVftry/LBUT0MfpSUtLw97enqVLl7Jnz25++flnPEuVgkx+oj6etzq/za7du+jatSuvvPIKNWvVonp1b+w0O/Lnz4+jYz7LwMz94hdNiAiPoMt776HT6ahUqRKxsbEEBgZa8owbO5YXy71I/wEDmDljJrNmzDT9SNCgZ8+elvjbtm1Dl/e68M577zJ79hw+/ngs//d/n7DihxVU9PJi0qRJgFCixHMAHP/9GH379ubzz78AoEqVKty+fRu9Xk/Bgjpat25Dq9Ztsm9/s79k8RJ+3fIrf/lfZPGSxdSrX4/8rgUQwN//omVwJi/3v2fZL1myJCIaBw4eJDEpkQL5C+Sp+J9V39XVBVdXFys/PXf2fgsfH1r4tCDoZhCBVy4TH6encOEilCpVyjKgC9ChYwd27dpFt+7dCQ0JZsy4MVZ/35i2OnXqMHbsx9Sv38B8Ku+1/3/xLTNnsqSzqoRp5oRVCstuTrlyLi3jnG0a5T88/969e1y7cYNrV68TEBjI9RvXCb4ZxK2wW0SG3yY29i56vR5HR2cKFMiPs3N+HJ3y4WBv+mDmYG+Pnb2DaaDGTsMoGvb2YKfZY+9ojx0O2NtpiGZEQ8MogJjWkEkzGjEYUhGEtNQ0DIYUklOSiYqIJjU1mTJlXqBs2bK88MILNGz4Gk2aNDY9UvAZan/lK/9p8RMTE3FxcbU5nn42fTMtnrvRxr948SKNGr9BZGSkzZpRXl4VWbdujWVROIB7yffI71zAkqZfv76MHDmSl16qnGONU1JSePvtt9m6dSug0aRJI4xpwsHDB0E0LgcGUr7Ci/8o/ipVquDv78+FC+epUqUKf9f+6enPnb9AtaqVeZD2nzVrNqNGjUTnpmPNL2tp1aqluVkz2kjTTGvRfPjhR39TY9OZZ7n/KV/5/8SPjo7mi8+/YNmyZcTp43jxxXK8/HJN+vbtw9q1a1mx4gfGjv2YgYMG8ULpMnTr9j6rVq3K1h82bATffvsN48b9jy++/AI7q/nooaGheHp64ulZkqDgkL+N32g0smHDBtatW8/vv/sSGxcHolGhQnlq1KjBxx+PoWJFL0A4f/48gwYNIiDgMhER4YCGPl6Pq4sLAKVLlSI4JARPT0+aNm2Cc34Xzv55Gj+/4zRr3ozdO3eDBgZDKp6enoSHR5L+s6VFCx927NhGmtFIRa9KXLt2lU2bNtHBchuTqc7x8XpiY/X06NEde3sHduzcwb69+7h27Sr9+/e3tIOPTwta+LRixPCh940/+2uc/fV8mvvfs+x37dKVY8d8mTN7tmVWRF6KX/n/3E9OTmbTpi38eeYMt8Nv89xzJahcuRKvv/EGZV4o88j93I7/UfqaiFFsDv8tnFMVsq5IbPPCfKNV1lu2MjnKf+S+IS2NlJRUIiIjCQu7RVhYOBGREdyNiSEuTk9cfDyJifEkxCdwL+keYh54ETGaB2KMaJodjvny4eyUD2dnZ5yd8uGU3xmdiytFihSmWJGiFCpciIIFC1K4UEFKlCiJR3GPJyJ+5Stf+abNYEjF0TFf1sLTf3+Yt507dtDCxwcwraPy6quvotfradGiBZMmTaJiRS+mfj2NaV9Pw8urAn9d+AsHx/SZNsKn4yfw+ZdfgJhmlIwbN4ahw4aZP5BkjX/CxE/5bMrn6HQ6tm/fzquvvkpCQgJly5UjMiKCTZs20b5DhweO/+SJU9StX49qVb05d+7PHFsx/eXJUyeoW6ce3t7enD17NpvWz9r+aSJUrlSZwMAAPuj3AQsXLaRMmTKEhoQgQOUqVejyXlc+/XQ8o0aNYMaMmTn6eaX/KV/5D8u/l5JCyxYtOXjwAI0bNeZm0E1O/fEHhQsVzNb/3yf/o369erRv3yGbQoWxY8cRHh7OihUrHkn8KakpFCtalPbtO2QMIAmER4Qza/ZMFi5YlDEzCGjbti2ff/453ub1IgTYv28fI0eOpFixonTr3oP3u75PvnyOIHDw0EEaNzbNvn777c688mpDwm7dxtf3KL6+R0EzPZ7Yzs7evD5J1vY3Go2mQSst67V40q6/8v+b/8svPzN2zDhGjR7F0KFDHrtv+zLvtb/ylW/ji2UzivVmtLw2Zjpjk+iBDhttvhuzTaP8J8dPSTFIXEKCRMfESVhElNwMvS2BN0Lk8o1gCb4dIRFRMRKrj5fUlNRH4pte5d32V77yH6dv/pUgGzZskJSUFAkJCZGdu3bK1Klfi5dXBUFDQJNTp06JiIi3t7cAMmTQ4AzDaJQqlStbylq6dGkW/8DBg/Jqw1fMaTTx8PCQefPmSUJCgk2Nbt68aUkDSIWKXvLee13Ew8PDXBckJCTkH8U/bOhQAWT2rJk5NJ3tkSFDhwhoMmvWzAdu/927dlniT2+rrb9uFUy/muX75ctl3do1AsibzZrft7C81P+Ur/yH5d+5c0dq16kjgOzateux+9kdzsn/7bffrOqZvR8ZGSG3w8MlJbu/tR7AP3f2nPTs1UvcdDrLzyGdTied33lXjh8/nmNhT+v1V/6/9w0Gg2zZskViY+PyZPzKV/6T5CMiYjRmU40su1b/2pRjtC4gK5hjZFaplK985Stf+bnily1bTkCTjZs2ZvFTU1Pl/W7dRAN5v+v7EhQcLKBJ5SqVJTk52eIvWbLEMjBhGnhxl4SE+Gz97du3y2uvvWZJ7+qqk3nz5kuaMU1ERGbMmCGANG7USCpXfsnyoQKQkp6e8tvWbf84/vQBJV9f3yz1ya79vatVEw3E1/foA7V/SkqK1KxRUwBp1Kixjb902TKZNm2aGFJTJTAwUDB/QEpLS8vRz0v9T/nKf5i+wZAmBw4ckLt3Y57o+Dt27CgeHh6SkmJ45L7BYJC/LlyQoKAgMRgMtqmeseuvfOUrX/lPu28HGdNsclrJWcu8r5kfziXmIxkFmKf3pE/R0aymCFlN27F+rXzlK1/5ys81/4UXSoMmhIXeymI7ODjg4+ODAAGXA7mXlAQIQUHBXDh/geiYGL6c+hUffPgBAIMGDsBV50pkRCR9+/TjXvI9i3fl6hUQaNnSh8OHD3P48CGaNGlCfLyewUMGMWTQYACOHDE9beX/xn/K+fMXOHDwIPPmz2Pd+vUEBgTQuk3LfxS/0ZjGuXPnQIPdu3ZzO+wWaWlpgGl9rrCwW5w7fw7fo74kJiZiNArnzp9H0Ni9ew9hYWGW9Mn37nErLJSz585x9MhREpOSQNMYNXoUp8+cRgNGjR5l4/ft05uPP/4YewcHKpSvQCnPkuj1ev7445Sp2nm8/ylf+Q/Tt7O3o1GjRhR0K/TExh8eHs6mTZvo3bs3jo72j9y3t7encpUqlPIshb29Hdbbs3b9la985Sv/qfezHx/KNBCU3YiQzW5GXmMO6YxZjmRfpvKVr3zlK//R+ampqTJhwkTp+n5XmTPnG2nfvr1oIKPHfGyTPzwyQtatXSce7u4CyPhPx4sYjVL5JdvZLOn7CxctEqOI7N+/33KsYcOGEhBwSVIMqQJIvfr1Zfv27ZKWliHt3LHDVJaGHDx0SF5/7TVBQz774vOHFn9JT09LXU1fmuV2LUssGuKq08mRQ4fFs5SnoCGa+Tzm85lj1rnq5PDhQ9K4USMBpIKXl2VGTE7tP2DAAAFNJk6amKWueaH/KV/5ed2fPXuOoCF+fsdtzuSV+JWvfOUrX/k5+5qIiGA1wKPZjNxYhnVyTGM9IqT93ev0g+bvtt+U/xT6oaGhHDt2jA7tO+KYz+pRu3kkfuUr/2nzw8Ju8fzzJQFT8abn9WnoXF0pVboUzs7OhISEEBERYcnepm1bNm3ciIO9A/4X/enSpYtpNgpQuXJlZs+aQ/MWzSzpt/66lXbt2wPC4MGD+WbOt1TwepFr164D4OnpSfkXy+Po5Miff54lMsL0xJHffvuNy5cvM2LECAD27dtHkyZNssQfExNDeHg4lSpVeqD4/X4/Ts9e3QkMvGzTbNbxY/4fjQ8//JDevXvTs0cPAi/bps9u+/DDD2nVsjU9enTnlzW/0LJly/u2/44d22nVqjWeJT25cvUy+Zyc81T/U77y87pft249Tp48SXLyPRzzOeW5+JWvfOUrX/k5l215lHY2ywjbGDnVybbMnFPZ1C27CJT/VPrjxo3j66+/Nj+usf1j921LyXvtr3zl/1M/NSWFzu+8w5YtW7KkS7fSt1caNmTo0CF06NARp3wZT3USEcJu3SJ/gQIUKlw4Wz8uLg5/f3/q1quLptkRHRnFzFkzmTp1ahZX5+rKwEGDmPrVV6QaDLzSsCGnTp4EoGevnjRp3JQCBfJz0d+frb9t4+TJE2ho/HH6D16uUeOB4w8Lv01MdDSJSUk4Ojrg4qLD1dUFMRqJjIoi/PZtvKtXp3jx4gCE3b7NnTvRJCYkkc/JEdcCLhRwdQURoiKjCLsdhnd1b54r/twDt78hNZUmTZty5MgRli5dRt++ffJU/1O+8vO6/+677/Lnn2cICAjMFT9zTuUrX/nKV/6T42cMzuSQ5/5m1hP3C8I6kWg2D57KNT8iIoKgoCBq166dK35O57Pz/Y77cfvWbTp07JBDwsff/q1at2bn9p18v/x7evXq9a99v+N+3A67TYcOHZ7Y9gcIDgpm629bGTBgIFrWd9tT1/+Vn3f95KRkIqMi0ev1JCQmkBCfgL29A0UKF6aoe1GKFimGo6PDQ/fj9fEEXA4g+GYwTs5OFC5cGO/q3hTIX8BSSEJSAgP6D7A8YlYDJP23pPnIhAnjGTtuXEa+fxh/brZ/bHwsm9ZvolHjRpQpU+ax+7kdv/KVn5f9u/q7aEaNgoUK5oqf2/ErX/nKV77ycy7WdnBGyFjDBshpNCm7mph2M1Ut/aWAadgIBM0ygpQlkMfopxpS+W7JYssilMu/X24aXHiC42/VqhU7du4gIT6BAgUKPBHtX6p0KUJCQpk9ZzbDhw39137rVq3ZvmM78QkJuBRI/5D2ZLU/wPTp0xkzZgxHjxyhYcNXc739la/8Z9m/eCmAX3/dwrVr17Czs6Ns2bLUrVuXBvXr4+Tk/MzHr3zlK1/5yle+8pWv/LzjO9gUYnVCAE2zeZVl17pkLfMBMqfTMu9muQXrcflHfY/Sr29fAgIDLQnci7vb+IlJSXTt0gWj0ciatb+Q3znjf3VzK/7UNAMIREdHmwZnrLh75vqmGY2sWbOG/PnzP/L2T0xKJCQkBICU5OT/FH9qWioAd6KjcSlQ4Intf2kG01NbgkNCntr+r3zlPy3+Sy9V4qWXKmbvZ6GevfiVr3zlK1/5yle+8pWfd3y77MoEyXRIM6XOLq1Y/rF6bXtMshwx72cT5KP0jSLMmjWL1157jYDLpoGZOnXqsH7Delq3am1T6L2kJLZs2cLWrVsZ0H9grseflJBIbEwsAIMHDaJVq5ZUr16dunXq8ePqVSQlJbE5vb4DBjx0P7v4b9y4AZgmZxUrViwT8uB+YlIisTF3bWKrUb06devWZfXq1Tn6GQU9nv5nMKQRGRWJBsyaNZO3336bWjVrU7tWTUaOHPnI/WzTPkXvP+UrX/nKV77yla985Stf+cpXfva+AwgimmX2jpD+cdu2IE1LP2edDvM0HKv0WuadjHurrKf9ZOR4PH5SUhIf9f+QVStXA/DZlCkMHToMNzcdIta1MZVXpEgRLl28yIoVP+B/6ZLl+jzO+EOCg+nRoyeBV64QGhpsubq/bt1qyV2jZk2MYqrvxYsXWbFiBZcuXXoovk2bZBO/Xq835UejRIkS/yj+kOAgevToyZUrlwkJCbWk/vW33zA/PoVaNWuC/Pfrn5KcwpkzZzh79gzVqlXnlVdeeeD4DakGevfty4kTfgSmL94HnDx5ipMnTwHg5VUxY/bbE9r/la985Stf+cpXvvKVr3zlK1/5T65vteaMOaOA7bLC1setq/XvNutibO7veoS+Ic1Aszebc/DgAUp6evLD8uUUL/4clatWwS7z1KVcjv9W6C2On/CjSZOmbPl1Cz179gRzlUzjacKkiRPp9FYnKlV6CUdHx781AwIDWL5sBYGXA6hdpw4D+vencKHC/7n9Dx06RKNGjdCAqKhoihQt8sDxr/xhJT179TR1SjEdB5g4YSKd3urISy9VNsf279o/JiaGdevXsX7devbs3YP1aqIpyck4OubLEv+tW2EsXLCQGzevU69efTq91YmkpETKl69g0/4a8NbbbzFixEi8vb1xdXX92/pkjv9x9n/lK1/5yle+8pWvfOUrX/nKV/4T7ksOmzGbA9bHjMbMabMcMH83Zi0rmyOP0p84aZIA4uXlJeHh4VKzVg3RQMqVKyfDhw+XTZs2ib+/v8THxz+Qn5iYKFu2bJX58xfInTvR2fqnz5yWJo2biLnVxcvLS86ePZul9D179oq3t7dcunRJLl68KG46nWho8kajRqLX62XixImyctUqCQu9Jb379hU05PTp0w8c/+bNmyx1SP/yrl5NUlNSMkeYOVyb7VZIqPTs3Vs8S3lKo0aN5NgxP9m1a7cA0rxFC5scEeER0qt3L9G56gQQdw8PWbVqlU3piQkJMnHiRFm1apXcunVL+vTpI2CK7X7tv3bdWqlcubKAJjqdTl577TXRxyfY5DCkGqRO3bqWeF11OunWrZt88cUX8ssvv2RXuqxcuVIwvV9EM707xMPDQ8LDw2XhwoUy95tv5WJAgCxfsVwA+eabuQ/U/k9C/1e+8pWvfOUrX/nKV77yla985T/ZPhkvMmUw3r+A7Mgcanefw0arU4/GDw8Pt3zovn71moiI1K9XP8uARfpX/fr1ZdF3i0SMRrlw/rx4FPeQK1euWEreuHGD6HSmQQdNM32A1+v1NvrevXvEPPwlDRs2lMGDB8uL5cqJBnLi5Amb+FetWiWAzJ03V7y8vEz1MM1/kgvnz9uUO2HCBAFk37592cZ//vx58fDwkCtXLouIyL59ey1xdWjfXpYuXiLlXiwngPz+++/yoO1/KyxMPDw8bNqpmnc1+e67RQLIyJEjLWlv3LghXl4VBDQpV66s9O3bV5o1ayYayML5C2wvj5X56YRPTbHt35fFT9+mTv3K4rdr305Gjx4lmAfZ7t69a0l3716SFPcobkm7adMmWy6Tv2H9BkvaKVOmyOEjh6Rx48aigSz7/nubOuzZs0cAmThpYpb6WTVelvju55v2ns33n/KVr3zlK1/5yle+8pWvfOUr/+99O8Q0qUbLNMEm/SYosX3StmXL7r4s67PmQjKVmXEa8yjEo/Z9fX0BjWYtWlCmXFkAtvy6hQ0bNvB2586WHK+/9joeHh74+fnR/6P+rFu/nsjoKCLCIzh65AgA8+YvoFOnt4jX63nvvfeYO3cuvXv35vbt23hXr86C+fO5ePEibzZrBgg7dmzn6NGjzJ07F7dChRBgxPARNvGnJKcAMHTwUAIDA2nfvh2fffY5AH+eO2sTv52d6eFaqSkp2cYfFRVFREQER44eBYHx48cD8Mkn/8fGzZvp+0E/5s2dR7ly5ShatNgDt/+E8eOJiIygXfsO3LlzB31cHD+u/pEJEyYAcPr0aQRISkykefPmBF6+zFdffklAQABLly6lRo2aCDBm3Biio6Ozvf6O9qbYUpJTsr3+K1euZNy4T/Dy8uLSxYts2byFTz75BIBr164xa/ZsS/2dnJzZvXs3r77aEICOHTvRqHFjjp/ws3SPdF8fp2fAwAFoaDRr1oyaNWty924cN2/eRDTI7+xs0y729vZo5npmbv+M7cnp/8pXvvKVr3zlK1/5yle+8pWv/KfAz35oJ7vX2YwUZTt4ZLT9N7s0OY5KPXx/3959ommIZylPSUq6Z+MbDAap7u0tgCQkJojRmCZjx44VDU369+8vZ8/+KYCMHTdW7t1LEjDd8rJs6VIbf+TIkQJIj+49ZPiI4QLI2nXrLPH7+h41z4bRRAPZ+uuvltp++eWXYr5OUrNmDYmPj5ewW2ECyMiRI2zimjRpkmhoGfmNIqtXrZa1a9eKiMi5s+dM9R07VhISEwUQnatO0tIMmZron7W/zs00Uyg2NtZyZuTIEWLuRwJI+O1w2bJ5iwAyePBgS/tHR0WLm5vOEv+Yjz/O1p80eZIA8qtV26xevcoSW+XKL4lOp5PLgZcz2u6LL23qEBYaJpmv/47tO6Ru3ToW36dFCzl69KiljLnffmtqJ3OM6dcYTNcjKSnJpi3279svGsioUSMtzXXixAn5bMpnNumelP6vfOUrX/nKV77yla985Stf+cp/8n0729EhzeqzrvUIkACazRlMn2IzH7EMC1n+tRRplU7LNOr0CP1atWsjAiHBIXz44QdcuXoFNI1bt8KY++23nD1/DgDnfE5omh2Ojg6IJlTzroa7e3E0YP/+fdjbO+Kq0yEIlwIDuHnzJsdPnmDCp+OZNWsWAJ07v0VwUDBoUNHLC9A46utLxw6dQMDbuxqiwejRo7l9OxyA4JBgAIq7e7B162+4uBTguRLF8SzlyZEjvjbxexQvjiBERkcBkIaRUaNGMH36dADc3YsCsP/AfvI5OqIB+vh4li39/l+3v9GQhl6vx9u7Ojo3N1INBoYMHcKsWbMpWcqTLz7/DICffv6JkJAgAF6q/BIaEHQziHbt2xMXp8e7ajVAmDZjOn7Hj2fxn/MoDmhERUUCglGMjBw5mhnTpgOCv/8l3AoWxL24B2nGNJYsWcIn4z9BA7y8vAAYNnwIhlSDJZI0Qxo+LX047neC/Xv30ajRG+zcvYvXXn2VWbNMM2327t8HQMDFS+zYsZOBAwfQs3cPvlv8HUeO+OLs5GzT/4p5uCMaREREWvrfnDlz+HTCpyTE67P0v9zu/8pXvvKVr3zlK1/5yle+8pWv/KfAzxiwMdru5jS4c58xH2O2L/4m7WPw0xdxTf9yTV8zBgQ02frrVhExSmJiorib1yq5dDFAUlNTBRDv6t4iIjJv7lybfFhmw2hS0tNTUlJTZfbs2aZzIGVfLGsyNWT+/PmSmpoq7du3F0BKepYUPz8/6dr1fQHkh5UrbOJ/p/M7AsidO3cscWzZvFkAefedzhJ0M1g+HvOxgCafjv9UjCKSkl7fatVFjCKfffGZxW/WrJnMnz9fTpw4IfEJCf+o/b0qeomGJm1at5Y6deqIBqLTucnZc2clLk4vbjo3qeDlJSdOnjS3sSblypazrJ3TvUd3SU5OlpkzZ1quwQ8rfxBjWprF37zFtHBx53felaCbQfLx6I8FkPHjJMdAWgAAIABJREFUx4uISLu27QQQnU4nxT3cBTTRuenE1/eYRIRHSNlyprV0mjVrJiHBoRIdFS2ubq7yxRdfyJ2YjDbct2+f5fr7+vqKt3d1AeTsuT8fqP9FRkaaF5N+Ua7fuC6rV/8oGprUq1//ie3/yle+8pWvfOUrX/nKV77yla/8J9snaxnGTPtGm8OZ0xvvd9IqkTFLuabvj8s/fuK4vPPOO+Lp6SleFStI6zatZepXX0p0dMYH9+XLlwsa8tprr1kyNmv2pnTv3t1S9tr166V3r17SrFkz6dy5s7z66msCyCeffCJiFElKSpLu3btbBkW8vLxk29bfLJEmJiZK6zatBA0p7uEu165flzFjxoghfaDCnO7IkcMCyPXr1yyHg4ODBU0zDw6ZvkqW9JTY2LuWNM2aNTPV17xt3brV9NQkjYx8GlKzVk3ZtHHDA7X/jBkzMga3NE3q1qkjly5dsqT4+eefBJCYOzEya9asjEEwN51MmzZNjIY0S/yTJ082DdpoyKWL/hYtOCTEUrf0/J6eJS2xXb92XerUqWOJv0mTJvLXX39Zrv+1a9dMA0IgPXv2lDt37oir1a1KPq18pMt770mzZs0s/vp1a2XM2LECSM1atcwDYbbx6/VxcvnyZcvhNBGpmL5ws9XXyZMnn+j+r3zlK1/5yle+8pWvfOUrX/nKf3J9TcQo6VN2bB7vne1knX+32eS3nsFjdfZJ8GdMm87YsWNYvGQJ/fr1A8CQlsa9e8m4uhTItuxJkycxedJkft2yhbbt2lmOx8TEkJaWRrFixbL1L/x1gVKlS1HQzY2c4k8zGLB3cLDJP3PmTEaPHk3lypXp1asn/fp9QOHChS15DAYDycnJuLi4WI7FxsVx+NAhTp06hd+x3/nd7zj6+Di+X/49vXv1ytG3rvLtsFucPXsWD4/i1KhRAy3T1Kzw27cp/txzACQmJnL37l1KlCiBpmlZ4g8KDgGMlC5d2qb9Z82Yyccfj+alypXp1asX/fr1o3Dhwlb5hbCw2+h0OlxdXbPU02Aw8Oeff/Lyyy/j4ODA9evXmfrVVyxessSSRgNcXd0YOGgAn3/xOYkJCdSpU5fAwEB0rjpGjBjOi+XLExoayt69e9l/4ACIcDkwkPIVKgBw8OBB2rVrR/78+enWrRv9+/engvlcdtvT0v+Vr3zlK1/5yle+8pWvfOUrX/m542si5hue7lcDEUyrB4No/6yiGcUKQuY1jnOKIHf8+QvnM/XLqfhf9Een0z2Q//777/PTTz8RGnqL558v8Z/8B43fmJaGvb19TiU9kH/v3j2crZ5E9CS0PxqkZRfbf/RTU1K5fv0q8YmJFC5YiJIlS+Lk5GRJE3v3LkOGDGXV6lVZ8lf08mLcuHF079EDezt7i29610iWQaocwuJp6P/KV/6T6F8ODCQ2Lo7atWrnyfiVr3zlK1/5yle+8pWfN3zNKCLZZhAxJ86+uPvFglgL98l9v2BzyU9KTCR/gQIP7NeqVYuQkBDCw8Mfip+RJG+2f276IaEh/Hn6DFFRUTz33HNU865GyZKej823TZL32l/5ys/Ob9++PakpKWzfsSNX/PuUoHzlK1/5yle+8pWvfOU/NN/B5qYTazH9Od825WcUqmn3qaF5fk766SzJ0mukWad6Mvz8BQrk6IsY2bB+Iy4uLrRs1RIxCqdPn6Zr167PTPx52fd83hPPTIMxeSl+5Sv/SfJ//XULV65e4/z58xRzd89z8Stf+cp/evwzZ87g7OzMt9/OoXfvvtSpWzdPxa985Stf+cp/OL6dZD4hmZxsXlkeIZVdxYD0Mi1OlkIlS9q/80+cOMHX06YTEBCQKz6A3/ETdH6nM61at2LVqpVs3bYVDQ3v6tUfi5+b7a/8h++fPXuWMWP+R0xMTJ6MX/nKv59/9cpVNm3aDCLcjYkhNjbusfrWZVi/Ur7yla/8zP6WLVvw8/MjPCIKO3u7PBe/8pWvfOUr/+H4dpbytcwZxSql2Oym07ZkRoKsddYypdLMO1Zp7+PPnj2LevXq8cXnn3M35u4j9f39L9C8eXNu3rxB5vi9KlTAw704aNCzR0/at2uPAN7e1R5p/I+7/desWUOXLu+RmpqSK35Gyiej/z0qf/fuXUyf/jXe1b2JuRvz2P3cjl/5yr+fr9lpBAfdpGKlihR0K8i2bdvyVPzKV77ynx4/OTkZJ6d8pCQn45zPaj2/PBK/8pWvfOUr/+H4dumJshak2eyLlum0TfUkUz7zUck4L9ZnBXN5GZXMyT979iwjR46ibLlyXLx4kXr16z1Sf9OWLezZs5eAgMAs8RctWpSAwIuMHDHS0qxeXhV4s2nTRxZ/+r7BmJa5+EfW/t8tXsIvv6whJcVgE/+j9NPSjPeNP7f6X05+YmIS3y1aSGRk5L/2BwwcREufloSGhDBs2PCnKn7lK/9R+35+J3B2dqZNm7bExN5l69ateSp+5Stf+U+Pn5pqIJ9jPpLv3cMpv1Oei1/5yle+8pX/cHw703krUbLsZK5TlqPp+dPrkv7d8iQbybRKsWZV3n18EWHQoEFowIb16ylZsuQj92NjYtEQihf3yEaCQoUKM3PmTE6dOsXQIUPYuXMXDo75Hkn86Vv47ds4Ojhw+MjhRx4/AneiIgFwsXp8+KO8/mG3w3FwsOfwocNPVP+7n3/27FkGDhjIkiVL/7Xv6uLC8hXLEYFVq1YSEBDw1MSvfOU/av/8+XN4e3tTpHBhKnp5ce36NWJjYx+bnzXSzJvyla985WuW107OzpR7sTz5nfPnufiVr3zlK1/5D8e3ywxb7qeyOirWucS20tb50+ui2dRELAnE/E/mEnLyj/3uh+8xX97r+j41arz8WPzomDsI4O6eMTiTXfy1atXkm2+/pWzZMg89/itXLlOrVm0mTZoMQJrZ3L1zV47xX7l6hTq1azJp0qT/7EfficbLq+J9488u/7+NP73MXXt2P1H9736+UYyIBsHBQf/JL168OFOmTAFg3vz5T038ylf+o/TPnb9ASkoqtevUJiHpHlWrVSWfgyObN216LH5ux6985Sv/6fKTEuOxs7PjzzOncXR0fOx+bsevfOUrX/nKfzi+nW2y9DEczaoEq2OAWMmWkSKrumfdNMtJzfyPllPSTP76dWvRBAYNHPDY/OioKADci7lnrdNj8DXgypWrnD59msmTJ7FixXLcixUD4FJAQI7+lcAr/HHmDJMnT2bFihX/yQ8JCeX5EiVsjj3K+IuZ4wu8dPGJ6n85+SJCxO3bILBx40a6de9Bg/oNqP5ydZo3b05ycvI/8gcPHgzA/LlziYqMfOLjV77yH7X/2eQpPP98CQq5uYEYcS3gSvkKFVj6/fePxc/t+JWvfOU/XX5qmgEHBweS7t3D2Tl9zZm8E7/yla985Sv/4fiZBmesFrnRbIq0oSwFmdNoWZNlqaBkhJGxlyUgW3/Lr78iQO3atR+bH3rrFjo3HY75HHMtfh8fH/bu3Uufvn0JCgq2/C/M7fDbOfo+LX3Yu2cvffv0JSgo6F/7cXo9aPBcieceW/wOjg4AhIWFP3D/Cw4JZv36dSxZupQEc53/rZ81Xfb+jBkzqFqlCoUKFqTTW28BEBERwY+rV+F3wo+wsNu46dxISEj4R37hwoUZM2YMAqxZu/aB4n8c7z/lKz+3/BMnT/BGo0ZE34lBRLCzt2PKlCmEhoQQdivskfu5Hb/yla/8p8tPTTUNztyzGZx5fH7Om/KVr3zlK/9p8h2sE2uZDM18RtDM2TSrxJqpgtnWyiqtTVma5ZyGYD3/Jzs/NcX0tKD4hEScnPJl8ePj9QQFBVG5cpUc/ZSUFLp3786pU39w9eoVQDj9x2mWr1hOUlIyjRq9wVtvvY1zfmc0IOjmTZ5/rsQjiT8+PoGbN29QpUrVHONPTUmhR/funDx1iqtXrwKC0XzF0lLTLIkvXrzEkqWLWb9+Pc2b+7B06RKaNm1K06ZNyeaqP3D7R0VGogm4u7s/UPy3QkP5/ffjxMXFUrlyZerVq4+mZY0/NCQUP7/fiYuLpUrlKtStVxc089igebWlNKPRksvf35+lS5eybt1amrdoybKliznm+zs/r/mZzRu3EBoaYqqZBpERkXzyyf/+tv0ftP8lJSaydNkyTpw4QYUK5WnfoRPVvasyfdp0IqIiMN1DqCEIFSt6MWfOt9SsUQMPyzpFGe1vMBj45Zdf2LZtOwUK5Kdbt/dp3LhJFr/fBx8wbdp01q5Zw+BBg6zqnHvvP+UrPzf8RQsXUqRIETxLliQyMoI0o+l9XqpUKSpWqsisWbOYPmP6Mxu/8pWv/KfPTzMYcHBwJDn5Hk5OTnkufuUrX/nKV/7D8R0yEmcuNyN5RsE2UqaqidVrLVP9BEQzHRbNXCct41wOvpeXFyEhIRw+dJCOHTva+Hq9nudLliRer+fChQtUqVI5W3/UqFGsW7uWDh06YhRh6JBhzJ8/zwRpsGzZUlavXs3OnTtJTEwkIiLCfJuNYDQKKSkp5v8F+W/x6+PiKVnKE31cRn2zi3/UyFGsWbuWjp06WDDzI7WI08exavVqvlu0CF9fXwDKlStHqVKeD639r129jgAOjvYAGAxpiNGIY758NvGHhIQwYuRI1q9bh/VWrtyLTJ8+jU4dO4EGwSEhjB45grXr1mMZagTKlSvD9Okz6NQp47rGxd1l9arVLPpuEb7HfEFM8ZUu5cm237bRpm1bS9qaNWvSvEUL3IsV46233npo8Z85fQaflj5EREZY6jpx4iQOHTrEjz/9iO+xY/i0aIGbmxuVK1emUqWX8PFpYfax8eMT4nn77bfZvWuXqShN4/vvl7N2zVo6v/O2jV+hfHlq1nyZI0eOEB0dTdGiRcjt95/ylZ8b/ooffuCddztjZ2eH0ShgTMPOzvTzaPSo0QwbNozpM6Y/s/ErX/nKf/p8gzENo9FIvnxOeTJ+5Stf+cpX/kPyxbIZxXozWl4bM52xSfRAh402343ZpsnOnzZtugBSoaKXJCen2Jy/fPmymJtADhw4mG1JW7duFdCkpKenREdFyvARI0QD8fDwkGXfL5ddu3aJh4eHAHLp0kW5dOmSmJtH3D3cBdNDx6VCRS/p1au3XL9+/V/Hf+XyZcF0ieTAgQPZxm+qL+Lp6SnzF8wXb+/qkpqaImlitNQF0xCeeHh4yM8//mRTwqqVK8Xb21tSUlOzrc+DtP+yZcssbaDTuVnMOnXqytixYyUhMUEiIiIssQDSsWMnWbVqlYwYPtySd+bMmeZ0miVth44dZfWqlTJ8+HDL8ZkzZ4rRaLTks27/n376WdL738KFiyx1adGihURGRj70/nf58mXR6XQCSI+ePeTgwUMyfPgwQUO6/z979x0fRZ3+Afzznd1sOiCBgAqCIEg5sGKjSBGwIZ4FkaJiOwsg4CF46k8BewEFTr37ifUUFfV+gIioFJUmIFKld4RQEkggCUl25vn9sbuz35ndIN6FbJL9zOvF7sx8n+/zfp4JHN4wpf9tjuj8/HxRgLRt2zaqX1JSIt27dxdASVp6uowb+4oMHDRIFAL1R/MHDx4sAGTLlq0V4s8fffrl7W/cuFEaN24su3bvkkmT3pannnpS/v7G6/Lcc8/bkS1btpS33nqrSvZPnz79yumPeOQR+fHHH+WCCy+MiV/abvr06dOnX7l8A0DwwTaB2zTsk0MSOpejn+EJfoo+JKEE9n79bBIkvK0iPoNRpfh33TkAmZm1sWnDRrz04vMOv8YpNezoc1q3wpQpU3DTjTfh119/hQKwefNm9OlzKwDBjBkzsHnLVrw6bhwEQN9+/XBmwwbYsWMH9u/fDwBISUmz/dCtMldfdSWGDRuKtNQ0vPfuO+jSpQtMS/6j/qvXqGGHtD7nHHw2ZQpuuilQrwiwefNW3NrnVgDAjBlf4uD+A1i9aiW2b9+BwG00YaPtZe2wfcd29A72F/K3bt2GVatWYcf2Hf/V8Q9dbaUg6NPnVgwZMhQ7d2zDCy+8gIceGoJjhUX2ycGRI0fg88+moF+/fhg7dhx+++03NGrUGA8//DA2bFgfqEEpjBg5Ev/+/HP07dcf48aNw2+/7UajRo3w8MMPY/PmrY6K2rVrix3bduDWW3vb+++95y6MGTMGEGDWrG/QqHEjvPDiCzh69EiZ/f57aMhDOHLkCOrXr4erul8JBbFfb52WmhwmBPB4PRAAxcVFUf158+Zh1qxZSE9Lw9o1azBk6DCMf/VVdOveHc1btIjqJyUH7lP3+4srxJ8/+vTL2x8/fjxOPbUu6p1WD4YCRASWKfAYdkb0uvkWvP7G61Wyf/r06VdOf9OmzSgqKoKE7kOPs/7p06dPn34Z+aWdFIo8tWM51q1SzxxpZ5oiV+Q4E6Nyc+fOlWDbMnHiRHvwYHZ24MqFdm3lwMED9hUl995zt+zZu1caN2okAGTy5MDVFz17Xi9QkPS0dPuKj9CvwYMHi4jIBvvKGSU/L1tml1JYWCj16p0uAGTJkiV2j/5i5xUqx+s/OztboCBtL2srBw/st+177rlH9u7dK40aNxJl1yvy9wkTBVDy1VdfiYhIenqao+btO3ZEHMaJEyeKAmRGcI5YIpZlSUmJdtXR7xz/wJUzSjJr15bDh3Pt/evXrxMAkp6eLllZewWAVEtLF9MyI/oPXSHy6SefBuekiWlaEf6gQYMEgMycOVPSq+k/FyU7tm+PyCsicuDAARkx4hEBAlfjpFdLl+eef05y83LtOEtETL9fLNN5zvJ4/S9fvjyQLz1dELpKKfidlp4umzZtdNRSUFgoCpDW57S29+7fv18eGf5Xyc7JkVFPPaX9nj2x3/+9evUSALJp0+YK8+ePPv3y9C+99FL5xz/+KWKJvPvue/LEE0/IpEmT5PXX/27HHDx4QM4591yZ57pisix8Z1xpO6ru8adPn/5/5vfs2VNmfT1TLrn00pj4jjH69OnTp19pfe1tTdqZoeCpHXEM6ed6glvKeSop8P9otfunVPgUU2hN7InuJbrfsWNHfPD++wCAgYMG4vHHHkNRURGM4OUdBgz0ufVWm/r31Gm4oksXbNm6FU89+T/o3bs3LMvC7Lmz0bRJU+zdl4VJb7+N22+/AwMHDcTUqdPw2muvARDUO+MMu9pt27fbtezeuQu5uXmACj+keMiQh5DgS8CRvCMn1H/oeSvKY+DWPn2D+4CpU6ehS5cu2LZlK5546inc0rs3ACCzbh1ACRbMX4AlP/2EI0eOol79ehgUfO1yt25dsWHjeuTl5tl+Zp06EAAL5s8HABw9mof27dujU8dOJ3z8z27WDAqC/QcP4HDeYXto1arVgAKOHjkCI/QgXwXkHQ77AmDWN99i4oQJqJ2ZiTZtLgiGKeTm5Tr8b775FhMmTkBmZh0oAEfzjuC0+vXw4MCBUBB07d4N6zasDxzf4O8/v2miVq1aeP7555GTk4NRo0YBFvDoyEdx0YVtsGv3bggUVq9ahQYNG2LMmFH28f+9/hfM/xGigLcmTcKa1aswYuQI3Nr3Vrzw/AtY/+uvOOusJo745KQkpKenI2tPlt3/v//v//DiSy9j2dKlSE1LgwLw9ttvY++ePb/rr12zGp9O+RSn16uHxo3OrDB//ujTLy//h/k/Iu/IEfS5tXfgfx49CmIJ8o8cRUFBoR2ZkZGBM86oj0mT3qpS/dOnT7/y+iV+P/yWICn0MOA4658+ffr06ZeNj9JO8AS2LYkYKu2kT8TcaNuWc9ByhR7H/8c//ymh/tu3by+FhYX2NgBJT6smSrvioc+tfezpBw8eFEBJenqaFBUVHdcfPny4nbPj5ZdL165dw9sdO4rpD1wpEno2SSDf7/dvmeKsNzhfBa/46dOnr3alh8j8+fMFgAwbNkyeeOIJASC9e/eWomNF0rFjR0eewsJCEUtk/vwFwTkPi1giq1evses+0ePv9/vl/PPPFwCSWbu2dO/eXdq0aWN7o54aJSIiffr0EQDSqFEjGTp0qNx+2x3SuFHjYE3VZOWKlc64MxvL0KFD5Pbbb5dGjc4M/szSZdWqlfL4E08IoKT3Lb2lqCh6f5aIjBw5Ujp36izzvv/ePk45OTlyzz33CKDkyu5Xikj4+TRjxjzt+nmU3v+wYQ8LoF+dJb/7+79FixYCQBYvXiyLFi6WOpl1BIBkZ2fL7l27pV69+nYPw4Y+LNOnT5Pt27c74F27d8kT//M/EvyTLG+++eYJ+47lJP/5o0//ZPt9+/SVrl272lO++PxzGTt2rIwbN05eGTvWEfzFF1/IueeeK8uXLy8zP9b906dPv/L6V191tUyfPl26desel/3Tp0+fPv2y8cO3NVnRVVe636mr9Cgr6rC24wT8yZMnB299UfLZZ5/JX+79iwCQVq1byY4dO+T999+TevVOl4EDB0lhQYGWw5ILgycY7rn3XvHbD8wNmwf275fdu3eL6ffLk08+KbWDDwoOngyTRx/9mxw5ekRERLJzcgSANG7U+A/1f+899woAOad1a63eejJw4EApyM93xOfm5kl6erq8NWmSTPlsigCQtb+uFRGRnEOH5K677rJPRh05ejQ457Ckp6fJpElvi4jIl19+KQDkgQcf+EPH/+DBg9K/f39H/6efXk/+963/teMOHjwot/W/zXHCKTOztox8dETwBISW67b+jrg6mZkycuRI2b59m4iITJkS7G9toL9Dhw7JnXfdZccfzT8qloiMGTPG/vm3aNFCet3cS26++WY5PXjLWdOmTURE5JFHHgncVvXpp85Oj9P/VzNmCACplp4uK1eujIg4VlQkW7ZukWOFhfbYoIGDHH0BkIl/D5/cycnJkd69e9u33IV+VUtPl169eklBQb40Ct5+BwRucbNM521iFenPH336J9M/88wz5dNPwn9mP/zwQxkxcqS8MvYVGffqqxE5G5zRIPBnpoz8UucdN3PVOf706dP/z/2uXa+QqdOmSo8e18XEj3X/9OnTp0+/bPzoz5xxx5VqRg4crwk96DjPQD6uv3r1arnmmmtk7tx5UlCQL/O+nycF+QWlTg0tP//8s/1/glu3ai0vvPiCvPvOuzJy5Ehp3bq1QAXegBRK4jf9snLlKtm6dauUuJ4t88MP3wugpGfPUv4SLmUpKCiQefPmSf7R/BPq/+jRfCkpKRGxRIpDV+hoy/z582Xzls2OfUeOHg3MEZGnn3laAMj48eMj8p+In59fIMuXL5e9e/aW8pvXEr/pl3379klebq4+NWIJxeXm5Ub1i4q1/oJDCxYskM2bw89f8Zt++dcH/5KmTZvaV5pAQRSUtG/fXhYvWiSWiHTu3FkAyPJflpfaX7T++/XrZ+e9/4H7ZdKkt2X8+PHS6+ZegZNCCvLOO+/Y8bt375amZzcVBSV9+vSReVHfwiWycuVKefMfb8qdd94ZrB3SvGVzOXrkqIwZM0YGDx4sS5ctjei/1O3jDJzsP3/06Z8M/5tvv5Fzzz038Gyq4NDHH38sw4cPl5defEkmuP83TESefPJ/pOf1PWXnzp3/te8eP+72cQbo06cfn/7VV10tU6dNk6FDh8bEP24offr06dOvNL4SCT1qOHDqIvg67uC2wH51T7RFYAcHVrUd+rjAvv9KELzeQ8EdfdL9devX4e6778XCBQsDO+17xoBOHTvhqaeeQvvLO/yuP2HCBDw0eDBGjnwUzz73bIXt//qe12PatKn46quZuPKq7uXun8z+Dx44gB07diI5JRm1Mmqhdp1MKAjEEhheDyBAXm4e0quln7Bv+k288NKLeOxvfwPs0gOfmZmZuPfeezH8keGoll7N0Z9pWjA8xgn3X1JUAm+CB8owKu3xp0+/LP0b/nwDlFL47IvP7X2fffopFi9ZiszM2khNTcWDDz7o4BcuWIjHHn8M7dt3wKjRoyp1//Tp06/cfqeOl+PBBwdi6rSp+NcH/4q7/unTp0+fftn4XkcSbUAAKOXYiljVMyv3DrjjlHvVLrK8/ObNWmDB/PlYvXo1Nqxfj8LCYzijwRk495zzUL1GNcfU4/nbt2+HKKBV61YVuv/QQ42bt2wRE/9k9l+rdm3Uql3b6UEh51AOIEC9evUCJ2b+gO/xevC3Rx/Fgw88gCVLl+K33btRo0YNnN2sKZqd3TxQj0T25wm95/cE+/clJjjbqoTHnz79svSXr1iOD97/wOl7PLAsE6aYMAztXdrBoMvaXoaCggK89967GD16VKXunz59+pXbt0wLfr8fib5E53ic9E+fPn369MvG90bLCTieORwI0BK4QjVFLz68z11DuPnIJsvDb9WqFf7UqlUke6K+CCDAxRdfXKH79/tLkJmZiTOCb6GqKMf/ZPp+vx8A0L1bV2fIH/CrV6+GrldcEelEq7WC9U+ffmXzP/1sCmpl1EL79u0dvlIKIgIxBR7tDXH6cvdd92DRovn45JNPcMstt1TK/unTp1/5fb9poqSkBImJiXHZP3369OnTLxvfCwhElB0YSKBcoQi9CdqZHAhehqPFK/dKuFH9sp/wjMrnD37oIZxWrx4aNWoUGV+B+p8wfgIKCvPtXVXl+B/Pr1OnDt544w107NgxJn6s+6dPv7L5f5/4d3Tu1CnC9xgGxBKYlgXlNaL6na/ognffexd7s94NnJyphP3Tp0+/8vumaQaunElMjMv+6dOnT59+2fheIDQQ3C2A40xQKLnAGeeupdRFOdbtzBJurLL5DRo0wMPDhlX4/jt36RxRS1U4/r/n33fffTH1Y90/ffqVxRdLsHPHdsyZ810gQvOVx4ApfohY8CD0fCan37jRmaiVUROpaWlYt24dmjdvXqn6p0+fftXwLctCSYkfSUlJcdk/ffr06dMvG9+ISKLCSdzJRdvWHiMc3B+xI/gt+khoNqDcjdGnT58+/Xjy7777brS56CJ4PN4I31AGLFOQlpaOlJSUUv3+t98OwwBO0DMtAAAgAElEQVSmTZtW6fqnT59+1fD9fj9MU3vmTJz1T58+ffr0y8a3T844UwBKnNsRyZS7fBU5FvoX0IiilWsHffr06dOPJ3/v3j1Ys2YN7rjjjqi+oQJ/SR0+dAhFJcWl+t27dcPy5SuwZs2aP+THun/69OlXHd80TRQXFyMxyRcTP2KMPn369OlXSt8I7dNSBHYFb4JyvWlbK8hRqjt1KIkrp6MbiB1Hnz59+vTjye/X/zYcPHAQV199dVTf60sARCCWBcMwSvXT09Nx8SWXYNXKldi/b3+l6Z8+ffpVx2/evDk8Hg9qnHJKXPZPnz59+vTLxjechuhzA9NDT6oJpHIuWkWu1MGTQ6Lh+jzNoU+fPn36ceUvX74cN/z5z7jttv6l+yIoKSmB3zLh8RjH9W/t3RvNzm6OrH17T8i398Xp8adPn37Z+qtWrkJuXi7Eis/+6dOnT59+2fhGIDakqGCAti2hScox4ijAkVxpgNJS6p0426RPnz59+vHjn3/++fjmm29w/Z+vL9X3eBJg+U1YlglDeY7rd+vWDT8tWYTWrc+pFP3Tp0+/avmW5Ye/uASJSb647J8+ffr06ZeNbwR2KXtH4FIb5ahPB/W0ehkSmhvecAZqBUUO06dPnz79ePG379iORo0a4dxzzyvVNwwFUyxYpsDj8fyuf8NNN2PmzJmVon/69OlXLb/Yb6K4pASJCUlx2T99+vTp0y8b35CIAkSrQkvj/HJAobKU3pByBukPvFF2G8G99OnTp08/bvyGDRpi3Lixx/UNQ8GyTJimCcMwftcf+/IruOqqqypF//Tp069avuXXHggch/3Tp0+fPv2y8Q1lpw996FlVKNzerY/qKaMOhmpTgP3AGwnuCE6gT58+ffr03b7H44VpCUzLguFxSOXix7p/+vTpVxJfBEopFBcXw+fzlb8fbZA+ffr06VdK37DTS+nJ7ddKSXD+H1jCabWzRA6HPn369OnTd8MKsCyIacIwPPHXP3369CuF7zcteLweFBUVITEpsdz90hb69OnTp1/5fEOcMVpWgV1K6H4pFQ47bpES/hVOG/GyKGez9OnTp0+fftD3egz4TROmZcHr8cRd//Tp068cvmn64TGCJ2cSEuOuf/r06dOnX3a+fVtThKgUAOUqIpxUHa9CFQgIXb0TESZ6s/Tp06dPn77T93q98JsmfD4fPF5vufux7p8+ffqVw7csC+edfx4yMzORlp4Sd/3Tp0+fPv2y8w3HE4ZVZCYVZUtClTkHNUM55rpbDD85JxxLnz59+vTphzUFEaCwoCAmvp6DPn369Evz/X4/1q5di82bN0MZ3nL39SUejz99+vTpVyXfsPMr90TRIsWxGqKdZDggsmblilLBFS2WPn369OnTD0Ym+BJQv97pMC0ThjLK3Y91//Tp068cvmUF3ihXXFyERNcDgeOhf/r06dOnX3a+EQqKTKQc66Jcw47yxDUvuFfC46KPCoL5wkXSp0+fPn364W8DW7duhWlaMLyeOOyfPn36lcG3TIHh8aDoWBGSk5Lirn/69OnTp192vhEY10SJWHHXFLE3NN9+qHHwW4UepCPKOV9p+ejTp0+fPn2Xr1TwLzgRGCpaBVW7f/r06VcOP3B1nweFRceQ4Essdx+I7+NPnz59+lXJN9ywfT+Vtlf0WeIsWp9vP9TYUYnYARL8cGegT58+ffr0dd/j8cK0TPgtgRG6ATeO+qdPn37l8C2x4PUAxUXFSNJepR0v/dOnT58+/bLzDWdY6ByO0jJo+wCIJttnirTaIxdlD6rghyotlD59+vTp0xfA4zFg+v2wTD88wYdsxlP/9OnTrxy+WWLC8HoDr9JO1E/OxEf/9OnTp0+/7HzXyRntITfKkdJB2YmCMSoyLKJACbcRXotoiD59+vTp0weUx4BlBasw9L8iy8ePdf/06dOvHL4pJgwj8MwZ58mZ8vFj3T99+vTp0y8733AEuwwVHHEnDqyqQIFRi4lQg3EK4ZbFgdGnT58+ffqhxaMMWJaJEr8Jj8dwBVf9/unTp185fDEFp516KopLSuDzJZS771zi7/jTp0+fflXyjXCwO284XLmnqVCEnkq0kpSrPrG3JeKxx/Tp06dPn77T93g8ME0LYgX+Vbq8/VBcvB5/+vTpn5hvWn7sP3gAPp8PHo837vqnT58+ffpl5xvuoDAcDXUuyjGgnJm0ugXKrlcFJzkaoU+fPn369DXfMDywLBOmZTlPzpSTH1qL1+NPnz79E/NN04JXGeH4OOufPn369OmXnW8ACD7YRjnKUKWc4RE9swpuOJ6Mo9clgIS3VcRnMIo+ffr06dPXfK/HgGmasCwLobua4ql/+vTpVw7fsiyIAD6fLy77p0+fPn36ZecHXqWtQpP1KeFFudeVaEUqPQGgE6LCDWj1Orbp06dPnz59l68MDyxL0LBhQ3gTEsrdd/Ssr9OnT5++5ltiQRkKSYm+uOyfPn369OmXne9+ymJ4mtLWQ0VEFOnEBIDohH3dT/gpxGJPdC/06dOnT59+IMTwGrBMC5s3boz4iyse+qdPn37l8C2/CSiFhMSkCtW/3+/HooUL8cyzz2LgwIGY+/28cvVD0VX950+fPn36Zel7QztUsBrtNd5QEtyhQjGhYD0o3Im+2x2nJPCh7I6U64s+ffr06dMPLF5l4OxmZyMnJwcwjKh5q3L/9OnTrxy+32/BowwkJfoqRP/bt23H/02divfffw/Z2dkI/CuuhfXr16NTx8srzfE/dPgwDMNAterVK/TPnz59+vTL0vfa+cWdPZDcLspRjHMJ16FFu+JEAcq+zCcUY5dFnz59+vTp24vh8WDV6tU49dS68Hg8cdc/ffr0K4dviQkogc/ni4kf6n/FihV46aVXsGD+j5DgeEatDAwYcCcSE3xofFbjk+qX9fF/4803sWDBfHz55YyY+LHunz59+vHpe/VCnJpmRKlbDwwPRWlG7yk0IIDYZ5Ho06dPnz59p28YHohlwSwxkeCJfFtTVe+fPn36lcO3LAsKBny+pGiBJ91fvHgxnn3mWaxYtdLO2qx5M/zl3r/gmmuuQWJiomNaZTn+hlJYs2oNsg8cQK3atcvdj3X/9OnTj09fe+ZMcJIjiWiZo9UWHpDgpyNU9G8BEH5YjkL4Piz69OnTp09f972GgmlawYdtGu7oKt8/ffr0K4+fWac2EkNXzpSz/9fhw7Fy5QoYADpc3gGfTpmCr7/6GjfccAMSfYkn3T9Zx9/nSwQUsGnz5pj40Lfp06dPv5x8rz1ZBX6pcByUcmxFrOqVqGhdOOKUezV0VQ99+vTp06fv8A2vF6bph9/yh29riqP+6dOnXzl80+/HwQMHUf+MM2Lit2jeHLt37oQA2LVzF/wlJVCG0uJK9/0lJr7/cR5279qNFi1a4JxzzkGCz/dfH/+sfVl48403sGLlSvhLStDwzEbo3bsX2rVr7/Cz9u7DnHmzcazwGC699FI0b97c7j8lJRmiBPv37//Dfjz9/qNPn37V8r3RcgKuS26gHAlcoZqiFx/e564h3Hxkk/Tp06dPn75hGLAsC2IKDGVEj63C/dOnT79y+JZlwbQsWJalD5SbP3bsWDzxxBP44vMvsHXbNvTtcytatT4H9913H7p1744Erzeqv2TJEjz6t79hy6ZN9nidunXw6adT0KBBA4c/f8ECzJz5FQ4fOoRq1auhRYuW6N+vf9Tjn5d7GL1798a2bdvsvKvWrMH06dPQt29fPPbE40hNTsGkSZMwavRoGNrxGTR4EB5++K8AgOTkZChRyD2cGz5WIsjOyUZGRq0K8/OnT58+/bL0DUDsq3dCk9zRotXnjEPkq6GUeyV8qY9+IU94Bn369OnTp+/0PYYBsQSmJTC8Rtz1T58+/crhm6YfAJCUFHrmTPn6aWlpGDduHL6b/R1u698fFhRWr1qNBx64H+3atsXs2bMj/IULF+Lmm2/Cpo2bkJqaip49eyI5LQ1ZWfvw6quv2rGmJXj62afRp28f/Otf/8KXM2bgw48m4/HHH8cr48bCtLTKgqW//8G/sH3bdgCCIQ89hIkTJ2LkiOGoW7cuPvzwQwx68EG89tprGD16FCBAamoqMjIyYCmF8eMnYNu2bQCARF8iBArHio9BABw+fBi39umD886/ADfddBMKjh1DRfj506dPn35Z+gaggmdwgrtFp7XkEpriLN/ZRrRFOdbtzBLORJ8+ffr06eu+4fXAb5XAsvzwKE/c9U+fPv3K4VtmYL/Ppz14txz90NKkSRM8/fTTWL1qFR574jHUrXsqsvZl4c4778Jbb02yM2cfzMZdd98NpRRuuvEGLP9lOcaPH4/hwx4GIFi9erXtP/bYo3jrH/+LtJQ0PPXUk1i0cCFWrvgFADD+tdcwY/p0uJdPPvkEogRDhw7DsGHD0KNHDzzwwEDM+/57jBs3Dk3OaopXxo6FUgq39e+Hn5b8hJ9//hmXXnQxAMGePXsCxzMpAUoJigqOYdeOXejR41osWrgQhgKWLl2Kf775ZoQdy+NPnz59+mXhG/rE8Fdp53jC25FneyJ2BL/F0ardoHI3Rp8+ffr06Qd8QxmwTIHpN+H1eOKuf/r06VcSX1kQESQlJVaI/qtXr4577roHP/zwPfr27QdAMGbMGPy8bBkAwfjxr6EgPx8iCl/PmoU777wLAwYMwOjRo6BgoH37DgCA2bPnYPJHk5GamoovZ87AgAF34rTTT8fChT/Z3NPPPofi4mP2tuk3sXPXLsACbr21t6P/5KQk3HDDn5GdfRAKwBVXdMXoMWOQlpYOpRReePEFjB79NC648EIAQFJiMiDA+vXrcdMtN2Pnrl2of8YZuOGGmwEA414dh+ISf0T/sT7+9OnTp//f+PbJGWcKQIlzOyKZcpevIseC92LZI3bRyrWDPn369OnTd/rKUIHX1HqMuOyfPn36Fd83TYGIBF5ZXc7+VzNmYPz4CTh8+LBzTAkSE5Pw7DPPoM2FF0IJsPbXtfCXWHj3vfcACG65pRfy8/Px4/wfMWfOHAiAG2++EUOHPAQAmD1nDgDghRdfQKOGDQEAR44cwYsvPW8/M2Ff1l5MnvyJXU9u3uFg64KEBF/U/nft3g1A0KlTJxiGYfffsGFD3H77bUgKvvXKDD7D58uvZmDf3r3o3KkzZsyYgedfeBZpaakAgA3r1yHWP3/69OnTL0vfvpFffwCOAAj9L6+IOPcjMt49BqhQEldORzcQO44+ffr06dN3+oGrZ0x47CtnytePdf/06dOv+L7fNAEg+Nrq8vXHjRuHl195BVd2745Xx72KX1aswKaNm7Bu3Tr88MMPePHFl7Bk2TKIEjRu1Bjr1v8KQOGCC9vgxRdexJIlSzBx/EQ899xzmDlzJl5++RVUq14dAFCQnw8F4Ofly5F35CiWLVuGW3v3xvZt23HGGWfgmmuuAQA8/8ILWLx4MQCgqLgYIgKlFPLy8qL236BBAwgUnnn6Gfzwww+l9p+XmxsYUUD9Mxpg/PjxqFatGnwJPlx11VUAArc3xfrnT58+ffpl6bv+OVL0uYHp2uuknOU4K3KlDp4cEg3X52kOffr06dOnH8X3er3wJHjhcV85U05+rPunT59+xfchArEEviRfufu9e/eGEiArax/GvjoW1/e8Hl26XoErr7wS/fv1x+uvT4RSwJAhw9CuXbvACRMl+HnZMhw9egR16tTBdT2vQ58+t6JFixYO/8orr4Qo4O23J6HVn1riphtvwpo1a9Cs2dn4bMrneO2119CxY0cUHM1H71t6491338GxwiKIAkQE27Zui9r/Pffeg7TUVBQU5KN///64/s/X47XXXsXs2bOxb2+W7e/atStwLEXwxut/R3p6up3m2mt6AAg82DjWP3/69OnTL0vfCMSGFBUM0LYlNEk5RhwFOJIrDVBaSr0TZ5v06dOnT5++2z+nVWsUFhbAMLxx2T99+vQrvm8YHiQnJyI5Manc/bvvvhtTp03Ffffdi9Z/aoWMWhlIS01FWmoa6p56Kq69pgc++3QKhg4dAgA495xzkFEz8BrqwQ89hMLCwgjfb/qxc+duXHjBhcF5gYvsLQhuH3AHpkz5DLXrZCIhwYs333wTHTt1AmDhySefQom/GGmpqVBQOKVmzaj9NzmrCaZPn4627dtBRLBi+S8YO/ZV3HnnAFx86UU4/4Lz8Y9//C9aNm8BQDB0yDD8qVUrR/+Xd+qINhdegM2bN4eOCOL19x99+vSrlq9EJHC7kwoXoPTYE1wcU35nfsQwffr06dOn7/JbtmwJSywsX7YcySnJ5e6f6EKfPv349Wd+/TVefvll3DlgAPr26Vvu/h/t/+uvv8b9f/kLBAp169TBgLvuwJkNGyE75xCWLVmCr7/+GvkF+ejevTv++c9/orCgENk52ahbty68Xm/UnOvWrUNGzZqok1kHGzZswM8rfkaf3n1+t/91v67DsuVLseKXlVj283Js37oVAHD3PXfjiSeewL79+1E7oxYMjxGRa8eOndiyeTM6den8h/p3DFeB33/06dOvWr6yRERFTFXaejCNOL5c0aUMakGiBMqRVwEQ6Hvp06dPnz790Hrr1q1x7FgRVq9ajcSkxLjrnz59+hXf/+qrmXju2edw71/uRf/+/StF/z/+8D0GDxmKnOxsQClABFCC4H1EaN26NUaNGoXzz7+gXI9/QUEhcnKyUa9evZPaf6yPP3369OmX5nuVnl4A5yU3Khyu9D3uiFIGQ5xCuAQJBqrAN3369OnTpx/NV4YHpmXBE/xX03jrnz59+hXfFyvwKu3ExMRK03/7Dpdj8aKFmDXrG6z99Vcc2LcfmXUy0aRJE1x00UWoX7/+SfVL6z8lJQUpKSnh+eXsu7PTp0+ffnn7Xju9lJ5ciQQmSQg68SWcNniWKGIyffr06dOnHznfaxiw/H4YHk9c9k+fPv2K7/tNC4LIkzMVvf/ExCRcd911uK7HdZX6+NOnT59+VfINccZoWSWYGtBPG4XCBMdZJPwrnFa/fEfsL/r06dOnTz+ab3g8sERgGEZc9k+fPv2K71uWCcu0Aidn4rB/+vTp06dfdr6hdEYXlQKgXEWEk6rjVagCAaGH2USEid4sffr06dOnH+krwwicmImRH+v+6dOnX/F9y7JgiQWfzxeX/dOnT58+/bLzDfvt3RIIdmdSUbYkVJlzUDOUY667xcA1PM5Y+vTp06dPX188Hi+8Hk/M/Fj3T58+/YrvW5YFywpcOROP/dOnT58+/bLzDTu/ck8ULVIcqyHaSYYDImtWrigVXNFi6dOnT58+fc03FKAMFbf906dPv+L7pukPPhDYF5f906dPnz79svONUFBkIuVYF+UadpQnrnnBvRIeF31UEMwXLpI+ffr06dPXfcMwYBieuO2fPn36Fd9P8PqgDANJSUlx2T99+vTp0y873wiMa6JErLhritgbmh+qJfStQg/SEeWcr7R89OnTp0+ffhTfMAx4DCNu+6dPn37F9wuPFSI5KQXJySlx2T99+vTp0y8733DD9v1U2l7RZ4mzaH2+/VBjRyViB0jww52BPn369OnTd/serwe+pOSY+fY8+vTp0y/FNy0Th3IOICEhIS77p0+fPn36ZecbzrDQORylZdD2ARBNts8UabVHLsoeVMEPVVooffr06dOnH8onAtNfEjs/1v3Tp0+/wvuW34LfsuBLTIyJH+v+6dOnT59+2fmukzPaQ26UI6WDshMFY1RkWESBEm4jvBbREH369OnTpx8YbtKkKQzDo0WUrx/r/unTp1/xfVNM+P0mknzukzPl48e6f/r06dOnX3a+4Qh2GSo44k4cWFWBAqMWE6EG4xTCLYsDo0+fPn369PU527ZthTKMmPmx7p8+ffoV37dMC5ZpIjEpKSa+c6FPnz59+pXZN8LB7rzhcOWepkIReirRSlKu+sTelojHHtOnT58+ffqRvlIGPIaKmR/r/unTp1/xfdP0w2+aSExMjIkf6/7p06dPn37Z+YY7KAxHQ52LcgwoZyatboGy61XBSY5G6NOnT58+fZdvGAow9L8Ey9ePdf/06dOv+L7fb8JA4H+v4rF/+vTp06dfdr4BIPhgG+UoQ5Vyhkf0zCq44Xgyjl6XABLeVhGfwSj69OnTp0/f5SulYKjwbU3x1j99+vQrvl9cXAyPxxu3/dOnT58+/bLzA6/SVqHJ+pTwotzrSrQilZ4A0AlR4Qa0eh3b9OnTp0+ffhTfMDwwjPBz6+Otf/r06Vd8PzEpEQm+hJj54UH69OnTp1/Zfe1tTaJ9BiBxDDknqtCHhgkA0Qn7up/wU4jFnuhe6NOnT58+/bDvMTzwKBUzP7yTPn369KP72Qezceppp8Vt//Tp06dPv+x8I7wjUI0+TYUu1zleoco5V5USp4JNKL0Exxd9+vTp06cf9pWhoAwjbvunT59+xfeLi0qQczA7bvunT58+ffpl5xt2CnGNAIDS3rvtKMa5hOuQUuNEhT60QSXhLfr06dOnT9/lGx7tAs847J8+ffoV2y/xF8Ob4ImZH+v+6dOnT59+2fnazfzaiNuIUrceqLToiGb0PKFAAQJ3ZmlZ6dOnT58+fS2JoRSUlHY3cNXvnz59+hXfLykpQYLXF7f906dPnz79svO1f5IMTdKTiJY5Wm3hAQl+OkJF/xaESgqkjNIIffr06dOnH/QNw+O8cqacfejb9OnTpx/FLyouhsdjxG3/9OnTp0+/7HzDkUQ5Tu5oZ3O0NHpG5V51daH0bxUsKbxfOYqnT58+ffr0w75ScP4TQpz1T58+/Yrv+0tKkJiYGDM/1v3Tp0+fPv2y841oOQHXGSAoRwJXaCnFS8QuvS+JKJ4+ffr06dMP+0opVE+vHrf906dPv+L7JSUl8Hi9cds/ffr06dMvO98AxL56J5xAuUKd9TlA5YpX7hXtP7S1DOEZ9OnTp0+ffqRfK6MW8gsK4rZ/+vTpV3y/pKQECQkJcds/ffr06dMvO98AgpeOh3aLTmvJJTTFWb6zjWiLcqzbmSWciT59+vTp03f72YcOBsbjtH/69OlXfN/r9Ube1lSOfukLffr06dOvbH7kO0qVK4mWXC8r8mxPxI7gtzhatRtU7sbo06dPnz79sG8oD5TSH40WX/3Tp0+/4vuFhflITU2NmR/r/unTp0+fftn59skZZwpAiXM7Iplyl68ix5QA0F6DahetXDvo06dPnz59l68Cr9OO2/7p06df4f2iohJYlhUzP9b906dPnz79svON0D4tRWBX8EnFIuLcj8h49xigQklcOR3dQOw4+vTp06dP3+VbEjg5Eys/1v3Tp0+/wvvFJSXw+Xwx82PdP3369OnTLzvfcBqizw1M114n5SzHWZErdfDkkGi4Pk9z6NOnT58+/Si+YRiAoWLmx7p/+vTpx8YvLi7Czz//fEK+5Tfh8/rK1I91//Tp06dPPza+EYgNKSoYoG1LaJJyjDgKcCRXGqC0lHonzjbp06dPnz59t28g9MC0+OyfPn36sfF9vkS88tLL+G72t3j00ceO65f4S5CYlPC7/vYd2/HR5MmVon/69OnTpx8b3wjsUvaOwKU2ylGfDupp9TIkNDe84QzUCoocpk+fPn369F2+oewHAsdl//Tp04+Zf/MtvTDjy6/w1YwZOJKbW6pvWha8vsTf9V95+RWkpqXh5VdexpfTp1f4/unTp0+ffvn7hkQUIFoVWhrnlwMKlaX0hpQzSH/gjbLbCO6lT58+ffr0Xb6IBQUVt/3Tp08/dv4NN/wZa9euxdlnn41169eX6pt+PxITfMf1i4uKMGvWLFSrloY1a9bg2h7XVvj+6dOnT59++fuGstOHPvSsKhRu79ZH9ZRRB0O1KcB+4I0EdwQn0KdPnz59+tF8ZXgApeK2f/r06cfWb96iBVJTU7Bly+ZSfY9hICUl5bj+tOnT8eD9D2DA7XfhnbffqTT906dPnz798vUNO72Untx+rZQE5/+BJZxWO0vkcOjTp0+fPv3otqEli7f+6dOnH1v/+uuuw779+7FwwaJSfdMSJKckH9f/30lvYcu2rXjv/Xe1B01W/P7p06dPn375+oY4Y7SsAruU0F8kKhx23CIl/CucNuJlUc5m6dOnT58+fc0XAMowYuYHxuL3+NOnH+9+p86dkXv4MBYsXFCqX1CQD+e/jjr9VStXoaSoGIdycnD55R3+kB/r/unTp0+ffvn69m1NEaJSAJSriHBSdbwKVSAgdPVORJjozdKnT58+ffqRvjchQbtdIP76p0+ffuz9dh06wOv1YPOmzVF90zSRmJRYqv/Nt98iL+8IxjzzTKXsnz59+vTpl59vOJ4wrCIzqShbEqrMOagZyjHX3WL4yTnhWPr06dOnT19fPB4vSoqLY+bHun/69OnH3r/m6quRkpKKX1auiOqbpomU1JSovlgmJk6ciB49rkXDBg0qZf/06dOnT7/8fMPOr9wTRYsUx2qIdpLhgMialStKBVe0WPr06dOnT1/zi4uOwbTMuO2fPn36sfc7tO+AvXv34tOPP4nqW5aJhARfVP/DDz+Cx+PBE0/8T6Xtnz59+vTpl59vhIIiEynHuijXsKM8cc0L7pXwuOijgmC+cJH06dOnT5++7osIxI4vf9+W6NOnH9d+nz59sHrNauTl5UX4pmkhOSk5qv/hvz7AjTffBMNQlbp/+vTp06dfPr4RGNdEiVhx1xSxNzTffqhx8Nt+Ir0o53yl5aNPnz59+vRL8Q2l4rp/+vTpx96/rG1b1KxZE19//XWE7/F4kJqaFuEvW7YMG9ZvwphRo/9rP3KJr+NPnz59+vHiG27Yvp9K2yv6LHEWrc+3H2rsqETsAAl+uDPQp0+fPn36bl8ZChZUzHx7Hn369OPa79a1K37bvRvz5y+InK+ARJ83wh89ehR69OyBxMTESt8/ffr06dMvH99whoXO4Sgtg57p//kAACAASURBVLYPgGiyfaZIqz1yUfZg6C8xVVooffr06dOnH8ynRKC0vyzjrX/69OlXHP+OO+/E3LlzkH3woMMvzC9EUkqSI1t+fj7WrPkVjz46ssz8WPdPnz59+vRPvu86OaM95EY5UjooO1EwRkWGRRQo4TbCaxEN0adPnz59+oFhSwClDC2ifP1Y90+fPv2K45/TujVOrVsXUz6b4vAtWPD5nCdnHn/8cdSvXw+nnnpalemfPn369OmffN9wBLsMFRxxJw6sqkCBUYuJUINxCuGWxYHRp0+fPn36+hwRK677p0+ffsXxu3Xvhl27fsMvy1c4fLEEqSkpjmwzZnyF4cOHl6kfXo3P40+fPn368eAb4WB33nC4ck9ToQg9lWglKVd9Ym9LxGOP6dOnT58+/dJ8ibHviKBPn36c+mmpaTj3vHOwbfs2LF32MwCguLgYSgGG12PP+fSTT6EUcO2111ap/unTp0+f/sn3DXdQGI6GOhflGFDOTFrdAmXXq4KTHI3Qp0+fPn369OnTp1+B/Z49e6JRo0Z4/513AQDHjhVBKQPe4O2XAuDDjz7EVVdddVJ8e2acHn/69OnTr+q+ASD4YBvlKEOVcoZH9MwquOF4Mo5elwAS3lYRn8Eo+vTp06dP3+VblgURidv+6dOnX7H8yzt0xIqVK/D9jz8gN/cwio4VwjAMeL0JAIDfdv+GNWtWY8iQh6pk//Tp06dP/+T6gVdpq9BkfUp4Ue51JVqRSk8A6ISocANavY5t+vTp06dPP6qvoLQn5Mdf//Tp069I/qmn1UHNmhn4c8/r8dHkySj2lyDBlwDDYwAQvDL2FTRt0hQNG5xZJfunT58+ffon19fe1iTaZwASx5Bzogp9aJgAEJ2wr/sJP4VY7InuhT59+vTp0w/7Kckp8BpGzPzwTvr06dMPLFdddSWSU5Lx2rjXUJCfD39xCTxeLwQK06dNQ/crr6zS/dOnT58+/ZPnG+EdgWr0aSp0uc7xClXOuaqUOBVsQuklOL7o06dPnz79sH+s6BiSU1Litn/69OlXPP/K7lfi5+XLceNNN+Lzz78AYMDr8WLmV18hNTUNPa7tUaX7p0+fPn36J8837BTiGgEApb1321GMcwnXIaXGiQp9aINKwlv06dOnT5++5pf4/Thy9EjM/Fj3T58+/YrnN2nSBAf2H0CPHj2w+KfFEFhISPBgwsTxaNmyJRqf1fik+o7c4SSlxtGnT58+/crjh29r0u7rjzCi1K0HKi06ohk9TyhQgMCdWVpW+vTp06dPX08iAjElbvunT59+xfS7de+GFStXICUpBUlJSdi2dRsOHsxB8+bNysWPdf/06dOnT//k+NozZ0KT9CSiZY5WW3hAgp+OUNG/BaGSAimjNEKfPn369OkHfXH9HVbePvRt+o4l93Ae5s6di9mz56CgsLDc/Vj3Tz++/auvuhozv5qJK6+8EkeOHsVHkyejWno6OnXpXC5+rPunT58+ffonx/fak1XglwrHaW/JkPAMbVWvREXrwhGn3KuBq3oUffr06dOnH+mLWDDFDOeMs/4rqv/rul/Rr28/ZGdnAwAyMjIwetQoXNujR1z0T5/+ueedi7S0NFhiwVAKvyxfjpoZGWh3Wdu46J8+ffr06Z8c34iWE3BfRq4C0dFixf7Qtp37JGJPcD1Kk/Tp06dPnz4AiAiUxG//FdUf8cgjgRMzEvg3oOzsbDw4cCBGjBiBwsJjJ913Joq/40+/YvhNzmqKZUuXQESwZ+9eJCcll6sf6/7p06dPn37Z+wYg9tU74QTKFeqszwEqV7xyr4hWg0SG0adPnz59+lH8wP/1V3Hbf0XzRQRvvPEGVq5aDQB4aOhDmPXtdxg6dAgA4OOPP8aYMaNPmu+Mi7/jT79i+df0uAYrVq6GUgp16tTBKTVPKVc/1v3Tp0+fPv2y95VIaEjCFdjX27j3a9v/4aKnEeUskj59+vTp0w+NXP/nnhABpv57alz2X5F8SwSPPfYoJn80GVBAzZoZmDJlCho3DryZ5ocffkD//rcBsPDhhx+hXbt2Var/aP7IkSPx7Tff4OuvZ6F2Zu1y9//oQr/s/WZnn40aNU7B4p8Wx8T/Iwt9+vTp06/4vvZAYKV9lXaOJ7wdebYnYkfwW/SR0GxAuVukT58+ffr0w75YgFi6EF/9VyT/pVdexkeTJ0MADBs2HAsXLkLjxo1tv0OHDhg5cgQgCk+NeqpM/J07d+HjTz7Bv7/4AnuysiL6Ly4uxrhXX8Vtt/XDFVdcgQEDBuDjyR/Db5qAAHPnzsF3s2dH+CIW1q9bh3379p1w/9GO/65du3AgOxt5Rw7DFVjlfv70o/utzjkH1/a4OmZ+rPunT58+ffpl69tXzggESg8XgeP1Tq4lIt41GlBC36XtDo/Tp0+fPn36un9dz54Qy8L06dNj4pe2xJu/c+dOtG/fHgBw99134/EnHo/q5+Tk4LzzzoWCgYWLFuC0007Hpk2b8PJLL6FD+w7o279fhL97127UrFUTKckpdp6iY8fw4osv4q23JwXCgstDDw3GsGEP2/UOHjwYU6dOjej/wgsvwogRw3Hzzb0AIPCw1poZdv8f/OsDPP74YwAUVq1ahWrVq/2h45+bl4vCggL07Hk9srKyMGLECDRv3hy1atVCy5YtYBieMj3+7iXefv/Rp0+fPn368eIbCP6Hjz4ggF2YfddTaD8i491jgAolceUMDwf2KdCnT58+ffrRfNPvR+ifKeKx/4rif/vdtxAoXHjhhfjbo4864i3LwtRp03Do0CHUrFkTGbVqQURQUlICAPjss88xc9YsvPPeOxG+v8SPbt27YdCDg+x8RcXFuP+BB/DW25MglqDtZZfhkksugUDhtdfGY/u2bVBQWLZsqX1i5sabbsK4cePwzNPP4MI2bbBs6VL0798fAHDeeefjlIwMR/9ffvklBAp169RFenr6CR//3NxcdGjfHq1btcYll1yCrKwsAMDzL7yAAXfcgWuvvRbvf/BBlfv506dPnz59+vTLx/c6DYkI018nFXGmSMKQcu0M3E8lCN1Y5WQEUMFs9OnTp0+ffhS/Zs2aOHT4UNz2X1H89evWQUHQ87qe8Hi9Dv/jjz/GoyMfRfNmzTHh7+ORfTAbooAap9QABNiwYR2UAs4//8IIf+mypcjPz8eaX9fYCf8+YSJmz56N1NQUvPfe+2jTpg0KCvLRrl175GTnYOPGjWh45pn44vN/AwDatGmDV15+OViroG+/fpj3/Tx8NuVTfDl9Btq0ucDRZlZWFhb/tBgKwIiRI2AYobu7f//4J/oS7deHixU+frVqZqBBgwbIO5qHzNp1qtzPnz59+vTp06dfPr43EBsqQgUDQrNUMD4IaiMAwgWE99jr9qedMlBQYLezSfr06dOnT9/t5xzMhhjx239F8b1eHwTAb3v3hOcF/by8PEAB6zf8iiuu6Aoo4IrOXVC9Wg0AQPbBHMASXHDB+RH+62+8DhHBFZ27AFD47bfdeG3Cq4BSyM8vxCN/HY6WrVti4YJFOBg8KdL63NYAgJ2/7YKCYMCAAfaJGUBBKaBTx47YtGEDvvzyK1RLr27/BxEAvPH664AoNDv7bPS8vucfOv6JyUn4dva3yMk+hNqZmRj4wP1YsnQZXnr5ZXTp0kn7WZTt8Y/1z58+ffr06dOnXz6+EfgK7wxcaqOcNWqgnlYvQ0JzwxvOQK2gyGH69OnTp0/f6ZtiQSkjbvuvKH7LFi2gALz5xhvYsH69w+96RVcIACvkWwp33XmXnT+tWhqgFA4dOuTwP/zwQ/zw/Y9QUKhdJ/Cmoy9nzAQshUsuugRNmpyFrdu3Yfr0L5GTnYPT6tbFO2+/jbp1TgUAZO3dC4EBX4Ivav+JKUkABKvXrrb7nz9/Pt557z0ILDz51JPwGJ4/fPxPO/V0/OlPf0KdzEwcKyqBgsKu3buq9M+fPn369OnTp18+vlfseSFKtERaheL4ckAKwUt+QoN6QDBIVPiyoPDZpuBjcOjTp0+fPn2Xb1kmpETitv+K4vfs2RPPPvcsjhYUoHv37uh1yy1o3749lGFgxS/LA7ODaTNq1UTbdm1t/tKLLsGChQvw/HPP4eyzz8ZZZzXGhx99hDdff932f/ppKQBg6dLFgAIGDR6Iyy67DEuWLMHGjZtQK6MWOnXuhKTkZDtv0bEiiAgO5x5y+KH+W7c6BwAwa+YsDH9kOOpk1sGECROglKBJk6a47LJLA1P+i+N/2mmnYdWqFfAlJITfwFkFf/706dOnT58+/fLxlYgldrhbdhTwny+O+Vq/zvbo06dPnz798HJF164wDAPfzJoVEz9ifhz7c+bMxoABdzoHA/+NEfjS5n/wwQfo0KEDAOBwbi5u6dUL69evhxJAoIIYMGjwIEwYPwECYP4PP2LYw8OwdOlS/PWvwzFo0MDj9n/xxRcja18W7r/vfowcOTJq7/ffdx9mzJxpzw/5Ix8dgfvvv/8P9R9tKSouQvbBbJx22mmlRFSdnz99+vTp06dP/+T7RmirtMICY2LnkeghJ1BY8H3fyu3Qp0+fPn36URJYVuBXrHzE+fHX/M6dumDhokW4/fbbkZFRCwBQt05dXHbZZXhkxEgsXbYUd9xxB0QBQ4YMwd69eyEAalSvjn//+wv85f77UOfUukhNS0G/fv0wY8YM/PXhv2LM6NGoVTMDx4qP4aqrroIAePnllzB/wYKo/efm5mLz5i1o0aIFIEDNmjVL7X/8xIkYNnQYzqhfH2c1bQJRgWa7du36h/uPdvwTfYkneGKm8v/86dOnT58+ffon31eWiEStSSQYHL3i4/Ti7CB68sCAIPQwY/r06dOnT9/hd+rUGV6vF99++21M/Fj3X9l8v9+Pe+6+B3PmzEGzZs3xyaeTUaPGKSfs+0tKcMMNN2DlypWAAm688Sa0a9cOSYmJ2LhpE2bPno3Vq1bBAjD5o4+wccMG3NyrF9LS0n63/y1btqBz5874U6uWmPHlV1Xy+NOnT58+ffr0K7dv39ZUmujcFU4KdbwKAwOlhjl2aBv06dOnT59+cGnfoQMSfT589913MfFj3X9l9PPzj6BXr95YvWYNWjRrhv+bNg1JiYkn7BcUFOCxxx7Hv//9OUL/dRLqSMGAiGDwkIfwwH33IzklGZFL9P7feONNPP/8cxg9agxuv+O2k9Z/rI8/ffr06dOnT7/y+uErZ34XLI0ubfx4e8Lb9hp9+vTp06evhbZt1x5JvgTMnjMnJn7p+ekfz8/PP4q33noLixYuwttvT0JqalpEht/zN2/ahG+/m41dO3cCCqhfvz7OOfdcnH/++UhK9P2h/i1LcPnll2Pnzp1YtmwpatfOPKn9x/r406dPnz59+vQrp69EQjdUuSeGdgfXQ9ffaJOd5Il15ywmWix9+vTp06cPtG3bDj5fAubOmReX/dMvG/+nn35Cr1690LlLF7zz9ttx1z99+vTp06dPv3L4RqAG0QaV9h1eF+UaDux1k85yJTyutxrqFVCgT58+ffr0o/mmacKyJG77p182/pTPPwMA3HzTzXHZP3369OnTp0+/cvhGYFwTJWLFXVPE3tB8+6HGwW8Vel+4KOd8peWjT58+ffr0o/iWZTn+mixv3ynRr4z+0bx8TPnkUygBLr+8Q9z1T58+ffr06dOvPL7hhgNndMSxV/RZ7rugtMhQLcpRidgBEvxwZ6BPnz59+vTd/llNzoLfkpj59jz6ldb/dnbgTV8tWv0JqSmpcdc/feDw4cPwm2bc9k+fPn369CuPbzjDQudwlJZB2wdANNk+U6TVHrkoe1AFP1RpofTp06dPn34w37pff8WZDRvEzI91/+Xp/+PNN3DXnXfC7zerVP+JiT4AQMOGDSr08ad/8vy+ffvim29m/SG/xO8/rr9tx24UHjtWqr93734czD4Md/9rft0I07Ii4hcvWoh5c+eelP51Px5//vTp06dfmXyvO5FoSQLryhWhJVLO+NKXUJwdHVgLb9KnT58+ffoO37IEW7ZsjZkf6/7L0//ll5X4bvZs5OblIqNmRpXpv+1lbXH7HXfg+p7XabMr3vGnf/L8OnXrYvHixbjl5l5ofNZZSEtPR/W0dKRVS0diUiJSklORmpKCxOQkpKWlYteuPTjllBowFOD3mygpKcZvWVk4NTMTh3IOwW/5kZ9/DElJPhQXFSHBl4DDh3Nh+U34TT8Kjx1DSbEfCQkeeAwDxX4/amXUxO7de5CamoKU1FScUq06lMdAWloaLMvCls1b0KHj5ejUqVOVO/706dOnT//EffvkTGincoQGRgTKkTiwqgIFRq0qQg1uKYRbFujX/9CnT58+ffr6HNP0B/+VOT77L0/fksC/3BQczUdGzYwq03/1GjUwetQox1hZ+XPnzMGzzz6P5559Fm0ualMh+6cPzJ0zF7t374Lf78fatWvg8Xjg9fqQUSsDh3IOwZvghcfwBHMCpgh8CQmBbcML018MjycBUECCJwF+04/MzFo4evQoRBS8Xg98Ph88Hi+UEuQdzUed2plQCqhVuxZysg9hb9Z+eDwGDEPh6JE85OQcQm5uLjyGAW+CF4cPHUbnLp1RVFQE07SQkpJcZY4/ffr06dM/cd8bDnbnDYeHEzskV2mibStXfQKICuwWFaxJhcfo06dPnz59l29ZArHMuO2/PH3L8gOCwLM54rD//8T/+utZ2LRpI76eNRMXXtQm7vqvLP7gQYOw9Odl+GX5CqxbtxYAsCdrH9Zt2IRWLZsjs1YGAGBv1gGsXr8R3TpeZif4bW8W9h/IhtebgFYtmuLQ4VzsydqPFs2aYP/+g8g9cgRNGze0/S9mfIOOl16MmjWr2/7PK35Fsb8Yl1xwHpQC9mbtw7qNW3Be6xY4pUYNTJs+DY8MH46iomJs27kbzZo0sputCsefPn369OmfuG84g3RYR6MvyjGgnJm0XgQqXG9wkmjz6NOnT58+fbdvmn6YEvl8hvLyY91/efqmaQEKSE5OrtT95xzKweCHBmPu3Lkn3d+4cSMAhaKi4grTP/1Iv0GD+ti3bx9SkgPPH/ot6wBWrVmHiy84L3hiRlBQcAw//rQU3Tq2tc2CwkKs3bAJaWlpaNWiKQBg+87f0PCMejh4IBuH8/LQtPGZtj/3x0Vo1qSxdmIG2LBlG44cycMlF54HpQTZOYexduMWtGzWFKfUqAEAOLVuXfh8iSgqKUGzJo2r3PGnT58+ffon7hsAgg+2UY4ylKiok0XPrIIbjifj6HUJIOFtFfEZjKJPnz59+vRdvmVZEO1tTfHWf3n6hccKAQApKcmVuv89v+3F1Kn/hzfffOOk+xs3bgDEQk5OToXpn36kX6/+GUhNTkZiUjJ27cnC8pVr0LVTe6SlpUIE8PstzPh2Dv58dVeHP/fHxTirYUM0aXQGAGDvvgOolpaGwmOFyD50GGefdabtr1q7Ab5EH1o0bWz7O3ftweZtO9Gx/aVQAI7mF+CXNWtxduMzUSezlt1/YZGJbdu321fwVLXjT58+ffr0T9wPvEpbhSbrU8KLcq8r0YpUegJAJ4KX8kBDnd0Fp9GnT58+ffquxTQtmKYZM99OGwd+SXEJACAxMTkmfln1b1omFBT2Ze0/qX72wWzkFxQAhoIlVoXpn36kX716DaxYtRIiwKo169Cjeyd4PB4AgN/vx6y536NLh7ZISEiwra/n/IimjRuiUcP69r4t23eiZs1qyM7JRbMmjW1/5297sHvPXlx6wbm2fzD7MH5evRbXXHE5AKDE9GPRT7+g0Rn1UP/0U+2c+fn52Lh1K2BZUCryGFSF40+fPn369E/c116lLdpnABLHkHOiCn1omABw3IdlX/ej7FxiT3Qv9OnTp0+ffti3TAtimhFz4qX/8vSLSkogQODV05W4/4L8oxAA27dvxd/+9jfccfsd6Na9O3r06IE3/vFmmfk7d+4ALAAiqBV8u1VF6J9+pJ9RKwM52TmoUTMD13TrZOexLMGc7+fjT2c3Qc1TqtvmvAWLULdubTRpfKbtb9/1G+pk1MTuPVmBK2aC/sGcHGzYtAWXtDkPyuOBAnC0IB/fL/wJ13brZPc/f+ESnFbvVDRq2CDctQBffTcPA/r0Qs3ataEM46T0H+vjT58+ffr0T9z3hnaoYDX6iXslwR0qFBMK1oPCnThO+rvilAQ+lN2Rcn3Rp0+fPn36wcUKXI1gicRl/+XtlxwrQlpq6n/kb9q4GatWr8L11/cMXJEQxc/NO4z/Z+/O4+SqyoSP/869Vb3ve3d6X5LuztJZOglZgSzsrrjxygBu7yiKqDPqIDiDOuo4MOA4vi6viqCDowioYFRAIED2dNbupNPppPd936q6lnvvef+41berugNv0CjBnPpAUn3vuc/3PKcqna4n556TnJxywfMPBg3+4/4HaGiop72jnY6OTpAghcajjz4aGg8BwqKqquqC+ZNTU07+WVk5hA//X/L1Ny2LpqYmRkZGWLFiBfHx8X8T77+/pJ+Rlo7H4yE22h3h7zlQR35BPkWFBfZ7Rlq8vPcgMbGxLK9a5BgTU1P0Dw4R7XKzfFm1E9czPU39idMsLC0jLcVeZyYYNHjuxT1cu+0K3C57Q9Q9+w6REB/P4oVlEf4Tv/09122/Et3lprujE6TENE1OnGpmWfWiv5nxV77yla985Z+/73Liy7nR7eBOpyI6E/mY7UdY6zntpADhTPOZaeN0S/nKV77yla9852FaFpquY1qztzVdSvmfj//kk0/yzLPPcPbMWdLT01i3bh0f+MCHSE5OmucfOXSEhpMnWJCbS+3q1aE2s/7Y+BhJiYmv6nd0dLBv7150t5v169aRm5vr5P/e972H4eEhYuNiuO7a6+b18zdPP8UnP3EHX/7Xr3DrLbdckPxHhodJSU3lxMmTfPd73wn1BEBDCJBIbrvtNlauWsmiRZWUlZTijnKHxfrz/IA/EMpfsqxmKXNff7/fT3t7O8kpyWRlZb/m69948iR79u4lNiaWrdu2kp2dHeH39vTyzLN/YM+u3ezesxePZwqB4Lrrr+P/fOc7l+z7//X4iQmJoYb2ycPH6zFMi8WLyiFUAN538AhxcbEsra6M8I83nMLljizMWJZk/6EjZKSnU1SY5/hPP/MiWzetJS42BoCjDScJmgYbVqyKSOJ3f3yBTWtqSYiPAymJiY2hraWVHz7y37z7ne/4mxt/5Stf+cpX/vn5rvCORGphxjn6Hd5w9tQ5kgnPaeaEBCkiJgApX/nKV77yle/4liUpKS6mq7PrnDH/1vP///mPPvooX7j7CwhpLyZ3plmwd99+fvKTn/Ltb3+b9evXA9Dd3c0999zDCy+8MOtrkod/9DBbtm5x/MnJSfLyFszz/T4///7v3+CHD/3Ivo0nlMwnP3kH//AP/4AAhoeHEWgcO3bcLs6EPYLBIPffdx+I2XykkLSebeUXj/2Czs5OYuNiKcgv4EMf+jCJCQnz8v/1r57EF/Bz0/tuYnx8nFtvvY0jRw5x/Q038LWvfo1ly5YRDAS5+tpryM7K4q677iI+IZ4vfelL53zZXu/49/Z084dnn6GttY0NGzawdes2/AEfCNCkxrrLLmPm9d+/bx//+Z//yZ69e+xYQEVFBTfffDPvu+l9xETFOP709DR33XUXv/r1r0JtBdwleejhh9i6ZSsC+OaD3+Sb33zQnhIdGv/09AwyM9NZVbvqkn3/v16/rLzMiXessRFLQm3NEsAe1pd27SctNZnkxAS6uzvp6+1jfHychoZGevv7qa6qYOezv8cwgyQmJtPU3IzucrO0qpJD+3aTnp5B3fEGVq+ooa2tlZTUFPoHhukdGOZtoYWGZ7r93Mu7qCwvJzs708l/wYIFPPnr33DF1u2kpSRd8Pzf6PFXvvKVr3zln58vpJxZanjmorDg56omze9b2NM5XZv5UoJdJQKJmCkYzU9E+cpXvvKVr3xg2uNhZe1qli5dwmOPPXbJ5f9avmdqiurqxSBg9eo1vOOd7yAmOpqdL77IU799GiT85te/ISc3h3e/6910dLaDgOuuu4HGE420trWQlpHOoYN1aKF1LooKi1i+cgW/+fWvHT8QNPjoR/+e559/HoD1G9ZjmRb79+1DStj50k5KSkp48Jvf5JsPPMCWrVv58Y9/HJH/k088yac/8ynSM9J55ZXdxMfGseN3O/jYx2+3pw4DAg0pJVu2beXBBx4gJSUlIv9NmzbR0dHBoUOH+OxnP8uLL7xg73Ig4Kc/+SmbLt/sjL9hGpSVloGE9vY2u9GfMf47d+7k9ttvx+PxOK/nPXffTUpKKv/42X9ky5atPPTjhzCNIJ///D/x+BOP28ElFBUV4vcH6OvvBQGrVq3mB9//v6RnpOML+Pn7j3yEnTt3ItAoKChgaGQYr8dDeno6h+vq8AcNFi6scLr43ve9l498+CNUVFRc0u//P8UvKy9j2bLlfP3f/oNA0E96RhoLsrMA2HvwCAf27OKf7vo8vulphBC4dZ2YuHhiYmLQdY3U1FQ0XSMuNo7ExCSmpjxkZmaQlJRE0AhiShgdGiI5JYnWllb8vgB9fb1UVlayd98eJ/89+w6RmBjP0sWVEfnn5iygb6CX3Jwc3G43UxMT+AJB4uLiSEpKpLi4mG3btvGzn/2M3bt2k5SU9KYaf+UrX/nKV/75+a6IIGEnJDC7cvy8XtiPsMhi7gHmthNznzqdVL7yla985Ss/XDQsC13XqDtcNxvzEsr/tfznX3wBBMTHx/P973+P9HR7C94bb7yRj91+O3v37CE1LZWPf/zjdHR2UFVZxSM/+SnZ2Vk0NDRww/XXMzI4zMjICBnpGQSMAAic25pm/P/6r2/xxxf+SEJ8Ag//5BHWrFqNd9rLxo0bGR4e5vTp05SUlHDrLbfwnw8+yLFjxyLynxgf51+/+q8IBF/9168THxfH0XJBKwAAIABJREFUk08+yWc+/WmEhNs+8AH+7uZbWFCQx3ve/R5eeP55vvGNb/C1r389Iv+kpCSkgDs+cYc9I0XYs1Gam5s5fOQwmy/f7IyRSw9NCBYCv99PdEzMnzz+vb29fOzjH8Pr8VJcWsKHbvsgZ86ewRfw8/Nf/BwAn28aAQwODPL444876X/h7rv5+//9ERCCxpMn+devfo1du17mve97L8/84Q9899vfYefOl0BqfP3fv8573/NeJicnWbduHUPDw/iDQaKjo/nEJz/Bt7/1baSA3z71WwoLCslbkEd8XNj6QH/l999c7s3gR0fF4vF4kNIkJjqKBVl2YeZY/SnKS4tIiI9j+s47AJjyeJicmOSxXz/Nlk1rGRsdZ3RslLGRMU6fPYvPF2B4aIDxsVFaW1toa2snKyuLrq5OCgsLWbAgH3dMLLfedmtodprdmaP1J9FcGssWV0b88P4/v3yc0bERkJLt27dTsXAhhmEwMDhKaVkBTSdP0dvfxzf+7RuMT4zzmX/4DD/84Q/fVOOvfOUrX/nKPz/fda6YMGfKDSIiwJymYUp452ePze3DbPLzk1S+8pWvfOUr3zRNdF1HmvKSzP+1/O6ubgDe+Y4bSU9Pi+hPdXU11dVV7NjxO+rq6pBA46lTfOjDH6KwoIAdO3YgBSysqCAjIwMA/7QPmCnO2H53dzff+ta3EAi8Ux4+94+fY8mSxezds4fh4SFAULNsOSBJS0tjVW0tdQfrOHu2hbKyEkBw75e+xNDwMFdt3841117DwMAAn/70p5ECvvud73D99dcD0N/fz/HjxxHAz372KB/64Acpr5iZMSLo6+lFSMGevXsQwI9+9BALFizg6quuof74sYj8EWDf6GWvW/TnjP9jjz2Gd8rL6lW1/OS//5u4OHub8aeeeoq6ujqQgr17djMxMUFqWhpIkAL+5Yv38KEPf8Sxqqqr+fHDP+aq7dtpbm7m0NEj/PS/fwrAF//5Hm56300AJCcn88Mf/oDhoWGio6MB+Ow/fJZN6zdx3/33U1d3kPvvu4+HHvoRd975Kd7z7vcSGxfNpfb+/1N8d5SbuNhYvNPTrFy+FICmMy1kZqVztrWdy2pXOEET4uN54ZV9/K9330hmRpoTpLO7lyUraklLSaK4MB8k7D98BE13sXr5UoaGhmhqPsNzf3yeKLeLwcEB9u3bx5rVq2luaWdoZJTtl2+IyL+1o5NA0KC4uIjm06d55JGH8Xqn2X/kOOXFRfa22yH/xz95lE989CPce++/vOnGX/nKV77ylX9+vgaSsBubkOdoLcP6F9mO+VtDiblPJLN9kPObKV/5yle+8pU/x7dME5fuwrTkJZn/a/kDg4MAuKPdr+o/8fgTgOStb3kL8fHx1NcfY8eOHQCsXrWK733ve44/c3fzpNfrBPndjh0IBGsvu4zyRRW0tLbw9NNPMzQ8THZOLg899BDZudlO+23btoGAH//4IUDwk0d+whNPPE5Gejrf+MY3EEj27dsHwN+9//2hwozEsiTf+Ld/A8ASAhD8+333OSkZpsXQ6DAyNAL3fulLbNm6lcrKStIy0ti778C8/C0E9pouXmdIPv/5z9qmlOc9/ofqDiERfOh/f5jYUGGmubmZf7n3Xru9kEg0nn/+j/a/tNn/cf1b3uJEdKJJk4mJCbt/hsHw8DAg2bRpc4S/fv0G3vLWt0Ycu2zdZTz+xOM8/PDD1K5ezdDwCP/8z//MytqVPPLIT53X71J5//8pfkxMFGNj4yyurEAAPX39uFw6nZ09rFq2OMJ/4eU9VFeUkZmR5vg9/YMMjY4SFxtNUWE+APUnTxMImqwOFXvS0tIYnfTxoQ99kC/80+f5j/+4n0/ecQf9A8M0t7aw/fINEb3r6umlr3+Qq7ZuYXx8HEsI+geHOXi0noyUFAoW5Dp+e1cvff39aLrOyOjY687/jR5/5Stf+cpX/vn5GohQBSd0WIbTYcHlzCWR3Y9M41wPEfHciSxnIylf+cpXvvKVH+4blonmEgghL8n8X8sP+O2ZLhPj4+dUDcPg+RefBwT33X8fhw4d5oc/+BFf/spXePTRR3n8l09QVl7u+DOFj/6eXsfYf/AAUlh88pN38NwfnuWxnz/GV77yZb733e/y8ks72bp1a0R273znOwHBT3/6E2666Sa++C9fBATf/j/fDt12JZj2+RBA06nT9Pb10d7ezqc/dSdPPPkEAB+89TZA8swzz/Cjh34ESIaHBxEWCATveteN3HbbbY67YvlyvJ4p2tvaI/IvLSlBCsng4BAAPp+f3z69g5bWVizLOu/xl8JCCEm0KwoB7Nr1Cm9/29sYHRlm+/bt/OSRRxBIHv3vn+FyuYiPTwAkr7z8SthrLjlz5ix///cfY2h4mA3r17Ni+Uqyc3IQQnDnJ++gra31NV//ttY2BHDllVfw+OOP88Tjv2T9+vV4PR7+5Z+/yD333HPO98Hf6vv/T/ETE5KIi48jJiYGr3ea4ZExfL4AlRUlzi5eQsK+usMkJydRXlbs+CMjYwwMDGEYBpUV9sLCTc2t9A8OsOmyWsd48ZV9VJQUUJCX6/iTnin2HDzM9s2bIvLvHxqmp2+QzPQ0cnMysSwLHUFv7yDBQICliysd3zIt9u4/zPYrNyGAsdGR153/Gz3+yle+8pWv/PPztXlBxJwgYcHDuzW/2jPvQOh3GZGqk6CYm5jyla985Stf+bZvGia65kIgmNnq9lLK/7X8QMDeXvz06dPn9E3LsregQXL8eD2xsTFs376dW2+5hY0bNyC0yIm7CQn2WjNNTacYHBxGAmOjYyAFRw4fQWgaa9et5ZZbbuXa664jOjp2Xv7Z2dl87nOfBSnYs3cvWPDFL97DunXrnbabN21CCkld3UEuW7uWzZuv4Ne/+Q3x8Qn86le/4t4v3cvnPvt5JPDlL32ZL3zhbkaG7Q+iUsA/3XVXxPgvX74cC9i7b3dE/gvy88GCxx77BQfr6vjMZz6Nx+PhhuuvR9O18x7/mmXLQcIHP/hBrrrmGt5/881MeTzU1KzkgQceZNOmTZRVVFB36ABtbW3cfvvHQAr+8bOf5frrrufWW2+hunoxW7du4YUXXmDpkiV8/wffJzommnvuvhspBY2nTnH55VfwwQ9+kB8//BB79+5nzCm6CQzD4IrLL+dt73gHL+7ciWVZ1Nau4X/+53945JFHsIBHH/0p+/fvD39B/qbf/3+KbxgGvulpQHKmpQ2hCdJSU5wt5QEam8/gDxisDO3iBAKvd5r2zm4mvR5WL18GQHtnL82t7Wy7YqPj76s7SmJCPIvKyxzf7/fx4isH2Lp5HW63y8l/YnKS9s4eXC5XqAgksKTE5dKpP9nE1is2ReT//M5drFldQ3ZODgjB1NT0684/bPQuyddf+cpXvvLfLL5TnIkMgbOLQvi1IrLBnLBi/rnQvVjOGafTYs4B5Stf+cpXvvJnfcs00V06mqZhSeuSy/+1/PKKUoSAjIyMc/rRUVFs3WYvRPrJO+6gt6fnnH5/fz+dHZ1ousb111+PBHbtfhkhJdddey0IuP/++9m9Z/c5858YH+fsmTOOf/vtt/N3t9xMUUEh9//HfXz4wx+JyD83N5cffP9HxMXHh/KXbNmyhaeefoqVK1cC8PFPfJxP3nEHAnj0Z4/S0tLCd777Hb7/3e+SmZEZ4d90000kxMcjZWT+mzZsBCH50Y8e4l033sjvduwgIS6ez33+c69r/K8LrYkjBTQ1NoKEm2++mf/5+aMkJSWi6zr333cfUgra2tr46Ec/yp2f+iS52Tk0nKhn586X8Ho8rK6t5ZsPPMgTTz5JYry9TfJb3/oWHnnkYQoLC5FInn/+ee6990u876b3UrN0KVdecQW7du9C0zQKigo5evgwt916G+vWreO973sPN9/8fj7zmc8gACkFU1NTEWPzt/z+/1N8XWgYpkFv3xBT3mmSExPIDW1lLZF09vTS2d3D5evXOL5pWdQ3nsawZm9d6h8YoqHpFNdu3ejIJ5vO4vF6WLOqxvElFn94/hXWrlxGUmKCk+60N0h7VzcBv4+Vy6oBOHaiEcs0iY6J49qrNkXk39B4mpi4WEoL88lIz8Dr9TI41P+683+jx1/5yle+8pV/fr6QVsQN2M4lzuVSOqsWhx+f+5h3bs6Bc10rZ/uvfOUrX/nKV77Ttr2jnZvffzP9fX00nDyB2x11SeX/Wr5hGDz22C9Yt249JSUl5/Q7Otu55ppr8Xi8SCS3f+yjLF26jEAgQH19Pc8+9xyd7R0goL29nYGBAfbv38/6DRtIT0sjaAR5x9vfQUN9PVLAO9/5LjZt3EBMdDSnm5t54YXnOXbsOAC/3bGDpUuWRPivlb9hmPT29ZKRlu6s5TK3bU9vD5MTkyxatOhVx3BmLHSXK+KcZ8rDje96J42NpygsLOLGd93Ize//X2TMFHdex/gPDw5x6Ohh3O5oKsrLKCgomNeHvv5+sjIy0HTdCTI2PkogECQtLR3dpb/q62+YBofq6jh85AhHjhzmYN0hRoaHQcD3vvs9rr32WkZGRvj+93/A9773HcTMtQKktHfs+rtbbuGuz38eZ5XBv/H3/5/ib9+2Fa93mnu/9g3KS4opKSpw/KGhYfbWHeXa7Veg67Ov1e79h0hPTSYnJ5vkpESGhoY5fPQEG9fXEh8XB0BPbz+Hjp/gLVddGTH+z728i7KiQkqLC53umKbJvkNHiY2JZVF5CfGxsZxpbSMpIYGKheXommB4ZNTxB4eG2X3gMG+9dhtCCJqaW1hWvYj77r+fO++88001/spXvvKVr/zz84V0VpI7V4iIbr52FnMOOr9GbBw+00TO/iX2mgGVr3zlK1/5l6Lf1tbKV7/6NV56+SXqjx8nOjrmr+q/0flfCL+jvZNP3PFxjh0/DlIgkFhSIjQBEtLT0/nC3XfzrhtvPKfv9U5z9z138+QTTwD2IrsQ+neeUPM777yTj33sY8TGxl5U+UtpMjw4QmZW5pwmF//rPzIygmkaZGZmRZzzery0tJylq7ub6KhokpOTqaquCo39hfPf6Pz/Ev7b3/4O2tpa+dZ3/i+b169xrpiY8vDS7n1su3w9sTGzhcK6o/VERbnJzckiMy2VkdFxDh2pp3blMlJTkkHC6Ng4uw4cYtvm9cTGxjj+K/sOIg2Dgd5uPN4pbr31NgD2HjxMWnIKqalJZGVm0NPbTyAYxOvzsW7NKgSCwYEhAkYQyzLZc/AItcuXkJ6aQk/fAD5fgM0bLuNd73kP33zgwfPK/7Ff/oLrrr+ehPiEN3T8Z5soX/nKV77yXyugy247Ux0SoQaEnotQ+1mQsMtt99wJOL86IcM6NKdjyle+8pWvfOWH+8GgSVtLK6WlJUh56eV/IfzCokJ+8+un2LNnNwfr6ujs6iQpIZHiklJWr66lsqqS2Ym38/242DgefOABbv/Yx3nuj8/R0dGBpgkK8guoWb6c2pUriHKKZhdX/kLodmHmTfj6p6WlhYWc9WPj41iydClLli5l9ujF+/67mPzpaS+ay8Vlq5Y7tj8YYOfLe7h8w9pQYUbSfKaZPzz7PEmJyeRkZuDWLPr7+mlsOsuyJVVIaTA5Ocnk1BR/3LmL1SuW0drayqnGE7S1d/Drp5/i1MlGPJOTZGXnkJ6WRldnF1ff8HYyM9Jxu1xkZWYwOjrB6MQEifHxJMTGIi2IjnFz9ORJli+p4qXdRygrKCA9NQWP10fvwBBF+XmMT00SDAReM//hoSHa29pwuaN433tvwrLM2QG/RF9/5Stf+cp/s/gu+7eZgwKJmL2daqZ9BDj7CD8qmY00LwsR/sW5Titf+cpXvvKVP+tblonQNTo6OrFM85LL/0L5QhNs2LiRDRs3ntN3fnh4Db+iopyKinJe7XEx56985YNASol/ehp3dJTzY/RzL+5m/dpakpPtBbF/89Rv+fK9X6Kvv4+kpER8Ph+WtJj2+AgE/eTn59Pe1kpaeib9A31IC2Kio5mYnCA6Joa83Dw0zcXWK7ewZt0aUpJSyC/IJzoukbTUZAKBAGUlRfgCAc60trGwrISe3gGqKksxTYOg4WJRaSl1hxtISoynvLwYsHeGykhL4dOf+hSx0dE899wf+fSnP0V7WwdDg4OMjI8xPDxMwOfD7wvg9/uwhMWVl19JUUkR4R8ILtXXX/nKV77y3yy+S0Lo+/YMJZn9Rh4WRkb8FgGFQs6enJuFBCnkTNeZrTZJ+0rlK1/5yle+8sN80zTQdQ1NaJimGeZdGvkrX/nKv3C+pmn2v1KGGv7+2RepWVxFRnqq07SwsIi/+8AHmJocJ+CbprOzk8GhUbxTU2RmZRAbH88Vl1/O8Ng4RUXFrF1dS2XlQhYtqqSnd4Cms2fZuLaW6OhoJ+bp5laiYtyMjo6zYtliQHLoWAMrl1RSf/IMa1bZO0BZUuKO0jl07DiJSUksq1oISE6caiY2Jprx8Qmef/EFJiemGBsb55GHH6GgoBDTMkhJSee6q69h4aKFLF26lLTUVLZs38bV117P73f8dmakL+nXX/nKV77y3yy+SzjhCc3eCY8sZjsgwo/MbfEqJ2f6JnA6ZucrQm0Fyle+8pWvfOXP9S3TQne5EZqGlNZf3X+j81e+8pV/YX3LMEEKnn9lNwsXllGwINsx+noHMCXccMMNlJcUYRgGu/bXkZmeweLK2VljR+obmfZNs371SufY8PAIjaebqV1RE1GYae/oJjo2mp6eXtatWQUSTp46S031Io7Un2JtbQ0AfQNDmEGDlKRUkpKSqKooJyoqio7uXgwLkhOiyclKZWRwkMTERFauXMnTTz3N2MQUxxoa2H7l5oicu3r68Ex6mPZMUVpWetGMv/KVr3zlK///72tOePnqwZ1tpeRsLel8H7NhpdOvSEf5yle+8pWv/MhrTctCFwIN+1+VL7X8la985V84PyUtFVNavLR3P3k52ZQVFzpnR0fGaOvqIjk5ifKSIqSU7D9ynOSkJBYvKnOCtbR3Mjg4GFGYmZzycLihkcVVC0lNSXKO9/T2Y1gGfQNDrFphrxHU3NJGRkYqzS3t1CyuRNd0/H4/R+tPgAC/z8fyJVXExcUwOjFJT28/LiEpLsxHoIEQWJbF8MgY45NT7D98lPVrV0fkPDE5ScOp0/gDfqZ905QUl1wU46985Stf+co/P1+TkW3CokqcroSVjWaavWYn5ez/s2FF2PNzJKt85Stf+cpXfsg3TQNN19F0HWlZl1z+yle+8i+cPzI0zOTUFCnJiVQtLHd8j9fHoWP1FBUuoKK0GICX9xxAE4IVS6sdf2xigiPHG7lqy2bHNwyD/YeOUFpUQF5OtuOPDI/h8fgI+AJUlpcS5Y6iu6cPt9vN6MQY+bk5xMfFIYFX9h6krKQIS1q4o9zouo5lmhw+cpykxAQWV9lbyWu6BlISFxeHZVkcOHyUNatqiA/bin5gYJg9+w+zrnYl095pujo7KSkpvijGX/nKV77ylX9+vibCmXBRCEDM6cRsUPFaPRR2AyleJREZnqzyla985Stf+ZG+lBKhaWiahmFZf3X/jc5f+cpX/oXzJ6e8aEJQU13t+FJa7Np3gKLCfPKy7OLK4eMnQAjW1a5wrjVNk2defJm3XrMlwn9l70Ey09NDs3BCjmeSzt5eLCzS01NJSkpgZHSMiUkPmi6Ii44nMyMNBOyrO0xaWioVpcVIUzreU8+8CJqgatHs7VQjY2MgwTPlYfHylVSUFJOdkT7rTnnYW3eEyzeuwe3SqFleQ1trK8UlJRfF+Ctf+cpXvvLPz9ckYRHE/EjiHF/JmZ5FngwzRMS1c1O05/BEtlW+8pWvfOUrf1YTFBUVo2uhmTOXWP7KV77yL4zf2t6Frgt0XY/wX3xlP/m5uSwsLQEBh4424PP5ne22Z2LseG4nV25cj9vtcvyjJ07idrmpWVLlxPMHAjSebiMlJYnY2GiyMjPw+X109fSRkZaM3xegIN8uAp1sOkMwYLJy2WKkJbGwwJI88fQzCCnZuml9RIoHDteDgKjYWIxAgIUVpc4507R4ec9+tly+jpiYWLzTXrq6OjFMk7LSkjd8/JWvfOUrX/nn72tOfDH3QhnWUkY8naEjydkG8/ss5rQSoSdhbZWvfOUrX/nKD7X0+X309faQX7Dgksxf+cpX/p/vSwklRfnEx8XZa1eF/L0HDpOSnMTiqgoQ0NDYhGEaLK1eSHS024n54it7qCwvJSsjzfEbm84yPDLKZWtWRviHj5+gMD+HYCBI4YI8AOqONFCwIJeBoVHKy4oBQXdPP63tHWxeb68XMzE5gSbsJSBN02TDZSsjctq19yBlRQUIBJZlcuTA3oj8n33xZZYtqSYxPg4BtLS243ZFceDAAbKzc97Q8X+jX3/lK1/5yn+z+dpMo/mBRMRzKeacjuienHNd6KicPS/Dz0pC8WY7qXzlK1/5ylf+zO+WZW9/29PTi2GZl1z+yle+8v98X4QYwzBYkGcXeo80nEJqsCq0tfXpM234AkEqSotITEhw/LqjDSQkJlJRXuKEb2nvZGBklDUra3DpmuMfOHSc8qIChodHKS8tRkrJoWMnWLywjLPtHSypqkAAExNTHDhynKu3Xu7kPzk5BUBMQiLLqivJSE93cjnWcAo0weKqhUgk3qkpMjIznfwPHDpKVmYGBXk5gKCru5eJqSmEEKSnpzv5v1Hj/0a//spXvvKV/2bzNft8mCjnPZnbp3lHZ653FjUO/S5mFtKRIvJ6ERZP+cpXvvKVr/w5vmma6LqOrmmh25r+uv58SfnKV/6b1ZemRU9PN01nWhgfG2V97UoQcLatk7GJCXIzM0lLSQXgueee5d4vf4Vdu14hOzXJ8fv6B+nu7aOyvDRUxLH9Yw2NFBUW0N7dR3XlQgCamlvJX5DDqeZWamuWAuDz+dl9oI4rNqzBpetO/i/u2oOmaWBaVC4sdfJv6+iiu7efjWtrEZoG2EWm+vrjgKC9u4+R8XFW1SxBSugdGCRgGAwMDBEbG0NWVtZFM/7KV77yla/88/Ndc2EpwK4IiYj2zjEpidwLfLals6hxxOnZ9hIQcsaYf73yla985Stf+SAwDBOX2wWajjkzc+YSyl/5ylf+hfNNJKZhcqatg6u3bAKgu3eA0fEJMjPSWJCXjQSmvR5OnW5m586XKS0p4MH7/52SkiKaGk+xbPkK/D4ftWtq8U9Pk5KSimfaR2ZmOtISlJeV0N/Vhi9gEBUTxfjEFNds3wpA0DTZuWs/VYvKSU1Jdnr40u596AJcbjcws/C5oL2rl+7+flavqgEkuhCYpollSfv7InDo8FFuuMaOPzExwdDQCEhJUX4uQhNkZWU6A/RGj7/yla985Sv//HxXhILErvEIZvsXdgyQYrYKNNPPGZTIPofR9kkR+vKczZSvfOUrX/nKD/mWZaIJYS+MFpo4cynlr3zlK//C+YGAHyktamuW4tJ1RsbG6ezpJTUpkZLCfMcaHR3nu9/5HpWLKnjs5z9n8+VX0NbaxrLlq/B4JsnLzaH1zFn8gSCW1cqU18vU+AS5C3L45WM/x+Px4HK5GR0dxefzUVpaTEJCIu6YGL754H9RXJDv9G73gUOkJqdA0IeGZNrrBQTdPX309Q+Qn5NNZpo9m2diyoMlJZZlYgSD7Nx1gEUVZbjdbgL+AE1nW8lISyUuNg6fZxKBIDMz+6IZf+UrX/nKV/75+XOKM2E1IxERMoJyAonI9q/+mGk3m8G5E1K+8pWvfOUrH6SAmJhYhNCYuWv3kspf+cpX/gXz09MzkKZFdlY6034/J0+eJik5kUXOrkd2uwPHT/DSSy+RkZGGwJ6R8tTvniHg95EQG83U5CQDQ4P09Q2g6y56e3tIXlxFelo6ZSVleH1+YuNiKS8rIykxgbTUVHoGR0hNS2FJ9UIn/7rDx4mNiaFmSSW//e0Z7A3pBH2DgwyPjpGQEEdRqJAjJbyy7yBIidvlIndBAUEjSHWlvY5NQ1MzqcnJREdFk5OdQXvbWTIzM+2ZMxfJ+Ctf+cpXvvLPz3eKMzMHRURT+4xdzwmLJMGeqiPndT4y2txYgtmUJeHzf5SvfOUrX/nKn3lctW07V23bxuVXbMGyTBobG9mxYwcCgaZpJCUnMjU1BWgIAUIIEhOTmJqaQGgaInQ8ISEBj8eLEKBp9rUACQlJeL0eWxUhXwji4+KY9vnQNPt6hI6ugSZ04hLi8E/7EUKAkKFYdrvY2FgCgSBCSISmoQndNnW7L1FRbgwjiK7pCE0gQueF0BCasNegALTQX/ozvtBcaELicrmxpIWGjqbZvq7rjm+319A0nPw1DTRNR9NsS3fpzg8FmuYKvQQCoQk0Ycex18KwXwlNEwjNha7Z/fxrvv5v9PtP+X9b/sT4OP0D/QAcrz+JOyaaZYsrI654afc+llSUk5mR5sQ6ebqFsvJy1tWucMKPjI7RPziIBHKyskhLTcayLA4cPk5aahIpKclkpacDcOzEKdJzPayqWexIxxtOEjBMNqxcBoB3ehqhaURHxzA0OEJf/yBXbdnk5P/cS6+weJG9IHBKShqLl65gWbVdmDl+ognLlCQmxpOTlQlI+oeGaGvv4JprrsaSEk3MjO6l+/orX/nKV/6bxXfNNp4bd7b5bOAIaU7XZNjXYk7/JDM3WkkpnB8Iw0HlK1/5yle+8uf6Tzz+S4QQNDcfYsrjQRPCLo5oAq/HYz/HLoi4XG683mmbRGJJiUvXGB0ZQQowDQukRGKSkuplZHgYEEj7AqQlSc9IZ3BoAMuUSGn/b1kWlmWRkZlJf18fgL0tr5xpY5GVnU1vTx9SWkhLYknLPmeZWBakpKUyPDSClBaWZSKRSMtCSvsWroSEBMbHJuy+COn4lmXHKSoqoqW1NXSNndvMcyktcvLy6O7stmNb0s7fspCWiWlKpIClS5Zx9OgRpDSd60HenvEjAAAgAElEQVSEDAtpwdJlSzly9DBI4eQ90weJXTxatWoVR48dc14Lu4ijownNfo5gxcoV1NfXo2sC0NBcOprQ0XUNISSarrNk8WJOnWqaLS6hoekami7s55pGaWkp7e3tdiFMCPtWN01DaBp6qNCWn7+A3v5+9JmCF8KOo2mOn5OXy0D/IC6X7niaJtB1l1Ocys7KYXhkCBEqxtltNEQoT6FpJCclMR36MK1rGroeMnUdl+YiISGeae+0XZTTNFxh+Qs0otxuJCZCaOi65vi6Zo9PVLQbS5qOL0L5apqGputEud1YluX4M3nM+PYfDS3CF0LHFeVGWnbxTdNB03U0IXC53PZYCbugqLs0LqY//xfOF+h6FCebzjI55WHbFRsj/H11h4mLjQ/tzGQfP36iiWnfNJevW+tInmkvXT19xMbFkhAfR1pqMiCpO9pAakoKcbExZKXZhZmm5haMYJBFpcXExsQgJTSdaWVkdIwrN613HL9vGk2334MnTp/hxrde7SR76Eg98TGxlJcWUV29mNbWVs6ePY2m6bS0deIPBigpXEB6eppzTXdnL26XTnxiMpZpoOnui2D8la985Stf+efju+Y2moVnnso5nQjrY0QHRGSksAskdofs4/ZFs5cqX/nKV77ylX9uPz0jg9//7vc8+OADmJaJETQoLy/nZMMJDMskGDQwTYNlS5dysK6OoGEgLQtN01i1ahXH6+uJcukI3YVb19B0FzXLV/CHPzyDruu4XC7nQ3JiYiJ+vx9N13Dpbnvmie7CpbvIyEjn1KlGNGF/IHfrLkToOpfLTdAfIDExwf5ArOvouu58oE5NTmbK62VBbo5dxNBd6JoIfbAXxMXFEgwaYddo6JoLXRehtjrR0VH2zJmQ79J0hK6haXbBIzoqyv5Xcl1D12zfFeqjW9cRuk6UOzTTRtMdf6a4oOuu0NcuEBKX7raLKC4XugjN1gFmtog0gwYW0ikuScvCkhLTChXApL3jlmlZCGlhWBJpGpiWxJIgLRMhBMFgMFSwmilGSUzLwC4OGQhdxwgYYQWtUNHJtDClXVzSdY2A348Z6gMzRS1LYlgmQkpcUVH4fV4Mw3J8y7IwTdPxY2JiSEpOtAtrFliWgSklWNhtpEVUVBQ+nw9pmPhlENOcKWxZGKZJUnIyoyMj83zDssAycUVF4fX6QNr2jG+adhEsKSmJ4ZFhx7cAadprjZiWSUlxCWfOnHHytyzpjH9ZeTmNpxqdMbLH0gTLYmFlJScb6jFMC9OSTv7V1dUcPXokFCc0Hkg2rN9IXd0Bp+ij6xpLli6h6VST8/7T3S6qqqo5c6YZl64jNI1/uusutlx55cX3/UdKBCbtXZ1s2bTRuQ6gobEJr9fHls0rnRjNZ9sYHRtjTe1yNN0uApqWSf2JU+Tl5iAk5GZnhq5vJjkxnqgoFwvycgBo7ehi2ucnNTXFXjAY6Ozqoqu7i61XbIrwTzefBQmGZfL2a69C1+xZdCebmgkEA6xabs+wOXWqEV1z0dl6lrGRMfpHRykpKCDDKcxAe1c38fGxTE1NERsdi+5yh43Lm+/7v/KVr3zlX2q+CwgtbCMiuiGcJYUjL5bhnRKh4zO9iYwfOiecjop5v4ZaKV/5yle+8pX/Kv51113DddddG+k7RqQ/87AsE8u0PxwbwSCWaWKE/kdKgsEgpmkSDJr2IptmEGlJTNPACBr2B1XLxDAtpGmA0PAHgqEPxTNtTEwjVIBA4A/47Q/Eph3bMiWmtHC77MKHYc4UBAyMoOXsvuLz+ZmcmsAKfdA3gvYHdsM0MEz7Q31CQhLDoyNIU2JKA9MwQzlamJZFWmoa/QP9oQ/5hv3B37A/wJuG/XV5eTmNjY3ObBjTNDEMeycswwximRbLl9dQd7DObiMtxzctCUKgC52aFcs4eeKkPfNE00OzMDR0lx66jQqSk5PxeqZDM2ZmC1GartuzN0KzPjIyMhkfH0dooGs6LpcOUuBy6faHYqFRXFhAT28fmq7bhSKX7QphX6O7XGRlZjEyOhLy7YKNPRNk1kpOTmZ6etqeUaPPzEyxTaGB5bXsAp3Ph8tlz2gRmo4uQNfdoGnoQqO4pJhgIBgyNHSXy5mtYhe5BC6XC6SYzX9mtk9oHNxu+0OzCBXbND00lpqGFjovCRUHtUjfnt3y2u//mT9/kcfmP2YXNgz7MVTavwSCQbuQYwYxTYkpJWbQcN5/hhEECUEj9H6UFjk5uRf8z/+F+P6TnprK5MQUG9euJjpqdrnFpjNtDI2MsXb1cudYV1cv/QOD1CypIi4m1vEPHD5O4YJ8vD4vFaXFgORsSzu6JhBooYWFobu3j8nJSVy6TmlRAQBDQ8McbjjF26/dFjH+jU0tREfHEhMXS7TbRXS0GyScbWvH5w+yIC+XmBg3M6MoEJRVVNB4toU1K2tCtzLZXfROT9PV08+U176Ns7iowBmPN3r8la985Stf+efn21tpOxeHXzL7EHOfi1CYmU6J8JNhhJNg2E8N83+6Vr7yla985Sv/gvqa0NHc4EKH6OhX9c/5mNck/EC4P//C2fw5r/zfTL4M7RZjSbCCBiYzBSYLy7SwTAPDkhC6XSto2EUxS4JpGaEZIHbBaaZABBAMBsMKRqFbsUKFMikluq7h8/lDln3OMkwsIbFCs09iomPImspwfCNULDBNA8sidKuQhhEMOLGd2SWmPfPEtCxSUlIZGhywDcsMzQSyi1TSsm9Jy87JpbuzC1POzr6xQv0OmhbSNImNjWNicsIer5BvGXbhzJKwcOFCTpw44RTBrFCRz7IklmmwrGY5hw8fwjBN5EyRMOQbpkVOZhaDI0NOkUkPzYYSuouVy5dTX98QurVLoGkuu/gjdEpLi+no7HJmTdmFIY2K8orQ7WM6mgDd5UbTBCWlpXR1doRuW7OLXtk5uYwMDqFHuRw/NyeXkeGh0Aw1nRtueAu1q2v/v++/v9b3n/7BAaRlkpgQ58Rr7ehkZGyUqooy4mPt48Mj47S0dVBVuZCU5Nktr481NFK0II+JqQkWVZSDhJ6BAbyBALomWFhRAkiGRsYYH5tgejrA2lp7G+wpj5+X99dx43VXR4xHe2cXCQmxjIyO4PdOEwgEAOjo6saywO3SKcrPAyQd3b2hAp+kqHQRxQvyyMnOihicl/bsp7Agn/LiQixTkpScdNGMv/KVr3zlK//8/LDdmkI/fDkdmPuzXeSFM23CMTmXCCsxzTyz+3uuQVC+8pWvfOUrX/kXqy9CM2B0BLhc5/AJi+5EmPUjzr+Gz1x/ftvZp5eub8+aMpCWJOgUyUy7iOYUykz7lrLQbVdIiRm6zjTsgpplmUih4ff7IXS7lGGZYEqEgEAgELq9y57N5XK78ft8BAMGpmVgWRKX240nLw/LNDBNiwSnCHJxvP81oREdG+OMXWdPL6Njk2SmpZKdZa8RM+Xxcux4A5WVYYsCSzh9tpWU1GT6BgZZWbMYgLHxcfr6hpBYrKpZigQ8Xh+dXb34AgHWLF9iXy4lv3/+RW684eqI/AeGhgkETCzTT7Q9NQqhaZxqOovm0vBMT1NRXAwSpqa8tHd149J1omNjaTp5nKSkuIj8X957gPy8XBYvKqejtRnTDNqvf9g75s3+/Uf5yle+8i8F3zV72O5NeB/EzHzX1+poWCYR/Z/TToSSELMZzflN+cpXvvKVr3zlK1/55+PbiydHgYSoef7cr2cOnss/1zWzHXrVNq/phefyl8n/9Yy/2+0iISEBkPT1DzExPoXbpVFWWgyAaZjsPXiEReUl5OVkO/m39/Siu9w0Np6mqryE+voGRsfGOHmqmYmJCQrysmk+eZLh4WGaW1oAQVZ6Gn/8/W+R0uLEqWbu+tznnTWbQDI55aGvb5DExDii4hJwuaMwA0EMw8QfDJCdkoHb5XIKXHXH64mLi0PTdAJ+PxNjowSDhpN/3dETxMXGsbR6EQBu3Y1hSrIyMzFNy17D5m/w/a985Stf+X+LvsuJL+dGt4PP+Tt2zhdz+xHWek47KWDefVzC6Zbyla985Stf+cpXvvKVf8F937QfoekMDY8yNj7B5NQkq1cud/wdf9yJSwaprlzI5s2b2bdvH6Xl5Rw9cpiKikp6ejopWJDPwOAQfr+f5ORkxsfHkEhSU1Lx+XxkZmaSnJLC4qoqMrOyaG3vIn9BDgmJscxMczcNkxOnzpCfl41hWCzIzWZgYAALSVJiEjVLqti1/xAb165CAo1NZ4h2R1G9qByXSycQNACYmpwCoLmljdHREbZfudHJt7WtnUDAXth80uMhOSnpDR9/5Stf+cpX/vn5s7c1hZ+Ya5yj3+ENZ0+dI5nwnGZOSJBOFUn5yle+8pWvfOUrX/nK/8v4lrR3cOvtG0S4BIvKy9BDuzC9uHsvleVlpKcm8e3/+janz5ymoLCQl19+BV1zUbmwnOLiAhZWLCQxOZW4+ASu3LyB+IR4YqJiONnUzMT4GP5ggLOnmzh48CB1R46SlJjA1is3U1RU6HRs/6HjFBcvwDM5TUV5MT19AwyOjJKYmIQlLc62dFBRVgzA2ZZ2fD4/Rfl5JMTFIYS9zblpStxRLoZGRmg83cJ1Wzc7+Xd0dhMdG2Pv0iV0UpKSwgbzjRt/5Stf+cpX/vn5YWvOzFwU1i5sWs85H3L2nAx1LQKc6akEu0qE00KcKxHlK1/5yle+8pWvfOUr/wL6QSOAP2iQkmwXQVJS7cV+X9qzn8y0DBaWFfPrp37Ds889S0VFBaUlZWzbfg2bNq53Ft491XyWkdExllYtIjEhAQScaWmjsroKXQgqykoA2Ft3hCh3FIM9HTz++BMkJSXy7ne/mwNH6ikrKWRkbJzKhWVMTno4dLSB/JxsfF4vbreLialJykoL6erqxuf3ExsTTV5oe27NpSH9kphoN5OTXgYaTrG+djm62wVIhoZGmPb7GR4ZIzkxmcqKsotm/JWvfOUrX/nn57sigoT1QwJCRHw172l4ZDH3AHPbiblPZ2b1KF/5yle+8pWvfOUrX/kX3A8Egrhc0RQsyGNsYsJem0XCK/sPkZKYzJLqhQC8/W1v4+1vexuHjp8gNiqa9PRUsjPthYHbOrsYHR1nYVkJiYkJAHR29+LzB5BSUhla76X+ZBOGYbCudgXULOaaa68F4GjDKUoKF9De2Uvt8iWYhskLL+/h8g2X8cyOJ7GkRXx8AhnpqTSfbSMxIY7xyUk2rFkJwKRnCtOwEEIQmxBPR28/S6qryAgtXDw15aW5pR2XrpOXncmUx8PA0DBZGelv+PgrX/nKV77yz9/XzhUT5JxDwm59rrbS+SXs68hjct6R0PNzJKl85Stf+cpXvvKVr3zl/7m+JSXdvf1MT3vxTHlZWr0ICby87yDxsTHULK2MCHmmtY2o0GK82Zl2YaOvf5Cenn4K8nPJSLeLIcOjYwwPj+P3+5yFeNs6OunrH2TTZbURXTp5qpn8vByazrRRu3wJEnhu5y5qllaRkpJIcmISlmUxPjqKzxdAIBkeGaNmSRUgMIMGp5vbcbld6JrGosrFuHSd8pJiQGJaFrv315GcmMiaVTUILISAuJiYN3z8la985Stf+a/P10Ai58UWc5pG9i8CFHPai7lPZFgf5Pxmyle+8pWvfOUrX/nKV/4F9jUhKCkqwDACpKTYRZCXd+8jOTGBlTXVEX5Xbz8TE1NER0dRmJ8HwNjkFC0dHWRlZZKflwuA1+ejtb2ToBlk1fJlAIyMjnG04VRoYd5Z/0xLG+npqZxta2PtyhoA9h08THZuFsWFC5ASRkdHAUhITUUIwaR3mpTkRBLi4hif9HC44SRen5cotxvdHUVXVyfxsdFERbsBwQu79lJaWsTiqgoAOnv7cekuPF7vGz7+yle+8pWv/NfnayBC9ziFDstwOiy4nLkksvuRaZzrISKeO5HlbCTlK1/5yle+8pWvfOUr/y/hp6dlEJeQwAuv7CUlKZlloVkpM/74xCRdXb1ERblZGFo7JhAMcLS+gZSEJMpLCh3/yPEGfD4fq1csBcA0LXbuPsDbr9seobd19BAbG0Nf/zDVC8txuV2cOn0Gvy/I8sWz/vjkJAmJSUTpLnr7+pFSsiAvl4mpSdo7O5GWZO2qFQgBKUmJaAKSE+MRwO79dWSnpVNRUgzA0MgIvulp0AU+f+CiGX/lK1/5ylf++fnavCBiTpCw4OHdml/tmXcg9LuMSNVJUMxNTPnKV77yla985Stf+cq/sP6ZM2fo7+snPy+bmqVVEb5lSY41nMLtdrGkapFzzd6DR4mLiaW6ssLxGxpPE/CbrFu9ymF+9bs/cPXMVtahi7u7+5DSZGJyigV5WSQmJNA/MERTSytXbFrr+K3tXbh0F+Njo5imQWpKChWlxfT1DzI4OEogYFBTXYkpLRYUFDI0PMzQwBBg35qVmJDIsiX2bVWmaXK6uRXvtJ8YdzRFBXkXzfgrX/nKV77yz893ijORIUDIyK/nBRNzuy/mnwuteOOccTot5hxQvvKVr3zlK1/5yle+8i+cj5QcrW8k6A+gu1xUlpfP8482NGJKk1XLlzj+8ROnkEjWrKxx/DMtbfQNDLJh3UpnG+7fPbeTDWtqiY+Pc9yBwRGmpr1IBClJiWSkpeKb9rHv8DGuufIKx+/s7kUTAneUG8uySEtLJTMzlUAwyNDwCJ7paZZUVhAdG83Q4BA9XV2YpgXCor23n5SERJYtXuTk39TcQtAySU9NwbSMi2L8la985Stf+a/P12aOhW8BJYGZ/ZyklJHHmd9+7jn7L8TIDkd8KWaOCZSvfOUrX/nKV77yla/8C+0bpkVxUT7ZudlUVy6a57e1dzIyOsbGtbVOrNNn2xifnGB97Uonam/fEKdb2th82WqiXG4AXnx5D+Ulhc5W2wBjE5MMDA6RnJSArmnk5WQjgWdefIXLL1tNdLR9bW//EEbQIDExHq/HhxCCuNgYdN1F/8AQhrQoLsgjJiYagIHhMUzTQhOQX1CCaZosW1Lp9Lmzu5e2rh42rFmJW9dwu90XxfgrX/nKV77yX5/vijTkvGbh20nN7VCoebjnHLS3AJfM7AUeyUgQoWjKV77yla985Stf+cpX/gX23S6d5KQEmpqaGRwYiPCHRkc53dLK+rWrcLt0fD4f+w/U0XCyEc/EKE898UumfdMIIegfGOay1atpazqBJSXJaVlULV7MovJSR/d6vbS0dbEgN5uxiXEWldrn/vjSbhZXLiI1JQmkZHB4lPGJSdLTUugbHKZiYSkgiYqO5WDdMQoK8igrKiAxwd6ye3JqitHREdxuN1LK/8fefce3VZ2PH/8cWZ7yHnHsDDuJswfZewFZQAphddAS4AsUKLtAKW3pryUUKCNAB5RZoC0jIYRAgQDZe+/hxBkeifdIbEm2ZEnn94ekq2EnQAlk+LmvV6Wre8553s9zJFP75Ope0tq1o0NGhuE2NjaxZccepl04FnOEGUezk2aXiyaHk4gIRaQ5sFDT1t5/8cUXX/yzzTd7+/qTUL4O/lHK198HBrUAgQQCR4x949EI6U3Iezi0SPHFF1988cUXX3zxxT/VflVlJQkJ8dibGg3f7XazYct2hp7Xn/g4CwD/fOMNHv3To5SXlRFvSSApIQFt0pjN0VRXV7Fs6WKOHz9GdHQMN/78Vq695mqjDlezk5179tGzRzeOHC2nX+8eAGzcuovUpETyunYGvGfWVFTVkJaSyPGGenp374rdaiM6Opbj9VYsSRZyczoSHxdn1L9u0zY6d+qAMincaMpKSjBHRhg1L1q+hjHDBhId5T3L5tjxevBoDhWW0KdHN/x/ELTV91988cUX/2zyzd4n/0GFRgW+TuXvHwIGtuCjmkCkFlWo4BetNYsvvvjiiy+++OKLL/6p9Wvr6hg4cCApySlG84rVG8jLzaVdehqgsdmb6D9wKJ99+gXdu3UlNi4GgA8/+5LxI4aTmpoEQNGRo+wvOMTk88eF1LR28w6GDOjLwcMl9O/jXZjZf+AwVruV88eMBMDe2Mjh4iNkZWZgs9nJ65LrHWxSOBxNpKS3Y9iA/sTGxBi5795/kOjoaHp264ICPM3N1FRX4nI1A4o1G7bQJacjaelp3lw8UFZagUdp+vTsFjYZbfP9F1988cU/m3yTDhus0EFJ6UCo0KcwSHuHtCgq0Cn4gjfK1984Kr744osvvvjiiy+++KfYLysv41hdHYcOHUKh2bZrL9ExkXTPywUFHg0btmwnPiGOAf37EBsXg9vj5uOFixgyoB+pKd6Fmepjx9myfbexMOP312/eTv/ePdm7/yD9+/YABVU1tezZf4DzR4806t+yfTc5HbOorTtGty6djfobrI0ok4lunbOIjY0x6j9ef5yDB4sYP3IYAG6tcbs91NfXExUZxf5DRdhsdvr37mHUvyt/HyhNRIT5jJl/8cUXX3zxv75vUkZ4/0NwVOXvbhwObg0O2WqjPzcFxjeptO+Ab4D44osvvvjiiy+++OJ/F35VZRVp6eng0ZSWVVNaWs7o4UMNf+PWHUQoEwP79gHA2exiyYp19MjrRscOWaCgudnJ8pVrufySKSH+9l376JbTkQOHCo27PTmdzaxev5lLJk806t+xay9Z7TKor2+kT8/uRv2FxUdwOJtpdjpJSU4OqW7hktVMmzwxUJvHgwZiYqJxOp0cKipmzMghRjLVNbWUHC2jY3Z774rTGTL/4osvvvjif33fZITXJw5u3FZK+8Z/gy0QNmiVKMQRX3zxxRdffPHFF1/8U+/bbFZyu3ahuraG1Rs3MXniWMPfk19Ak72J4UPPA8Bms7Nx63aSkhLomdfF8Ocu+JwZQQszAHv3HyApMZ6qmmMMHdQfAI/2sHDJCsYMH4w5MhKF945QbgWRUZHk5mQb44+WVVJYcoSe3bwXDk5LSwfA5Xbz8edLmThqOFG+W3Z73B7sTQ7MZjNuj6a4vJoBvXoQFxsLQLPLxeKVa5lywThcLhcZGRlnzPyLL7744ov/9X2TDu0TFFVjpGJcyCbQ7aRJ6sD/AmFV0H4rxYovvvjiiy+++OKLL/4p9IsKi4iJiqa2ro6LJk0gKioSNBwqPkJdfQN9enUnJjqaqupaDhUWY46IYKDvNtUoxbyPFzLj4guJMJkMovhIKR63xzveuLYLfLl4Jb3zupGRloYC6q12io+WkxwfT+eO2Ub25RWVFBwupHf3PCKjzKDAHGmmqqaW5avXkdelE5mZ6Ub9C5esICYqkqjISMZMvJD05GSyszIB8Hg8LFy0ggmjhmM2RdDsbKastPyMmX/xxRdffPG/vm98ramF6Lt6cGgSgaDqZBkqbwf/2TstuungYsUXX3zxxRdffPHFF//U+w1WK50759C/f3/iY+MAqKiuprqmmqzMDDLSUykuKaWm7hgxMTF069qFqMgoNPDhp18yeeIY4uJijYDVNbUcLS1DmUwM6tfboFet20RyWhLd83INf8uOnaSlJtMlp5NRf03dMfbkH/QuwLRLx+PxgIZj9VaWrFxLXJyF3j3yjBJXrd9Mx+xMzBFmIiLMFB8+RIf2gVtpr1izie5dc2ifmQFKU1ZVhVu7z5j5F1988cUX/+v7Jv+ladDezuGRVCuvtD+z0MYgQ4WMDS8xcOWcQF/xxRdffPHFF1988cU/lX5hYSFpaamsX7cOlKbBaqOw+CiR5hi65nQif/8hMEFSfDwmkyI9JQm3y8WCTxcxYdQwEhMSjIi2piY2btlO+/bt6NMzz3DXbthMQryFnt3yDP/A4RI8Ljd9e3U3+tVbG9i5aw9DBvWjQ5b3K04N9Q2g4IsvF/PFJx/Rt0dXI8buvQV43G4G9O2N2+Mmu1Mntm5aR0RkBAAr120kKiqCXj28Z++s2bAVR1MTHo/7jJl/8cUXX3zxv75vNuKr4IHBvXz73qvaeHNSATKQX2CcapF1eC/l2wnqK7744osvvvjiiy+++KfQr6iooFOnzkTHxLB2zTr27j9AY1MjfXv14J9vbaRThw4kJyWxYcMmTCbNYnMExSVl9Mjryuo1K4lQZqKio9AeWLVhI0MHDqC89CjHa2rQSrNn3wG6dO7Esbo62mekUtPsQHtg5+49XDB+NAAOh5OCAwW8O3ceHqeDzz/9iJUrV7G/YL8xJ4cK8rnwwguIjDQDmrLyKgqPlHDJpAsAcLvcNNQfw+1yYzJFsHbjNqKiojivT08A9h04iNvtIikhHlez64yZf/HFF1988b++b/Z3CmptERCUkVvwYUVwIS3Haa1RytvuT0MRXGsgSfHFF1988cUXX3zxxT+V/q9/8xAHDhRw8MBBJk+eDCYTUVGRREdG0exyYDZHY7U24NEenI5m3G4XoDCZFCaTybiwr9aayMhITKYIwENiYjLHjh8jJjoah9MJHg9msxmr3ebN0OPB1dxMRFQkLmczcXEWYqKj0UrRsWMHuuZ2oV1mO7Zu2U5ERA133X0n1/zkGgCOH7eyZeceJo4ZhVbehRlns5PE2CQ0isNFJbTLbE/X3E7ExMRQU3uMo0fLGdCvNw6nA4/Hg8fjwWRSp33+xRdffPHF//q+2dsetNajgyIEQcGpEnbUP15rUCrwrPwX0tHKuKaOf5gK2hdffPHFF1988cUXX/xT7U+/+BJKjxzlrrvu4sWXXyFCKVJSknA6nbjcbiora1DKQ3ychfkfzufjjz/i17/5HRlpqdTV1lJbV0fBoYPYGqzYbTZsdjvNDgcOl4dmVzN2mw2320NUdCTOBitKQZwlHktcHM4mB4nJiditNrRSxMbFcay2hrLSUhzNLirLK3G7HGRmZhIb7b2ujdPpYNX6jQwbPACL71o3h4tLaG5uJjY2lvHnT8LtctOrex7x8d5r6GzZsZvczh1IS03FbrMTFRWF0+kkJjrmtM+/+OKLL774X983h8PeFZ3QxLyvfMf8cosUA4dDmwP9NaC032g5XnzxxV5s/cMAACAASURBVBdffPHFF1988U+ln9WxAx9+uIDcvB4M8H0NCKDBavN+5aggnxdeeJGSkmI8Hnjt1dewWo9jtzcxYsQwrPUNxMZZ6NevH+2z2hMXn0BmRjvyunXDY4rgwgnjAPC43eQXHCL/wEG653TA4XBw/Hg9ZVXVNNmbaHY1o10OUBFUH7Nir6+mrraW5JQUBgw8D9AsXb2evj170C49DY33VuCHDxfjam4GBU2ORjweFwm+hZmCw4VEKOjeNRcAu91OZFQkDkcTMTExZ8T8iy+++OKL//V8c4hC0Mk3Rn4hJ+SgVWCVx1gp8qGE5hxEexuV72Wr3cQXX3zxxRdffPHFF/878CdPmkSs/65Lvi0h3kJCvIXyUgtTJk/G6XBQVlrO8hXLyEhPIyExCZvVxsKlq7j8B1MwoWhudrIr/yCdsttzpKyCgX17GfEKj5RypLycK6ZPM+oqq6jGfPAQuR07kNO5I41NDtas38RlPfLo4Lsdtj/PdZu3k5GSRm5OB6P+1es306N7N5qcThISEig7WoLH5b2mjNXeyN69B5g6aTwATqeTyqpqOnbsRHOz+4yaf/HFF1988b/aN4UH0kExtRE8lDICBddwYjEorhHdu6dP1E988cUXX3zxxRdffPFPje9fmGnN79d/AD+79lo82kNObg5dunYlITEJgC+Wr2H6tAsw+aCDh4uJiY6k9thxBvbrZfiVldXszT/AlInjjLjHj9vYvjufPj26kdO5IwCbtu0kLSUlaGHGm+euvQXYG+0MHtjXqH/zjt2kpqSRnpaCx+0mMT6eirJSiouL0MDqNRsYeF4foqOiANi4bSeJiYkcP3YMu93KmTT/4osvvvjif7VvCukcZihfS3hg767yJthqMi1UXz9FoGQdgokvvvjiiy+++OKLL/7p8suOlpKVlWX4H3zyJRNHDyM6MhKA+nobFVW1REVF0qNbrhGj7ng9qzdu5ZKpE41jTQ4Hi1asYsLo4WSkpwOao0fLsFobGDigT4hfcrSM0rIyJo4abuRSWHKEyqoahg3qS5TZTGRUJFHRsXjcmiNHSti1O5+ExAQ6d/DeknvfgcM02hspKztKbGwcjY1N37j+0Dlre++/+OKLL/7p9k2BzuFxA91V+DDl7xEcSgelpMLy08ZrrVWgT5Ajvvjiiy+++OKLL774p8uvrKrC5W4GYNGy1Qw5ry8pKclGtB1799K+XRpdc3OMY3a7nUXLV3P5JZND/A/++wWXTj2f2OhoABqsjWzbvY+RQ4eE+LW1dezZV8DwwYMwRUQAmoqqagoLjzBq6EBA4XA4MJsjOXb8OB7tofa4lYrqGkYPHwxoyquqKS0rZ8jA/tQfq8diicPe2PiN6w/daXvvv/jiiy/+6fZN4Z0CcGto6KZCGlRopKC8NcrIV/kGhRQivvjiiy+++OKLL774p9Fv164daWnpbNy2i9TUJDp3zDZ679y7D6ezmZ7duxm+s9nNl8tWc/WlF4X48z/+nB9MuQBzVLThr9u4id49upGcnGj4TU0OtmzfRd9ePUhOTgCgvsHGvgOF5OZ0JCnJ29fhcKCUIiUlmXaZWURGxnLBuFG+tmZ27swnr2suyclJ1DfUY7FYaGpsPOvmX3zxxRe/rfsmAO2LFrL2c4IVHh0cWfleaN1afF9b4LVq8ejrJb744osvvvjiiy+++KfRP3asjkVfLGL5smV079rFiFVaXsmRoxVcMHaUEVBrDx998jmTJo4J8T/9YhlDB/cnId5iWDt35xNrsdA1t1OIv27TNtq1a0eH7MCFgTdu3UFGajK5vmvUgGbxstWYzWaSE5Po2r07Xyz8CJNJgdas37KN9PRUOnXIAu29u1NMTDRNjU1n3fyLL7744rd133srbeUfHDwksKnwfaXRKN8VilWY7msDAveM0oEo2js+OKr44osvvvjiiy+++OKfTr937758vvAz5r7zH3774H1079GDPn16k94ui+FDBrNpcyy9+/TFEhvHR58vYfzY4Vji4vADK9ZuonPHLDplZ+PRHtCa3XsPUl1Tw6D+fbHbrLg9Gq01u/ILcDga6ZbblyZ7IxFmM9t37ycuJoZePfKorKykuKSEFStXszc/H7fLRcmRYvbn59NktWG12SirqKbZ5WLQgD6A5tjx4yTEJxAbE4fVZjvr5l988cUXv637QbfS9g4whqmgkDooQkiSoZgOJ4wkAnG9+bY2CeKLL7744osvvvjii396/LxuXVkZb+HJp/9MVXklq1avYtv2HezevYdPFsynsqqSpiZHgPfF9ADGv6L6vMioKJqdTnSQFBERgdvt8eanvVEUoE3Km5vHg/8fbk2Y0NoDSqFMCu32sHz5cvK655GdmcnOHbupPNbAJZMnGvVv37GLhKQkYmKiqK2rO+vmX3zxxRe/rfvmwGFvNsE5KP+NvE+WaFAlIfmH9VO+IlSgorAn8cUXX3zxxRdffPHFPz3+tTNnkr9vH7//7e9IS09HmSIZP2ECWZntSEpMIik5iSOlFdx95y9ITEzkvPPOw9pgw263U1VThavZhdPhwOF04nA0EWE2g1aYI02YzZHExcXicrlpdjZjilCYzJEkJyZRUVGBw9EEEREkJCSQnJRMaloa8YmJxMbFYY4wsX7NWn78kx8zceJE/v3vf7N1115+cvUVmCO8/85aWVVNg9VGcmISzW6IMKmzbv7FF1988du6bzbi6/Do3uBGUiHJhG6BPIJ6h/XTCpRxmo+/j5GW+OKLL7744osvvvjinza/T58+zJ8/n6Nl5azfvIMhg/rSuUMHI2RJaTlR8YdIS03jlltv4/9uvonoyCjyDx6kfUYGFVU19O2ZhyXOe7ckq91GWXklxUVHGDKwL46mJjZs3UlKciKFJWVMGj+S2JgYtu/Zz9gRw2j2uNm0fReXTJrI6g1bqKmtJTU5mR7dcqgoK6P/gAEAuIgkIz3VuLiw2+2i5Gg5cTHRdM7JZdDAAShfTWfT/Isvvvjit3U/8LWm4IZwo5W8gzsGmlopJrgmf4MGbawiiS+++OKLL7744osv/pnht0tP54rpU7yvfVuTw0F9fT1dczpRW1fD2HGjSUtOYdvOXSTExXOosIhuuTmkJCcB4HK5aGiwcbzexqWXTCUy0kx9vZXp7bP46LPFXDXjEtq3y6DeamX0yCSUKYING7Yw/aILqDvWQHl5Je0zMxjYtxeWeAvtMjIA2LYrnw4dshk7cqiRW8HBIlJSkli2dDHx8XFYbVaqqqrO2vkXX3zxxW+rvinc0iFBdFDk1nILNGjfY0hXHfysgcD1iBXK2BdffPHFF1988cUXX/wzwY80R7Two6KiiImOpltuJ5qaHERFRrH/4GGGDhmIy+MiPTWVvK65RrwjpWXU1B5n8IDeREZGoIHEhHh27tnP0EH9ad/Ou9iSGB9PhCmCVes3Men8MSgUTkcjKclJ9OzeFUu8xcihtLyCivJyxo4ILMzU1B3j2PF6Gu2NREWaaN++PZZYCzabjWan63+q/3TPv/jiiy9+W/VNIUFUyOJO0GpOUJjgiCp8N6wKFfysMFaZfMdVSPLiiy+++OKLL7744ot/5vkmFN265FBXV0d0dDQOh4Pz+vXi4KEijtfVM2Rgf6Nv8dEy6o430DW3E6kpKYa/aftOYmKi6NuzuxH+WH09G7dsY/zoYcTGxOBsdrFlxx569exGemqyEbPZ6WLF2k1MnTQxpNxtO3cTb4mjb+8eVJRXkJmZiQfF0aOl2JsaT1n9p3v+xRdffPHbgm9qLSaErQChQgKEdT1B8rrFoeC6dIvkxRdffPHFF1988cUX/8z1bTYrSikcTU4qq6ooKj7ChRPHGP3sdhv5Bw7QISuTrPbtDHPPvgKsVivDBp9nxKq3Wlm9bjNDB59HUkICoNm4dQedO3UgO7NdiP/JomVMu3BcSCGbt+8kLs5Cvz49QUNZeTmxsbE0OhzYGxtJTEw45fWHBmp777/44osv/nfpm0AH3/3PF0CFdQ3NLwRUYf1V+I4OykG37Ca++OKLL7744osvvvhnge/2aCIjI6mormLD1l1MvXB8SOC1m7eT27EjHbMzjWhFJUeorK5h4thRxjG73c7qdZuYMnEsqclJaLzXjmlsaqRvr+4h/sIlKxjYrxfJiYlGLgWHi6itO86ooQMN/8iRI1gdzXTKzsYcoc7J+RdffPHFP5d9E6igKw3jO9UmNA1/s2ol/dAyWttUyL4RWQciiS+++OKLL7744osv/pnumyNMREdHc7iwhOlTzg8Rd+zOJyYqih55XQy/srKGXXv2M2HMSMNvbHKwfO0GRgw5j8go7705bFY7e/btZ+LoESH+0uVr6JaTQ27nDkZVldU1HC4sZlC/3pQUl7Bz506WLlvOjh3babI2sGv3DhoarN9J/ad7/sUXX3zxz2XfHDww8BR81eFAcO8xX4oa4ytZOmyEsau9mjZGBRWoVFhh4osvvvjiiy+++OKLf+b61dV1NDQ0UHRoP3967DFioiNJTk6luqaO8ooqRgwfxGc1VaA0VruDQ0UlXDh+NHv37CE6JorIiChWrN/IhePHkpSUCCg8Hg8ffbqQ7MwMVq9eQ1VVJdXV1ezZV0BtZRXKrKitqcZus1NUfITammr69O3Djh07SEtNJjExmdi4eBptjRQU7KPR1uirn3Nu/sUXX3zxz2lfa+9JNaEhwvRWthb9w1qDsjvJ4UC7+OKLL7744osvvvjin8n+kqVL+MH06VxzzU9p164dTqcTkymC/QUHiIqMIMIUQUa7dDZv3kJ1TS0xUZHYrDY8SlNXU4e90Y7WHiIjo7Db7fh+DUcpRYQ5ArMpgoiICDCZiIqMwmKJIzc3l7q6OkymCCLMEcTGxpCRnkF2djbV1dVUVNWQkZ5KXGwM5ohIyivKOHLkKDt37jzn5l988cUX/1z2lfZoHW4Eh9Rao5RqcfxE6ZzoQGtjNXhP4xFffPHFF1988cUXX/wz3N+wYQNvvfUmUVHRxMXFsXvPXiIiIti/fz/gISYqhs1bNtFvwHk0O5wMGTqEpkY7Xbp0pbCklDEjh5OTm0NqcgpZ2Vm43Zo9BYeYOGYYHg1Oh4Ntu3ZzrK6e8/r2xNncjNutKa+soKa6FqvNRrcunXA6m3F7PGzbsZukxATaZ6TjwYO72Y3L3UzHjp2YOnXqOTf/4osvvvjnsm+cOdN6iJA0T15F2EHjUatWstK0violvvjiiy+++OKLL774Z7b/j5f+gTkyktra46Slp5PTKZucnFwKS46SmJzIiEGDQoYt+OxLJo4eSVJSgnGsyeFk5doN9OrehU4dvNeU8Xg8rN6wmXEjhxlYs8tNcXEpZZWVjB05FDS43C42bN2B1jBm2GD8v+23lfkXX3zxxT8XfaW9m7E65O1AoJMm5D/4QS0haZwkW1/IEyUE4osvvvjiiy+++OKLf7b47uZmCg4Xk5mRRlV1DT27dwOgtLyC7PaZIb6juZnISDMmZQrx123cSk6nbLLaZxp+dW0daSmpXivILyw+QscO7YmMMKOBivIKmpzNmM0RdMxu/73Xf7rnX3zxxRf/XPS9Z86EJaDCs/gaW8iQrxjfoll88cUXX3zxxRdffPHPMn/tpq0MHTiASHPEN/K19j5412v+N9/R5CQqJiowpA3Ov/jiiy/+ueQrj9ZatRiqgvZ9YXTIU1jvEzQGddIq+II3/o6tXVZHfPHFF1988cUXX3zxz2zf0dSEMpmIjoxqk/WLL7744ot/an2ltUcb4U8Q/ETm191CxgfVG9wqvvjiiy+++OKLL7744osvvvjii98WfZP/1YkS87ZpI45uvcvXSMz77SlUuCO++OKLL7744osvvvjiiy+++OKL33b9Vr7W5I+qfZ1bz/gktYRW0Hpwb4Om1YsZiy+++OKLL7744osvvvjiiy+++OK3Fd+kgiOFBFVASGuggz/v0Magsd4O/lWfFt38DSpMEF988cUXX3zxxRdffPHFF1988cVvY37gzBnt7Ww8n2TTRtqtd2zZEn4k8NrYE1988cUXX3zxxRdffPHFF1988cVvg77JGOLfUTooQNB+0K7yDfAfCvT3PrdMWYX1Ur6doL7iiy+++OKLL7744osvvvjiiy+++G3QN/k7tQykQva1CmsOSU+HjfMd1YF2Hdyq8cULJCm++OKLL7744osvvvjiiy+++OKL3xZ9pbU3hBFSB0UIzuQkm7+n1qBU4LlFh68YL7744osvvvjiiy+++OKLL7744ovf1nwTYeN0K4npoEeM1aDA5u/pTygkMbTRQfsewiOIL7744osvvvjiiy+++OKLL7744rdVX2kdrAUlZey2TNT/ylgpgpPeJzw8xok38cUXX3zxxRdffPHFF1988cUXX/y25YctzoThJw3pbf1mbKD3iQoSX3zxxRdffPHFF1988cUXX3zxxW9Lvin4IGF9/WF0SA//rgJauzJxWN+QWMpoU+gQTHzxxRdffPHFF1988cUXX3zxxRe/LfqmQOfwuIHuKnyY8vcIDqWDUlJh+WnjtW5x2WPxxRdffPHFF1988cUXX3zxxRdf/Lbrm8I7BeDW0NBNhTSo0EhBeWuUka/yDQopRHzxxRdffPHFF1988cUXX3zxxRe/jfomwHcBYhWShjrBCo8Ojqx8L/yXrQmN72sLvFYtHn29xBdffPHFF1988cUXX3zxxRdffPHbqO+9lbbyDw4eEthU+L7SQUmq4AAQTGgVKCAo35DX4osvvvjiiy+++OKLL7744osvvvht2DcFdnXQoxfSIU2hA5X/IQjTgA4mjPN+lBFLGwPDN/HFF1988cUXX3zxxRdffPHFF1/8tuebAge82QQPU/7TdU6WqAodq07QT/mKUMEphDyJL7744osvvvjii98WfVdzM/fddx+XXnoptdXVba5+8cUXX3zxxTcZIXRYC4AKrPiEJhO6BfLQJ+ynlf8hqFHpwCvxxRdffPHFF1988dukv33bdt5//322bd9OaVlZq77Ho/nRj37Erx741Sn3Q622N//flz9nzhzGjR/L+eefz/tz5+Jxu9tU/eKLL774J/OV1rqFjw4LHv76JA0n7BrWSauQE4DEF1988cUXX3zxxW+j/l133c2CDz8EE6xetZqOHTu2CHrkSAljxowDPGzbvp2U5JRT5rcapA3N//fh79+3n0lTJ2HSJvxXaJj+g+nMfmY20dHR53z94osvvvhf5ZtaDCIoetBpPa0HCTRo32NIVx38rIHAxXIUraxKiS+++OKLL7744ovfpvxDBw/x4YIPQcGsR2bRsUOHVv3CwiLvaK1wOpynzD/d9bcVf8mSpSityMxuz3333YfFEscnH3/Cz2/+OY1NTed8/eKLL774X+WbQoKooLwA4zLCwWGCI6rw3bAqVPCz8qUUOK5CkhdffPHFF1988cUXv635Tz/zNAq44YYbuHbmzBP6hw8f9v5erODYsWOnzD/V9XtCfrk/8+f/u/C1x9PCLy07igIe/eMs7rrrLhYvWkrf/n1ZtnwZt95yC01NTb4/ZVpBz7L6xRdffPH/F9/UWkwIWwFChQQI63qC5Fv+pzW4Lt0iefHFF1988cUXX3zx25K/detWPvnkE7KzsnjggftP6hcVFuL/V02PW58SP7yob1v/4kVf0qVLLk888cRZMf/fhX/48GHGT5jAD3/0QxobG42msrIyPAqyO2QDkJXdnrnvzWHo0KEsX7aMX/7yXmb+7GcMGTKEw4cP/89++F5bm3/xxRf/7PVNoI2zdwIBVFjX0PxCQBXWX4Xv6KAcdMtu4osvvvjiiy+++OK3Od/j0fzp0UcBeORPf8JiiT+pX3DggBE1OTX5W/vfRf0bN29GoXjxxRd49513vnf/dNcPiuKiYoqLi1i/bj0PPvig4dfX1wfuhOLz4ywWXn/9dTrm5PDJJ5+yYuVKamtquPH/bqS+wXpW1i+++OKL/7/6JlC+s3d8h3UwHRRc+4eEph9aRmubCtk3IutAJPHFF1988cUXX3zx25a/6Msv2LhpI6NHj2byBRd+pX+srg6TL2xGevq39r+L+u++625+9/vfcd55A1mydMn34peUlLBixUoqKspDag7e/z7f/wkTJ/DCCy8y8fyJrFq5msZG79eVIkwm0KqFn5SUxJUzLgc0b731FldefRX2Jhv5+XvO6c+/+OKLL3643/rdmnzNKuyAVoFjWmN8JUsbrAodrL2aJvy6xC2iiy+++OKLL7744ov/PftlZWU0NjaSnZ1FTExsq/68D+fz5Refc6DgAKmp6YwZM5rrr7+OxKSk/9l3Opu58MILKC4uZuHChfTu3fsr6582bRp79uQzcOAAPvrooxb1l5WW0ehoIiuzPbFxMWf0/NfU1JCSkoLJ1OLeHF/p22w2Fi36ghUrV7F82RKqq2sBsMRZ2LFrJ2ZTRAu/sLAQj3bTNbdroIAT1L9t61Z27dpFVlYWI4YNJz4psUX9LpeLtevWkb93N+3bZ3PBBRdgibO0Wn99fT2bNm3iueefZce2HXzy6af07ds3xPV43JSXV5KVnXXC+svLy1m8eCkORxOjRo2kV+/eZ/3Pn/jiiy9+cA9z4EVoCBWs440VEk4FgODHkDbfs9FiJO0PFoghvvjiiy+++OKLL/5371utDbz44j+YN28epWWlRs+rf3g11107k/4DBhgh337nbR566CECofazYcNa3nzzDf7+978zatSoEL+ioork5ESio2NOWv9bb71JcXExP/3ZT42FGaN+YNGSJWzYsIEEi4XLr7icjh07YbPZQHm45JKLjcqtVhsvvvgi8+bNo6ysFIUJjYerr/4h1113Hf379z/h/DudTiKjIo36t27bQscOncjIyAiZf7fLxfz5H7B+/QbsjXYy0tO58MJJjB8//mvN/4cfzKep2cGPf/hj6uuPM/O6mWzduo3p06fz17/9FZMyBYU4+fu/YuVyrps5M+SUeIvFQnZ2Nv369cUcEWHUpwCb1cojf3yEd+e+Bx7Iys7il7+8lyuvvIqIiIiQz19p2VF++9BvWbp0qfe0fZ/xz3/+kwsuuMCosbS0lP/7vxvZu3evkUNWVhbvvvsOubldWtT/1htv8tTsp8Hjref1119jzJixdOvWjdwuuSQlJmEyRZCdnRX6109Q/a+99hqPPPIIGo1JKbSGu+66i/vuu+8r5/9M+/kTX3zxxT+Rr7RH61A1eAhorVFKtTgevrVoCzvQ2lgdWqP44osvvvjiiy+++N+hv2HDBm659VZqq2tAgULRt19fdu3aafya+PQzT3PVlVfRaLfTu28ftFaMGD6My2dcTmxcLEuXLmHBgo8A+HDBAgYOGMB//vM2b7z1BgX7CkjPSOP55//C2LFjW829qrqaCePGY7Pb2LJ5M2m+ryhpwOlw8Ivbf8GXX3zp/SNcQVxcPJs3bWTcmLFU19bw8ccfMWDAeUYtdTU1aLxQvz792L1nl2/xQvHU00/xw6uvBuDNN99k+PAR9Ordiwcf+BXvzXmPX957L3ffcw9Llizh+htuQAGLFi8ir1seSikarA3ceOPNrF+3FuWfTwVxcRZmz57N1GnTWsz/tu1b2bVrNz/72c/QwPhxYykuLmHLli3cf//9LF6yxHj///2vfzFu/Piv/f5fffXVbNy4Aa1h0KBB/PZ3v2PwwIFEmM0t3nCXy83UaVM5ULA/KIJCo/nR1T/kz0/+2Thzp7y8jKuu/iElxcWg4OKLLmZffj4HDx8iNTWdzZs2YjKZKC0t5corr6C0tAyAvO7dOVhQgAauuPIKnn3mWVDeM7Lef38eN918E5s3beSnP/1ZiG/8HYMiNS2VqVOncOttvyCzXTv+9e9/MenCSXTp0gWA5//yV2b77ugVZ7EQGxtDdXUNAEuXLaOrr9/X+fwbx9roz7/44ot/ZvumlhGD+wYSgxZrOP7uLcYAvgvlaKNPKBPkiC+++OKLL7744ov/vfgLPlpAbU0NSnn/sF6xagWffPJf8vP38adZ3ovz3n/ffXz22WcsWrIYtCbeEsdL/3iJa356DZdffjl/ef6vLFy4kIcffpioyEiuv/4GfvO731CwvwCtoLq6mrfefAu73cbChZ9x/Hi94Ws0v3noIex2G797+GHfwkyg/tmzZ7Poyy9RSnHLbbdy/333MXXKZObOmUtNrfcPckeTE4AFCxZ4F5lQ5HXPY+WKlfz300/Ym7+XWY/MQinNAw/cz6effgZa8/DDD/Pss7PZuWMHc+a8B8CKVSvZu3cPN9xwg/FL8Qfz5qGUwmqz8uMf/Yj169bSrWs3Xn75ZTZt2sjrr/0Tm83GLbfcQklRcYv5f+211/jtb35LbW0NCkhMTEYBd9x+O0uWLkEB3Xt0B2DLtq3f6P2//fbb0R7v/tatW5nz7ntUVlS1+v4vXbqYAwcK8P+6f9tttzF79jMoYO7cOXy4YIHvbfFw++13cKS4hN69e7Nh/XpefPFF/vr3v4HW1NZUc6zOe+vyO++8g9KjZaSlpTF37lwWL1rEe+/OQaMpLio2/KVLlvLMM0+xYsVyxo4dx84dO5g4YQIoTU7nzkydNpV+/fujlaamppq3336HG667npKSEh6dNYt///vfAKxevcq3MKO49tpr2bhxI5s2bmbkyJEAlPsWic6Wnz/xxRdf/JP5Zm9ffxIqSPS91uBf3glu8ScQ8l2roH3j0QipMU4TCvuuq/jiiy+++OKLL774372fnpYBGlIz0pj3/vskJycDEBsbw7Uzf0ZSShJ33nEX7/znbUaPGw2YuOLKK0lJSw3kraB371707t2b22+/g+XLl6JQPPbYY1x22WVojwePhscfe4K33nqTm26+mYcffhiU4r133+OLz7+g34B+XH/ddUGVaeyNdv7x0j8AE6+89BJTpk0BFM0uF5MnTza+arNsxXKGDR9Keno6KEhLS2H+vA9IRsbckAAAIABJREFUTEry1hITx8zrZpKcnMydd97B22//h4sunoZJKVatWs3ePXvRCrRHU1VRyQ033Aho4uLjsNnsbNu2AzT85S/Ps2vXHvr268f7779PXGwsAMtWLsd3/gezn32W556bHTL/MdExoBTFRSWkpqRSVlaKVrB27VpA8frrr9GhYwemTJ7Czu07vtH7P3HiRJatWM5fn3+OeR/MZ87cOcyd+x433fxzbr75ZjIzM433f/++AvBoUDBk2FB+/etfA9DsdPLgQ7/mz088wYxLL2Xh51+wadNGULA3fy8333wLnTt25ONPPwZM5HXPIyUtlaLiQjZt2ow2weuvvcrAQYMBGDFqOM/Ofpbc3FxjFiKjotAeKC4sAiAxKYnhw4ezbPkKbr7pJmZedx1aa9CasvJyKirKye2S61vIM3H44CFAM3/+h2hg8pTJ/HHWI5iUCQ08+ecnWL5iJUOGDv1Gn//grS3+/Isvvvhntm/yPgUOapRXDckkAAaHDU5D+8cGXoR2DEqoZbP44osvvvjiiy+++N+1j9IoBZdcPJ3kpOQWvq3BBmi0gqoq75kf0VFRrfpNjU18/N+P8aB4+OGH+ek1PyXeEk9CYiL19cd5699vgVJ07twZgMOFhfzqwQdQCp5+6hkizZEh/r69+8EDXbt2Ycq0qYBCezRPPP44hw8d8l2PRvHRRwvweDD+UL/okunehZmw+m2NtkD92nvJE6utgZKSYtAKhaKopIiyslLGTzifpYuXgQcOHz4ECj77bCEKePWVV4yFmfz8fbz5xhtoTCgUH8z/gF2794TMf1o779lAe/L34PZ4qKmpMfw/PvIHLrzwQnr17EV6Wjpr1q35xu9/l9xcZj/7HIu+XMTlV1yBB8Urr7zC8GEj+MP/+wP2RjsARSVFRv39+vYzpueyyy4DrSgvK6fR0cjcuXPQmLh0+mVYYi1s376Njz/5L6AYNnQor7z0Egr/WSqKeIuF/gMGhnz+rrzySoYMHmLkn5GRDibYsXOnkXdUTAwaDzW1tb66FMqkyM7OZuCgwaQkpZKemgFo1m1YjwaOlBxBAedPnGhcm0cBObldmDlzJlHRUWfVz5/44osv/sl8k26RgA7KIihM6FMI5E9LBRekQjvpoJHKKMN3VHzxxRdffPHFF1/879z3XuxWs2btGhqsDcYAu93K3PfnMuvRRwDNTTfdiKOpCa01x48fb9WPiY2mW9euKA2vvvoqc+bOYeHCz3hk1iymTp0KHtBKM23aNNxuN/ff90uUUjz44K/o1bvXCerXxMXForWHxsZGbr/9dl599VW0UnzwwXyGDh1CcVEx69evJy09FQWsW7OWhoYGo36b3cbcuXOZ9cdZaKW56aabvIby/0ulZtasWT7aROfOnXnxxb+R2T6TtHTvmS6NjXZsVhtaazZs2IC9qYn/fvwxV1xxOWjv7aL79uuDAu65625KS0sNPyPde0HhLZu2UFVdZbwlP7z6Kq6/7nrj/R80eBA2WyNFRUXf6P0vKyvD4XTSvUcezz37LCuXr+AnP/kJKM0bb/yTa665hvr6eg4fPIxW3s/IG2+8wY4d21DAvn353gwU2GyNLFmyBKU8PPnUk2zesplXX32FWbMe4T///g9z586la7duaCA7uwOgsVlt3HPvPdhs1hN+/tLS0sADq9asMvLOyemEUorDhw6e8PMfn2DxGjYrxUXFxsLeo489xsoVK0I+f2fjz5/44osv/sl8kzLC+x+Coyp/d+NwcGtwyFYb/bkpMK5ErH0HfAPEF1988cUXX3zxxf9+/B9M/wFxlngOFOxnxIgRzLzuOqZNnUbf3n25//77sdkaef75vzBx4vk4m5tRSlNQsP+E/hOPPw54FwweeOABbrn1Vl579VXsNhtawdVXXk1mZib/futfbNq4hQnjJ/DzW29ttf4ePXoAJnbv2s2QocMYPWYMn376X5SCvz7/PIOHDDEWWt6b8y4/+MGlxFssFBQUMGLECK677jqmTZtGn959eOD++7Habfzlub8wceJE7y/QHhNo+PkttzJq1AgA4uLieOXlV4i3JAAwZcpUFIr9BQe4bMYMlNLcc8/d9O7Zk9vvuAObzcbVV1/F66+/xuuv/5PsrCwKCgqYPn06K5Z7Fw/aZ7ZHARGRZjxuDxpQGh588Dch7//AgQPRWrN2zdpv9P7/+te/ZsKE8bz99js0NTaSk5vDE088wbJly0hNS2Prlq289eabVNVUo7Qir3t3lIZLp89g3LhxXDbjchSacePGkZCQABqUVuzcuZPY2FgmT57CzJnXMWbsWJQp8Enr1LkzM2fOBOCjjxYwbNhwHrj/fubMmcP27dtxOBxGjpnt2qEVREdGG5+/Hnm9QMOevfkn/fzndM4BZSLCbObnP7+Z+HgLdquVn117LTNmzOCvf/kLS5cuoaysvOXkBG1n4s+f+OKLL/7JfJMRXp84uP+2hmjf+G+wBcIGrRKFOOKLL7744osvvvjifx9+UlIS77zzDhMmTMRus7F86TL25u8lNTWN66+/nkWLvmTGjBkA9MjLQ6NITUk7oT9i5Eg+XfgpN998M9MuvogpU6Zw/fXXE2uJQ6G46KJpHC4q5Pd/+H+kpacye/ZsIkwRrdZvsVi46qor0UBtdTW11dV06pzD2/95h0svuwyAiy66iEmTJlGwv4CkpCTefuddJpw/AZvNxtLly9i7dy9paWnMvP56Fi9azIwZl3lzNyl69+lF586duffee8nL686js2bx7tvveM/i8W033HADcRYLTXY79959NxdfMh3t8c6nxWLhkUdm8eSTT2GOMJOZmck7775HVnYWNTU1/P6P/w+AoUOH4sH7VaLs7Cz+/uIL/OPll8jISAt+d7nmJz8hPs7yjd//jh07UlZaxkMPPcTgIUO58sormTlzJjf9/GbvV6iAemuD9w8DrXnnvXe59rqZoDTFxcV07dqVe+65l1dfeYXY6BgmTZ6E1nDnXXd5zwBqxS+vqODIkSP88Y+P8Pvf/x5LrAWbzcacue/zwK8e4NJLL6V7zx7MmDGDiooK0tu1o0/vPgweNMj4/OV2yWHo0KG+RZwTf/4nT51KfFwc7du1I697dz7+6L+MHTcOgK1bt/H0M89ww/U3MHLkSAYPHsLLr7zcYu7O1J8/8cUXX/yT+cqjtW41J619nVvP+CS1hFbQenBvg8a3qiS++OKLL7744osv/vfpNzubOXasjuiYaJISk1r4LpeLOe+9x6jRo43bGn9dPyc3B1Bs3LCep55+mjlz5vD22/9hzJixJ61fezxs3rKZysoqMjIyGDxoUOA20T7C7XJRV1fn+4qWd3M6nRyrO0Z0dDRJSUmtBvdoNx63xhxhPun8u9wuzOZI41BdXR1Op5PMzMxW63e5XGzftp0+ffoQ67s2jc1mJTomFrM5ImyCQt9/l8uFOai+r/P+u5qbmTNnDs8884xxPRsUxvz/YPoPeOTRP3LllVdx+NAhDhw8iNlsprHJTqO9idSU1JD6i4qLuGjaRd6znbTmtl/cRv/+A2hubmbXzp18/sUXFBcXo4DDRUUowG6zsXrNGrZv387mTZtZs3YNaO8C1sKFn9M5pxPNzS6cjiYs8fFG9g6Hk6bGJhKTk076+a+rO0ZKSkpIU/7evWzYtJEd23ewefNmDh06BMDNN93M7x7+3Vn38ye++OKLH+4rrT3aaG5FDD0UCGr8n8BJ8BN2CzkQ9EJ88cUXX3zxxRdf/LPar66pZujgIWRmZbF+3Tp27NjJ8frjjBsztk3U/335LpeLwsJCioqK0FqTnJxIly7dSE1LQwETzz+fw4cOcfDgIe8i0Un8opJi7rzjDrZv34FS2n+TJ6Oi9LQMfvOb33DlVVe2nq/WVFSUkZCQRJzF8r3Ub7fbqauro0OHDiH92sr7L7744p97vlnj+zbUCSKF2t5X3tUeTfgtoQKcN6YyRoUHDbwWX3zxxRdffPHFF//c8UtKStDAiOHDABgwoL/Roy3U/335ZrOZvLw88vLyoGUIEhO8Z6w0NBwnJSX1pH5Op84sWLCAtWvWsnHjBoqPHCUxPp4uXbswbNgwevbsiTKZvANaqV8pRWb77BD/u64/Li6OuLg4o1dbe//FF1/8c883G0NU+EAd1KD9GQX9NzmcDIxThCcd3kv5doL6ii+++OKLL7744ot/1vkul5v6+uOkpnqvqVJcVAzA0KHD2kT9Z6rfvn0W27fvoLKymuSU1K/0FYrRY0YxesyoVn3/gLOlfvHFF1/8s803eXPQrQRSIftahTUb6QUnFpaIDrQHl+qvFX+S4osvvvjiiy+++OKfdb7VamPsuHEMHjSY5cuWAZCfnw/AgP79zvn6z2S/W9cuaAWLFy9qk/WLL7744p9tvsnbHiTqFjvhObU46h9vXNTY96z8p/3osLUkFRRPfPHFF1988cUXX/yz0q+traX0aBkeNNfOvI6nn36a9957D4AOHTqf8/Wfyf4FF0xGafjXm295/2BoY/WLL7744p9tvikc9q7o6JCjOniUDk06eLw/l9CvYmmjg/Y9hEcQX3zxxRdffPHFF//s8zt37swTjz+KQmFS8Ne//pWa2hr69etLRrv079yHtj3/J/MHDR5IWloaR8vLcLvcba5+8cUXX/yzzVdaB2tBSRm7LRP1v9Lam4iGk94nPDzGiTfxxRdffPHFF1988c82v6y8nD/+4Q989tlnAPznP28zduzo783/yrht1D948BAVlRWMHjX6tPinu37xxRdf/LPJD1ucCcNPGtLb+s3YQO8TFSS++OKLL7744osv/tnpL1u2jMzMTHr37n1a/K/qLb744osvvvhnqm8szpwY0XivKRzUw9g90aiTpexvC+0jvvjiiy+++OKLL77439b3eDQ/+cmP6Nw5h6eeeup791vfxBdffPHFF//kvtLao0MOfyV8ohT8RbTWqEErUBinAp2wEPHFF1988cUXX3zxxf8f/SNHjzBmzBgUmq1bt5OSmtKm6hdffPHFF//s9E2BBu19UiGvfGjrmwppUKGRQjxfYoDyDdJB48QXX3zxxRdffPHFF/9U+IWFhYDCg6K52fGt/Z07d3LjTTdy9OjRr+UHIpz++X/88T/xt7//vU29/+KLL774Z6tvAnwXIFYhaagWN/YOCqqDm7Q/QHh8X1vgtWrx6Oslvvjiiy+++OKLL774p8A/fPgQaI1Sirpjx7+1v3nzZr78chHz3v/grKg/2P/HSy/z1JNP0tTkOC3+6a5ffPHFF/9s8r230lb+wcFDApsK31c6KEkVHACCCd+pPAShodX5hokvvvjiiy+++OKLL/4p8AsPF3mPaQ8ej/7WvsvlQgG1ddVnRf0tfAXWBuvp841d8cUXX3zxT+abQ0cFXfZGEdjXQRFCkvS3BcaGEMbliANxvfm2Ngniiy+++OKLL7744ov/7fyDBwuMI8kpyV7lW/g2ux0FLFy4ELu9keKiIo4dO44lPo577/0lY8aOPaPq9x93Op1eV8PD/+/3uF0ujh4tBaXJzenC3//+t+/UP931iy+++OKfbb45cNibTXAOyn/1mpMlGlRJSP5h/ZSvCBWoKOxJfPHFF1988cUXX3zxv51fW3fcSCUjLQP4Zn51ZSWPPf44paWl7C8ooLamBjSUlZXz3nvvGf0sFgtHSo4SzH/b+uvq6ti9axeZ7dvTvXv3b1z/nPfm8NnChZSVlbJ3716UVqA8fPrJJyG+Aqw2G/EWyzn3/osvvvjin62+2Yjf8jLCoIJWckKSCd0CeQT1DuvnXblXgWICGYsvvvjiiy+++OKLL/4p8Z1O7/VVzht4HhGREUHNX8//cMEC5n3wAUqB9oDy3T4jNS2dn/70GgaeN5AePXvQoWNHTEp9q/pdzc2sWbuWZUuXsWLlCvYXFOCP+PnnC+nVq3ercRsaGli8ZAl2m43BgwfRs1cvtAd+9asH0EFzptEorZg8dQrnT5xInz596NGjOxZLvC/Bc+/9F1988cU/W/3A15qCG8KNVvIO7hhoaqWY4Jr8DRq0sYokvvjiiy+++OKLL77439DXsHjxIjZu3EisxcKVV1xBx44dsdltAFx80cUt/IOFB5n77lxKjpQQGxtLx04duenGm4iPjzf8UaNGk56WRp/efZg6dQqFxUW8+vKrjBkzmvvuuy800bD6XS4X8z+cz/p162lsbCQtLY1JkyYxfvz4FvVXVFRw0cUXUVNd4x2tNcoEXbt0JTU1lcyMzFbn9O233+bRPz2K3WpH4403bsJ4Xn7pJX74ox+xYuUKpk6ZyogRI7j//vux2Ww8+OCv6N6t+7n1/osvvvjin2N+0DVn/IOC+gWd1tPqpgNt2pdaCOjPVIN3lQijh2qtEPHFF1988cUXX3zxxf8K3+F08Itf3M6Xi75E+e7M9NJL/2DTxk3YGmwoYNTIUb4kvP5nn37Gbb+41fevmd7jChM7t+/k6dnPkJLsvT5Nv7592LJli8GtX7eeV199FavVetL6G6wN3HjjTaxfuw6lvGWgNO/Pm8szzzzLRVOnhdT/7rvvUltdCxri4uN4/rnnGDt2LHGxsUGTEbq9+MILPPHEn0FB167d6NW7F5/+97+sXL6cj/77MU8++WTI/L/55husW78Oq9Xmq/fceP/FF1988c9F32QEwdtTBfoFZxkKEugfuhtWhQp+9qcUOK78scQXX3zxxRdffPHFF/9r+rNnz2bRoi9RwG233cZ999/PlMlTmDNnDjW1tWjA0ew0/A/nf8Btv7gVBdww83qWLFlK/t79DBg4gEWLF/Hkn/98Qj/WEgseqK+vP2H9VquVH//ox6xft46u3bry8ssvs3HzJt745xvYrI3cesvPKS4pDqn/6qt+SGp6Kiiw22y88sor5O/bd8L6V61axRNPehdmZs2axdKlS3jxhReYOnUqGti3N7/F/CfEJ4A2YbdZz6n3X3zxxRf/XPTNrcWEsBUglLe3aqWv9isq6HXIjrEX1Mu7H5K8+OKLL7744osvvvjin9y32+3848WXUErz0suvMHXqVNDgcruZMvlCnwLLly1j+LBhVFRWcs899wLwtxdfYPrFlwBQXlHBjm3bAXjn7be58cb/Iy+vewvf7fKAAo/bfcL6n3/+eXbu2sWAfn2Z+/48YmNj0cCy5cvxf/Vo9uzZPPvcc0b92R2yWL50Ga+9/jrPPfssGzas54oZM5gydSp33303ffv2Nep3uV388Q9/wHc6Di/8/UVWr1rJkaOl7Nq1CzSMGDGyxfw3u1xoNG6355TNf2v1t6XPn/jiiy/+d+WbQOM7s9MYFN5bB+UX2g+0Cuuvwnc0gRx0y27iiy+++OKLL7744ov/Nf19+/ahlaZL1zzvwgzg0R4ef/wxDhw6jPcXbM1HH32Ex+Nhw/q1AFx77bXGwozWHp54/AkjrkcpnnzyqVb9yKhIABqsViOXZrebceMm8NhjfwK8t9lWwEuvvEJsbCyg2ZefzxtvvIHy/VPp/Pnz2bN7d0j9CYmJ3HPPPWzaupU777yLOIuFLz7/nEsuvoT/u/FGCosL0cCuXbvYX1BAalo6U6dOpbS8lIWff+ldmAEe+s1DTJ06pcX8R0dHo5SmsbHRmOF58+bRp09v7221/4f5h7b9+RNffPHF/658EyjfCo7vsA6mg4Jr/5DQ9EPLaG1TIftGZB2IJL744osvvvjiiy+++N/Et8TFojU0NjZyxx138uqrr6CAefPnMXToMIpLitmwfiONjQ40/7+9e4uxqrrjOP5bO5AUxoJDy7UVo62AFTWjWKkTA7UvLYpQ8NZEMAYfTKFAg1zUWBE11hsaTWOCYt8Ym5gWFKx3RmtakKBITDTRCtY4A0SgwBxo6jj/PuzbWnufc0Bqk8r+roSz117rv/6f/zrwtLLZJz7U2dW9Szt27tTChb/W2j/9USbT9ddfL9dneuGF57V69eqSP3zocEmm7q6ubCfvbt+uT/7xsXbu+FiSVKsdlmTa8uYWHfnXET377HrNmDlDktPkST/WWePHy0laMH+BPu3qyvZ/6NBB7du3T99uHaKbblqkTZs26aYlizXwpAF65ZWXdelPp+j9997XW29tlZN03exZWrVqlV568UXdd9+9emjlQ9q8ebNuvPHGut//yJGjJHPavWdP9v2ve+YZHT58WAf+uf+/+v6btxP/3x8+Pj7+V+1HpSSukMRL7pdVPu0pDSRXC7aabdAVN4aPj4+Pj4+Pj4/f3B8zZqwkafu772rChDa1t7drw4b1kjk98uijOr/tfN1wwxyZSU/9oUMXX3yxnKQ3t2zWxIkXavKkSVq7dp0GtrRo7dp1Wr58uZYsXSynSHesWKFbb71VBw4czPyTv9UqOaeeWk1r1z6rzs5OLV6yWH2SfjYlfnJn+vRpkjktWLhQ48aM07x5c9XTU9OVV16h1atX6/dPPqkRo0boww8/0NTLLtPrr78uSeroeEptbW26/4H7tWfPZ/rmoEGaN3ee/vbXTZo8abJqtZpuv2N59tTOpk1bJEljx47VVVdfrRkzf64RI0Y0/P6HDx8mSdqwfr3e2b5NDz/8kF7r7NQpp5yqMWPHHtf3H45X798fPj4+/v/Kd2aWpQjfNGzK/1NUuZXiC7Oxkl4bDefz+Pj4+Pj4+Pj4+MfiL1q0SE8//XQ2Pnr0aN1772910UXtWf45c+Zo965dWr9+g158+SUtnL8g+Zlt0yWX/ES33XabTjv9tMx/cOUDeuThR+Sc0+8ee0yXTpmS5Z89e7ZeS94fEzknM2nixInq6OhQFEU6ePCgli1bquc2/FmmPrW0nKSlS5dq9qxZci6SnLRzx05d84tr1N3dpdNP/542btyodc+s0/xfzY8RJ5179jlqbW3VgUOH9Hbyi1Hjx4/XPffco6lTp8pkWrpkieb+cm7pezpy5LB2de/WiJHDNWDAQEnStrff1vRp02WRpL78+1+zpkPt7e1f279/fHx8/BPRd9ZnVjT8lJb8PGFxvFE5jQbqrTUpeJcOPj4+Pj4+Pj4+/tF8M9PWrVu1e88eDRs6VG1tberXr18Q3Nv7hfbt36dhQ4cm973avXu3WocM0cBvDKjrd3d1qafWozO+f0bgv//ee7pixkz1HK7pvPPadPVV12jmFTPVr3//IM3+ffv1ee+/NWzY8Lq19/Z+oW3vbNNZZ/5AAwYOkCR1dnZq5coHte2d7XGsk6wvPgQ6f8IE/eb25Tr3nLN154o79cTqJ+ScdMEFP9S0adM0dNgwffrJJ/rLG2/o1Y2vSn3SnXet0OzZ12X+LTcv05o1HWppadGMGTN17axrNW7M2K/13z8+Pj7+iehnT87UTxGU2XwXhcHs0/st8DzEVP9UCh8fHx8fHx8fH///z+/9/HP11Hp08uDWr9w3k7q7uvXRjo9Uq/Vo8OCTNXLUSJ06enRei5lWPf647r7r7qA855z61Ccnp6mXX65bbl6mUSO/E/j79u7VoEGD1K9//+Pef8Pwr2D/+Pj4+PiKD2f806E4QHmQSenxTmEmKKNJtUnKRgVJ+Pj4+Pj4+Pj4+PhH9z/bu1fPP7dBH3z4d9VqNY0+5bsaN+5MXfijiRo8aPAJv398fHz8E9WPn5wpFOCKVRxDC5YcZX1pGh8fHx8fHx8fHx8fHx8fH7+ifmRZlEsWWNzNFAsypolDKH5tTbApFwb57yx2Sl9zk4zi4+Pj4+Pj4+Pj4+Pj4+PjV9R3Zn2WDKWHN6XWYPiYW7De34A3i4+Pj4+Pj4+Pj4+Pj4+Pj19FP0rvGhUWz1mWx+qHHENh3ilR4ODj4+Pj4+Pj4+Pj4+Pj4+NX13d9Zla3JrMkuH7FTfYS7qB+8njCVPdlxvj4+Pj4+Pj4+Pj4+Pj4+PhV8SPnZwqSOknBbB6Q1h1OemvjgPTUpxSWTriCgI+Pj4+Pj4+Pj4+Pj4+Pj18xP39yxuLg7NqkWVZ2/cDyTHEkv896+Pj4+Pj4+Pj4+Pj4+Pj4+BX0o2xJ2sleOWzJn6TvdV2yIB3K4+NruWRXiHJJx4vFx8fHx8fHx8fHx8fHx8fHr6AfpUHlRC7omytMB+VZYV0yavm8+bOmJF9eJD4+Pj4+Pj4+Pj4+Pj4+Pn4VfWcWp8hSmpfBr6RJSyPNJOfyayngKOvx8fHx8fHx8fHx8fHx8fHxq+ZHKqyzOoWZ96nsNChvaWRaUFCYLAuw5KOYAR8fHx8fHx8fHx8fHx8fH7+qvjPzNa+orFsuNL3LToqkpr8TXszRuOHj4+Pj4+Pj4+Pj4+Pj4+NXyy8czhTwpinj2S/H5tGNNoSPj4+Pj4+Pj4+Pj4+Pj49fJT/yB1WITdNYEJF2naR6byYuxAa5XDbnZAGGj4+Pj4+Pj4+Pj4+Pj4+PX0U/yoOLefNwV1zm0gg/lXkluUJ9lt1b6bXH+Pj4+Pj4+Pj4+Pj4+Pj4+NX1o2JQDtdDw+aCCRdm8uo2uaxelywKNoKPj4+Pj4+Pj4+Pj4+Pj49fUT+SlLyA2AVluAYnPOZndslN+tqaMH8yl9+70mcShY+Pj4+Pj4+Pj4+Pj4+Pj19RP/4pbZcu9pfkzRX7zrwinZ9A8glz+Qa8eoN7fHx8fHx8fHx8fHx8fHx8/Ar7Ud417zOGLJgKF7r0w8NMkvlE9tyPy3JZtrDY8PHx8fHx8fHx8fHx8fHx8avnR/lAXI2/zKWP6zQr1IVrXYM4l2zC+SUEF3x8fHx8fHx8fHx8fHx8fPxK+kkFZsqer/GaJUR6rdfyucZRlhboSqPCx8fHx8fHx8fHx8fHx8fHr6qfH840WNPcLE8024QfZC54AAgfHx8fHx8fHx8fHx8fHx+/kn5UWiQvu/dYT/0k+YQln0Go+VeTlL8sxyn/f1j4+Pj4+Pj4+Pj4+Pj4+Pj4VfXjJ2esXEA45N3ViT3ulubCx8fHx8fHx8fHx8fHx8fHr6h6dfETAAADZUlEQVQfPzlTwgonQHJxdL1Yyz68+3DMSiNJP82Fj4+Pj4+Pj4+Pj4+Pj4+PX1E/kix7eidP4AqhYX0B6ArxrtgxrwYrh+Hj4+Pj4+Pj4+Pj4+Pj4+NX2PdeCGx5BcFrhf1x7/44m5/GXFgkPj4+Pj4+Pj4+Pj4+Pj4+ftV874XAzrs0OuPJ78unPaWB5Gr+TLpacsUt4uPj4+Pj4+Pj4+Pj4+Pj41fPzw5nwhSSK/7CdjGZK5bvynPJCVA2kxXtCgP4+Pj4+Pj4+Pj4+Pj4+Pj41fSd9Vnx7TcyjzIzOedK48VWmisM1Ftref34+Pj4+Pj4+Pj4+Pj4+Pj4lfSjckY/Ni9MKp3hpOGlNZKSwyHLYkLGc/Dx8fHx8fHx8fHx8fHx8fEr7DuLW1BEkM6k9HinMKN8NBwpNUs+XJ05Sfj4+Pj4+Pj4+Pj4+Pj4+PhV9eNfayoU4IpVHEMLlhxlfWkaHx8fHx8fHx8fHx8fHx8fv6J+ZFmUSxZY3M0UCzKmiUMofuQn2JQLg/wX3jiljwglo/j4+Pj4+Pj4+Pj4+Pj4+PgV9Z1ZnyVD6eFNqTUYPuYWrPc34M3i4+Pj4+Pj4+Pj4+Pj4+PjV9GP0rtGhcVzluWx+iHHUJh3ShQ4+Pj4+Pj4+Pj4+Pj4+Pj4+NX1XZ+Z1a3JLAmuX3GTvYQ7qJ88njDJXKMQfHx8fHx8fHx8fHx8fHx8/BPfj5yfKUjqJAWzeUBadzjprY0D0lOfUlg64QoCPj4+Pj4+Pj4+Pj4+Pj4+fsX8/MkZi4Oza5NmWdn1A8szxZH8Puvh4+Pj4+Pj4+Pj4+Pj4+PjV9CPsiVpJ3vlsCV/kr7XdcmCdCiPj6/lkl0hyiUdLxYfHx8fHx8fHx8fHx8fHx+/gn6UBpUTuaBvrjAdlGeFdcmo5fPmz5qSfHmR+Pj4+Pj4+Pj4+Pj4+Pj4+FX0nVmcIktpXga/kiYtjTSTnMuvpYCjrMfHx8fHx8fHx8fHx8fHx8evmh+psM7qFGbep7LToLylkWlBQWGyLMCSj2IGfHx8fHx8fHx8fHx8fHx8/Kr6zszXvKKybrnQ9C47KZKa/k54MUfjho+Pj4+Pj4+Pj4+Pj4+Pj18tv3A4U8CbpoxnvxybRzfaED4+Pj4+Pj4+Pj4+Pj4+Pn6V/P8AfAYHBGlMHK0AAAAASUVORK5CYII=" - } - }, - "cell_type": "markdown", - "id": "23e74f22-f43c-4f03-afe0-b423cbaa412a", - "metadata": {}, - "source": [ - "![1_Jq9bEbitg1Pv4oASwEQwJg.png](attachment:df72c97a-cb3b-4e3c-bd68-d7bc986353c6.png)\n" - ] - }, - { - "cell_type": "markdown", - "id": "b6a98710-a14b-4a14-bb56-d3ae055e94d9", - "metadata": {}, - "source": [ - "#### The problem lies in the nature of the search. If you just find some keywords, and return one or many documents from vectorstore this way, you will have an issue with the the way you would use to organise and prioritise documents. \n" - ] - }, - { - "cell_type": "markdown", - "id": "5029110f", - "metadata": {}, - "source": [ - "![rag_problem_v2_white.drawio.png]()" - ] - }, - { - "cell_type": "markdown", - "id": "b6a98710-a14b-4a14-bb56-d3ae055e94d9", - "metadata": {}, - "source": [ - "## Semantic similarity search is not magic\n", - "#### The most similar result isn't the most relevant one. \n", - "#### If you search for documents in which the sentiment expressed is \"I like apples.\", one of the closest results you get are documents in which the sentiment expressed is \"I don't like apples.\"\n", - "#### Wouldn't it be nice to have a semantic model LLMs could use?\n" - ] - }, - { - "cell_type": "markdown", - "id": "b900f830-8e9e-4272-b198-594606da4457", - "metadata": {}, - "source": [ - "# That is where Cognee comes in" - ] - }, - { - "cell_type": "markdown", - "id": "d3ae099a-1bbb-4f13-9bcb-c0f778d50e91", - "metadata": {}, - "source": [ - "#### Cognee assists developers in introducing greater predictability and management into their Retrieval-Augmented Generation (RAG) workflows through the use of graph architectures, vector stores, and auto-optimizing pipelines. Displaying information as a graph is the clearest way to grasp the content of your documents. Crucially, graphs allow systematic navigation and extraction of data from documents based on their hierarchy.\n", - "\n", - "#### Cognee lets you create tasks and contextual pipelines of tasks that enable composable GraphRAG, where you have full control of all the elements of the pipeline from ingestion until graph creation. " - ] - }, - { - "cell_type": "markdown", - "id": "785383b0-87b5-4a0a-be3f-e809aa284e30", - "metadata": {}, - "source": [ - "# Core Concepts" - ] - }, - { - "cell_type": "markdown", - "id": "3540ce30-2b22-4ece-8516-8d5ff2a405fe", - "metadata": {}, - "source": [ - "## Concept 1: Data Pipelines" - ] - }, - { - "cell_type": "markdown", - "id": "7e47bae4-d27d-4430-a134-e1b381378f5c", - "metadata": {}, - "source": [ - "### Most of the data we provide to a system can be categorized as unstructured, semi-structured, or structured. Rows from a database would belong to structured data, jsons to semi-structured data, and logs that we input into the system could be considered unstructured. To organize and process this data, we need to ensure we have custom loaders for all data types, which can help us unify and organize it properly." - ] - }, - { - "cell_type": "markdown", - "id": "2f9c9376-8c68-4397-9081-d260cddcbd25", - "metadata": {}, - "source": [ - "![image.png]()" - ] - }, - { - "cell_type": "markdown", - "id": "7c87c5cf", - "metadata": {}, - "source": [ - "#### In the example above, we have a pipeline in which data has been imported from various sources, normalized, and stored in a database. " - ] - }, - { - "cell_type": "markdown", - "id": "bd435d1d", - "metadata": {}, - "source": [ - "## Concept 2: Data Enrichment with LLMs" - ] - }, - { - "cell_type": "markdown", - "id": "836d35ef", - "metadata": {}, - "source": [ - "#### LLMs are adept at processing unstructured data. They can easily extract summaries, keywords, and other useful information from documents. We use function calling with Pydantic models to extract information from the unstructured data. " - ] - }, - { - "cell_type": "markdown", - "id": "5bc1681c", - "metadata": {}, - "source": [ - "![image.png]()" - ] - }, - { - "cell_type": "markdown", - "id": "c6f428a8", - "metadata": {}, - "source": [ - "#### We decompose the loaded content into graphs, allowing us to more precisely map out the relationships between entities and concepts." - ] - }, - { - "cell_type": "markdown", - "id": "34c2227f", - "metadata": {}, - "source": [ - "## Concept 3: Graphs" - ] - }, - { - "cell_type": "markdown", - "id": "7ec176f5", - "metadata": {}, - "source": [ - "#### Knowledge graphs simply map out knowledge, linking specific facts and their connections. When Large Language Models (LLMs) process text, they infer these links, leading to occasional inaccuracies due to their probabilistic nature. Clearly defined relationships enhance their accuracy. This structured approach can extend beyond concepts to document layouts, pages, or other organizational schemas." - ] - }, - { - "cell_type": "markdown", - "id": "ff454731", - "metadata": {}, - "source": [ - "![Untitled-2024-10-08-1656(2).png]()" - ] - }, - { - "cell_type": "markdown", - "id": "5b3b58d3", - "metadata": {}, - "source": [ - "## Concept 4: Vector and Graph Retrieval" - ] - }, - { - "cell_type": "markdown", - "id": "3555db8b", - "metadata": {}, - "source": [ - "#### Cognee lets you use multiple vector and graph retrieval methods to find the most relevant information." - ] - }, - { - "cell_type": "markdown", - "id": "d2d5e844", - "metadata": {}, - "source": [ - "## Concept 5: Auto-Optimizing Pipelines" - ] - }, - { - "cell_type": "markdown", - "id": "6979a010", - "metadata": {}, - "source": [ - "#### Integrating knowledge graphs into Retrieval-Augmented Generation (RAG) pipelines leads to an intriguing outcome: the system's adeptness at contextual understanding allows it to be evaluated in a way Machine Learning (ML) engineers are accustomed to. This involves bombarding the RAG system with hundreds of synthetic questions, enabling the knowledge graph to evolve and refine its context autonomously over time. This method paves the way for developing self-improving memory engines that can adapt to new data and user feedback." - ] - }, - { - "cell_type": "markdown", - "id": "074f0ea8-c659-4736-be26-be4b0e5ac665", - "metadata": {}, - "source": [ - "# Demo time" - ] - }, - { - "cell_type": "markdown", - "id": "0587d91d", - "metadata": {}, - "source": [ - "#### First let's define some data that we will cognify and perform a search on" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "df16431d0f48b006", - "metadata": { - "ExecuteTime": { - "end_time": "2024-09-20T14:02:48.519686Z", - "start_time": "2024-09-20T14:02:48.515589Z" - } - }, - "outputs": [], - "source": [ - "job_position = \"\"\"Senior Data Scientist (Machine Learning)\n", - "\n", - "Company: TechNova Solutions\n", - "Location: San Francisco, CA\n", - "\n", - "Job Description:\n", - "\n", - "TechNova Solutions is seeking a Senior Data Scientist specializing in Machine Learning to join our dynamic analytics team. The ideal candidate will have a strong background in developing and deploying machine learning models, working with large datasets, and translating complex data into actionable insights.\n", - "\n", - "Responsibilities:\n", - "\n", - "Develop and implement advanced machine learning algorithms and models.\n", - "Analyze large, complex datasets to extract meaningful patterns and insights.\n", - "Collaborate with cross-functional teams to integrate predictive models into products.\n", - "Stay updated with the latest advancements in machine learning and data science.\n", - "Mentor junior data scientists and provide technical guidance.\n", - "Qualifications:\n", - "\n", - "Master’s or Ph.D. in Data Science, Computer Science, Statistics, or a related field.\n", - "5+ years of experience in data science and machine learning.\n", - "Proficient in Python, R, and SQL.\n", - "Experience with deep learning frameworks (e.g., TensorFlow, PyTorch).\n", - "Strong problem-solving skills and attention to detail.\n", - "Candidate CVs\n", - "\"\"\"\n" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "9086abf3af077ab4", - "metadata": { - "ExecuteTime": { - "end_time": "2024-09-20T14:02:49.120838Z", - "start_time": "2024-09-20T14:02:49.118294Z" - } - }, - "outputs": [], - "source": [ - "job_1 = \"\"\"\n", - "CV 1: Relevant\n", - "Name: Dr. Emily Carter\n", - "Contact Information:\n", - "\n", - "Email: emily.carter@example.com\n", - "Phone: (555) 123-4567\n", - "Summary:\n", - "\n", - "Senior Data Scientist with over 8 years of experience in machine learning and predictive analytics. Expertise in developing advanced algorithms and deploying scalable models in production environments.\n", - "\n", - "Education:\n", - "\n", - "Ph.D. in Computer Science, Stanford University (2014)\n", - "B.S. in Mathematics, University of California, Berkeley (2010)\n", - "Experience:\n", - "\n", - "Senior Data Scientist, InnovateAI Labs (2016 – Present)\n", - "Led a team in developing machine learning models for natural language processing applications.\n", - "Implemented deep learning algorithms that improved prediction accuracy by 25%.\n", - "Collaborated with cross-functional teams to integrate models into cloud-based platforms.\n", - "Data Scientist, DataWave Analytics (2014 – 2016)\n", - "Developed predictive models for customer segmentation and churn analysis.\n", - "Analyzed large datasets using Hadoop and Spark frameworks.\n", - "Skills:\n", - "\n", - "Programming Languages: Python, R, SQL\n", - "Machine Learning: TensorFlow, Keras, Scikit-Learn\n", - "Big Data Technologies: Hadoop, Spark\n", - "Data Visualization: Tableau, Matplotlib\n", - "\"\"\"" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "a9de0cc07f798b7f", - "metadata": { - "ExecuteTime": { - "end_time": "2024-09-20T14:02:49.675003Z", - "start_time": "2024-09-20T14:02:49.671615Z" - } - }, - "outputs": [], - "source": [ - "job_2 = \"\"\"\n", - "CV 2: Relevant\n", - "Name: Michael Rodriguez\n", - "Contact Information:\n", - "\n", - "Email: michael.rodriguez@example.com\n", - "Phone: (555) 234-5678\n", - "Summary:\n", - "\n", - "Data Scientist with a strong background in machine learning and statistical modeling. Skilled in handling large datasets and translating data into actionable business insights.\n", - "\n", - "Education:\n", - "\n", - "M.S. in Data Science, Carnegie Mellon University (2013)\n", - "B.S. in Computer Science, University of Michigan (2011)\n", - "Experience:\n", - "\n", - "Senior Data Scientist, Alpha Analytics (2017 – Present)\n", - "Developed machine learning models to optimize marketing strategies.\n", - "Reduced customer acquisition cost by 15% through predictive modeling.\n", - "Data Scientist, TechInsights (2013 – 2017)\n", - "Analyzed user behavior data to improve product features.\n", - "Implemented A/B testing frameworks to evaluate product changes.\n", - "Skills:\n", - "\n", - "Programming Languages: Python, Java, SQL\n", - "Machine Learning: Scikit-Learn, XGBoost\n", - "Data Visualization: Seaborn, Plotly\n", - "Databases: MySQL, MongoDB\n", - "\"\"\"" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "185ff1c102d06111", - "metadata": { - "ExecuteTime": { - "end_time": "2024-09-20T14:02:50.286828Z", - "start_time": "2024-09-20T14:02:50.284369Z" - } - }, - "outputs": [], - "source": [ - "job_3 = \"\"\"\n", - "CV 3: Relevant\n", - "Name: Sarah Nguyen\n", - "Contact Information:\n", - "\n", - "Email: sarah.nguyen@example.com\n", - "Phone: (555) 345-6789\n", - "Summary:\n", - "\n", - "Data Scientist specializing in machine learning with 6 years of experience. Passionate about leveraging data to drive business solutions and improve product performance.\n", - "\n", - "Education:\n", - "\n", - "M.S. in Statistics, University of Washington (2014)\n", - "B.S. in Applied Mathematics, University of Texas at Austin (2012)\n", - "Experience:\n", - "\n", - "Data Scientist, QuantumTech (2016 – Present)\n", - "Designed and implemented machine learning algorithms for financial forecasting.\n", - "Improved model efficiency by 20% through algorithm optimization.\n", - "Junior Data Scientist, DataCore Solutions (2014 – 2016)\n", - "Assisted in developing predictive models for supply chain optimization.\n", - "Conducted data cleaning and preprocessing on large datasets.\n", - "Skills:\n", - "\n", - "Programming Languages: Python, R\n", - "Machine Learning Frameworks: PyTorch, Scikit-Learn\n", - "Statistical Analysis: SAS, SPSS\n", - "Cloud Platforms: AWS, Azure\n", - "\"\"\"" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "d55ce4c58f8efb67", - "metadata": { - "ExecuteTime": { - "end_time": "2024-09-20T14:02:50.950343Z", - "start_time": "2024-09-20T14:02:50.946378Z" - } - }, - "outputs": [], - "source": [ - "job_4 = \"\"\"\n", - "CV 4: Not Relevant\n", - "Name: David Thompson\n", - "Contact Information:\n", - "\n", - "Email: david.thompson@example.com\n", - "Phone: (555) 456-7890\n", - "Summary:\n", - "\n", - "Creative Graphic Designer with over 8 years of experience in visual design and branding. Proficient in Adobe Creative Suite and passionate about creating compelling visuals.\n", - "\n", - "Education:\n", - "\n", - "B.F.A. in Graphic Design, Rhode Island School of Design (2012)\n", - "Experience:\n", - "\n", - "Senior Graphic Designer, CreativeWorks Agency (2015 – Present)\n", - "Led design projects for clients in various industries.\n", - "Created branding materials that increased client engagement by 30%.\n", - "Graphic Designer, Visual Innovations (2012 – 2015)\n", - "Designed marketing collateral, including brochures, logos, and websites.\n", - "Collaborated with the marketing team to develop cohesive brand strategies.\n", - "Skills:\n", - "\n", - "Design Software: Adobe Photoshop, Illustrator, InDesign\n", - "Web Design: HTML, CSS\n", - "Specialties: Branding and Identity, Typography\n", - "\"\"\"" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "ca4ecc32721ad332", - "metadata": { - "ExecuteTime": { - "end_time": "2024-09-20T14:02:51.548191Z", - "start_time": "2024-09-20T14:02:51.545520Z" - } - }, - "outputs": [], - "source": [ - "job_5 = \"\"\"\n", - "CV 5: Not Relevant\n", - "Name: Jessica Miller\n", - "Contact Information:\n", - "\n", - "Email: jessica.miller@example.com\n", - "Phone: (555) 567-8901\n", - "Summary:\n", - "\n", - "Experienced Sales Manager with a strong track record in driving sales growth and building high-performing teams. Excellent communication and leadership skills.\n", - "\n", - "Education:\n", - "\n", - "B.A. in Business Administration, University of Southern California (2010)\n", - "Experience:\n", - "\n", - "Sales Manager, Global Enterprises (2015 – Present)\n", - "Managed a sales team of 15 members, achieving a 20% increase in annual revenue.\n", - "Developed sales strategies that expanded customer base by 25%.\n", - "Sales Representative, Market Leaders Inc. (2010 – 2015)\n", - "Consistently exceeded sales targets and received the 'Top Salesperson' award in 2013.\n", - "Skills:\n", - "\n", - "Sales Strategy and Planning\n", - "Team Leadership and Development\n", - "CRM Software: Salesforce, Zoho\n", - "Negotiation and Relationship Building\n", - "\"\"\"" - ] - }, - { - "cell_type": "markdown", - "id": "4415446a", - "metadata": {}, - "source": [ - "#### Please add the necessary environment information bellow:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "bce39dc6", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "\n", - "# # Setting environment variables\n", - "if \"GRAPHISTRY_USERNAME\" not in os.environ: \n", - " os.environ[\"GRAPHISTRY_USERNAME\"] = \"\"\n", - "\n", - "if \"GRAPHISTRY_PASSWORD\" not in os.environ: \n", - " os.environ[\"GRAPHISTRY_PASSWORD\"] = \"\"\n", - "\n", - "if \"LLM_API_KEY\" not in os.environ:\n", - " os.environ[\"LLM_API_KEY\"] = \"\"\n", - "\n", - "os.environ[\"GRAPH_DATABASE_PROVIDER\"]=\"networkx\" # \"neo4j\" or \"networkx\"\n", - "# Not needed if using networkx\n", - "#GRAPH_DATABASE_URL=\"\"\n", - "#GRAPH_DATABASE_USERNAME=\"\"\n", - "#GRAPH_DATABASE_PASSWORD=\"\"\n", - "\n", - "os.environ[\"VECTOR_DB_PROVIDER\"]=\"lancedb\" # \"qdrant\", \"weaviate\" or \"lancedb\"\n", - "# Not needed if using \"lancedb\"\n", - "# os.environ[\"VECTOR_DB_URL\"]=\"\"\n", - "# os.environ[\"VECTOR_DB_KEY\"]=\"\"\n", - "\n", - "# Database provider\n", - "os.environ[\"DB_PROVIDER\"]=\"sqlite\" # or \"postgres\"\n", - "\n", - "# Database name\n", - "os.environ[\"DB_NAME\"]=\"cognee_db\"\n", - "\n", - "# Postgres specific parameters (Only if Postgres is run)\n", - "# os.environ[\"DB_HOST\"]=\"127.0.0.1\"\n", - "# os.environ[\"DB_PORT\"]=\"5432\"\n", - "# os.environ[\"DB_USERNAME\"]=\"cognee\"\n", - "# os.environ[\"DB_PASSWORD\"]=\"cognee\"" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "9f1a1dbd", - "metadata": {}, - "outputs": [], - "source": [ - "# Reset the cognee system with the following command:\n", - "\n", - "import cognee\n", - "\n", - "await cognee.prune.prune_data()\n", - "await cognee.prune.prune_system(metadata=True)" - ] - }, - { - "cell_type": "markdown", - "id": "383d6971", - "metadata": {}, - "source": [ - "#### After we have defined and gathered our data let's add it to cognee " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "904df61ba484a8e5", - "metadata": { - "ExecuteTime": { - "end_time": "2024-09-20T14:02:54.243987Z", - "start_time": "2024-09-20T14:02:52.498195Z" - } - }, - "outputs": [], - "source": [ - "import cognee\n", - "\n", - "await cognee.add([job_1, job_2, job_3, job_4, job_5, job_position], \"example\")" - ] - }, - { - "cell_type": "markdown", - "id": "0f15c5b1", - "metadata": {}, - "source": [ - "#### All good, let's cognify it." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "7c431fdef4921ae0", - "metadata": { - "ExecuteTime": { - "end_time": "2024-09-20T14:02:57.925667Z", - "start_time": "2024-09-20T14:02:57.922353Z" - } - }, - "outputs": [], - "source": [ - "from cognee.shared.data_models import KnowledgeGraph\n", - "from cognee.modules.data.models import Dataset, Data\n", - "from cognee.modules.data.methods.get_dataset_data import get_dataset_data\n", - "from cognee.modules.cognify.config import get_cognify_config\n", - "from cognee.modules.pipelines.tasks.Task import Task\n", - "from cognee.modules.pipelines import run_tasks\n", - "from cognee.modules.users.models import User\n", - "from cognee.tasks import chunk_remove_disconnected, \\\n", - " infer_data_ontology, \\\n", - " save_chunks_to_store, \\\n", - " chunk_update_check, \\\n", - " chunks_into_graph, \\\n", - " source_documents_to_chunks, \\\n", - " check_permissions_on_documents, \\\n", - " classify_documents, \\\n", - " chunk_naive_llm_classifier\n", - "from cognee.tasks.summarization import summarize_text\n", - "\n", - "async def run_cognify_pipeline(dataset: Dataset, user: User = None):\n", - " data_documents: list[Data] = await get_dataset_data(dataset_id = dataset.id)\n", - "\n", - " try:\n", - "\n", - " root_node_id = None\n", - "\n", - " cognee_config = get_cognify_config()\n", - "\n", - " tasks = [\n", - " Task(classify_documents),\n", - " Task(check_permissions_on_documents, user = user, permissions = [\"write\"]),\n", - " Task(infer_data_ontology, root_node_id = root_node_id, ontology_model = KnowledgeGraph),\n", - " Task(source_documents_to_chunks, chunk_size = 800, parent_node_id = root_node_id), # Classify documents and save them as a nodes in graph db, extract text chunks based on the document type\n", - " Task(chunks_into_graph, graph_model = KnowledgeGraph, collection_name = \"entities\", task_config = { \"batch_size\": 10 }), # Generate knowledge graphs from the document chunks and attach it to chunk nodes\n", - " Task(chunk_update_check, collection_name = \"chunks\"), # Find all affected chunks, so we don't process unchanged chunks\n", - " Task(\n", - " save_chunks_to_store,\n", - " collection_name = \"chunks\",\n", - " ), \n", - " Task(\n", - " summarize_text,\n", - " summarization_model = cognee_config.summarization_model,\n", - " collection_name = \"summaries\",\n", - " ),\n", - " Task(\n", - " chunk_naive_llm_classifier,\n", - " classification_model = cognee_config.classification_model,\n", - " ),\n", - " Task(chunk_remove_disconnected), # Remove the obsolete document chunks.\n", - " ]\n", - "\n", - " pipeline = run_tasks(tasks, data_documents)\n", - "\n", - " async for result in pipeline:\n", - " print(result)\n", - " except Exception as error:\n", - " raise error" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f0a91b99c6215e09", - "metadata": { - "ExecuteTime": { - "end_time": "2024-09-20T14:02:58.905774Z", - "start_time": "2024-09-20T14:02:58.625915Z" - } - }, - "outputs": [], - "source": [ - "from cognee.modules.users.methods import get_default_user\n", - "from cognee.modules.data.methods import get_datasets_by_name\n", - "\n", - "user = await get_default_user()\n", - "\n", - "datasets = await get_datasets_by_name([\"example\"], user.id)\n", - "\n", - "await run_cognify_pipeline(datasets[0], user)" - ] - }, - { - "cell_type": "markdown", - "id": "219a6d41", - "metadata": {}, - "source": [ - "#### We get the url to the graph on graphistry in the notebook cell bellow, showing nodes and connections made by the cognify process." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "080389e5", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "from cognee.shared.utils import render_graph\n", - "from cognee.infrastructure.databases.graph import get_graph_engine\n", - "import graphistry\n", - "\n", - "graphistry.login(username=os.getenv(\"GRAPHISTRY_USERNAME\"), password=os.getenv(\"GRAPHISTRY_PASSWORD\"))\n", - "\n", - "graph_engine = await get_graph_engine()\n", - "\n", - "graph_url = await render_graph(graph_engine.graph)\n", - "print(graph_url)" - ] - }, - { - "cell_type": "markdown", - "id": "59e6c3c3", - "metadata": {}, - "source": [ - "#### We can also do a search on the data to explore the knowledge." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e5e7dfc8", - "metadata": {}, - "outputs": [], - "source": [ - "async def search(\n", - " vector_engine,\n", - " collection_name: str,\n", - " query_text: str = None,\n", - "):\n", - " query_vector = (await vector_engine.embedding_engine.embed_text([query_text]))[0]\n", - "\n", - " connection = await vector_engine.get_connection()\n", - " collection = await connection.open_table(collection_name)\n", - "\n", - " results = await collection.vector_search(query_vector).limit(10).to_pandas()\n", - "\n", - " result_values = list(results.to_dict(\"index\").values())\n", - "\n", - " return [dict(\n", - " id = str(result[\"id\"]),\n", - " payload = result[\"payload\"],\n", - " score = result[\"_distance\"],\n", - " ) for result in result_values]\n", - "\n", - "\n", - "from cognee.infrastructure.databases.vector import get_vector_engine\n", - "\n", - "vector_engine = get_vector_engine()\n", - "results = await search(vector_engine, \"entities\", \"sarah.nguyen@example.com\")\n", - "for result in results:\n", - " print(result)" - ] - }, - { - "cell_type": "markdown", - "id": "81fa2b00", - "metadata": {}, - "source": [ - "#### We normalize search output scores so the lower the score of the search result is the higher the chance that it's what you're looking for. In the example above we have searched for node entities in the knowledge graph related to \"sarah.nguyen@example.com\"" - ] - }, - { - "cell_type": "markdown", - "id": "1b94ff96", - "metadata": {}, - "source": [ - "#### In the example bellow we'll use cognee search to summarize information regarding the node most related to \"sarah.nguyen@example.com\" in the knowledge graph" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "21a3e9a6", - "metadata": {}, - "outputs": [], - "source": [ - "from cognee.api.v1.search import SearchType\n", - "\n", - "node = (await vector_engine.search(\"entities\", \"sarah.nguyen@example.com\"))[0]\n", - "node_name = node.payload[\"name\"]\n", - "\n", - "search_results = await cognee.search(SearchType.SUMMARIES, query = node_name)\n", - "print(\"\\n\\Extracted summaries are:\\n\")\n", - "for result in search_results:\n", - " print(f\"{result}\\n\")" - ] - }, - { - "cell_type": "markdown", - "id": "fd6e5fe2", - "metadata": {}, - "source": [ - "#### In this example we'll use cognee search to find chunks in which the node most related to \"sarah.nguyen@example.com\" is a part of" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c7a8abff", - "metadata": {}, - "outputs": [], - "source": [ - "search_results = await cognee.search(SearchType.CHUNKS, query = node_name)\n", - "print(\"\\n\\nExtracted chunks are:\\n\")\n", - "for result in search_results:\n", - " print(f\"{result}\\n\")" - ] - }, - { - "cell_type": "markdown", - "id": "47f0112f", - "metadata": {}, - "source": [ - "#### In this example we'll use cognee search to give us insights from the knowledge graph related to the node most related to \"sarah.nguyen@example.com\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "706a3954", - "metadata": {}, - "outputs": [], - "source": [ - "search_results = await cognee.search(SearchType.INSIGHTS, query = node_name)\n", - "print(\"\\n\\nExtracted sentences are:\\n\")\n", - "for result in search_results:\n", - " print(f\"{result}\\n\")" - ] - }, - { - "cell_type": "markdown", - "id": "2ab3d84a", - "metadata": {}, - "source": [ - "#### Bellow is a diagram of the cognee process for the data used in this example notebook" - ] - }, - { - "cell_type": "markdown", - "id": "31412c52", - "metadata": {}, - "source": [ - "![cognee_final.drawio.png]()" - ] - }, - { - "cell_type": "markdown", - "id": "288ab570", - "metadata": {}, - "source": [ - "# Give us a star if you like it!\n", - "https://github.com/topoteretes/cognee" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": ".venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - } + "cells": [ + { + "cell_type": "markdown", + "id": "d35ac8ce-0f92-46f5-9ba4-a46970f0ce19", + "metadata": {}, + "source": [ + "# Cognee - Get Started" + ] + }, + { + "cell_type": "markdown", + "id": "bd981778-0c84-4542-8e6f-1a7712184873", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" }, - "nbformat": 4, - "nbformat_minor": 5 + "tags": [] + }, + "source": [ + "## Let's talk about the problem first\n", + "\n", + "### Large Language Models (LLMs) have become powerful tools for generating text and answering questions, but they still have several limitations and challenges. Below is an overview of some of the biggest problems with the results they produce:\n", + "\n", + "### 1. Hallucinations and Misinformation\n", + "- Hallucinations: LLMs sometimes produce outputs that are factually incorrect or entirely fabricated. This phenomenon is known as \"hallucination.\" Even if an LLM seems confident, the information it provides might not be reliable.\n", + "- Misinformation: Misinformation can be subtle or glaring, ranging from minor inaccuracies to entirely fictitious events, sources, or data.\n", + "\n", + "### 2. Lack of Contextual Understanding\n", + "- LLMs can recognize and replicate patterns in language but don’t have true comprehension. This can lead to responses that are coherent but miss nuanced context or deeper meaning.\n", + "- They can misinterpret multi-turn conversations, leading to confusion in maintaining context over a long dialogue.\n", + "\n", + "### 3. Inconsistent Reliability\n", + "- Depending on the prompt, LLMs might produce inconsistent responses to similar questions or tasks. For example, the same query might result in conflicting answers when asked in slightly different ways.\n", + "- This inconsistency can undermine trust in the model's outputs, especially in professional or academic settings.\n", + "\n", + "### 4. Inability to Access Real-Time Information\n", + "- Most LLMs are trained on data up to a specific point and cannot access or generate information on current events or emerging trends unless updated. This can make them unsuitable for inquiries requiring up-to-date information.\n", + "- Real-time browsing capabilities can help, but they are not universally available.\n", + "\n", + "### 5. Lack of Personalization and Adaptability\n", + "- LLMs do not naturally adapt to individual preferences or learning styles unless explicitly programmed to do so. This limits their usefulness in providing personalized recommendations or support.\n", + "\n", + "### 6. Difficulty with Highly Technical or Niche Domains\n", + "- LLMs may struggle with highly specialized or technical topics where domain-specific knowledge is required.\n", + "- They can produce technically plausible but inaccurate or incomplete information, which can be misleading in areas like law, medicine, or scientific research.\n", + "\n", + "### 7. Ambiguity in Response Generation\n", + "- LLMs might not always specify their level of certainty, making it hard to gauge when they are speculating or providing less confident answers.\n", + "- They lack a mechanism to say “I don’t know,” which can lead to responses that are less useful or potentially misleading." + ] + }, + { + "cell_type": "markdown", + "id": "d8e606b1-94d3-43ce-bb4b-dbadff7f4ca6", + "metadata": {}, + "source": [ + "## The next solution was RAGs \n", + "\n", + "#### RAGs (Retrieval Augmented Generation) are systems that connect to a vector store and search for similar data so they can enrich LLM response." + ] + }, + { + "attachments": { + "df72c97a-cb3b-4e3c-bd68-d7bc986353c6.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGcAAAISCAYAAABh6KIgAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAeGVYSWZNTQAqAAAACAAFARIAAwAAAAEAAQAAARoABQAAAAEAAABKARsABQAAAAEAAABSASgAAwAAAAEAAgAAh2kABAAAAAEAAABaAAAAAAAAAEgAAAABAAAASAAAAAEAAqACAAQAAAABAAAEZ6ADAAQAAAABAAACEgAAAADwIQMWAAAgAElEQVR4nOzdd5wV1dnA8d+ZuXc7uwtLh4VdEKQIrAVQqQZQE1RAjf21J7HGEmNiYowmeVPeJGqM0RQLYOyFbkwURMWCgAIiIG0XEFjKwvZ675z3jyl35t5dJCbCLveZz4d7Z+aU73nOXLacPXNGaa01zWwaUHEntIqd0xqU8uf1lXB3NaA0GhWsK7F28cUXX3zxxRdffPHFF1988cUXX/yk9I3YgQ4kqvgxGxVXndL+pCDmpim7EV6KW0SruBPiiy+++OKLL7744osvvvjiiy+++MnpK21pHVTtIl5xrVHOEJH/fPyWkBZ3ormyOtZ+8cUXX3zxxRdffPHFF1988cUXX/yk9I3EGv15Yw2DhDEcN3tCGcAZHNJeniDjc8QXX3zxxRdffPHFF1988cUXX3zxk9hX2t4CjQhUp8Ed3olLIXY2eCZh086LaiYNEF988cUXX3zxxRdffPHFF1988cVPVl9prXV8A1R8Kw5hCxT5gvIJyeKLL7744osvvvjiiy+++OKLL774Seob2sulnALa3vUUHajRrTgI2VN+AkGpYCb/gjcKd4qQc1Z88cUXX3zxxRdffPHFF1988cUXP0l9pbWlnVPu4E3C1sLpQ94C5f0B+FLFF1988cUXX3zxxRdffPHFF1988ZPRN9yjlhpmp2mvHt18lkNomG+UKOCIL7744osvvvjiiy+++OKLL7744ievryytdbNt0trJ3HyLDxJLMILmK7cTNGjVUhbxxRdffPHFF1988cUXX3zxxRdf/KPfN5S/pkClCgikxjK47Q4m+sraGdxRn4RsboKKE8QXX3zxxRdffPHFF1988cUXX3zxk8yPzZzRdmbv/SCb9prdfMbElPgzsWNvT3zxxRdffPHFF1988cUXX3zxxRc/CX3DK+LueEsOa+efs+/bVU4B91Qsv/2e2GQVl0s5O7684osvvvjiiy+++OKLL7744osvvvhJ6BtupsSKVGBfq7jkQPN0XDnnrI6la3+qxqkv1kjxxRdffPHFF1988cUXX3zxxRdf/GT0ldZ2FV6V2leDvyUH2dycWoNSsfeEDF9QXnzxxRdffPHFF1988cUXX3zxxRc/2XyDuHK6mYZp3yveaFBsc3O6DQo0DO1l0M5LfA3iiy+++OKLL7744osvvvjiiy+++MnqK639mq9R3m5iQ90jb6QIDvqc8Pg6Wt7EF1988cUXX3zxxRdffPHFF1988ZPLjxucicMPWqWd+u+xsdwtBSS++OKLL7744osvvvjiiy+++OKLn0y+4T9JXF63Gh3I4e4qoLmViePyBupSXppCBzDxxRdffPHFF1988cUXX3zxxRdf/GT0jVjm+Hpj2VV8MeXm8FelfU1Sce3T3rFOWPZYfPHFF1988cUXX3zxxRdffPHFFz95fSM+UwxuDg1uKpCggjX52q1RXnuVUygQiPjiiy+++OKLL7744osvvvjiiy9+kvoG4CxArALNUC2M8Gh/zco5cJetCdbvpMWOVcKrk0t88cUXX3zxxRdffPHFF1988cUXP0l9+1Hayi3sLxLbVPy+0r5GKn8F4Ce0igXga2/gWHzxxRdffPHFF1988cUXX3zxxRc/iX0jtqt9rzakA0nBgsp98WEa0H7Cm/ejvLq0VzB+E1988cUXX3zxxRdffPHFF1988cVPPt+InbBb4y+m3Ok6B2uoCpZVLeRTThDK34TAm/jiiy+++OKLL7744osvvvjiiy9+UvpOC7TGm1/j27RDuO/NbbG0lnNpt4Eq4Sziiy+++OKLL7744osvvvjiiy+++MnqxwZnWihzcDMx4WBB+DNpFZgAJL744osvvvjiiy+++OKLL7744ouflL6RUAhf7b5pPc1XEkvQzmsgq/a/ayC2WI4idh+W+OKLL7744osvvvjiiy+++OKLL36y+vbMGZ3YgOAp31Ezeb/05tYlvvjiiy+++OKLL7744osvvvjii5+kvj1zJgGLGwFC2bmby6u9F99x8JxOOOPsu3WJL7744osvvvjiiy+++OKLL7744iepb4D2Zu/EKlBxWYPtC4AqLr+K39G+NujEbOKLL7744osvvvjiiy+++OKLL774Sez7FgTWsRYElhX2n/cdf8nNX41WwUaKL7744osvvvjiiy+++OKLL7744ieb71sQWPneWhrjiR0njvYknHDetT/FLQ0qPkTxxRdffPHFF1988cUXX3zxxRdf/OTzvcGZYBWg4p+wHV+Zim++SkxzRoC8FK/RKu6E+OKLL7744osvvvjiiy+++OKLL35y+kpbOn71G7SP0lqjlEo4H78lpMWdaK6sjrVffPHFF1988cUXX3zxxRdffPHFFz8pfSOxRn/eWMMgYQzHzZ5QBnAGh7SXJ8j4HPHFF1988cUXX3zxxRdffPHFF1/8JPaVtrdAIwLVaXCHd+JSiJ0NnknYtPOimkkDxBdffPHFF1988cUXX3zxxRdffPGT1bef1hTXABXfikPYAkW+oHxCsvjiiy+++OKLL7744osvvvjiiy9+kvqG9nIpp4C2dz1FB2p0Kw5C9pSfQFAqmMm/4I3CnSLknBVffPHFF1988cUXX3zxxRdffPHFT1JfaW1p55Q7eJOwtXD6kLdAeX8AvlTxxRdffPHFF1988cUXX3zxxRdf/GT0DfeopYbZadqrRzef5RAa5hslCjjiiy+++OKLL7744osvvvjiiy+++MnrK0tr3WybtHYyN9/ig8QSjKD5yu0EDVq1lEV88cUXX3zxxRdffPHFF1988cUX/+j3DeWvKVCpAgKpsQxuu4OJvrJ2BnfUJyGbm6DiBPHFF1988cUXX3zxxRdffPHFF1/8JPNjM2e0ndl7P8imvWY3nzExJf5M7NjbE1988cUXX3zxxRdffPHFF1988cVPQt/wirg73pLD2vnn7Pt2lVPAPRXLb78nNlnF5VLOji+v+OKLL7744osvvvjiiy+++OKLL34S+oabKbEiFdjXKi450DwdV845q2Pp2p+qceqLNVJ88cUXX3zxxRdffPHFF1988cUXPxl9pbVdhVel9tXgb8lBNjen1qBU7D0hwxeUF1988cUXX3zxxRdffPHFF1988cVPNt8grpxupmHa94o3GhTb3JxugwINQ3sZtPMSX4P44osvvvjiiy+++OKLL7744osvfrL6Smu/5muUt5vYUPfIGymCgz4nPL6OljfxxRdffPHFF1988cUXX3zxxRdf/OTy4wZn4vCDVmmn/ntsLHdLAYkvvvjiiy+++OKLL7744osvvvjiJ5Nv+E8Sl9etRgdyuLsKaG5l4ri8gbqUl6bQAUx88cUXX3zxxRdffPHFF1988cUXPxl9I5Y5vt5YdhVfTLk5/FVpX5NUXPu0d6wTlj0WX3zxxRdffPHFF1988cUXX3zxxU9e34jPFIObQ4ObCiSoYE2+dmuU117lFAoEIr744osvvvjiiy+++OKLL7744oufpL4BOAsQq0AzVAsjPNpfs3IO3GVrgvU7abFjlfDq5BJffPHFF1988cUXX3zxxRdffPHFT1LffpS2cgv7i8Q2Fb+vtK+Ryl8B+AmtYgH42hs4Fl988cUXX3zxxRdffPHFF1988cVPYt+I7Wrfqw3pQFKwoHJffJgGtJ/w5v0ory7tFYzfxBdffPHFF1988cUXX3zxxRdffPGTzzdiJ+zW+Ispd7rOwRqqgmVVC/mUE4TyNyHwJr744osvvvjiiy+++OKLL7744ouflL7TAq3x5tf4Nu0Q7ntzWyyt5VzabaBKOIv44osvvvjiiy+++OKLL7744osvfrL6scGZFsoc3ExMOFgQ/kxaBSYAiS+++OKLL7744osvvvjiiy+++OInpW8kFMJXu29aT/OVxBK08xrIqv3vGogtlqOI3Yclvvjiiy+++OKLL7744osvvvjii5+svj1zRic2IHjKd9RM3i+9uXWJL7744osvvvjiiy+++OKLL7744iepb8+cScDiRoBQdu7m8mrvxXccPKcTzjj7bl3iiy+++OKLL7744osvvvjiiy+++EnqG6C92TuxClRc1mD7AqCKy6/id7SvDToxm/jiiy+++OKLL7744osvvvjiiy9+Evu+BYF1rAWBZYX9533HX3LzV6NVsJHiiy+++OKLL7744osvvvjiiy+++Mnm+xYEVr63lsZ4YseJoz0JJ5x37U9xS4OKD1F88cUXX3zxxRdffPHFF1988cUXP/l8b3AmWAWo+Cdsx1em4puvEtOcESAvxWu0ijshvvjiiy+++OKLL7744osvvvjii5+cvtKWjl/9Bu2jtNYopRLOx28JaXEnmiurY+0XX3zxxRdffPHFF1988cUXX3zxxU9K37fmTHNVBJp58CjiTnqvwRurnCwaVHNhii+++OKLL7744osvvvjii38wf9u2bXz66afktc/jpBEnYhhmUsUvvvhHo6+0vXmjQ3YGYpk0uMM7cSmBZhyktU6VLTUIxBdffPHFF1988cUXX3zxxf9if86sV7jl1tuc85pjBwzk9/f/nuMGH3dY/CMdv/jiH62+PXMmrgEqvhWHsAWKfEH5hGTxxRdffPHFF1988cUXX3zxD7rtP7Cf44tOQAGWU6vtK37+859x+RWXf6V+i3UmSf+LL/5X6Rvay6WcAtre9RQdqNGtOAjZy9YEglLBTP4FbxTuMjfOWfHFF1988cUXX3zxxRdffPFb9Ovq6rj7x3dj/23d4onHH2fBvPlMnjwZlOaee37C3Hlzj9r4xRf/aPeV1pZ2TrmDNwlbC6cPeQuU9wfgSxVffPHFF1988cUXX3zxxRc/0a+oqOCSSy5hzZo1oOD4ouN58YUXCKekoLXmDw/+gQcefIDMzEzeWryYjp07H1Xxiy9+MvixBYEP1gJ3ARtNs+vbHFrDNBrVclnxxRdffPHFF1988cUXX3zxA37EinLhBRewfPkKQPPXv/6V008/3bdmBVja4qorr2Lx4sVcfc3V/PSen/7H/kcff8ynaz6la/dujBg+nJycnECW0tLdPPrnR1i1chVNkSYKCwq56KKLGDV6NE2NTcyfN5d+A45liH8tHKChoYF1a9fSv/+xZGRmfGH8R7r/xRf/cPnK0lo3W0BrJ3Pz1R0sFrRfOEjpgwUrvvjiiy+++OKLL7744ouf5P7cufP47s03YQGP/e1vnH766c1Wv3DhQq6++hp69c7nnXfeAeD3v/89O3fu5Pbbb6NHj54BPxKJsP3z7RQWFAb8HTt2cvfdd/PmokVeWAp47IknmDhhAmDP5JkyZQrFW4rtRC9+xaWXXUJRURF3fv/7HNOvH2+88UYg/utvvIFXF7zK0KFDmDdv3hfGH9eDzW9H8fUXP3n8kPIzftEZiQ02IlapUgmJvgbZCW5yQja3RcqfS3zxxRdffPHFF1988e1TaI1lWUSjEbRl/yJpactuhxGr2Z09oJQGDOxXsABDKZQyUAoMZaJMhaHsf609fvHFdzPMmT0breHGm27k9EnBgZn9+/fzwQcfMGnSBAoKC9BKU1tTgwYqKyp46KE/AprTJ51hD874/Keffpp7fnIP8+bPY+jQoaAUu3eXcuFFF7F92zY0cNbkb7Bu7Xq2bNnCnd//PsuXLccwDZ566imKi4tBwS233EL//sewdet2ZsycyTNPP827772HBs488+uB+Gvrann11fmAon///m2i/8UX/3D5IW+qTQs1BW3lq1t7AcRvbp2ek1Bp7Fh88cUXX3zxxRdf/KPDHzlyBLt27aJ3r958/PFHGIaJUsoZQHF+eNUaywKto1hRC600WPZtGdrSgCZiaXuYRSlM064DpTAN+50odjnAvUPf0tqeha61TaFxkuwFVLXl+VrHekGZCixQhrKPFWhleD6AUm5vapRhoCxljwC5PeSkG86gkXI6VSnDS/d3stYKw3BOGaDcH9y1XYeFwlROsmG4iNf/hja8+APtcy+NhoSLGucrZfeT2//e5wCNhUJp+1lA/v7FOacshYXlpWmt7XScY0tz3HGD6dy5S2xmRBJ8/r8q/6OVH6MVnH3W5PhE7rnnHubNm8fFl1zCyJEjUAq6duuGQrN582bcazJo8ICEts6bOw8M2LRxE0OHDkVrzY033Mi2bdsZNGAAM2bOpEuXLqxZs4ZvTJ5MWdk+9pfvp2NeR55//nkAbrvtNm699VYvhGuuvYZXF7zKc889S0lxMUVFwwLxL168GG0ZKKW5+aab20T/iy/+4fJDXhEVX1D7ErTbImJtiidj5RLvrIrP5Xy3Ub684osvvvjiiy+++OK3ab90Vyk11TV8vmMnXbv1IBqNAmBZFgpNNKrROkrU0mRlZVJRUYFlWVjRCFFLoy0Ly7JINQwiTY1oC5RpEG2KoJXGitjjCNrSKAOsqEX8FgqFPBeIDZwoZden8AZ73H5Qhv0EDY1FenoGtbV1RJ34NdrpCo07jpGelk5dfW2su/y97vzwbpqm1w7bx+lPu8/SM9Kpq63D7VXt63938Mjf//YgjjNIglOPdk27Ftc2DINwOExjY6MXq+srA0wzhKUtlFPGUIAzw8g0TbSG1NQUrIiFMhSmEcIIKUKGiTJNTMPEDBmETNObmWS/K28wqaxsPx9+uOywfv7irkRcrrbrp4RSUAr27N7DwEGDAzVXVVUBmmefeYZnn3kGgHPPPRdQVFZWAtAhL4/8/F4Bf/mK5Sxbbl+fU049GYBXX13AsuXLUCjWrV/HtddcS36vfBbMfxVlQP9j+pOX15Fo1GLb9m2A5qKLLw7En5aaxrnnnsucOXMAyM7O9uKPNEW4//7fo5TmmmuvoaCwoE30v/jiHy4/5GbypSZUCCp2b5QKnPUFklhOa+39pSAwmuTFGmuk+P9d3/1BQilFfV0tqekZAb+6thbQZKZnYP9R5+iKX3zxxRdffPHFP/z+nr17aKhvYNDg47jxltvRSoFlYU+60GhlD4IoS6NMRTSqAW3fpqTtOr3blJxXwzTxZmwoE6XsPHZcBsowMAxFJBIhEm0i0hRFWxYayx7IsCy0VlhaY1lRLDRENWBhRXFmgFhELdDaImyEaIo22YMMCkxn9ouhFPYAhoWhTCd+QCl7lo0GS0E4FCbS1GTPTDEMFMqeQaSdY6UxtEKZoDBB2bNlNHY9yjDs27GcQQ7TUN6gh1ImhrJQhmkPiGC3CR1FW5qotrCilj0wFGmiIdJEtClKJBLFikZpikbt28SiFk2RBhoaIjQ2NtAUaaKxoYnGxgZCoTAHDuynoaGB6poa6uvqqKuro7GxkerqGqqrK6mpqaWmppqamlqO6dePigMHyMnJITs3h+x22eTk5NBQX8fmLZspKysjLy8vKT7/X5V/4kknsGDBAn5//wMMKxpG+/YdPH/KlKm8tXixbSv7/9n5558PaNIz0wFoqG+gtqaW9MwMFIqyfWXc9cMfeHHkdewIwEsvvQwYnH32WSxatIhVn6xm9SerQcFJJ57Eb37zfyg0FRXl4AwSpoRTmo0/KzMDrWDt2rWMGDECNPzxT39i46bNZGZkcst3bw7E2pr7X3zxD5cfstN9Yz3aV4MP8jeVuLNueW9RY+fdW0Fcq+AMIOWrT/yvxO/QoQMVFRX2BwSFYRr2DxeG/c09JRxGAykpKXTIy6No2DCOG3wcGRkZZGe3Iz0jndTUNGpra6mvq8MwTWrrau2/lJj2v5BpkpKaRkpaCu1zcsnN7UDnzh3p2rUbaWmpSd3/4osvvvjii5+MfkZ6Bo0NjXzz/G8yYMBx9mwTp1a3pG6uRu22KfgXSI0Tj9ZxdSi8mSM6th/766ZGaZWUvlLOoBIGynAGsrx/gDKcmTI4g1wKA+c2K6UC6/SgFMqw03HzOreW2YyivraeAwfK2LdvH/vL9rFvbxnl5WV8suoT0LDfHZxJgs//V+VfffXVLFiwgNWrVzF61GiuuvoahgwbQk1VNa+/vtAecNR2feedd579VCUNA/oPICsjk+qaau74/h384M47Kd29m+9+97vsKi316l/50UpOPPEEFi1aCCh++9vfooB3lixhV+ku+hT2YdSoUV5sDQ2NaKVQGioqKunQoX1C/EXDTmD+gle5956fUl5+gJKSrcyeNQuAiy6+iOyc9rG+aeX9L774h8uPPUo7kBZsWOCcKx/yFqtL43zvUC0FK/6h+JGoRV19LZWVlWzetJnly5ezctVK9pSW8vHKVZTt20dex47s2buHvA4dGDp0mH1/NdAhtz0l20rYX7afyooKKquqAAiHw/To2ZOysjKikSYaGyM0NDaSmZlOZmY7OnXKI6ddNkopMrOyyMjMICM9nfbtO7B3717KK8oxlcG69esp3bWL3gUFpKWnUdC7NwMGDCQ/P59+/fsz8NgB9OyV36b7X3zxxRdffPHFb37r0aMHe/ft5aGHHmLE6AneeaXh/Q/eZeuWLfTs2ZNR406zzwMo5axdolHKQGtY+sESijcX07Nnd8aM+5qdruz7epTbOLcCHfyR2p6AE4wlPn5/8eZ8pTT280ztW3/E//f87p3z+O4N1/Hiiy/yzpIljD51VFJ8/r9K/4EHH+TBPzwYS8ROUjo2pKedcyuWL6djx04APP/CC9x5x/edgcJYvpNOOons7GwWvfkm3/zmN/nfX/yc/v0HoIGXXnqB4cNHtBj/tm3bGDNmDCiY8eR0xp92WkJEVVXVTJw40R4E0gT8F196meHDT/q34j/S/S+++IfDD8UneZNvvDoDE3LsUVI3t9NOF21edL8EOOUO0jDxm/f37tnLgvnzeWfJEjZv2cKWzZvZs2c3YJCenkZ9QyOd8vLI753PmWeeyahRo9i1axfz58+ne/cedO3amW7dutOtezd65/eiXbscOnRsT/v27enQvgMpKSme77VO2wvz7djxOTt27GTH5zuoqKpk7dq1bN+2je3bt1FSso09e3aT36s3o045hVBKiJEnn8yAAQPIzs4mFApRW1vHjh3bWbt2HXPmziHaFOHDZcsZMvQ4Jk2aRH7PfIYPH86wYcNabf+LL7744osvvviH5mdkZGBFLayoxvvBVsGqd5fw1gO/49QUk4+iUSKluxh34SVOHc4AAAoszaplb/P2cz/k5MIyVq7MJVr1HcadfTVoZxaK5fp2/qVL36V4sz3oM3rcaaBBec9r8gduz2RxQvbe4n0b0U4JZWPOueZ85Szsq2PdmfR+yAgRiTShlLJ/Zk2Sz/9X6d92222MHzeOh//0CG+88ToaRZ/eBRT2LeSss85m/LhxXHnllaxevZqbb76FmTOnEw6ncOEFF9Cze3f+/Je/8vY7b3HiSScx5ZwpXHjhhZSXl3PLd28mGomQmprGhK99jYWLFvLdm27ilVmz6d69e0L8paW7qa+vJyMzi9rqanI75DYbf7t2Wbz66qv8+je/ZtEbC8nIzGLb9q10yMvjxBNPaHP9L774h8NvYeZM4n5zFUH8GFPLW3zulgISH/75z9d4auZTvLNkCeUHDlBbW0dGRgZdu3Vh0MBBFA0bxvEnHM9xxw0hv1cvUsLh/6r/78QfiUb5fNs2duzaycaNmyjZUkxlVSXLli1jy5YtZGVlkZmRwXFDh9KnsIDBgwZT2KcPjU1NFG/azOK332LZ8mVsLdnKiOEjOHX0KLp06czJI09mWFFRUl5/8cUXX3zxxW+r/tChQ1m3bh2//e3/MW7S2Wg0H7y/hE8feZgHCwu8Kn60eROdr/oWEyedgXYLK1j63rt8suBH/OGKPShlooG7nk6j66n/y4RJZ6B9sgLeX76E+5/7PfRLha0NnD/mAi74+sVeDneZX+W0GV/8vruBPN/7C6cGe0YJKF+meB+FO47RTP8lr1/YsysXnDeNNxYt4tFH/sR1110fa9tR/Pk/0v6ePXs4++yzKS0t5Zvnn8+v/+//CJnGIftbt27lzK9/ndqaGkBx/fXXMWToEBobGvlk9Se8/sa/2LZtOxp441//YsXHH3HxRRcfUmufe+457vzBD7j+29/hrh//6CuJ/4tyH+3XX/y274fiT/rzutXEvqQrX2aF+8W+pab4t9iXcTtNofFPDxIfrr3mWl577R/s27uXUaNHM+Wcczj//PMYO258M37zzuGOP2SaFBQWUlBYyKhTRyX49fX1rF+/no0bN7F27ae89PJLKKV4/vkXGDJkKKeccjJXXH4lQ4cNpaa6hrVrP+Vvf/krj/3tMQYPHsy0aVOZMnVaUlx/8cUXX3zxxW/rfnpGOkoZ1NXVEQoZNEUsthWX0D/a5DRDgzKI1NaxYO4cJkw6w2uf0lBSXMyATqWgDCytUCqC1VDJ/HmzmTDxTOwnL1kopfjgvfd45LU/kf/D45w6LGY9Nou8UB4TJp3uDCoop3aNt3aLM9VDaXfwIuZrcN7tsmAvJowCZamAr7VdX6yPLbRS4NSbzL5pmuzeuwdDGZSV7T9sn78j/fk/0n7nzp35+9+fZsqUc3jx5ZdIS8/gF7/4+SH7vXv35p+vvcaNN97AqtVrePTRR+zPgQFYCqUgL68Dd999N/2PPZb+xx57yPG/+uoCFJop06Z9ZfEf6f5vy/7WkhJmz5nD4sWLKSkpZuXK1U4OKCgsoKBXAaeddhrnTDmboqLjj7r4W4sfimWOrzeWPVZxQIprmn8JMxXXPucLvALtLY6jYmlJ7t9++/d49NFH6dfvGKY/OYNJp08k8QK3zfjT0tIoKhpG0bAiUOd7U8Gee+55PlnzCWs++YRly5azevUqXnzxBU6fdAbHn3ACgwYPpLqqhttv/x4zZ/6dZ595mtS0tDYXv/jiiy+++OInk5+WkoZpGkQtTThk0NQUpXvPnhQbYZzFUABNZnYWk848ExT2mhnO4rk9enaneEMe6CoMIqBDZOZkMmnU173Fdd04S4q3UN8j6rVYo6huqGbB3FlMmHQ6aG1zhrIfo+To9uiDs8BunI83oOG21b8NOaMAACAASURBVJlxoknw3VjchVE1CmXhu3Uoef1wyCQzPR3TMKiuqUmaz39r8Pv1O4bX/vlPHn7oD1juo9z/Db9Xr17MnTuP9957j2XLlrF9+3ay2rWjT2Ehw4cP59gBAzCdJ4kdavzbt+/krbfeoV+/fgwaNPCo7v+25i9evJj77r2PxW8tdr+QJmwlxSWUFJew+K3F/PTen1JUVMStt97KFVdc3ubjb21+KD5TDHZ349eN97Ux0AAVrMlXQKNi92ap2Bf6YNDJ59fX1XHBBRewYsUKvve92/nFL/7XV+boj3/IcUMYctwQLr74EkDz5JNP8tlnn7Fkybu8+94SVn68itraGuob6+l/7AAWLn6bjMwM0lJSSEtNJT01xf6Bo43GL7744osvvvhHm5+RmUEkEkEBZiiMUk2MHjseq3QHN7z4PGMyMllZ30D6uNP4xuRz8BaudSodPfY0olXXcuNjDzH62AY+Ks4is+8FfOOsc+yfdR1fK+jRoyepS8JeewFy2+Vw+klfR7mxKtBaowzH0QrlXyw3zsdbXDU2C8T+aycJvteTOubHujK5/ZRQmPUbNhIKmVRXVyfN57+1+L3y8/nNb3/nXrZ/21cKTh01ilGj3Fnxvk0HWnNI8c+e/RKguejiS71yX2X88X6yXf9D8cvLy7nvvnt58ME/eGXOmXIu06acQ1HRUIYVHe/VXbK1hFlz/8GGdWt47umnWblyJVdeeRXTp09n+pNP0rugoM3F32p9re1VZ+zCvmb4v277qnO/KMcapWOtCZx30xTNRubPlYT+WWedRWVlJQ0NDYwZM5bf/e63SRX/ofq7d5fy3vsf8Pyzz7Bt+w7OOvd8OnfszCmjRzH4mIKjPn7xxRdffPHFb0v+1KlTmT9/Hj//2S+46H+u5EBlNcqpa+Hr/6R48yZ65vfi65PP9m6XcZ8IhMJbbPaN1//Jls2byM/P5+uTp3i+NrR3243S8Pw/nuX5JS+SOjQLa2MD43uP5brLb0RpBYayByYc393cEA7mayenwgKMFn3tZLbf7IEMOy25/eMH9qNdTjZozYUXXsjjjz9+WD5/sbTk/P/XGn1tWZx8yimUlpby4Ycf0qVLl6SKvzX6JSUlTJ06jVWrVpGd047bbr2NW2+9laaIZseeMooGHRPwV68vplP7HLp16QDA9OlPcustt1JRWUluTi5vLn6ToqKiNhN/a/ZDOPUCsYS4TcXvK6cat1HKn+gjvIbFRxqMIhn9NWvWcNVVV/Hkk09y++23JV38h+p36dKVSCRCaloa/fr3474f/5BoNMJri5YwuG/BUR+/+OKLL7744rclPz0tDW1BTm4OoZCJwr5dRlkwcdLp6ElnoJzmoLTdBu3eOuP+cq+YMOkMZz0a+5d9O9n5oVdjDzwouHDyJXQM51G8eSPdT+jNNyafbd/NowBtoTA8320/h+DbOTy5RT/WRzrWWVolta8wUIaiprqa9u3bU1NTkzSff/ET/fc/+IDSXaUMH36iNzCTTPG3Nr+8/ADDioqorKhgWNEwZs+aTUFBgZcvIyODjz7dSP/CnmRlpLF+yzays9Lp1qW9V82VV17F1GnTuPLKK5kzew5fO208C99czPFFRa0+/tbuG7Fd/5dfu6wOJAULKvdFB8sGpgAp7eV29/zTIINbcvldu3ZjzNgxVFRUOo+pS674D9V/8oknWfr++5x37nn861//RFsWKSkpvLnwX0kRv/jiiy+++OK3JT+ckoLWFl27dSMlHHJ+off7yttXgPfnQ6e12rDbr7B/CFYolFJOSefFfUq0s6bK1yadwTXX3WQPzChQTvxKqcPi++MXH0Kmori4mMyMDMKpKdTW1ibN51/8RH/u3LloBScNH3FEfEju/o/3x592GpUVlQwZMpS33nyTgoKCgJ+RkcoJg/uxccvnrN+4DQUU9Oya4Ofm5DB71mwuv+IKDpRXMG7sOHaW7m718bd2P+SeUE5rlK+ccr9gKzePm9mfKRaJ/3R8PnuwyPvSjb/SZPRffPEF3n9/KUXHD2Pauefys/t+xpDjjkua+L/Ir6ur43u338627dsJh8PsLSsjPT2TzKwG7rjrxxQWFh7V8Ysvvvjiiy9+W/RNw0SjKCwoIBwKoSyFM23DqQSwQBnaeQSzAZaO1aHBHjDA+YHWPrYnbdie2xSN8i206Mz4sDTu04jQoHTy+IYyQIEyDUwFSikMpVCGQikDQxF7NxVg2OlKYRr2O0phYteBU97w6jFidSqFYSgUhv2uQBkGBqAMxYMPPohhmoSNMHV1tfbHJQk+/+In+qmpKSigR4/uvjzJE39r8u+99z5WrVxFQUFv3nr7LXJyc1v0O3fuwO69++nYPueg/ozp09m+/XPeXLSIG6+7jlmzZ7Xa+NuIb39r8I+c+ze3UV7jmtliaS3n0l4Dmy+ZjP6AgQO55OKLeemll0hPS+OEE0/k7LPO4huTJx8W/0jH35y/tWQrt952K/96/XW0ZXHb7bczddo00tvl8Z1rLqeivJyZz71CbrsM+vTqftTFL7744osvvvht2b/i8suZ+dRT5Ofns69sH6BQ2L/IG4bzC783WOAMDpjOvmGAoTANE5TCNA3QCsNUGCiUYQLYT4pRNmkoE6U0Stnp9sCBQXpGBo1NDSgMTMOwBw4Md19hGCaGYfuGaXp5lDJs13l3jw2lMIwQylCYTl3KUITMEIZpPzraUKZ9K5dhkpOTQ119LUoZhA3THjAxTEKmGcvvtNc07XKGaWKaIQzDPmeaplfGNAyMkP1umiG8x1ZbljNQA1ZUg7aIWs6jrtE0NjahoxZRbaGd85FIk/10Jm3hPrXJNE0sy0IpA6XAME0MQxEyw4RCJinhMCmpaYTDIdJSU0lJTSUtPZ30tDRA232HgXJ+07j++uvZvGUz9fUN9C3sYz8J5jB8/prNk0T//1qjv2b1J7z8ysvccMMNdO7c+bD7Rzr+1uKXl5dTWFhIeXk5z700iwvPm9qiX15Zw/Zduznu2D58tmUbIaU4pjC/WX/tphIiTY2MPWUklRXlLHrzTcaPH9/q4m8rfsjb8yf4yijnuJl2exljSarF5il8CRr7/ld/ziT0o5EoDz30EI/NfIbX5s/mr3/5C7Nmzab8wAG+cdY3GDd2PFdccTm5OblHZfwKxfr161myZAnFJcU8+sijpKSk0r1bN+bMmc0JJ45kX3k51dX1NDU1Ud9QT1pqOgpt/wB3FMQvvvjJ7lc01POnD99h5sfLuWnkGC4fdhLZaWlfyn998wZ2VVVwedHwNhO/+OIfbX7UslCG4qyzzqK6upq9ZftpbGyisbGRxoYGGiINWA0RGpoaaWxsIhJtorGhkYaGRvLy8tixczuRpgiWZRGNRu3Bj7CJqUxCoZA9GyNkYIbDFPYuZMfOHXZLDINwyLQHeUImDfV1zoBNbHAlM7Md1TWVGNoeELIsjWEqe+aKYYLWKFORmZ5JTU012gKw7KdQR0ETtRfRxUIDOe1y2H9gP9rS3uCH1hpLW4TMEA0NDbRr147y8nIsy8KKWkSJoixF1Ip6eRWKSCSKFY1iYaEtjWXZ71lZmVRUVaKjdl6tQWu7j01lorFnzNjr/7qzXyAjPYNoNEpTU5NzmRVoMMKGE4v2LrRCEQqFaWpstG9Z0qCdW5ZSUsLUNzago/baP1pDSkqIuvp6sMDSFoYyCKemEI1E7EEn06CxoZHU1FRyc3OJWtHD9vmL3w71819aupsVy5cz+azJR8T3VXvU+UOGDmHI0CG2T/LF31r82bNmU15Rzvhx4xk8ZBgbt35Ov949E/ympihbtu/khEH9ABjQpxcbSz5n7cYSBvUrCPgln+8iJRxm4DEF3HrrLdx3331MnzHdG5xpTfG3FT82c8Yr5Ku8hdGk5oLQzTXNPdTg3n8VW0iHxECSzO9VWEhNZSXPvjyHTp26gtZ8umYlmzesZ8H8+Xy+bSu7du8hIyOdbt260a9fP/oe05dRp46if79+9OyZT5euXdpE/Hv27mbturWsWbOWzRs3s2z5hyz/aAXDhgxh//79pITTOPGkk/jenT8gIyuL6pp60PbUYPeOvSsvu5D0jHQe+et08nLb0bt71zZ9/cUXP9n9WetW86u3XqeqsRF3Gn+PdrncNXYiE/v0O2R/6edb+dMHb/Phzs9BaY7N68qvJ05mYOcurTp+8cU/Gv2bb76Zv/z5LzQ2NRKNWuzZfyB2+4syMAzAsOdYGIbCUIZd0tk3DOXcGmOiFESiEaKRCE2RJpoam4hGIjQ2NtEUacKyNA2NDVjRCNGoRVM0QjQSxYpEiVpRopEoUStC1IoSiVgYGDQ2NWCh0VF7cERb2ANBziwSy7JIDYepb2yye03FOsxde8U+gPT0DOob6r3ZLxgK05kRZJoGoEhLTyVqRTGMECHDxAzZs2hChmHPmDHDhEIh+5xpD0CFTRMjZM9YCYfD9uyZlBDhUJhwKIRhmK3q+tfWVFNf30B5RTkHDpRTcaCc8opy0tPSueXW79KxU0fee++DVvn5X/zmYmbOnMknn65h3NixjB07lnPOPrvN/v8TX/yW/GlTpjFn7myemP4kV11xJRu2bMfSmgF9egX81es2MfCYQsJhM8BuL93L/gOVDBvQFxR8vmsfByorGXJsIaAo2VpCYUEhBb0LKC4pbnXxtxU/FKjEl6Cxvwm10Ap789Ws4k8Qn0/F78am+SSpH2lotA+0vZI+wKAhRQweUsTZ511EeloK7TIz+HDpu7z79hI+XvUxr85/lccfe5ymSBPhUJjGxkays7Pp168faampdO3WjYKCAgoLCujarRudO3emY8eOtM/NJSe3PampKV9J/NFIhF07d7Jp82aKi4udfyXU1FTz9ttvo4Ce+b3Jzm6HUoq0tHSijRH69hvAlCFFnHn22aAhClTX1KPB+Y+h7VFGrYhqi5CyP7LKndL8H/T/kb7+4oufrP76vbv51Vuvs3TndtAwPD+fK4aN4I9L3+GzfXu4acHLjOiRz68mnU2P7OwW/R2VFfzy7ddZuGUDoMhKSSU7NZXP9pUy7bknuGnkaG4aOabVxS+++EezbxgGkWgUbVmYpkG3TnkkbPF+M0nukWmmQEpKs3m/9PZv+M3G34r81nD9MzOzyMzMIi8v8VrffvttRCO6VX3+a6qqeervTzFzxlN07d6FcChMbU0NHTp04GsTJkAb/v8nvvgt+StXfYwCThs7HoD+hflsK93N6s+2MHRAHwBWrttM7+5dnIGZoJ/ftRPpaal8vG4TBd27sr+igqED+npsQe8CcnJyKNm6lfLycnJzc1tV/G3FDzVXJ8RNuUEFKojL6lP8jY+da+57kB18YpDJ5EejEbQzhVZpfz7br6tvpK6+kcJjBlPYdzCXKUVmZpr9F526Wkp37mDL5i2s/XQ1+w8cYPXq1Xy49ENWfPQRW4u3YJghbwpwpKmJxqYmTMMgLS2N9MwM+hQUUlVVRUpqKulpaWRkZBAOhQinhElLTaOxqYloNIphGNTX1tEUjZKRkc7u0lKqqqtoaGik/EAF9fU11Dc0kpGRQVpqOqGUEOlpqVRV1VBfX09GZibp6enkde5M+/bt6dP3GAYMGsRv//BIoAvj49du77uPbbSwF7UDjMCFbJvXX3zxk82vbKjnT0uXMHPVh6DtwZS7xk7kvEFDAZjYtz8zVi7ljx+8y4c7tjH1mce44vgR3DRiTMDfUVnBw0vfYdbaT0BpslLSuPL44fzPsOGgFI8sfZsZK5fx8NIlvL5pA78+/SwGdOpyxOMXX/xk8K1ohNTUFKqqq2mXnZ108Ysf9A3TJBKNBIsdofjfffdd/v7M01RXVmFZFuHUMCEzxGWXXcY555xDsKf++/6Rjl/85Pa3bt0KCgoKC7zqe3XrQnpKOSvXbiIcNunSIZf2Oe1a9DvmZpMaCrGpZCd9e3eNaw8cXzSMxW+9zcqVKxk3fnyrir+t+CHQvpXe3QpUXFa7ooTKwZmG48uv4ndigfqn/cRKJK8fiUQBK6ip4ECNV8rQaK2prqmjmjoAsvO6MCyvK0UjT8W9O00B4XCYlBST6spq9u3bzYHyCioOHKCyspzaunp2bN9O+YH9lJdXkJqeTk11LTU1taBM9pXtwIpGadeuHXU1NZihMKGUFJTSGGYIDIPM7Fw6detBx44dCaekkZOTS277HEKhMBnp6WRkZJLZLpOcnA7k5LQjMyvbCc3pa18fgiYwl+sg8YOO/T9R9lS7tnz9W6O/es0aHrz/fn72s5/Rs2fPpItf/K/OX7TlM3751hvsqKoE4PKi4dw4chTZKekB64qikUwdOIxfv/0Gs9Z9wsNLlzBr3Wp+OdEeYHlq5TKmf7yM6sYGUDB10FDuGjORnNQ0r567xk5iQp9j+eHrc/msbDfTnn2cm04ezU0jxh6x+I90/4sv/uHym6IWaalp1NRUk52dnXTxix/0DcMgGm1KzHaY/IqKCp599mn+/vdnyMvLo2PHPD744AMuvfQS7r33Pvr1O+Yr9e0zyXv9xW9dPjrR75SXy54DFTQ2NJLdLuML/c1bdzDo2D6s31RC5471dOvU0ctgr6ClHN9tUeuJvy34IXATnNMaAiNBbuWaYL74trS4qcC+V7OOBZasflM0Yt9zbBhoJ0VbGuX49iMUnccvWmCvvG9/7J3PvV2jdh27XJMzS4ZQiE5detCpaw87WE/Bfnyjsuu0V+p3TmjsQRTXcOO1gGZ8d9Pef8SYg/J1pTv7xc3v+YaT/4vj93+wTTP+Q/7v9/+Rvv6t0V/x4TIWLnyDYcOGccsttxx2H0vbixH+G/Fry7Jvc/sv+Ee6/49Gf0dVBT/653yW7twKKIb3yOdHYyYxoHMXX/mgn5Oaxq8mncXUQcfxy7ff4LM9e7jilWe8fCjN1IFDuHnkWHpk5zQrj+jZi9mXXMvDHy5h5sfLePiDJby+aRO/mTSZAR27JE3/iy/+4fataJSUtBSqq2uSMn7xg75hmEQj0cPuv/vue8x8aibvv/cBp556Ch3y8og0NTHlnKk89vgTvvJHd/+LL77rF/TuTcnWrRSXlFBYUODVu3XnHkLKYPDgY/h47WZ6du1Ipw45zfqfbiimd89upIZNhg3syyeflVDX0ESfnt0AWLVyJVppCgoKW138bcU3EipRsUriK9e+Y98yws75hBPOu/anuKVBxQeWfH40EiFqaVD2onEKZ9e5LEpDYFBD4X5C0JZCO+3UKJSyPNRex0g5Axr2sfa1QysdG6nTsbjahO/u6thHt61e/9boWzqKwmD/gQOH1W9oaOTSSy/lpJNOpKR46yHHX1xczJhx47nooguoq6v7j+M/0v1/NPkV9fU8vPRtJjz5CEt3biUrJZX/nTiZp867lIGBgZmW/ZE9Cphz8bXcOHIMyrmXcXiPfGZMvYxfTzqbHtk5B40/OzWVu8ZMZMa5l9C/Yxc+21fK1Oce5+EP36Gyof4rjf9I97/44h8pPxKNkJZiz5xJxvjFD/pKQWwh5a/W37xpM7/+za858YQTeeWVl8nOziErK5NoNMqPf/QjFry6gHOmnJNU/S+++G7pYccPQwFvLV7snS8tK6eysoZj++YDiqJBx7B3fzklO/Yk+Gs2FJPbrh3tc7K880OO7U1TYxPrN2+lpLiEispKctrlUFDQu9XF31Z87zfcYBWgdPA4oTIV33yVmOaMAHkpXqNV3Ink9KORCKCdi2C3QLvl3NuUlO+iae3d8oOyUErHLrZWMcK7L0gHWqe0U5/lDH44oluytfsGoC3nm73Z9q9/a/SrqqrRSvPaq6/ygzvv5MKLLuSMM87gvPPP490l73xlfl19HUuWLGFfWRlXXn0lVRUVhxT/1pIStm/byvvvL+UHP/jBfxx/rPrkvP7/LX/h5o2c++zjPLz0XUAzbeBQFl15o722zJfwbz55DNqyB4CfOu8yRuTnH9SPvdvxj+zZm7kXX8ONJ48BS/Hw0iWc+8zjLP1861cSf7wfCDcJrr/4ye1Hm6KkpadSXV2TlPGLH/RNw4gV+Qr8hoZGnn76aaZMmcK3vn0tphHi9DMm8dJLL5OZkcFLL77I3/76N0aOHJmU/S+++C4x9ZxpaGDGjOkAVNfUUbqnjCHOYsCuP+iYAurq6/mseLvnb976OVkZ6fToFlv02/WP7dOLcEqY395/P2iYOm1Kq4y/rfgh+zfdQBX2KXeGhNaxfV8TVLCpgTRQbiVxdQaiwf9YqWT0I9EoKZZGmQb2JCZ3lomTWWHfsqGcW3ycW5NirzHX/45SYGmUoZwxDoXGma3iPK5WxzrBib/1+1rZt38pwFTBx7u1xevfGvy9u/fwq1//il07d7Fh4wbKyvahUZTu3s1zLzyPtjSGUmRkZbJt2w6f8N+NPzcnl7lz5zJjxnSWvPse6z/7jBEjRnxh/ONPO41HHnmE5194gXeXLKGuro709PQ20/9Hm7+jsoJfvvM6CzdtBAP6d+zEj8eezoievWIlvqTv+wrzpeO/ecQYJhb25wevz2fDvt1c8fIzXH78cG4aOYbs1NT/OP4v8v+T+MUXv634kUiE9PR0ampqkjJ+8YM+RuyJpP9N/7XXXmPFihVMnzGDC84/n3OnncvbS95m3dq1jB4zyl78FPe7xpGL/0j3v/jiu4dTp03l1ttuY/Hit1j85mJyOvfg+MH9mvUH9OnF1u2lrNlQTFZ6Og1NEQb17kn85vp5WRn8/amZgOaqq65qlfG3FT8UNDTx2fyPk4pvkL9FcVU791Np3MVeg4wG5dSWxH40EkFj72tntohtKMBeABhvYEQ7jsL9VqOd5Vhi33gUYOE+mtv1leHMStHKOadRhtcM26D1+wYejWGo/7j/j/T137d3L2X79lHYty+pKSkJfmNjA4888igrPlrBrp07yc/vxZlnnMn555+HGQol+B+v+JhP1n5C9249OGn4SeTmZH9h/HPnzuGVV15xutyu0EDRIa8Dl156CcOGFdH/2P7k9+yJvT5QbHvl5Vf41+v/YtOmTeR1yOPUU07lyquvICcn90v1/7BhQ7n//gcCHRzf/9FIlKrqKvvxfE78kydPZvLkyb7+J8Gvr68jGrHIyspsNdf/aPN3VlYy5ZnHqG5sJCs1hZtPHs0Vw0YSX+zL+vHfAr9s/AM7dmbuJdfwx6Xv8Kel7zBz1TIWbtnALyd+g5E9C9ps/39Zv76hgQUL5tO/Xz+GDBmadPGL/9/3m6IRTNOkqbEpLj054hc/zlfgPsThP/UXLVzInLlzmTd3HpNOn8T5559PQe8Cpj85neKSYq6++lomTJyAtx5ja4hffPFbiZ+bk8Ott93Cfffex3XXX8/CN988qF/QqxsbS7ZzoKqa4wcdc1D/yquuoLKiglNHj2bcuHHy/+8/8EN2XrcRysngllJOfgf0pQCxBsTOePveq1el3SD7dDDIZPSjUQvDmwlij6DZww+W8xcGBdqwp1cpDdh57cEcp04DZ/qVvf4L3mK99gwUu4HKXmQXbQ9yKOfyO7NgtALc2Smt3MdQRC3LqVa12euvtebJJ6dz3733ggEZ6Rlce801fOvb3yE7O8tT7rjjTubOno02NGiDDRs3sXDRIl546QUeuP8B8nv1QqHZsWMnd999N28uWmhfB8d88okn+NqECQeNf+QpJ9OhQwcGDxrEpNNPZ+vWEh5/4nFOHXUq3/veHS3G/8wzz/DDH92Foe1P8EY2snTp+8x4agYPP/wwp556KqAor6jgmaefZv36dRimSV7HPP7n0ssoKCz8wv6PRjV/fOgPjDh5OKeeMopP1qzh8ssvZ//+Mn7+s5/zP5df3mz/7969m6eeeooLvvlNevXuzYsvvMgdd3wPlGLO3DkUDStKuP4N9fVUVVfTqVPHr/z6H+nP31flb6/cT3VjA92zs5l18bWxpyf9l3xfZYcU/8LNG/nl22+wo7KcHu1yuGvcJCb27e/5N48cw8Q+/fjBv+azoWwPV7zyLJcXncSPxk5sk/3/Zf2//fWv/P53v0Oj6NevL+NPG09hYR/GjhlHfs+eR3384v/3fSsaJSWcYj+YIAnjFz/Ot3Ss7n/Tr6qp5InHp/OP1/7Bhg0b6N27FwMHDOTab3+LNatX8e1vf5uioiImTDyNLl26sv3zbcycMQPTMMjMakd9XR2GoTBME8M0UCgMw8Q0DQzTIBwKoy0LwwxhGKAMJ92w/3ZthBSmCqFMg3A4DFgYykSZBiGlUIaJaYYwlMY0QyjDwDAMQqaJMkwMpVDKfpy4GTIxlQHK8HyFImSaGGYIpSxfXxxF1/8w+hptL3+gNVFLO7PvwXJm7WNpLA1aW2g0VtR+Yq4yTPuJYgrv9xelNdrQ6ChgKCzLwv4DtMLSGqXtz0379u1bTfyH4t96y23MfmU2qz5ZxY3XX8eM6dPJyc1t1q+qq6WmtpHePbry0acbGTKwD2HDTPCvuvIK5syZS05uDk8/9VSrjr8t+CH7zT1p/5Kt4toXBGOb/6wmVlNCFMp/0Fxy8vlNkSbC4RDaAqUMnNEZNIZ9SxAKlDN4gX8+ifNZcb4IxZYNcm/4ASw7pzawv8oYoJ373GK30tm53fNtwTeU/VVTaTBNs81e/3vuvZcZM6ZjKIXWitqaWh56+CH+9frrPPf8C7TPyWHZsmXMmTMbFJx/3jcZPWo0NbU1zJo1ixXLlnHmmV9nxUfLqSiv5OKLLqZk21ZAcdbkyaz9dB3FxVv43p13sGLZCgzDYOXKVSxevJjU1FTad+hAVVUVKeEwXbp05aMVHzkLMSs+WPohjz/2BDVVNQltdyOoqa7mrrt+hFJw0vCRnHfuuaSkpbJo0SLmz5vHxRddwpw5s8lsl8mFF1xI2f6yWJ8Ab7yxkEcffZRBAwcG+r++voEZM5/ijEmTKCgoYO/ePTzw4AMMGDCAZ595lisuv5z9ZWUo28nGVQAAIABJREFUND/5yT1MmTqFnOwcSneV8sJLL/Ktb32L9LQ0Ply6jD8+9EfqGur4+hlf54477/C+IP7k7p8wd948L56Skq08+MADzJrzCmjFNy+4kPt++lMyMzOP6q8/X5UP0COrPTkpaXEZE/1Fmzc4gycV9MjJ5q4xk5jQt3+Lfvx2sPjf2LyBm/7xkp1gKHZUV3LTgpd4ePL5TOjb3ys5sFNX5l5yLQ8ve5uHP3iXmSuXM6GwPyN79m6T/f9l/GpnnSk0bNi4mY0bNnkZRo8ezSWXXsKkCZNISU05KuMX/7/vR5oihFJTaHQed59s8Ysf9A3ThEjkS/kffbSSh/7wB9Iz0hk6ZAgK+OCDpYQ/WkGXzl054/QziFhRNmzazGcbNqItsKwoKmSQnppGRWUFVtTCspx/WmNZUbDsX97bZWVRUVVONGLZD+iwLLTWWNrOr9HoqEYpSE1Lo7qqyv7lHgsrqkFrIlbUnumtNdoCrS06de1E6c5S/IMFdr0a54dd+zZ+y0Iri/a5HdhXtt9b70IZyv6lTYGB4XWYoQBlgtJ07tSFvXv2eH+wtLvMXiIA054F7XavOwsgt317yssP4P1UrzXKBLTb/zrh+uW0y6GyssL5PdMCZaKdQQoFWO5V1Rq0wjAUHTrlsXf3Hs93Nzd+hXIGQTQYmpRwKnX1DQFfewMq9m8YWtt/6LW0ol//Y/hs/QbQ2vPd+JUCTLvflKHI75nPjh3ObfnKbpA7SOZ258ABg1i3/jOU+8uy06cajYHBkCHHsebTT+2f21Eow7a6d+vG3PnzDvr5P9L//+L9nNwcps+YzvjxpzFnzhzGnjaOObPm0LugIMHfsr2UokF9AcjKKGDNui0U5ncnNzsTUFSUV3DLbbcyY8ZMAKY/MYOC3gVxDW1d8bcFP6RxPqsepYmN7Piq0YG3AORUGUuMj0Lj3ObiM5wGaVRS+pYVxTQNLMuyb9HBcGzLyaE9X2nlfZFSzgCFRjvjGdprhTfhRGnf5ca500ijfAMh2v7KZx8q2oRvKIOoc85wZ6G0seu/d+9eZs6c7vXjqNGjue473+HHd9/N+vXr+dWvfsH//ea3zJo9C9AMHz6c3/3ud3b9Ci657DLeWbyYtevWETJD3HDDDWzdVsLAAQOZOWMmXbp2Yc2aNZw1eTJlZfvZv38/2tKcM/UcDO2M/roLVWn7wegL33iDfv3se04zMlJBQWVVRYvxL1q0CNBkZmTy5z//mY4dOwCK86ady4033MB7771HefkBLr7sEmqraxg3Ziy33H4r/foewyOPPsqjf36EG264noWvv44RCnv9v337dn75y5+zu3QX99xzDxkZ6YBm+/btXHzxxZSVlZHfuzcH9u2juqaGtZ+u5eRTTmHRmwv5/e9+x7H9+nPGmWeQ1S4TpeCdd5bw7NPPggWDhw5m7Sefsnr1ahoa6khLTefVBfO57v/ZO+/ALIr0j39m933TCyUk1CQQEooKRCkiIKEJikqx4NkIoicdbHcWlOLv7AUPPNshQYXzDrugqEhXQRBC7yWhl9BCAnnLzu+P2d33fZOAlAAJySrJm92Z+cx3Zt4tzz7zzKDB5rlT3dBMm/Yp6X3vx+124fV6ad68eYn2/6UefxecD2p8FUpUmD9r6yaGzPhMlSYku3KPMWTG50y4uTed6zUong8UeetwCv0vLvgJgCGt2jGkZTvG/z6ftxf/woTFC+mclFxE/5CW17N4RzZLdmdjv8Qoi+1/lvxNm7fww48/ULduEnf/5S8kJMZz5PBR1q5dy7Rp/2PhwgUsXLiQ8LBwxk8YT8dOnS4r/RX8C8M3DC9OpxOXy1Uu9Vfwi/Kte7az5bsKCkhJSWHX7l0sy8xEk5Ko6Gjq108iPDwCt8eFpuk4NB3N6UQIgSYEVavFcPjQYWKrVgOHQEN5tNheLEIghUZUZCT5J06gCYGmCwQammkY0TQNTdMRCKKiozien49DCDCPIQSawE5jGVQ0IYiIiiI/Lw9daEjTUODPV3ccyoNGaBohwcG43S71stZue1/7SyQGoJtHpZQ4g4Jwuwqw7D1ew4umaaZRCZSxSGKYXu1SSnRdw+3xIKTEa66oihDKSIRhvjAWGJbBCYEmNNweN1IIpMdjGrgshoGhrFW2QSs0JIS8EycwvF5lGFPWFdM45lU97fXiMT1bHE4nBSdPYkivaVwzMAyvYkgwvMpI5pUSYRhUi41l9+7d1KhRE8PrwTCUTq+ZxzAMDCSVoqLJOXAQD16S69fH4/WqcqXE8Hhsflz16uzcuZPw8BDbuGeVgxQEBQWxbPlyvFKC12vr//TT/9KixTX+X4ZS+/0rzG/WrClz5syhV6+erFyxitTUVEaPGUXf+9NV2AAky9dupkHdeLtsp9NJ6hXJrFi/hfwT0fzw/XTGjhnN9u1ZREdFM+6tcWYg4NKvv7TzHcIuHvOZzb9k4auA8N9TOMUpDlp1E9gVU3qFmVZQXvketwfN4cRwu5R11vQIsepi5xDCnKIm1eDwuZ74mNJKGzh4LAucFPgMIxKkND11bEOL+l3a+ZouwKsuCNayumWt/7O3Z6nVqkwD1YQJ46lSuQrvvfceN3btxv8+/R+DBg5mx46dCAT9HugfUCcNaJ+WRvu0NL6bMYM/li0FBBvWr+fBBx+kTnwdZsyYAUBK/WRiYmLweL0MGTSEdevWUbVyFRLr1iMo2ElWdhapqakkJyfb+j1uLwBer68nC+vfab6B6N27NzExvqjtCGjcuDGNGzema9eu5B/PI71vX0aPHauGiZT8/NMsMDS2bd3GtM8+5667+tjt73Q4EVKwbds2AI4cOQpC43heHhs2rCMiIoKpn3zCvHnzGDlyJOvWrqV169Y4nUEIICs7C4DDhw4jgQ3r1iOAa1o05z9Tp/LII4/w3fQZbNqwBYdTZ+CgwQgk117bmlGjR9MwpQE7d+1E0zTatGmLQLIsM5PKlStfduefC8I3tyW7smn4zxetnEhpuWr785X59a4rmzGm440q/suiBUxYtNDPOFOIrwbRGenflXsMUMYZCQxtdT1vL17I+gN7rQYpoh/zBlcWKr3MtP858KdO+YRt27ZRpWpV+j/QH93hC7T+7MiR/PDTT7zxxhts2bSR/v0f4KWXXuauu+66bPRX8C8M3+3xEORw4nG7y6X+Cn4gPy83j6CgoLPm/98//sGUKVNomJLC88+PpUePngD89NNPfPnll3z3/Xc82P9B2rVtS/u0tOL5/lWzTu4i8KiP/yf5z2Gr4JcTfin+/p2Kn5ralMzMTPqmp/PN11/zyPBHGPXcaHr16sU1LVtz0403EhoabJd19MgRVqxYwVdffcX/pn3G7t07QUKzpk2ZNCmDZqnNzop/qfWXZr7DLv40I1CYAWyQfve1Z7j5ivW3EhUjr5zxvV4vDl3H7fILbqv5nj0s3xFhuUoKAQZ+40ClML3RkQjsqUEC/ycMszTDr+PVQeUMI+zPpZ0v0PAYynigFQpOe7bt7183uHj9n7UjG8tqVbduXapUrgJA44aNSL0mleV/LGf79u3s2bMbCQQ5HKfkT/tMTdu45ZZbmD17DitXrWTlqpVIAS2uac7LL7+MBBy6zt/+9gQ+221xGlVFg4KCkMDx47n2MY/LRcdOnbix24089czTHDhwAFBvE4rbdu/dw/r160lOTubpkSNt/f/576ds3LzJFvDKK6/Qo0cPQkNDERKqVquKlLBo8WKklBw4eDCg/z/5eAp14uPteDaZK1YAEBMTg0SwctVKAPYd2GfXpXZ8PBP/PZHg4CDatb+eGTNmsHrNKvbtU2nCwyP4aPJkgoNDQEB8fDwjR44EJGHh4URFRFyW558Lwd91/Cj2hcc2okjfm0Bh8Xx3SHdddTWgVlF6+/eFrD+4/9R8v/PPn201IyPZnXuM8YvnM7TV9YxfNB8EpMTEFSqjsP6igLLS/ufCT05OQQCHDuYg9MCDDqeT7jfdRLcbbuCRRx/l66++5m9//zt33HEHuh64Wt7Z8E+cOMGaNWtAwjXNr0GI0jf+vV4vGzZs4PChQzRr1ozwiIjLsv8vFN9aremky1Uu9VfwA/mRERG4vJ5iMp+e37J5czwuF78tWsSLL7zE70uWckOXLnQx/0kp+f777/lwUgaDhwyhR48e9OzdixbXNC9V+iv4FfzSyq9UqRJff/kVc+fNZfSo0cybP4+MjAwyMjIYRqFHuYB6S+Lj4xkzZgzp6ennzFcaKbftfyq+45T3pNZcPwT+ZiMr2Wm0BPSmrzL+D4Zmbn+x5Yzv8XjUNB1DouaPBpZpTSNSHWp2r7DKMacVFYJahhJh+JjWG2rl0mhJkkgpVHpROF3p5WuahvS4EcBpbTOluP+zs03jjBRs27qVKVOncs/dd3P4yGHzmHLjLTh5EpAcOXq0WL7b4zGnF8Grr74KwMKFC9mzew/16tWjTZs2Pm+Fs9AfGxuLBuzetcv0eNBYvWYNO7Kz2Z61HQEUnDyJRHL06NFi5RfknwQJu3ftYdOGDdSuU4cpn3zCK2Y977v/Xr74/EtyDh7k8See4I3X3yA4OIjIiEgQcCIvj+ysLPaaBiqE4PXXXiP16lQA6iYmIpEsXLgQUMYZkPy68FcA9uzaY/aBYPKkSVSuXAmAKxtfAcDSpUvo2LETSMnxvDzGjH2eDh3S2LlrJz/+8CO//forSMmdd96Bw+n0b8LL5vxzIfi7jqqpcINbtGNoq3YANBz/AgDrhz0dUMGOk95m97Fj/Lx1I42qxTH+9wWApEFM7Gn5vkvd6fU/3e4Ghsz4nLcXL+Ttxb+YF1gY3qrdqfULlVmco35/vrWV9v6Pio5GIgiPCCMnJ4cRw0fQoEEDhg8bRnSlaECwZetWuyoR4eHmnPtA/rJly1izeg01atagRfMWREdHB/DXrF7DT7NmsXDhQpYs/V0Jl5L/e+EF7rv33iJi8o4fJys7i1q1attlnUr/0aNH2bdvH3FxcSrtn+j3eN0cz82jkr2qnCpsz949/PD9TBb+8gu//vILefl5gKB79+7861//OiV/2bJlrFmzhho1atCiRQuio6LPuP0vdf9fKL7X48XpCMLjcl0Svq26nLZ/aeMLYcY/OUv+DV27ckPXrgDs2bOHWbNm8eHEifRNT6dfejopKSl06NCBm266idzcXL7+6mte+seL7Nq1ix49etK7d08aNGx4yfVX8Cv4pZ2flpbG3HlzmZQxmQ8/nMSKzGXk5uZaaLvYZk2b0qp1a+7q04e04rzVyqj+0sZ3BNxm+ROtB/KAfL5ChShy0K9G6oB1uEgyq0bCP1X54nsNA93pALzqzSFYQcDNMjSEUKse+fo6cG6b9Cs4gKNJM9CuZUCRZhmmP4qhmcYNaTPKAl/TBGYkNhXMqwz2/6FDh8DQSG6QzKaNG3n66Sd5/bXXyMlRQXPDIsJp0aoVLrcHIQSbt2zxr7jNN7xe+89Vq1bRsmVLunTpEpDuXPRXqVIFCeTln+Dbb78lIjKKF/7xDwygazd1k+R2exDAxg0bixEPdeslkJySzMZNm7j55pv9HB4E/3jhH9x79z3cdNPN/OWuu5g+/Rv27tnDK6+8QlK9JOrEx7MjO1tN+TPnNF+dmsptt99uK9E0nWuvvZbFvy1i8+bNxMaqB3pnkDKkeA0VcX/goAEk1a9vK0xOVoFg58yex0svv0Jahw7MnTeHKVM+YcqUTwqdLDXS09Mv2/PPBeGbVxmhSSuZXw0C+U+378qQ6Z8x4fcFTFi8wC53aKvrT8P3VePP9Heun8L4m29jwuIFbDi4DylgQvc76JSU7MtXWL/hU1km2/8c+G53ASAJCQlh5nczWbBwIQsXLmTixA+JiAgj93ieXxmSCeMnmJ5Qaueu3bsYOXKkbShWVZdMnDiJjp06YXg89O3XjwXz5/tqIzXiE+OJiowkOTnJr14qyYKFCxk+bDiHDh3EkNCzRw8effRREhMTbP2G4WXatGlMmjSJ9evX20Vcf/313HPPX+jW7SYkIL1e3ho/nlYtW3LdddexevVq7r+vLzmHc3h+7Fjuv/8+QDBu3DjefONNvzdjgpiYGKrGVOOaa64ptv137tzJs88+G6AdYNKkiXTs2LlM9P+F4nu8HpzBKuZMedRfwQ/kI9R1+3z4NWpU57777uO+e+/DkAbz589n5syZjBs3jujoaDp27EjHjh35/IvP2LNnL199/TWPP/44BW43f7nrLu68sw/h4WHlsv0r+BX8P+NPzpjMqDGjydq+HRAIKy4Fvjs4gfJY356VRY246jRr1syMT1P29Zc2viYLH5AEbKKYv9QDtCy+YoBVps0pUqgskra88b0eDw5dx/AKc9UezKWpbYp1VTP/s0qSZt9KM1q43yBS48aM6YI1jmxRwqyZEIYdO0ZK9T6jLPA1Tfctpa0V6Zyzav/CaS9u/xuMHjWKZ599lrjYmuTk5FC1SlXuvvdufpz5A5UrVaJx40YgoWqVqv4ZbX5wcBCdunRCSMHQoUPZvXt3sfx9+/axc0f2Get36A6uv/56kJJhQ4eRnt6PzZs20fraa+nVsxcAScn1AUlMbAzFbRKNd959h0aNGmKdppKTk/n448nce889ICTXtW7NxIkTkYbG0qVLmZwxGQR07XID4eHhVI+L5ebuN/P3v/2dl196Gd9Sc0r/sKFDQFNvaGNjY2nYsKH9EPXE355i4KCBDBw4MKD9Q0KCGTF8BAi1dOK///1vRo0aS58+fUhrn0bv23vTuWMnABo2aEBiYt3L9vxzIfjWn9YKbKeoHghJ53rJTOh+GylV4gBBStVqTLjldjrXS/kTvjxj/V2SUvj67v52XhUImFPr15Q4/2LLUvufC99VoKaJOh1Ormlxje+QlOQdV54jAujdqxcLFv5Cx04dbf7e/Xv5y11/sY0T3bt3p27duhhS8MTfnkBKg9+XLGHB/Hl2zUaPHs2SpYtZMH8+M2bMoFWr1gH6Z0yfwb333EPOwYP2+f+br7/mpptuYvXqNQDs2beX227rzd+f/Dsb1m0AoGHDhoSHhzN//nz++vBAnhn5DF6vh/0HDjDuzTcYM2YMOTkHuf/++8k5dACk5Nlnn+XI0VwKCgp484037etPnz59mDXrJ/74Yxk//vAD/fv7xpDV/nv37uEvd/+FOT/PCdAO8Njjf8OQRpno/wvF9xpegoPVUtrlUX8FvyhfM+MElgRf0wRpaWm89NJLLF68mPHjxxNdKZpXX32VlAYNeftfb1O1ahUmfvgh/3xrHFlZWbRo0ZyBAwcyd96cS6LfV0z57P8Kfunkz507l7qJdUl/IJ2s7dtJSEhg+PBhzJk9h63bslm2ehPLli1n0qRJPDNyJE2aNuXIkSOMHjuaeon1GDNmDEeOHCmz+ksr32GXL/wz+qcyP1vWHolpVCrs2uzLVzSyReFUwvzgl7ac8T1ujzlv37Dn+luBb1UJfr0kJBhqvpqU5ptpKXxhHQQIWchbRZoxYfAbAJj7hDDjN8iA6pV2vqZrGOaShrrQym7/C4FDd/Dgg/3p168fOYdyiKkao6L/m9zXX3+Nr776ijvv7HNK/nPPjWLRb4vZu28vrVtfy4CBg2hy1ZW4XG5WrVrFTz/9pKZKAVlZWWes/+mnn+aPP5aSl5fH1amp9OlzJ7f1vl3VT0L//g8QGR7Otddd56cxUH9y/WRmfj+Tffv2ERoaak9N8Od37tyJNWtWsWnzJpo1VYHEnn1uJEOGDsHpdAAwePAgUz8B+tu2bcfmzVtwOlS6b7/9hoICFyCpFB3Fk39/stj2H/7ICIaPGIZmLkX5QL/0gJ6aPDmDn2f/TKtrWwZoutzOPxeCL83fRa9ZxfM7JyXTOSmlUNrT8M3f1qWvxPWb5yRppzw7/Ze6/c+F73arpY7dHjeNGzXm559/ot8D/cnOzkICjz/2GA8P+CvBzpBAvoRBgwaTlZ1Nw0YN+WjyZOLiqrN69Sq6d7+ZnIM5HDp4iBYtWtCiRUuWLFkCwMQPPyQmpirdb7rZXBklUP+4cW/Y7RBXvTqvv/4GH3zwPnPnzGPgwIHM/nkOS5b8TubyTCQQHhHO+x+8R9s2bTAMyZw5sxk9egyffPwJuqbz+OOPA2oluLvvvoeDOTkkJiRw8EAOefnHWbd2Da1bt2bosKGMHz8eISTTp08nPr4ONWvWIDw8okj7IyRDBg8hKyubRo0a8tHHHxEXG8vq1Wvo3v0mDuXkcCjnkDndsnT3/4Xie9wegpxBarWmcqi/gh/IV6uSaheM36BBCg0aNGDggAGcPFnALwt/YeYPM3n1lVepUqUKaWlpfPjhh+QcOkRGRgZPPP43Hvrrg9x++x1UqVLlsm//Cn4FvzD/yNHDPPLIo2RMzgAJCQkJjBv3Jj179grg5xecZMOmHTRt0Yb0vuk8//xY5s2dy3OjRzN/3nxGjxnNuHFv8uWXX5GW1r7M6C/tfIeVyO9okQJBFDs3qnjHHb+KSPNBHGlXWeCv1VfJ8sb3GAa6OXVDec6Y6YRAGTawy5Y+X2t7qo/aofzwhTm/yH9FFCkkGFYgXatc0+xhmCNMCIQhTf1aqedrQsPAay9hWDb7X6ilCnUdEOiaTmy1akXyV6lSlQce6O8rqxh+YkI8M2d+z+DBg1i5chXvvvuu2RcqvTQkMTExjHzmabuGZ6K/UaNGZGauID8/33ZZtE5VCOVdc/c99/jtLV4/QPXq1U39xfMjIyK5OjU1IH/lypUJ3Ipvf6e9sowkKCiYoKDggFzFtb9azlM/pf7tWVmAoFmzwDpdbuefC8EXiIDjvpXdTt3/Z8NXHyUN//lCId3m74DCpWlsUcdjIyN9pZ6Kb1fQ/nBW+gvXuyz0v9ulPBtOniwAoH5yCtOnz2DEiOHMnj2H119/HafTyYCBAwP4M777nj+WLgEE69et48EHH6JOfDzfTZ+OAOqnJFM1pipCCP776X/48puvefXlV9mRvYMhg4cyvtG/eOKJx+nUoaNahQ+Bx+Nh4+bNNuT119+gbdu2NGvWjG433kh2djbffPsVcXHVTT0GU6dOoVmzpoBA0wSdOnWmYYOGXNe2DRkZGdx///0IJMfz81i/fj0R4RF8/PEU5s2fz7PPjmTtmrW0bn0tjz/+OG3btuXV115l6ZI/ePXV1/jwwwyGDx/GnXfeSUhoqK3/uxnfsWTpHwgk69ev58H+/alTJ54Z332HQJCcrFbJKwv9f6H41pK+6hxQ/vRX8AvxBei6flH4ISEhdOrciY6dOiKEYMP6dcyeN48333yTZcuW0759ewYPHUpu7jE6dexEWofreeihAcpb+XJt/wp+Bd+Pv3zFCu697z7Wrl5FpUpRjBo1lhEjhgcwrS0sOMS+/zpw6DDVqlamfVoa8+bOYe7ceYwePYp58+bToWNH3hr3JsOGDS/1+ssCX1PH/YiyyIciVS2818pv3YvbK+7YD+uFbEnCr7xyypdeD5pQBg3LMAMgDKvTJfY0IAqVZ1PVUSnMHIZiS6n62xcbQLPlSKSpXyKlumiWFb7m0DEMQ8WbOc/2v1T9Hx4eCgJyjx4pEX58fDxff/stU6dOZcTwR+h9+230Te/H2DFjmTnzB5YuXUrv3reftf6gIGfAXNLL7ft3Kv7WzVsRSJo0ueqS8C+1/nPl7zp2lJ82b1QXngC+LDm+PbVNBB63shvmbitQlR8/IapyQPpi+VKVYZ1/zkY/lM3+DwkNwZCCvLzjystBQnR0FP/+9wcMGzYUgJdfeonHH3sMl9ttF/HZZ9MQCG655VbCIiJYuXIl07+dgYHk6mua894779p8XXdye+/bWTB/Pi+88H/EJ8Szcf06Huzfnxu63sCChb8AsGf3noD2T0lRXlURERH07NEDBGzevMUeVwnxCTRr1qyI/rz8EyCV/sOHD4PU1PVIwpQpH5OQEE/b61qDlKxYucLOf+211/L5tM+ZnDGJFi2ak5NzkOeee47m11zDR5Mn2z3y2WefAZJbb7mV8PAIVqxaxYwZM5AGXN38Gv71zrtn3P6Xuv8vFN/r8eJwOJRxphzqr+AX4ktwWDFnLjK/QYNGDHx4AP/9739Zs2Y1d955B4dzDvLJxx9TLbYaR47mMnDgAO666y5+nvXzhdFfKFu56/8KfqnhZ67IpGNae9auXkVyg4Z89uV0n2GmGP6KdVtIrBXH1Vcks//QUbbv2mvz09LSmDN3HqNGjQIJw4ePID29X6nWX1b4jsJgZdGRAXvVX+Y+Nfek2IpbuwMP+9JL1A2SFIHM8sj3mEtpWwYMYWaU5o2pEJpvmo8UqGi5qJsdYU6OB+UpYVdX+p5JQHmvSCtGQyDfYlpjoSzwdaEhvV6Edv7tf6n6v3pcDSSSvfv2Fcl/rnwNQZs2bWjTpg1FNxnw6VLrL238/fsPULVqFXtp4HUb1hMWHka9pPrlQn9J8D/OXML4xQvILThJRFAwXQpPVSrm+39OfAlIyfrh/is/qa3h+BcBWWhVKF/uM+JrgBD8viuLlrUTzlj/pW7/8+HHxsban/fu20udOvEIJLru4LHHHuOKK6/gr38dwLTPpnHs6FHeeecdEBqz58wGAa+++goAC39ZyN7du6lbL4m2bdr4VUKd0bOzsolPSOCeu+/lzj53Mf3bb3nzjTfYtGkT995zD//85z+JjYs1rw0S0HjxxZd49bVXAI01a9cgpFopLiamGgjI2pHNhg0baNCgAQBej5ulf/zBU0+qKY2Dhwxm//596joEvPL6a6Q2uxoJJCQmIoCFCxba+rdnbSchIZG0DmmkdejA4t+XMG7cG/zyy288+9yzbNq4kdGjRzN79hyl/bVXkdJcJW/vHpLq1uW6Nm2LvMQozf1/ofgejwfdoWMY3pL7/pch/RX8QL6UEnT1ku5S6g9yBtHlhhu44YYbeOTRR9mwYQOzZ88m99gxli1fzt+GAMDDAAAgAElEQVSfepI6b9di6n8+JTQkpMT55bX/K/ilg79ieSZpHdM4evQo6X378sab48jel0P27v3E14wtwl+3ZTsxlaOpUkl5Hl9RP4H1W3awfls2DevG2/xnn3uOqKpxjH32KT6anMGKFZnMmTuHStHRpUp/WeIXWpDYsuEIfM90fvsA6Ue2LUX2j+I2YR8U5g9xqqTliO81vAiHZgdJU2UYPpYh1V7TLVhNGRCgCbtO0l5dRE2V8b8JsuqknKNMDxThq4QU2EaSssLXNB2vlD7jTxns/4SEeAQa38/8/pLwL7X+0sTPmJxBixbNuffeeykoKCD32FH27d3LNdc0D1j283LVf778nUeP0vfzT3hh/ixyT56kY1J9fu43mIbV4i4MX4D/FStAvyFPUfCZ82tHRgOSCYt/oe9nn7B4Z9Zp9V/q9i8JflycX18ZRhF+t65d+WHm90SERfDjTz/x3Q8z8Xo99vl/1apVhISG0qVTF+67vy9t27YtdHciyMxczvXXX8/w4cNYv34dToeDXr16MXvuHIYPV2/shg0bxp5duxBA3br1QEq++OJzmlx1FU2uupLZs2Yjga433kiDBim0ue46pAE33HADt91+B33u7ENScn369OnD1m3buOeee3ji8SfwetX1IzU1lTvuuN3Wr+s6rVpfS86hHDZv3ozH4yHt+uvp1bMnc+bMxfAatGrZgv9MncpHkzMQUvDxJ5/w66JFdp+sWLGK0NBQOnfpwv333k+btu0KGWb+vP0Dt7L1/T8d3+PxoGt6oFfsReT7tgp+aeBLKXE49FKnv0GDBgwcOJDPPvuMFcuXMWb0aOLiqjPhn+MvCj9wu3z7v4J/6fkrVmTSsWMHjh45Rt/0vkzKyKBy5Uo0bZhEXl4+G7dlB/A3btuB06FTq3pMAL9h/XiCHA5Wb9xu81es3cKgh/szZ+5c4hMSyMzMpG5iXY4cOVZq9Jc1vqNwQdKvEPVZFErhV5AITH/qzUpnp1affH+WO77H48WBrm7mhKqL7d4k8P2W1tQnlV9YA8K04Nnlar7BYmWX9k8NiQRpTUWSIH36ZRnhaw4NaRg4hHbe7X+p+v/aa68FJAsWLCR7exbxiQkXlX+p9Zcm/rrVawH49bdf6dOnDynJKUigXlK9cqH/fPjjF8/n7cW/AJKIoGBeuuGWIistWfUsOb7EZ9EtpN8XS/uc9b/Y5Raa10rgxQWzWLw7m8VfTqVXwyY81b4zUWY8o9LS/iXFr1OnDtVrVCemagw1a9Uult+oUSO++PJLet/Wi9CgYIKDg+nYsSM//zybIUOH8tWXX1KzZs0i1H379uFyFVClchUk8PVXX/HNV19TPzmZ2Lg4DLeHlatXYV0SXC4PEri1x62kNkvl1ddeY83q1YCga7euPPDAA7Rq2RKAN8eN45WXX+G7779n6ZLfVX0ldLuhK/f3vZ82bdoghODmm7uzc8cOOnTqWHgkMWzwUBb9tgiP14OmadSpk8Cy5ctJ75dO9bjqJCQm4nQ4WLduPQh1kfK4XHTu1IlZP89i2LChfPHFl9SqVbNI+yvtLurUqVOq+/9C8T0eteCBYXjLpf4KftFyNf8Hm0vA/zP9oWHh3NS9O927d/eluYzav4JffvmTMjJ49JERHD1ylL59+zJpUgZ+1aFRciKbtu9k9cZtXJlSl6zde3F7vVxRN7FYfr06Ndi9/zDL125GE4LEOnGEBAWR2qwZmZmZpKWlsWLFCnr16smcOXMuuf6yyLeNM9ZOEZBUHVGP1H4lSVBvx2SRygeWVrgsgU+yhMIn63LEN7wehENHaBpCCnwhM6VpqMD8Lc0HEgMrMK4wTIMFBnbMGulv4TPwBdaVCNOXSlhqhEovLSNHGeHrQsNA4ltHu+z1f0hoCL179+KLL75gz759tnGmvI3/0sB/5LHH2LJtK0uWLGXZ8uUsX56JANq3u75E+AUFLp5/fiwjRowwV24pXfrPhb/uwD6e+nEG63P2AZK+qS0Y3PJ6ooL9gzFLZm3dxIvzZgEQ5ND5ecsmcynrc+e3qBHPkj07WLwji1Z1EgL1y5LRf1vjJnRJSmFy5hLeXryQL9et4KctG+ib2pyhra73S1z2xz9CEB0dzS8LfwUBDl0vJo/iN2yYwsoVK3E4HCBh9KgxLFq0iP379tK69XUMHDCAq5pcZa4Ut4KfZs0iO2sHIMnKyuLnWT/z5ptvMGPGdDZv3sSmTRuxLGrx8Qk88ugjBAcFI1CxKTp06ECHDh04ePAAEZHRhAQ7A/THxcbx+uuv8dprr3Lw4CEE2AGI/fVrmsagwYOKtI1A0qZdW7Zs2aJiowBff/M177//Pu++8w579+5l7969pn6NiPBQ7r+vLx06dSQpqT6LFi1m7949tGnTmgEDBnHVVVficrlYtWo1P/30A9k7doAUZGVtL9X9f6H4XsOLw+FEmu615U1/BV8U2aXrjnKrv4Jfwb9U/IyMDB7o9wAg6dv3fjIyMlSaQvzkxNpk79lP5trNOJ0OrkhOPC2/ZmxlDh4+gsdjEBEWZpdVqVI0c+fNJTGhLnPnzmXEIyMY9+a4S6bfV1YZ40tZyB/cLreYE+xpqyADqxpwUGJNtCo6ZasQp5zw//hjKf0e6M+mjRv4Zal6e6hCtJgfhDJaFOZZm/BDSOuoELahIzC2i4rbIjShVgoSqrYqs1lKGeCPeubvrFiRyc9zFlA/sVaZ7f9jx44xb95cbr7lZvNtUvkb/6WFL6XBl19+xciRI8nLO861rVozZeoU5YJ9nnyJpEOHDmzftpWYmFhuurk7Tzz+NyIjw0uN/rPhT878nRfnzwIENSMjebHLLbSyY7P4+LO2bGTI9M/sC5hV7oRb7qBT3eQA/n2ff8ySXTt8JxJrQq7/CcSsiy7AKyWTe99Dq9oJdg1nbdnIkBmfgYBaEZV46vrOyovnPPXvOnaMf8z/kdlbNwGCWpHRDL62Lb0bNbkk7V94u9T8rOxshgwezMqVK/34ZkdKZSx5+plnuP223jb/4MFDbN+2jQMH9xMZGUmVKpVp2LARmqYxY8YMBg0cxONPPM7QoUMumf68/Dy2btvCrp27CQ4OJjo6msaNGhESGmony87OZtDgwaxaubIQX+mvWqUqz4x8httuu+2s+WWl/0/Hr12rNun90nG5XLzyysvlTn8FP5Cf2uxqqteswXczviuX+iv4FfxLwd++fTtXpzbj8JGj9E1PZ9KHk07Lz8srYMP2bIQGTRskqZVxT7Gt35qNU9eJrxnHqo1bSaxTgypRkXaxmSsySU1NRQAffjiJ9H7p5a79z4fv8B0w94rCWQpB/bZAtxwRWFIAT5gP5CgvCvztUOWT7/FKNE1DCGt5QYtv/pYW1+eFoqxtCiBNvnp+Eb76IK3q2Pqs+uzZs5vNWzazd88+DENSKTqKFi1aUKVKlYvCl1IiNKt8gbUEN2eoX9d1pDSwzhdltf+jo6O45dZbC5VZvsZ/aeELodG7d286dEhj7tx53HTTTeabdHnefIFg7ty5nCwoYMI/32L6d9/zUcYkYqrF0rNXb4YOGUx0dPQl1X827f/i/Fkg4P6mzRncqh3RQSH+tbFL+sf8H0EIhrRqy5BW7Ri/eAFvL17A+EXz6VyvfgB/ya6dWN/3wO+/r/a+c446bnGEhFlbNzJkxud2nl25Rxgy4zMmdL+dzmZg4nPVXysqmn/dfDuLd2bzj/mz2HhwH0/Pmk6jmDgaVYu7LMb/+fAT6sTzzTff8Ouvv7Fkye/s3LGDiMhIEusm0rJFSxo2bKiWUzbrI4GYmMrExFQp5tZHEh4eDgKOHDlySfWHh4dz5ZVXcdWVTU7Jj4+PZ/rX3/DLb7+yZMlSduzIJioyksS6dWneogWNTO0Xsv0vdf+fju9yu3A6nRQUFJRL/RX8QD5IhBDlVn8Fv4J/Kfj9+vXj8JGjdO/eneFPPPOn/A3bs7n6imROFBSQuW4r9RNqEBkRXoSfvXsfuoSkhFoAXH1FCivXb+HEiQJqxsUgBDRr1oxJkybRr18/HnlkBE1Tm5HarOlF1a/+Lpv97wBMa44IqIawQwoHZpb+lRLmfv+7L+FXXyQqZohV/cI/zVTlkC8NrzLOaOa0ICEAQ/GFRBrqQiYRqgwMwFzBSAKatBlCSqQQflY5gRpU0p4aNPXT/7B2zVr7mEolqFy5Mi1atPpT/rFjh/n+ux84evQYHo+HqtWqkFAngVbXtkBDOy1faTQv0QFvw632PzP9mq5jeA3sONZluP8r+KWLX7lyFXr26nlB+CHBwTz+xN94/Im/AfDqa68xf948Pnj/PapWrUrXrt0YMWIEsXHVSn37I+Hpdl38CijK35ObC0iGtGoLEoa2asfbixew4eC+YviqjuuHPx14GfS78FnK7/t8Ckt27fCdQwS8MP9HkJLB17ZjaMt2TPh9ARMWL2TC4gVqGlUJ6G9ZO4Fv7n6AHlM/ZMPB/Rw7WeBX4OUx/s+VL4A217WmTZvrAvrMx+eM+dViqwGwd++esqFfE7Rpcx1trrsugB+o//Lu/1Px3W4XDod1vS5/+iv4gXxDSpy6zxu1vOmv4FfwLzZ/3Lg3mTt3LtGVKvHJJ5/gDApm2ZrNpNStTURYaBF+5tpNJCfWASA0KJirr6jP8rWbqRFbheoxlW3+gQNHOJx7nKYNkgL4TRoksWbTNk6eLDCNNpIWrdtzR5+/MO2//+GBfv1Yvnx5uWn/8+VrmOWqDP5ZfJso/FlIpFVfBIF08xjgWzNK+gqQhf4up3yv14smNDWtRUiEUB0jQU0BAnzviFWZ9k+hlrW2BoXU1AAQNkvafClg5szvWbdmnapgQFUkcdWrnxH/xImTrFq9ih07stm9ZxerVq5m+vQZvPTyKxw8lHNavpTK6GLPWPKrhDTb80z0a5rynBG6KPP9X8Evv/wnHn+Mb7/9lqysLNLT01m+fBktW7UgtWkznnzySfbt219K9Zv5/oRfIzIKEIxftBAEjF80HxCkxMQVyzdd7v6Ub+cShl3M7uPHQBMMbdUOBMogBKw/uL/E9UdacXX8+GVx/JVWfp1atQGYM2ceJ/LzLzr/Uuu/nPhulxtdc5Rb/RX8QL5hSIS5lHZ51F/Br+BfTH7W9u2MGT0WgIwPP6RSpUqEh4VydeNkNm3bwb6cIwH8VRu2UjMuhshwf29oSG1cn/05R9m2Yw8Aefkn2HXgAE0aJBXLvyIlEbfXy7rNWazfspOQkCD+9+kUEhISyFyRacaeufzbvyT4/guT+v1UIBlwKDCjsH74wSQQ4AIkpJ3a+uQ/DSZwK198w5BoeqFpTWYvCSRSU/kFwjRoCIRQZdtsDTDMvDKQr5xRJFJKfv31N0wfFBBQLaYabdu25Zrm11C9eo0z4leLifWNIj99ebn5fPTRx6fkA8oqKMw62pUX9ucz1e9w6kjDQLfylOH+r+BX8EEtITxz5kyytm/nrwMGsDwzk7ZtrqNpalOGPzKCHdk7So9+v+//6fjPXK88a97+fQEN//kiby9ZCEIyrFW7YvjW5z/nC7+kVjE1w6NBSiYsXoAExi9eCEhSYmJLXH9x/LI+/koTPyo6mtbXXUd+3nG+/2FmudN/OfELXC50XZhTu8qf/gp+Ib6Qamn18qq/gl/Bv4j89H79OHr0CH379qVnr14B/NQrUth38DBZu/cCsG7zdqLCw4itWrlYfpOUupwscLNp+w42bdtJauP6p+U3rBePlJITJ0+YHjRqtSgkjB47hiNHjl5w/SpR2e5/h7VDmLXxf/4W1gOzsNJYif0T+ZQEPLsXSqdcgexHd/wLLY98w/CioaHpVodoYMiABwBz/Wqkvc+cpmS6UFkIiZoaZXmuSAQYEik0DuUcVMteS3WBbNKkCX3uvEOlkSDsJbBPz9d0je433URIcDBZO7JZvmwZXq8EITmUc4jtWTtITIgvwrcqqtzEDPxGNBggNHlGfABd6Iqp+9kUy2j/V/Ar+IX5gwYMZNDAgQC8++67TPvf/0jrkEZ4eDidOnfmqSefJLZa7CXTb38nOT2/c1IKE268jX/+voCNB/fToGosQ1u2p3NSff/Kmb+k+QU/C75foqfbd2HIjM+ZsGghE0zDDAiGtWwXUM8S1X+Zjr/SwO/Zowe//forO3fuLJf6Lwe+lOD1eEHoCOuFywXg79mzhxo1apyz/pMnTnLSdRKXy82J/HwKThZwsuAkXq+XvLw8XAUFuNxupJTkHj+Ox+3G7XKjOXTyjh/H6/ViGAZerxddc5h53RiGxPAaBAUH4/G40XUdTejoDkFYWDgejxunMwiH7sAZ7ETXHYSHhYEEZ5CT4OBgnE4nQU4noWFhOBwOQkJDCQsNJcgZRFBwEMHBakn70tj/xfHxgq5r5hn58h7/FfwK/qXkZ2RkMHfuXBISEhk3blyx/CYN6rJm43ZWb9xGSHAQCbWrn5bfsH4Cy9dsIkh3WNBT8vcePIzbY1CzeizL124mtXF9OrRPo0ePW/n6628YMWI4GRmTL9v2Lym+wy6/aBhhEP6Ba/wrE7j56uGXulA6NaVF+MT4alwu+V6vF6GDwLxgSTPwrR9ICF/Zgc9EqoN9Ha20SKS6GZK++uzbvw9rPhtS0LRpU7sg5VmjIZBnxG99XWuEhNSrr6FO7Xi++vJLpPnfrt07SEioXYQvzeqq+DPm1KZz5OtOHaRhrnB0fu1vtVl5HX8V/NLNHzBgAAMGDEAC77//Hp/+57+0aNmCugmJtL6uDQ8+2J+kpKSLq78Y7afid66fQuf6KQFpfIf9+Jbl9Rzbv3NSCuO738b4xfOVISgmlqGt2pvLdpew/lO0weU4/i4V/8477iAsLIy0tA7lUr//NuHtt+l2443UN7/nF5t/rvpdLhdBQWoZbcs4U9L8ZcuWMXrUaJZnLqdqTFUcugOv10N+fj4ulxu3ywVCkJeXh8frITg4hNyjx/Casf7cbreJEzgcDjxuN6FhYZzIz7fuqFTdhUDXNaQBmq7u1jTdoRYmEJqqjwCnw4lheFFBb3XCQkNwud14PB4kaloPhkR36LhNg4+UhnJ6lhJNCLyGAVJimP8E1t2dxOkIwuUuUKdM80iQMwiX24XQBLqmo2nKU0nXnTh0jdCwMAzDICg4CIfDSZDDSXBIMCHBweQcOkRISDAFBS6SkpKY9r//EWUHpz+//i8unVcqA1bAwVL+/avgV/DLIv+tt95CoGLOVKpU6ZT8SlHh7D90DE3z/Cl/5fot1KpeDcPrJXPtFpo19l2T/Pm5+SfYsy+H1CvUi7jwkGCWr91ESt06jHvzLebOncfkyR+Rnt6PlEZXIHQHNWIqX1btX1J8h/3J/0BhRjH19k/oO1SMGH9N1gEJ0rYilU++dbES5gBAE6peCNVRmvXgIv2Wn7aI1k91QJjpVMBgifAzini9hrlPGUaioiPNpBJMw8i58K+88kq+/PILMAddzsGDiGL4fpl8g9g4N76uO/AaBrrm15BltP8r+BX8M+U//NDDPPzXhwGYMGECU6ZMYdq0aURGhnNrjx707NGT1NTUi6BfXgD98sz5wj+BL2GXpBS62CsznZ5/3+efsGTnjoDzi53A31Ck4Ttunrgig4OK5V/u4+9i8jVd59Zbbi23+v35UVFR/PWhh6hSuQp33HE7fe6666Ly7Sxnqd/tduEMCsKQhr1iVUnzx417i5DQYDp36cyCefO54soriYyIxBkcRHhYGOHh4URGRRIWGkZERATR0dFqX2QklaIrERoRSmhQqO2poowWIQihBda1UH2K03/6PcVnK6L/dIX4/V1QUIDL5aKgwEVBwUny8vM4nnuc3Nxc8vPyyc07Tt7x4+Tn53Pi5Alyj+WSl5en/j5xQv3LP8G+g/tpfW0HmjRtwvfff09axw7M/nm2epi7AOMfqabxn1J/Kfz+VfAr+GWNP2fuXDIzM0lISKBnz56n5OfkHuPg4VxSGyexY+8BMjdspVnDpGL567ZkUSU6kriqytATGhLM8jWbaZRch5Cg4AD+pm27uPoK34uxiPBQUhsns3ztJmrHxTBixAjGjBnDoCGD+fyr72hUP6FE9V/q9i9Jvs84Y2fyS+fn1lPsJn3HpFm1AKBVUwmY86+sFKI4IeWIb3gM0AXWyxekAClVp1l5pAFCw47dIu1kimU+TEgb6Au8iwQM0DSBNaVJCDC85oAyBwjy3PghwUFmXl8QX1kMX5jpQZqfBeIc+bqmI5EgrIv82bX/mrVr+PnnOco4JCQG5jQxaVApurJawlVge+ao5zPNHg8RERHkn8hHINCEUM9wuoYwO1EToAmN0IhwTuafQBNqNS5NaGi6qqsQOrrQ1I2KpiJyh4WF43a5VRvrKki0pmnoQiB0hxqC5j7rX5DTiddroDt09QZPE+iahkPXzTLUP4dDrZCg6QKH04GUwuZrDh0NFEtzqBtpsxxN03BoGphv5ByOwFPF+Y7/S/39+zO+lBIMAwNhvuFU8ZuUB5rKZxjqg2FIDGmo8SrBQCIN85/1We1V3xOvofKhGFIqA6RhGGqfVB5w0ustwu92Yze6du3K3j17+O9//8cPM3/g88++wGt4adumDQ0aNKDbjd2oUaMmVStXKdn2L5yhBNo/sD//hG/NirShZ89fsitb7bTyWpXwnVh9+0+p/9z5ZWX8V/AvDf/Y8VwW/fYbbrebqIgInnzyKY4fz2X+/Pk8/cwzPPzww9xxxx3UrVu31OovcLsICgpCepVHSEnzPR4Pixf9RseOnXjn3XcC+JyJfnP/qfi+v0vf+LOmM0VGEiDgdPqP5x4nIjKcvPw8QkLC0M37FSt18+bXcO8997F7126iK1W6IONfSgPdodm7Suv3r4JfwS/L/I8yMkBAeno6W7N2US+hVhG+2+1hx859NG2sjCh1qlcjLCSEzDWbubJRPXXfb/K37NiDQ9OpUyPWxlaKiuCqhnVZtW4rCbWrU6VSJBLIXLORhvXii9Wf2rg+qzZu5YG/DmTixEmsW7OWRb/MoVH99Muq/UuS7wgoxK8eEhAi4K8iH/1LFoV3UDidKPzRvkiWR740DDQp0ISOlMJvaWwfxrJSSOGbEmQ9oATcRKjU9sAwxwFSCHM1KPOYVDc2ymoHwsB8JjlHvrDIEmu1pcJ8kH58v/LOga+ZS3NqlufMWba/1yM5cviQCkglpT1VTBoQFnGAE/kn8Hg86iFZSqRhAMrLCQOCQoJxn3Th8XowpIE0JIb5cG2YLskSCAkJsd9wGWYZ0jAwJBiGmqcu8D3Uh4dFcNJ1gpMnTiqjANguzlJKDAzU/xK86oE/NDTUfINWYOeRVr3tf4qnDkqcQcEUFJxQRgVprqCgCWVTEEqPVZah/K1VOULi0By4vR6EAULzjSk7poAwe9/vbxCEhYbg8XrxuN34O2oLzHOfaTxUngz+fSfA0uU//rzS/q4SOGTsk6mUkoiICI4fz0MgbS2GBDWVDrv9rel+UhjEVotl//79Nl9YOjTM5eJB8zsha5pGcnIymzdvDtAv7H8amioEXdMQmk5ychKbN2+xx6umawg0NIcyWmqahhCChMREsrOyAvhoAk0K1WZAo0aNiIqKwuv1cujQIX768UfmzZvHnDlzGDZ0KF27dQsY/4U+nv35z/r+231U+OM5nH99J5E/5UsrAPp58K2/1w97qtDFMzBr4C71171ffMLSHdnnxS8t158KfunkHz50iGnTpuFwOgkOCsLlcpG1I4vdO3fTvGULfvzhR6ZOnUqd+Do89uhjpKWllTr97gJlnLE9Z0qY/9xzz5Fz+BDj3hpXLP9S6y9VfCmZ9tk0oqOi+OjjT5g0aSKVK1cJ4L/4wss4g500vqKxnbXE9UvQhKP8tX8Fv4J/Eflfff01SGWcqVK1CplrN9GscXIAf/WmbTRJqRvAr1opkvCwYFau20JSQk2iIsLZufcAJ066uDIlwQcy8zh0ndQrk1m5fiv5BQUcOnSUWtWrERYaUrhStuirUpJYs3E7/QcMYuzIJxk7agz9+qZfVu1fknxHcWVCIQsQIqCAQkn9KP6V9+0r7h5YiS8qsrzw3YZXPZhpAoTpwWGnM6chWXSp+MorxXzElX7HhGE++Jr7hUBYTzHCR5aoQH0CbKOf+nzufPu5zfRmKcy3kmGWazX3ufAdmgMpJY4iLmBn1v5XNbmK3bt3MXHiRISuKQ8STUNoGo4jGvEJCezetcs3h1tXAQ2dmhNdaAhdp3a9WhzKyUFo1sO3jhAGQtNVWagH7iqVK3H46DF00wqt6zqYxjJN05R3Cz5vmEqVKpGbm2sb09R8dt+Dvi400DSfIVcIwsPDOXmiAF0H5WGk9Gq6ji5QXi+mscLiOx2qDZXXjs8YoAmB0LQifOu4QKA7HMrYIyVew2saOTTAi9cy7EjLsOPFsDtQ4PV47H6wPESU15IybFlz7gXgNbyACDB8GV61fLGUBobXiyENZVwxsPlerxdpSHSHA7frJF7TeOb1epFS4vF6lQHLMPBKA8Oj9nsNg6jISA4dOoQ0DDxeD9JQ6a28hseLxzCUcc3rxWt4qV27Dtu2bqdpk6tsvsetDHeG14PHq1gWt35yMmvXrEHTNJPvwXAbeA1Tk2EgDYPklGQWzp+PNMeNrus4NB3N4UDXNXRNI/XqVBYsWEB+3gm8Xhea7sBrvqV+oH9/unbrGvgVCfhGnOP5z88wdS7fv/PlC/O1gghMelZ83xnm0vBLy/Wngl86+QkJCXzwwftFQVKtgPT774v5Y+lSFv++mH79+hEcFMKNN97AmLHPExUVVSr0u9xugpwOdR0QosT5U6dMIbl+fRUQ9zLr/5LmT8rIYNjw4eiaxjMjR9qGGX/+gl8W0PWGGy6ofq9h+KY1XUT9/p/KY/9X8MsPPzMzkyNHjhCfkEBiYgIgSKlbh2VrNpGSWJvw8FBWrNtCUnxNdKcjoHiAkH4D3uwAACAASURBVKAgrr4imZUbthIeGkJu3gmaNSo01akQv0mDeixfuxGH00ls1cp/qr/A7ebee+/hP1Mms3HdOjIyMkhPTy8R/QGwy6D/HaBc7UVA2aJQUlVQkcLBvF/3Sy8Kf/DzqPArwZejfPKlVwWU07RCBQsRYKiwc2k+rwbpR1DPC2rJJV89LfOGMD0BVGQXIbDfulsMkAQ8dJ0hX3l/iAD9xfGVv4dZhlBtfa583aFjSAOhaefc/t26daOb5VFgHi/a/4HbKb9cp0hffO5Tl17Br+Cfim94DdxeL4bhweNRhqHp06fz3vvvExQURHhEBAkJCXS9oQsdOnTEMAwqV64cwCyp81+xF5wSOP/aJ7Q/4VvGXXle/MKEszn/lwS/dFx/Kvhljx8UHES7du1o164dEvC43UyZOpXJGZNp1qwpdevW46GHHuKuu+66pPrdLheOoGAwJJrmO1pS/KuaNGH/gQPqWDnq/3Phv/rqKyQmJPDwww/z8isv8a+332bRokXExcWxdOlS1qxZTZ3addRqURdQv3pBJIomu8zbv4Jfwb9Y/Llz5wLQIS3NThkWGszVVySzfO1mNE0SV6Uy0ZHhAaUX5icn1mLd5myqREX8KX9T1i4iwsOQhsG6zVm+GDLF6F+5bhONkuoQGhLC88//H31uv40xY0bTo0dPKleudN76Axu27Pe/BtYBdeOpXM397pYxfTKkVaAMKDxQRnGbCPhslyx9JZVHvuE1QNPQND3wxt+wbv1Vx0thqEoZVqeZU4KEX4nSf9j4hsqq1auYM2eu6W2hvCASEtSXx/a8MWOqnAtf5VGmmL179xbhS9OiaPH952KdC1/XHEjDUFNEzrP9L3X/V/Ar+GfC13RBcJCT48eO88F7H9Cnz528/tprSMPLQw89xPfffcfUKVPo2zed+Ph4EhMTiQ5YdaPk9JuXo5LVLwQ+774/aX/pd/45R77997n0fwnwy9r4q+CXXr7T6SS9b1/mzJnNli3baN68OWPHPk9KSjJPPPEE+w/svyT6XS4XQU4nBgaWR21J8kNDQuxFAcpz//8Z/6dZPxEfn0C9pHqAoGGDRtSoWZO4uDiQMH7CBLZvzyLn4AFmz5ld4nz/FNJATeG/iPqLpihf/V/BL198ZZwR9lRX/xRhIUFgCE56PH/KX785i2aNkjjhdrFha9Yp+Tv37MflcpOcWJuUevGEhYawcv22YvWvXLeVmnHVCAlR057u7N2b1te1ISsri7fGvVki+ovfym7/a/4Zfb/8gzX6CvevlvSrv/T7GfDRBPlLtQWKwsLKF18txQhCaL5OAjPWrbnCgQTMKT12ZmFd7FT4IYkaPkJYwRgkv/z6K2PGjOXT/3yKx+PGnG1C69Zt0DTNF3TX1HEufIFOUFCQfSArazvfffcdbneBGfpDmPEhpMnwtcO58vUgBxIzTkoZ7/8KfgX/TPgLF/7CHXfeSbu2bXn3g/do2KgR/544kfnzF/LQQw8RFRV10fQHnH9KQP/PWzaqWEJAp0nvMGvLxtO3v3b+fMU+x/4vAX5ZG38V/LLBF0Ly8ssvs3btGsb/cwKbNm+mVYtWpKW157PPP7/gfH/9bpeboOBgDI+KD1fS+vPy8wkJCS+0v3z3f3H8Lp264Ha7+OKLLzl58gTbt28nLjbW5k/OyGDUqFHUiY8nOroSR48evWD6DenF4XCUq/av4FfwLyZ/3rx5gCStfVoAf/vOvSCgaeP6nDhxko3bsk/JX7lxC0kJtRGaRqN6CQQ5g1i5YWsR/sHDueQcOc4VKYk2P6FWHNWrVSZzzeYA/upN24mOCqNalUoB+l/4x/8hpeCNceM4mpsPQIHHdc76C+0o8/1vTzyzJqLYSa1IxX55Awrzm2fl/zPgmOU54V9pAb5pLL4yyhvfiq9hBRK1pgIBCCExo5cihHIJVYn8QqoKQxlApNn90u52duzcgcftNussSE6pT8+ePYiOrARCIA1VN2EOnHPl33LrzXzx+VdIFVGWX3/9lV9//ZWkpHo80K9/0TaSgHbufKemYxjmChBlvP8r+BX8U/ELXAV88N77TJw4EZfHTVxsHGP/73nuvPNOfEVdfP0BV6Tz1P/z1o0MmfGZnXNX7mGGzPicCTffRud6KcW3v/QF3fbn/7xlIy/On8Wu3CPUiozmqes70zmpwSn4wi+o8Fn2/yn4F6P9//WvtylwFaBZsa00QWREBCdPnAThi12lYlSBpjlwOnXbUK5rGrqmIxwaQgocDp2Q0BDcbo/KY8fZMmNQIdB1Hc2h43QGYXi9aJrF0RGawKHr5op0vlXkdF0HJA7dqVYiNON66ZpaPc7i6w4dXdcAYespji+slSPK0ff/fPldu91A125dOXBgP889N4rHHn2UcW+8wZVXXEn3W2/hpm43oTvEBeO73AU4HU4kBsIKAluC+vPy8tAduv+hAP6lbv/SxH/33ffoceutpDZrhsfl5oN/f1CEL6Uk9erUAI/LEtcvpYqbx8XVf6nbv4J/6fmDBw2iS+fO9OrV+7LVn5m5giNHjpCQkEBi3QQ7zZ79h8g9ns9VDeuBhMb1E9myfTerN2zjygaJAfxVG7YRU7kSURFhWItr1K1Tg937c1i1cStXNagHwMkCFzv27CXVXO3JX39s1UqEh6qltlPq1WLP/kMEO3USalUvoj8trT3t21/PvHnzGDd+PLf0uI2G9euUyfa/EHyHddz/gLqHNTNJ6fvsV4Vi52X5K7FuhAPK9B1W+4RPRznjG4ZhBmw1vUTUws0+TxI1FwhpKCOMtDoVy0ASWCf/3w6Hbq+EI6Vk48b/Z+/M46worsX/re6+y+wbwzYMMzDMwIACbmAMIArGFzFxz2aiMSYviYK+5JdNzUs0i0mMiRrBvLzE9akxilsSTRSMCrgAhkWBYWdYhn1k9rlLd9fvj+ruu8wMsogwc7v5MPfe7qrzPaeqbt/u06dObeS++/6HGRdcwNixYx31BMkCjoR/6imnMm7seObPm8+ChQsRKI9f4/vvg0yOcEnkvHGXyjkSvmaoaU2a0Hp9//t8n5/OX7RoEbNn38t7q1YTj8W49LJL+c+v/SfDhw8/Iex3zzAt0Qj5oaSs/EfA//mCeQBcP2Eys86czOzFC5m9eBGz317ItOE13be/1Dxhrr7zN7lOHgEIGlpbmPni08z+5OVMH1HTlS9BGX0E/d8N/0jtP1y+EQwQjZlYlkU8Flcr4QhBc1MLEpXUWrrLsiOxTZtgKEBHRydSqiTbtmWqJNpSYlk2Jf1K2LNrNxKJtFWSb9tWibzVym82ZtyksqKCzVu2qKTftoVtqWNS2lhO0muXn5eXR1NzE1bcQqKSdtuObGlbSXyLk8eOZcWy5d7Kd93xLdNSznhNUFExjJ0NO7zk5YahI5xE6JquYzjJ3TVdQ0Oj/4BS3n//QJIzSUs4i3QD4SRF1w0dXdPJzculs7MDTTeUM8vQEThOKF1HaDqGk5C7sKiI9vY2T55Kwq70cPm6oTnONOUIM+MxdN3w+JqTFF43dAxHn5ycbCLRGIaudNaEhqHpCF1DCB3DUPxwVhaWZaJpKmG4puueA84IGuhCRzc0rr/+embNuoGnn3mahx58gDVr67jxhhs477zzOGPCBKZMmkxp/1IM3cAIGGRlZR31+S9umgQDAVUuue6HdP7NzclJ+W59FN+/w7H/ROJXV1dz//0P8JOf/oRwdpg9u/fQr6RfCr+jowMrbh1T+y0p0YyEo/Wjsj9VZuKwz88cfjicxQ9uvpkf/vcP+frXv8ENN9zQ5+zfUl+PAMaPH+/xW9o72L3/AKeMHpHCr6oczPbd+1hRt5nxo6pAwLpN28nLzmJw/5Iu/MH9S8jNyWLZ6o2MHjGUuo1bGecmCu7G/pzsLE4ZPYLldRvQNI1xo6p6tP/LV3+Z119/nb88+igXX3IFsahJVqj3tf+x4BupDEl6seTlpNIVStYoTbTjHJK4XqJUjAThSMtQvrtCjabmNqGiX1yGAJwEvJ5jRDoc4TBQK9UI95Orhc1ll17Bf5z/H7z1xpu8vmAhCElbWztPPjWX0bW16IaBk0NYDZgj5G/eVM9fnnyCtra2JL4kGAil2C80JzuNdNw3Uh4RP2DoIEkspd2L+9/n+3wB7Ny1kz/+8Y88+dSTxKJRzjzzY/z2zt84qy0ln/KPv/25wSCtsRgT/uDMEXb4E8qGglQ1pbA9oQLJ4LwiygoL+NL4MygIhj3+zrZmQDDrzMkAzJyoHDRr9+/tuf3dJxGJXdy+4GUArp8wiVlnTubexQuYs/gNvjfvr3T8I6aiZDTHUKkq2e5Cdodof0NrM7PfXsg7O7d24R/r9t+4cSNLli4hLzeXosIiDF2t2JWVnU0sGkMblohYUVEsEAyGsKVEEyrPg+skEEJDd6JfjGBArWymqVXo3MStmqYcFWo1OjCMAAiUQ0Ro3jFVXnPeJ/jqasPdDxo6mi5SDU1/KpVmf3efpbSVk8m0lFPIVo4b5SSSar8tMaXpOHpskDaWaSNxyzv7LEutlmapSKi4pWRK23E2WTaWbWE5zizlJHLeW2rFNqFpRCNRtZKc40RCQtyOe3wpLay44mu6TjQScFZxszDNSMoqcu4qcIWFRTTub1QrxrnOL3eFuiT+gIED2L5th6On5a1UF7fiShchiMeiWKaNLS1M06KycjjvN+7Hsiz+vezfvP766/z8Zz8DIQgEDPqVlPDmm28d9fkvFo0RCAWxLCvp4dORjf/u+CtWrKCgsLBPnP8/Cv6AAf2ZM3s2a9eu4/rrvskrr7ySwt+4cSPDhg87pvZLaaPrgeNi//Fuf59/fPm//e1vuPnmm5g9ew5/+J//4e677+bcc8/lzjvvpLCwsE/Yv3LFCkAwaMhQdUiofIWn1I5I00/xyweWkhMOs3zNBvJzc0DAsPKBXWxx+fk5WYyvHc7Kus2UlhSiadpB7d93oFndp9mwdeduKgYP7Nb+L1/zZW754Q+pW7uaA3u2MWRQaa9s/2PBN1RZVwnhFHBrCae8A0w6AiQUSOzx3nt/PZFJF2TpTz0ykG+7KxnoWiI6BA2wvUS6SM0Jr1IXvNL558nUUMdR+WdAraCEkOTk5HLeJz5BJBbj7bfeBqfurj17KB8yBDcKRgrgCPlPPPkE7UmOmQkTzmDatHPJyc1VvhwpQAikLREuSzjD7wj4mq5jSdtbcao397/Pz2z+Sy+9zK/vuINtO7ZRXFTMF79wJdd+9av071+apNmJZf+cCy/n6397kogZd379ASlZ0rAtta73VgA7QEryAkGuPmWixx+cW8DO1mZmL17A9RMmM2fJIkAwsl9pkh3d2S+d84NSYWdrC4Dj5JHMmjiFOUsW0RGPJex3k4wLxU73C/Rkf0NLK3PeXsgz61biThu9qPZkRvYf8JG1f3NTM6tXr8K2JHFTRc7YtkVpv1J27t4FVmIZeZzl5QcPKaN+Sz1IqZaTt5SjQYK60TctyoaUs3VrvbfUPFJiS+lEriSWqQ8Hg7R1tmFbTl1bRczYlq3W4bNtLFtSU1ND3ZrVKvJR4Dk+VLSNqoNQ7aELjaLiEpoOHFBP06Xj/NF0hJDO1CYNgYYGlPQv4f3GJsdh5DqGBGgCHZx6QjmjNJ3c/DzaWtuc6a+a2+0IZ/qUGk7Ofk0QCASwLUvtE9L5fREeHx2E+oMQgkGDBrJn9x7QBJoKUfX4EqEYuBdfGkWFhTQ1HfDsF9Ipl9TlmhDk5RewefNmZ/AIkAIhJVKTINXvL8CQIWVs2LBRjT/bWQ1RghCSoBFABgIMKRvC9m3bvCgkKW0kUFRcyDlDylmy9B327dlHv/79MOMmba2tWJY86Pf/UM8/sbhKCIxUbf5hn39H1FSDhAWLFjJl8qRj+v07kc6/R8sfNWokf/jj//KNb3yD//nDHwB46eWXkFLy7NPPHFO+tOzEQ7UMbX+ff/z4/UpKuPXWH3PrrT/mzTff5Oc/v51xY8cxtHIon//c5/nG17+O5kzJ7Y32q2TAko+dOZEVdRsZXzuC3KzshFrd8IsL82iPdLJvfxNVQwd9IH/1hnoGlhax70AzEhgysLRb+zujMbbv2supY9S0pzXr69m8tYHhFWVd7N9Qv51ZN36Lm7//HR566BEeemhqUjv2nvY/FnxDvbg71U2+SNMvFZjYkvdKEpK6WCGSP3R3OPP4trRQk3PUvHvnig2JBrbjpROO84LkeBJnrOBmbNE8qdJl2Kqk1KCqqorFixc7gS/qqZZ0ygvAXdr6SPgdHe2uxQwaPIhPffrTSnISHylBS3Ck2zZHwA8YBtLNOXOU7Z96OPPGn8//6PlLly7l3nvv5fUFC5DSZuqUs/n57bczccIEkn8ATlT7Jw6pYMU3v8sza97l9gXzaYtHAMEltSdz3oiR5AScBOGO4xVN8uya93hu7SpaYrEU/k1TzmPWC08ze/EbzH77DdAUf+bEs8E7J/Rgv0wcHpxXwM7WFmYvXsj1TvQNtqCmXyl/vfKrpG9Pr3nXE9GT/Uu2b+W5ulU8u/ZdtV/AJbUnM3PiZMryk/IyfATtf/oZp3P6Gad3sSN9S5GZDjhYWXdHT+PvELfD4Vtu6JLj2JG2DZrEtqRyJliWM73Vxs03Ji1napSUKCeUitKSNirixYmgkbaNQMO2LaRQ07XcaVtSOv9xLoik4gnAkibSdvx4tu20hZJpS4mQeFE6hq4Rj9sqSkwKkNLjC1A6SVs5VWzQDR0zbqa1lXTeCM9+TejETct54JLafirmVO0PBgxMU32/1MSs1K8MUkXCmNJEc6KYBMqx5U4BG1ZVxSvz5rFu/QY62tuZeu7Z3H3XPR/K+S8eNQkGgpjSciKDU2sf7fn3tVdf4/LLr+Daa79Cv5JS7vjVr8gryCc/P9/Jg6TyGelBHWyUsy/Jft0wVD9qGq6TTjMEmtDVeHAeeCEkmqZhSxt3pTb3vCER2NJK6X8hhHLySaH6X6jrGMtWUVXuRbjpRGqpfcoxZ9pxbEs5M7EdJyjueJXoQsc042osAkLTMa24ip5WQrAsy+t/TRNqtSwSzkJd12lvb+esSZN44MEH2bplC2+8+RbXfuVajIDh9M2x+f2zpXTyUWXu77/PPzH4HzvrLP7+wt8RwI9/fCv3zbmPX93xS86eMpVvfPM6zjrzzF5nf/3WrUhg7EljqKksZ9mqDVQPLyMvO7tHfmtrOwea2jh1TA0r1m6gfzTGoNKSbvnrNm8nLyfMoP4lDOpfwur1W9kUb2BEeVkX++s2bGO8E7EDMLqmkk3bd7J6Qz1jqis9/o6de4nHbb7xtWu56Qff4eGHH+LBhx7s8+PvUPmGBMeR46IkCc9OkhiZ8pICckQmDqZbIfF+qDyGo5D3BCnD+OqHGi98HDSH7V4YSo8vpPAuUoUQ4PxgK3+G9LTwAk6E9LobdS0LDl/N03ccOe5UpSPgm5YFtsuHioqKbvkCVDlNOhc4Spcj4etGABvphUr35v73+ZnB3759O7+753f84+V/EO2IUFFZyW/u/DWXX36Fx/cYvcT+S0ePZVpVDXMWL+KRFUt4tu5d5m9ax81TzuOS0WNT0Et3bPdWbcOTJjmvqoY5My7lnrcXsb5xDyP7DWDWhMlMrxqRVDuND6hw0ISByskzV+WseXsRCKX/jWdO6db+y0aPTZLb1f5ZLzzF/E0bvKoX157MrIlTKMsrOGHav7fzdScyBSfni0gvzOHzuz3YA590+zOE/87Sd5g7dy5z5z7FyWPH0tR0gEAwwKenf5phw4dTVFSkCh9l/8fiUYLBgBPNI47J+Js79ylWr17NZZddztRzzgaEmiruJMXWNI1QVph4NIZAIDWJJhV50KCB7Nq9GyEllnQ1gf6lpezdtwfPuQyMGjWKdevWJ/hCRUuV9u/P/v37lV/ESXw9ZvQY6tbWKY2FGt+VQyvYvm27xy8oLKSltVlFhkmJjWDc2LG8t2qV+upoYOgBLCvhzBNCo2xwGdt3bMcGhG1T2r8/u3fvxlbeRHJycmltaQUBpqmSfMfMONKdpoflXFoJNF1Fbp88Zgw1o2q54cYbDrv9D9b/3X3/bWx0zZ3iltnnP59/4vBvve1WbrvtVt5evJg7fvUrvvSlL5CTnctXvnIN1113nbMi7Ylv/9b6esDNOQOnnlTN8jUbKBvQj/7FRV34li3ZtK2B8WNUXr7xtdWs3bSNSGeE4UPLUvhbtu3Ctm0qhwzy+GNqKthQv8NxuFR49q9cu4nqysHOVOaEmOHlg2jYtZ+VdZsYVzucfU2tNLe2MWbkcARw0UUX8/xzz/H8c89y8cWXHLb9x7v9jwXfEJ54nJvrZMkioYBI3pNeooeDrm4CTzFlr3DKCjKVb1u2Cst2l5p0ns65ung1hPBClhEoJ0m6AtItmzp4hHTKi0QdTehI28kN4Dl6xGHzdV1zhxbuE57u+J79MmG/lEfGDxiGmgKlJRq6t/a/z+/7/Ndff52vXHMNpQMG8PWvfZ0rr7yS4qLilNq91f6CUJibp0znktqTuX3BPJY2bOem+X+nbv8ebp5yXpqSslv+tKqRTKuqSeV3Y53LFwLnfJHYzquqYfaMy7l38ULW7d/DyH79mTVxiiP38O13HTPXT5zM1ePPID8UTuGdKO3v833+ofA3b9rE//7pT6xcsYKGhgbaW9s45dTTmHHhBZx+xumcfNJJHp8PiR+NRAmGQkhL3ZAfK/vHjBnD2rV1NDY2UlJSgpSSpqam1P8HDtDe2UlLczMdHR10tLXT3tFJR2c77e3tdHS0E4vFaWltJR6NUT5kCNFYjFgsTjwWpaW1jeKSEsxYlOqaGt57bxVSShobG72olnhc5St65513GDBwALt37/byMG1Yvx40DUPXkZpGS1MzQtMpKMgnEokQCBhs376d0tJSgkaAYDBAIBgkEAgQDAYJBINUVlZyoLGRcePHEgqFycrKIisri3A4RFZWNuFwmOysLEKhMPkF+YTDYXJycsjNzSU3J4ds9zU7O+V+Y9PmTYRCIYaUDTnm419FMOkZ9/3z+b2DP3HiRJ55+hlaWpq5d/ZsnnjiSe65+x7OmjSJO+64g7LBg09Y+1977XUEMHbsuJRjp4yuZvX6LbRHogwrG5jCX1m3kdHVlSn8UcOHsn7zVtZsrGf0iEpA0LC3kbbOKCePHNaFX105hPqGPby7bgtjRw5n1YYt9O9XRF5udrf2DxlUSnYoyLJVm0BIZ9qT4l900UWOc+b5JOdM5oy/7viGJ172LNxbVkq6oEPfEmKTvUTdmJdhfNu21dMToSNABZE4SXKVVk4IrZTqhkQI9QTaGweqhDMbSDk43KlBAu9H2LItVdaZu64bbtJGxXIHzZHwEy3hyHC4yfyENDtp4B0ZX9MNFdbbtRMPu/2TdYPMG38+/9jzhw8fzptvv8WA/gM8fjfSjxkfjr39taUD+L/Lvsi9ixcxZ8kC6vbtSeM7Pz6OU+Vo+NLu/vj0qhqmJzljUvmHa7/6PGvi5C78E7H9fb7PT9/WrlvLQw8+xIsvvkhrWytFhcVcOOMCvvv97zH545MIOCsppTI+PH5nLEI4HFbfeXHs7S8pKVHlhKCoqMiJAMKhpvF7UvogfD7M/j+u/NTzb9XwxIorx3r825aF0LVuKve975/P7738/IICbrnlFm655RYWLlrEnXfcwVlnnknZkCHMvH4mn7/yCyec/QeampAIKodXdqk7umYYazduZWP9dqoqyxECVtRtYmjZAMLBYBJD8WuqKqjfvptV67dQPqg/+/cfSKzM1A2/smwAexubWLZ6I8UFOQwqLU7hp9tfXFxA/S616ENzazsFeTkAXHLRxXyFa3juued50Knb2NRCZ2eUIQP7Zcz4S940mVomSarEu8NOchu5xSQH2WTif0Js8g+T9F4ylW/btgoe0VRQFCLRkQKcCBX3BzURGePK6Xqr50aegLBVZwuZYLrhxXHTVFEwkObYOXx+ohUS9vTIdwACjpgfDBi43pve3v8+v+/zy4eUO46Z48P/KO2fUFaewk05PZB0DjlKfuL8c5DtqOx3j/Wu9vf5mc1/4403uPqqq6mtreWT53+SjRs28rVrv8aSxYtZtuzf/OSnP+Xcqec4jplja3+0I0I4FEYkP23p4+3v8z+IrxKBHz/+8bbf5/c2/uRJH+f5v/6Vrdu28YnzzuNXd/yKkTU1/PCWW1i1evUx5x+q/WqlJsn4seO75deOqEDTDVav20LdxnpKi/LoV5jfI7+yfCDFBXls2tbAuNEjPpDf1t5OVtCgqaWdtvaOg9q/Ys0GRlQO5pQx1WzZtovd+w8AUFhUyNlTz6apuYkVK1awZ/8BGnbtZcig0owdf+6kmq5EIQCRpkRCqDiYhu4UGNGDITLZ2Mzk204SN13XAOVoEXaiX90VINz60nmXzJVJnSuc3QJAU0+spJAUF5fgrbKEYN3adUjbkS1wHCWHz7csO2VwJQK0UvluC0inlIQj5qsVMTTMuNnr+9/n+/y+xBcJgSn8ZFfu0fJdKfKY2y97Xfv7/Mzj//vf/+aqq66ipqaGa665hpbWFn784x+zpX4zc5+ey8wbZ1Fa2v8jtz8S7SArOwuh4yRk/mj5mdL/vYmvEgIbx42fKsbn+/zD4996222sXLmCn9z2E/72t7/zxSuvZMrkKfz2t79l06ZNx5yfUiDN/qamJkA5OHriDy8fhEQQiZmUDej/gfzd+5uoLBvAstUbiERjqQWS+Dv3NtIZjVNbXcn40SPYWN/A3gPvd2v/u2u3MKC0hPxsFS0zfswIGg8cYMv2nQBUDq1U7D172bm3kbG1I06Y/j8efMMLtZSqsPeKV5/0T9IV2sP0Elem8GqlC018zlS+dFasEBgKK0FouPlwkUins7yJP0icyT4uX1MjwHO9CByHX2LqUumAUlwpEsnSd5YwcmQNQysqsgLzEwAAIABJREFUHK5KxHu4/E0bNyCUXwmJOjF0x1cPzqSngVLGRjpRNYfDV5n3IG6ZGAG9V/e/z/f5fYkvPbmp/G5/v46Q78XMuBUO0/75m9bziwXzaGhtpiyvkJumTGdaVU0aX/TK9vf5mcO/+Ye38MLf/0ZnJELtyFruvPNOPu2slJgs6njZ39EZJZwVBnBWF+pb7e/zD5+vkjUfG/7WbduoW7MmsSqZpqNpEAwGicfiCAEqhQAINHWdKTSCwQCxmOVcVgqELlS0t7e6GQjdANtSS8ILgbfimQChaWioa1K1CpiOtNWFrCouvJ8pIRKJqoUAXTfUinJSlUXi8RFKH7XilkB3WMm/pR5fakhNrfjl6iYRGIbmrB4nUvjqv2pLt6zm8PSAWt2sa07H1E82Ets01QNmW61iZ5qmWs3Olli2jZQ2lmUhbYltW9i2xLLcFfEsQDh1QNoWtmVjYyMtiS1VEmspbSwJ2Ba2swiJ7dw3SWefW16tqqfqGYEg0WinWvEsiS+l7awIqD4HgwE6OqJI6ejp8KUzXqVto+kGZjzuMaSUXPu1r/Leuyt56+23+evzf+WRRx7BMAxGjhxJTU0N+QUFlJUN5jNXfMYb/8fy+7dixQogkQy4u+/ftp370DUo69+f5WvWc/KoKpUHqxv+yrWbqBw8gOLCPArz83l37WaGDOpHv6KCFP6B1jb2NTYlpj0B48dU8+66LXR0xqh08twIJHUbt5GfE3amPSWMHF09nHUbt7Fh8zbGnzqehx95mGef/xt/uO/eQ7Y/fTsRz39Hwje8KiK9okw6IBMXrZ5O6chEPUG60umlhPMmqWyG8aU6K6HrwjvsJr510+wmqkuwheP8EAhN6ZMUMYyQ0lmW2o1uUY6UoBFg8OAydu3ciUDQ0dHJH//0J4RQqxv8v29/i2Jnzvah8hsb9/LPl15O5IcRMHBAf88Rk8xP0shpMydnjO22NYdsv/sjYppxINyr+9/n+/w+x08+/6SQPyQ+gDdV8vDsn79pPTNfeNozoKGliZkvzGX2jMtVvpq+0P4+v8/yF7+9hJ/f/nPeXfkeQ4aW8e1vfZurvvzlE9L+aCRCVjiLaDTq3Ez1/vb3+UfHl1Kiafox4W/fvo0nn/wL+/c3qhtwW91EFxYW0tTU5N1Uq+XJAWkjbSgqLuTAgSYsW92cSylB2sph4CQ4KywsoqnpALZz0y5tkMIGW2JJ90rVuZHXdKS0MU1LtYjDTV7Ew3VW5uXm09beimWpJdOROM4U5yGow3fTXeTm5NHe0Y5l2qCpFAbJfHXx7dZTy6a7q3Yl6yBRjh3bkom2dtpV13Vsy0QetP2Fx7cBXdMRGlimqXpWpI639PyQKim0jUBTeqOcYapfnet+96kvCSeWrhleOwldrfJng1q5VbjXHIKcnGwsyyYejyc5o0RCDyEwdI3srBziZgzLspOcceoeQznXBKFQSM0QQCLQ0HQNTegIXa0tO2bMSWzftp229jYGDRzIunXreOutN8nKyuZHP/pRyvhP/ZZ8uOO/uaUZgILCQrr7/u19v5mmljbGjhqOBPJys3hv7RaGlQ+gMD8vhb96w2aKi/IpLsoFJJomGD96OCvXbCISjTFkQClCgBm32LJ9t5PUN2EZSMaOHMaaDfVsqm+gqrKMzdtUgvTK8kHd2j9qxFC2bN9JXlF/BDhOoL51/jsSvuEWSjraRSCIxANFkbI3yZCu9aSXvDWRDE2QbGtCyUzj2wBCRxNufXVCkkKgHBt4smXS01whpOMEEThSEM6J2TsBSdSUIlvJ++xnruDu392DtJ2Tue0cF4Ldu/ZQXFJ8SPz//u//9uxKtjMQCFBVVd0jX3hyXb4zwoVA2O6PxCHYL9SJ3Iybvb7/fb7P71P8pCd+yXzvklAkvtHp/Fe2rOP211+hobWJsvwCbpr8CaZXVZNC8tRKTJPozv6rnn6MJQ3b8a4e3fOrOv0w68wpzJwwiXuXLGLOkoXMfnuhw3JPsI643tb+Pr/P8U3T4pFHHua+++5j7759XH7ZZTzxxBNq1R1I4p5Y9kcjEQqLi4jFYo5zpne2v8//8Pg2UkWNHAP+pI9/nPKycn79mzvVzbXEiSqH8vJyYtEIUtPQhZaIINE0dF2jpKiYpub3EcJACNB0DYG6OXcjXbKysojGYuiau19Dc6Jz1KuzT9fJy8khEol4fF3X0TUBuoqy8SJodJ3s7CxikSiaDkIYaJpI4SdkK33DoRCWZTr7U/ma0NEMxdKEhtA1BALDMFSb6HqK/ZquYxgaQgp0Q3h8I2CAFB4fp98QAs15oCs9R5CFlGDbltcbONEzNlJd5zv7LNTvsRAapmk6v+FupIqFbSvHkopQEeA42YQAy7KwbBsBHl9xTZXaQdpeigdNgBk3sRw9pJRI28JCRdmoejZGIEAsFsE2bRA2ti1UhI3juLNtC103iMWiWJaK0rEtC8sysW2JbUvC4SCtrW0sX76MefPmE4+bTJwwkXPOOYfPfvazH9n3b8VyFTlDMJe2zgi5WVne96+jM0rDrr3ektkCCBgBxo8ZwbtrN9PZGWXQgBJAsH7zNoLhIOUDS0ndBGNHj2DNhnoi0SgjKobw7vp6bwWn7r7/o6sr2bxtJ+/WbcIwdGqrKxNHu7F/WPlg1Y8CJy9a3zr/HQnfUMeTLqllkoQkULKqpO1163tJjZ3XxM2661FNVBNJ7zORj20BEk3XvYgXwJnWI0lP+Ctx5HleeNdrLvCquw+ppDuQ1HLX/UpK+d53v8cTf36CnTt3OidH5Q3ujEYOid/c0uKNI8fd4h275NJL0HQN2QMfmfCEJ0/L8nw8h2i/rukAxOPxo27/493/Pt/n9yW+OqepkOfu+AnvSip//mY3okVtDc3NzHzhKWbPuIzpVSNTSYk/Pdq/pGGbeyrBc8x4bMnMiZMAmDVxEnMWL2Rt495U+72Ivt7V/j6/7/EnTfo4kUiET114IT/92c96jf3tHZ0MGjSINq3NiUbone3v8z88PrZMJAQ+BvyKygru/d29KXxvkz0K6Hq4B/7BNu8yNs1+n993+bt37+Hxxx7l4Uf+j+EjhnP55ZfT0LCLBQtf49xp04GP5vvX1NTsGA/ja0ewcu1GBvUrYUBpEUII1tfv4JTRNenVEMC4UcNZtW4LHdEohq5jSUlt+ZDuWgUBjKmuZEP9Dpat3kDlkIEEDMMp2f33v6ggn+a2DoSZei/Xnf11G+s50NgIEvbsazxk+w/GP5HOf0fCN9LB3nyqpL3qk7Ovy8hPlHR3px5OlJeAkCS8UN0Ynil8W0o0UF5pV4ZwnR4SITS8aT5SAE4CXilBJHK6CNdl7HSoTOJLIUGq5Lx5eXl87T+/hpAQs+JoQnPmHHJI/NbWVgRO2KQQCE1QUlzM5ZdfQfmQIR/IT7ffZR4qH2w0lPfeNM2jbv/j3f8+3+f3Jb4QSrhAdMNPkpPGv33BPABmTpzMzImTuXfxQuYsXsjsxW94zhmXr3wmkvQt3X6EYO0NN6Vof+6Ds9nZ2srstxdy/ZmTmbN4IQA1Jf3TLhyEV+dw7E/mZ2L/+/wPlz/rhhsZO248v/vd3YRCYU+L3mB/LBohnJWFpmvqqfpBvv/Hgn+87ff5Xfm2bYOuqWvYDLTf5/d+/soVK3n88cd56+3F7NzVgGVZlA0uIz83D6EJpkz+OFde+XkKCws/MvtXrFgOEs6eejZCKAfNqvVbiEQjvN/aTnXF4IOef08aOYz31m/BMi3Gjx6RyuqGH43GyAoH2b57H8UFeT22fyweZ0vDLk4dPYLGA60sX7ORk0cOx9C0LvZv3tqAoeu8sfA1AM44bfwh298T/6Nq/2PJN1IoJAXfePqlBOSgpqk4pR2uCyVV5yS0Oiicj90WyzC+xJlx6ThnlAwbNxoGWzoFpSNFKJizTwCOn8Qrn5yg1xUq0PBCahz9AkYQb3qA5JD4Q8rK+NnPfkokEkHTBMFg8Ij5IPBWcjpEvmu/FMKLnOnN/e/zfX5f4ntRc13o6qQwZ/FC5ixZSMIzq77X6hwimDlxMiCZNXEycxYvYu2+3V10kqBmPx7U/nQllP03T/kEM1+cy+wli5i9ZBFOCCA3nDk5xX7P8F7W/j6/b/DjsTi1tbXc9du7+PRFnybxa9p77O+MqKW0NaElReX2jvb3+ceGL6VUK5NmqP0+v/fx33zrTd5++y3mz3+F1atWo+kaQ8rLOW/6dC699BJGjRqNYejH1X6PYSeknFQzjOVrNmIYOrk52Qflt7dHsC2bwvwc3lu3iZNHVvXI31C/g6zsMFXlg9nf2MSOXfsZMqhft/av3rCVk2uGAYKSojxyc7JYtX4zw8sGkO/muQEa9uwnFjcZ1K+Avz73HACXXnrpCdH/x5uf5pxJ8hmJFJEpKE+QSC3f8+aWS1jQvUGZw7dt9SRYU1lulUfNFSJIvEqhOFLV93wazsjw5GqJL6s3eLy/7vQiLwALZMJ+eRj8cCh0/PgCZynt+FG3//Huf5/v8/sS33XM7mxpYcmOrUwYUgHAqH79yQ+GaYlFnRNE0pdeSoqysmiKdjJ78UIvcgYBI/v175av6n2Q/TK1DoJpVTXMvuAy7l28kHX791FTMoAbJ0xmWlUi5Hfx9m1KUMrvc+9of5/fN/idkQjr1q/D0I1ea38kEiGcFUYIgWUl8lH0hvb3+ceGb0vp5Fd0a2eW/T7/xOc3HWjm5fnzmD9/Hm++8SZFxcW0tbZSXFzCz2//OVd85gpCwZDHT9f3eNj/6muvAZKp5071jqzZWE9xQS62JVmzoZ7R1ZU98tfXb+cUJ6nvrr3vs3zNRk4ZPaILv75hN6ZlUltZCUC/kgJMy+7W/hVrNlJZNsCb9gSCYDDA+Noq3l27mX7RGINKS2huamX/+81UDCrhnHPOQQJXXX21F3mUaeMvne85Z9ydIqWoOqJuqZMkSVChOrKL8qnS0mUJEiZLSD9ZZxAfqQa2pqmkXNKrIx1HBc6rVDckOImyBAjbcVhgO44LgRtNo2TYJBLrSoQTSyVca4QqL507qt7CB4HQBPG4lSjbS/vf5/v8vsQf2W8Ag/PyaWht5qpnHuOqU87g+glTmF5Vw/Sqb3ejm3p1V1GavXgRsxcvcvbDrIlTuvJTzDqY/V03AUyvGqlWZko+DwMNLS3cvuBlXtm8AZCMLOl/2PanbpnX/z7/w+EX5Of3evs7OzsIZ4XRNN2Lcu0t7e/zjw0fiZdgNhPt9/knJt80TZ599jmefe5Z2tvaEQLa29o47bTTGDVqFFdccTlVI6pPWPvVqufCvWyifvtuQsEAFc4y1g179rOibiPja0d04S9bs4maYeWeyEH9i8nNDrN89QZGVg0lOxwCJHv2N9PS1s7YkVUpfENPCmN2tlXr6iktzqeoIC9lv2v/2FHDWb2hns6OTlraIjTv28GXv3AFK1asYNy48dxz992HZf/xbv9jyTcShdPlJoonBKeQ0lSTSZ9Fmn4Sd6KV9JLjiMSxDORLCQiVCd1LkitVfhW1kpKq47o0cIaHEiVTOUjFF8KLQBHuikygYBJnDT13yOEwnOlNvYAvdKVD3Iz1+v73+T6/L/ELQiFeuWYmcxYvYvbiBTyybCnPrn6PX5x3oVoNqQf+9KpqZs+4jN8tXsD6/XupKRnADWdOTlqtKcEvKyhk6c5t7GhtZmIP9id9/ED7m2MRHlm+hDmLF4GA3GCIq8dPYNaZk3td+/t8n3+i8CORKFmhLOc6R2ac/T6/K9+2LG/xi0y03+efWPylS5fy6GOPMe/ll6murqG9vY3m5mZmXHAhF37qQk4//bRU5glq/6uvvgZIxo8fx/bde2nvjDKmpsKrXjagHznhIMtWbeDkUcMxdB0hYNX6esoH9iM3O5QiPS8nm3G1I1ixdgNDBw4gFAqwe18j42qrPtD+jVt3kpubRdnA/j3av2XLNt55YyEv/+tfLFrwKtu2bgOgoqKChx56gMKCwkSdPjz+DoVvpBdKgN23Mk2JJB1TFBCpkpIqSJRCar+qlKiamXxbAlItV6f6wuU7r9LlJqJQlLdNAaTDl0kdrXwh0lXHs8/VR0qJ0Fz5AncJbnoJXxMCXUskBO7N/e/zfX5f5M+cOImLa0/mpnl/Y2nDNma+8DQTysr55XmfYlB+Qbd8FV1TnSyMhKslwR+SXwACdrU2H8T+xPnnYPY/U/cec95eQENrCyC4eNRJ3DzlPPJD4aOy36ubof3v831+pzOtSdM0tZxthtnv87vyQSKEyFj7ff6JwX/yL3/mL08+xc5duykqLCA3N49TTz2VCy+cwWmnnZ5Up+v1xwlpvyOjbu16Gls6GVFRhqypSOEXFOQzNjuLd9dtZnj5AHbufZ/cnGxKS9ISFzt8TQhOGV3NyrotSNv0luE+mP3vrdnI8hXLqSgbQP3GOrbWb6W+vh6AV197jZamJpavWOGcCVy7JePGjePLX/4y//VfNyY3Zp8df4fDNwAnn4dIUUN4KYVTK8tkpYSz39UmVb5zTHiKii5/nVIZyZdIaaPrTtI8IQCVEBchkbb6IZMIJQMbcFYwkoAmPYaQKmolkUhaDXyJREgQmlCOEXAS9Ln2uPb3Dr4QGhJBPGYmNWhv7X+f7/P7Jn9IfgH/d9kXeXrNSn7x+iss2bmdix7/E1efMsFJ/Htk/E0HGkEKIqaVZFAaP1VyF/sX79jGnMUL1ZLbCM4oK2fmhMlMLK9AJp2TenP7+3yffzz50UiUcDiEpqmcM66ETLHf53fl21KiC69Sxtnv848ff/fuXdx2223MmzcP27Y5+eST+dIXr2Tq1KmMGTMmKbFr77P/9ddfB+Dmm36QJFE45d2PgqTswT1sgnHjx1JUWKSq25L2zog6oussfevNJIkCL/dED7J64teMquXksWOZ8cn/YOrUqVRWVnqq9cb2P5Z8w207VSG5SlLbpr93bpqFq5RIPpiE8AyUCSkp1jnVMpIPUko1D1dIpYN0pw4J3K5SFdzbBuevG7IiAU0kMEllnIIqskXaCDQ1HclO6O+V7jV8xYmb0aRu7K397/N9ft/mX1Y7julVI/nFgnk8V7eK2UsWMn/jBm46+1wmDqk8ZP6SHVuZs3gBixu2IxA8tXoZ4wYO5rzhNd3yE7Ym7G+JxvjFwvk8u/pdEJLcYIibp5zHpaPHJtnWt9rf5/v848Hv6OwgOysb4S4EkGH2+/yufCklmqFnrP0+//jwW1pbOPPMiZxyymnc87t7OP+88wkEjT5j/8cnT+KNRYs4++yzQYJA8trrCxAk3Yklr9QiST3mCZa8u2Kls98t0W1Jtc+V4yiXzLcRnDt1KlJC5bBKKisrqKwcRkxqGLrB8KGDPjT7j3f7H0t+0mpNqoJXTSSJlEkSUpRMhbkd65VMcjF5XS16aoRM46t9KdOahFrySCCRmgILKfBcu0keSCkcgXb3fMVxBorjlUOm8R0ni0D2Dr6moaGW0u79/e/zfX7f5xeEwvzyvE9xSe1Ybpr3d9Y27uHqZ/7MVePP4PozJ1EQDPfI39HazH1vv8Eza1aAEGQHQxSFs9jZ0sSsF59m4uByfjD5PGr790/iu7ISes1evJCHVyylNRoFoZbt/tL4CRSEQpBSp++1v8/3+R81PxqJEMoKo+sC27Yzzn6f35VvOyt1Zqr9Pv/48IUQbN26LcHvhtyb7V/0+sI0PknSPQkp9ndHd4+8+tprOAtvIgUMrxhGRUUFlm2h63oXuctWbeDUk0Z8IH9Lw26szgjVwwZ3S++t7X8s+UZit9ImWQfh3ZQfRNEkS1L0TysnHCNE8hBJeck0vsQ2LXRDdzpVA1smqkhw1q/2vJNINU1IOiFULkIikhINOREntsRdDQmJcnKosBW8U5QNQpOOv+XE57tOHdOd1nBU7X+8+9/n+/zM4U8sq+Bf11znrMq0kEdWLOXZ1Sv55fmf4tzhNSn8lmiER1Ys5eFlS2iNx0DA9RMncfX4M8gPhnm67l1+sWAeixu2cckT93PV+AnMnDCZ/HAooZSExQ3buXne32lobQIpOLdqBLdMOZ+y/PyMa3+f7/M/Kn4kEiUcDCM0w3HOZJb9Pr9rOWlJNM29Lck8+33+8eHn5eVltP2Hyz9n6tQkGQmhmuuYSZK7bPUGRlWVfyDftm0G9+tHKJTm3DkB7T+R+IYnX6ZLV8I9pVKUSd0SeiSVTisnBXSZxyU8tTKWr3uRM07i2ySQEAnZMkUR1cGJjlayJMpTnOhkZzqQUO+ETH1yIYRESg0VuXLi84UQaBrE4+aH1v7Hu/99vs/PJP7MiZO5pHYsP3ASBl//96eZWFbO7dMvpKygkGfr3mX22wudRL2Sc4ZX88OzP8HgvAJP5GWjxzK9qob7Fi/i4RVLeGTFEp5ds5Kbzp7unpq4+plHWdygVgIYnF/AL6ZfyMSyilS9MrD9fb7PP9b8SCTCpk0befLJv9DZ2cm3vv0tAoEgoUCQQChIOBQiGAwSDAYIBsOEQkGCgQDBUIhwKISR9D4QDBIKBTGMAKGgKmc4r6FgCCNgYAQCB7U/bsZpb++go62djs4OopEInZEIkUgn0WicSKSTSGcnkWiUWDRKp3PcjMeJxeOYZpxYNI5pxTFjcWJxk3g8hhk3iZtxLNvCtmxs28K2bSzLRto2lm1j27ZzFSTQUO2vCeE0mEQIDU3T0DUNIxAgYBhouo6m6wQMA90wCAYDBIwg4awQoUAQIxgkFAwSDoUJhoKEs8JkZ2WTlRUmKyubcDhMdlYWObm55ObmkpuXS3Z2zvEdf9howr0569vj3+f7/L7OX1m3iYpBpWRnhT+Qr2kawZCWdLj32/9R8IWU3WQKSteoi4Y9H+ixaFoh6XmRDkFsH+Tfdc9dvPTPlwmEs7jt579SlSSqtpSgqc50pwMJgZO/xZUvkNgghOp0h5ycqYWk8l5dAdggNYmQKrIlueyJzK9bu4ZvXnMVjz72KJ/61KeOqv2Pd//7fJ+f6fxn16zi9gUv0xaLkhcKkR/MoqG1GaTkjPKhzJowmQlDKg7Kr9u/l9tfn8dSJ8FvdiBARzwGQG4oxKyJk7l6/IQT0n6f7/P7Ij8vN5fdu3cz57457N61m4qKCmKxGLFYjGg0SiwaI2pGMaMmkWhEHYvHiEVjdHR00tnRQWe0k0hnhEgkQjQSxTTjROMxzJjjELFsLCuOZdvO1GrQhJaY5o+6srAt23mo4zhBdF09EDMEQT2IpmsYhoERMNA1nUAgSMAwCIQCGLpBIKBeg8EARjBpnxEgENAJBIMYmoFu6Bi6gWY4ThVdV44jXb1P1kEgQANd6O7Vj6erlCBtGxvbcfjYWKaFZZnELZN4TDmL4nGLWCxCNBYjHo3TGelU7RfpJBaNEolE6Ix00tHeQXt7O5FIhOzsbPU/K5twTpjcrFzCWWHC4TBZ2VlkhbPIycklKxwmKydLlQuHCYfCZGdnEcoKEw6GCYWD2DZYloktlZ6WZSFtSdwylWPKsrCl0n38+PEYhsFZZ531kYy/4z3+fb7P78v8fY0HCIfC5OWGjwv/YAf6Et/oWomEAycprKd7IYljSl4a0NVUgvIS4ZUQdOOVyjC+JS3Cbqink1tFCuk+VAFpg9AQTl0hvWKK5cz3kR5QrXbk+UqU78SZNiSd9wKBcGRJkPQaviYFQlc5Zz6M9j/e/e/zfX4m8y8ZfTLTqqq9hMGtkSiD8guYNXGyStSbnMiuB35tvwHOylBqqlNbTE2DumjUWG6ZPJ38cPiEtd/n+/y+yI9EI2RlZfH9736fuU/PpbmpmeaWJto7YrS0ttLS1EJzSxNNLc20NDXR1NRES3MrTU1NGMEABfn55OXlkZ+bS/HgMnJzc8jLy1P/8/PIzcklPy+P3Fz1OScnl2AoSCgYIBAIYgQDBIwAAd0gEDCwbUksHiXuODXMWBzTMomZcSwnCsYybWKxGHHLxIzHMU0TMxYjbtmOMySOGTcxbRMzbmJbFqZpYVomlmVjOvXikTgdtqUcKq5TJW5iS1XWNG2kJbGlhSVtpKWibaSNcmggsS0LKSXSsrAkXkSOlBJb2s61kUyKZhbY0lY96vQhQDgYJisUprioGImK4JFSPUyz4hZNZjOipQkpVaVkvm3b2KaJaUtMM45lWapNHAdR0HVQOW0eCAYIBQKEQiECoSDBYIhwMERWVpi6NXX8/n/uA2RGjH+f7/P7Mr+0pChVfobZ/1HxjRQhSXpIQIiUT13eJksW6TtILyfS37pRPRnJ14TAjlvouoGUImlp6gTG9VJIkZgS5D4lkqJLaW9gOOMA6Xo5hHNMJskDhI3jE+kdfHQBNphm8lLayW97T//7fJ/v81EJg6d/iktGj2Xtvj1cUjuW/FD4sPmXjR7LeVU1PLJiKdOG11BbOiBNjxPTfp/v8/sa/+GHHvaSRz7xxBMUFBRQWFBAfkEhwyorKCwsUp/zCygoLKAgv5CConwK8gsIBoNdMD3yj3ZLt7+bQz6/e35LawstzS20tCT+t7a00NySuq+lpYWm5iZe/dernHPuuRkx/n2+z/f5Pv9o+UZ3MiE95EakCEgrmkRJVj6xr7vfAGV8VyMzhW8LkEh03QAhcYJInHKKL126VHwVleJMG5JJx4SNdFmOYQLbYydUlZ65rtNPve8lfCkQmsAyzWShvbL/fb7P9/kJ8RPLKlROmKPg54fCzJwwuVfa7/N9fl/hX3nllR5t7ty5PfPTsR8S/3jbnwn8/Lx88vPyM9Z+n+/zfb7PP5Z8DaR3o+1WSi8tk/RLLYcTQZFUXqS/kSR0kF2LZShfFxq2baPrWqpgoab9JMaCCpZyeiqFLVy+0Lz9whkYqnsTLg51LMl+qfa5OV16C18IQSwe7/X97/N9vs/3+T7f5/t8n+/zM5MfiXQyd+7TrHrvvePCP972+3yf7/O75xsgvBtqEI4TSKYJV5qllOs33TYNAAAgAElEQVQC6WkTKe89yRIneiIz+QKBaVkYAQMhwM3oL23pODGcaUTuPCIbhFBJeAVCCZGORHf0eLopae50IDU7KHV0ufOVhXCT8p74fA0NIcAyzV7f/z7f5/t8n+/zfb7P9/k+PzP599//AL++4w4kkurqGqaePZVhwyuZMuVsysvL+7z9Pt/n+/zu+UYXISJNSJLwZLWSV36SaTW8tw5IdjFGVU41LLP4uq4hbVvlnHGOCAANcFYxUtElSVo6uiFB2iLRywiEsFXuFpQnTmjK0YGQ3n7PDpGYNpTw2p34fKmB0DTiptnr+9/n+3yf7/N9vs/3+T7f52cmv6WlBekc2bBhAxs3bAAENpLJkybxhS98genTpxMKhvqk/T7f5/v87vmecyZVBIj0dbcFqcJEuvqi6zGRbE6y0q6whIxM42uahmnGMYyA04/uItQghATb6UAhVDZ9AUjp9TlCLRGJVHXdDL3S5UvRVUcJaMJxrEjcCJdew7fVSgWmafb6/vf5Pt/n+3yf7/N9vs/3+ZnH37hxAy+99BLDhg3j81/4PJUVlTQ1NbGmbg1P/eVJ3li0iEVvLCInO4fZ997LudOm9Sn7fb7P9/k98zV1N50iwrnBdiolTYhKvEstn34MhCskTWbisNonyFS+phuYlk3ACDi7NK+/3KS6CJC27fWncmekDgavv5NpQoCUyrHhlPX4UoLjzUu1/8Tng4YQwpnW1Lv73+f7fJ/v832+z/f5Pt/nZx7/0cceZ8vmLbS0tPC1a7/G+eefz2c/+1luvfU2Vr77LnN+fx8jqkbQ0d7ONdd+hT//+S99yn6f7/N9fs98LZUhk+uq6p73SKapk6pRmmjnZlomwZPrJXEylK8bGmY8TigUBCGQIhE7Ipyuko73Ts0Kko4OSSQ7XQ3hMEUKXwjpjBfh8d3kvELQi/g2uqYTd1dr6sX97/N9vs/3+T7f5/t8n+/zM49fU12NENDY2Kim8yfxA4EAMy64gJdffplPX3wRSMkPfvA9bMs+Kn6ks5OlS5fyzjvvKD1OwPaXls2aNWtYtGghHR0dHzn/eNv/YfDXrl/H83997qD8f7/zDg899CAdnZ0fOv94298X+IYq6yohkojOZwlueE7yEVeBlLlWSe+9v55IiRcmJFLNzER+wAgSj8UJhkMqOkQIJBpgI92wKKk54VUS0JDOP0+mhjqOE4XiJet1MkBLAULlfhFINWAEqoybH0YAvYSPUOVNK97r+9/n+3yf7/N9vs/3+ceHb9s2mqZlrP0+//jyCwoKkAKys7J5f38jN/7Xtxg5spob/+tGCvILAcHmjZscARrZOdlu9oAU/rJly1m9ejWDBw3kjDMmkF9QkMJf9d4q5s+fx6I33mDpO0sREiSCn//sp3zxS1/qYn97Rztbt26jbPAQCvLzD2p/a3MTu/fsZcCAgRQU5H2g/aZl0tbaRmFhYUr779m9m3/88yXeeGMhb771Ju3tHSAFF15wAXN+P6dH/opl/2bV6jUMGjSYCWecRn5BYa/p/2PFNy2T2lGjEMD+xvcpLirqlv+jH/2If/zzH+zZu5fvf//7fcb+vsI31Iu7U91kizT9UoGJLXmvJCGpixUi+UN3hzOPHwgaRGNRssLZ6pg6YyLRwHYiVBxnhCvX01Li6KpO2q5Uz7dnq5Iqr65Uy1C7OWFkQgtBYn+v4EvQNQ0rbh51+6cezrzx5/N9vs/3+T7f52ci/9e/voPf3vkbFr3xJiOqqjLOfp9//PmxWAykICucxT9e+geLFi1k4aJF3P+nB8jJyaG9o92rLxDMufdedE3z5Ozc2cAPb/lvXv3Xv7A9DeCB+x9k2rRzMW2Ta758DQsWLkhAgSFDh5Kfn8eI6uou9i9c9CY3zpqlonkEXHTRRXz729+msrLSs8C2LJ566mkeeOh+1tatQwA2kilTpnDlF77AJ//jkwBY0uLe393LhIkTOOtjZ7Fq1Squuuoq9jc28tOf/oSrr7oagHvuvoe77vktSLf9JSUlJZT2L+XU00/rtv0bduzkhz+6hX+98qrHB3jwgQeYdu60Q2r/493/x4r/3spVAOTk55KTk90j/2Mf+xj/+Mc/qVtT16fs7yt8TaZVFsgkpWRCVOpLGkjdaHc1KlFIJtV04yy8vRnID4VCxGNRsnNyHEeammEmhI0QeNN8QCq/hXSS54qE5sKRK1Ghjs7sIRAy4aQDhO3scz97BR35vYRvSYlmGJimddTtf7z73+f7fJ/v832+z/f5Hy3fNGPce++97N27l3379vXIb2lpxratPme/zz8x+GY8hkQSCAY47bQz1DFhg4D2jjaPf8nFl7Bw4ULOnTbNk7J7924+99nP8corryCxuXDGDIZXDgPgu9/7DlLaLFmylAULFoANUkhuu/VWli5dyqKFC3jxhRc588yJKfa/8MILfPGLn6fx/UbHGMnzzz/HBRdcwKr31A3/rj17uOyyy/je97/L2rq1SCkZOaqG3JwcFr6+gG984xvc8sNbsCyTvXv3cdddd3Hbj29jf+N+rr7qKhobGxFC8qMf/YiW5iYi0Sh33X0X7kPez33uCua/Mp9ly5fx0kv/5Nprv9Kl/ffs3s3nPv9Z/vXKv5BScsGMTzJ82DCEhO9+97vY0u4V/X+s+HOffgqA6667nlAo1CPf0NWquE3NTd3yGxv3M3/+PNasWdOr7O8rfE144t0/yVKFW9zbnXw0WWS3B13dBHi5SqSzw6mQqfzsrGw6OiMUFRaqXVJ6x6Snm0AIDYlACJTTQsrUASLcsuq9TFLDHSxSgJAJvrQ1p6DAHSC9gW9bcQxNIxaPH3X7uxUydfz5fJ/v832+z/f5vZnfdOAAti0Pi/+XJ+ayY/sOakeP5qSTRnfLr6tbS2FBIbNuuPGo7d/XuJ9//uOfLF++/EO1f+/ePbz44gsfyO/L/d+b+dFYHIEkHo9TW1vL/HnzqSivcGppfOf/fYf1GzZy1913Uz603ENIKbn++uvZtm0btbWjWLJkKffddx+z58wGVA6bxvffZ8IZZzDhjDO86+/7H3iAxW+9je0920y1/67f3uVdpw8cOJjHHnucqeecS1t7O9dd9w1MM87SxYtZtnw5ADk52Tz++GO89NLLrF61igcefIChQ4fy6KOPcttPfkJOdjYC2LZjO1d+4Ur2NzZSUT6UnKw8kLB6TR3hUJBZs2Z51/8v/O0FXnrpJTWtqZv2R0quc2wfNWokS5cu4b77fs+c2Qnb3298/5Da/3j3/7HiP/HEEwBccdnlB+Xv298IQKFzD2rGTea9PI9vfetbjBlzEqX9SjnvE+czZswY3nvv3R75pmnx4gsvMOe+OSxatEhFhKXZ/+j/Pcrll1/OSaPHcM7UafzkJz/hwIGmPtn+HxZf88TLnoULdy6KdOofxpYQm+QlSuFkJj8nJ4dIJEJRcYk6LlHTfzytnPJSglRBezIpF5jbrZ4DBOH1uRTOGMCVp6RJ4YwLp5LKByZ6DT8ejWMEAkSj0UNrfE7c/vf5Pt/n+3yf7/N9/uHzN2/ewrhx4yguLqaiooKnnpp7SPxoLMpNN32fvLw8Fi5YSF5efrf8p556Egl0tLUdkf2xWIy//e1vXHTxxfQv7c8FF1zAqaedSlt724fW/o8++hgXzriQhp07e9Sjr/Z/X+DH43FAEI1EEBKqa6r529//zrnnngtI7vzNb3jw/vu78F988UXeeeffAKxdu5avfvWrXHfd9cyYMQOAETXV9OvXD8MwePyJJ7jrt3cxcMAAtm7fxswbZvHJC/6DefPmYdu2p4wVN9mwcQPuM9Lf/OZOJk2axH2zZ1NRXs7Wbdt5/rm/UlRc7LXb44//mUmTJqlPmsa0adP485//jBTw8MMPs3fvXmygo72DtXV1ZOfm8Ojjj3HTzT8AUBEZCL7zne/w5BN/4fQzTqetrZ07fv1rJk+exEMPP0ykszPF/hdefFElM0awdu06x/bruGDGhSCgurqafqX9Dqn9XTtUH6fvTyrRi8ZfZ2cnm7dsBuCUU045KH/JkiUADC0vZ1fDTsqGlPGJ88/n7rvvZs2a1UhgZHU1Hz/rLAYNHtwtf+GChYwbN44ZF36KmTNnMnnyZIaPqGLTpk2e/X/83z9y1VVX8fQzT7O6bg2vvf4qP/7xjxk1ahSvvvrah2p/+tab+1+TqWWSpEo8VZLmqLjFDqqkTPxPiBVJ77sxNsP4CxYsoLOjg0Flg5GOYLd/BDhLeCWmEglPR3eGmkxTWXqOEmGrzhYywRQOQADeSknSVbN38C3LJBgIsGf37l7f/z7f5x9Pfn19PXf++tc8+thjbNlSj2mZHynffcnU9vf5Pt/nHzn/m9d9k3ffVU9zd+zYwWc+cwVfvfardHZ2HpT/pz/+kR0NO3jwwQcpLi7ulm+Zpvckvrik5LDsb2tr41e//BX9Svrx6U9fxF+ff54ZM2bw0IMP8vv7fk9OdvaHYr8ETGfVyq319Wl1e7Y/Rfte3P99gR8OhZBAW3sHsbiKNigoKOD+P/2JG2bNAiS/+OUv+X/f+Q7xWMzjPz13LhLJ/2fvvuOjKN4Hjn82hQSSCzVBJCAgBKQE6SAWikDoRVFBOqj0LvD1hzQb0pUqRRCw0EGk9xIMRZBiIKGnENIIyaWQ5HLP74+7XO5SEBUIkNnXK2Rvd2be88zOJblhdrZt27a4uLhw7tw5tm37DQRq167NdwsWWXxHBwfeeqsTR44c4asvvqR06dJcCrhIv379aN6sGUeOHgUg7HaYqXDNdIORV4UKgODi6kr7Dh3QgCtXr2Bn/lu8VOlSvPzyy1lCT0pKMi1jIBBz564lZk3T+Gn1j5QuXZpXGjYA4OyfZy3tWL9BfTZs2MAPP6ygbp06REdFMXHCp9SsVYsfVq4k/clSG9avRwPatG1jFfs2QKhdqzaLFi16aq7/o/Bj7sSAQLmy5bC3s8/Rj4qKwtfXF4AqVauydNlSIiIjAHDT6di8aRPx8XouBQRw1NeXYsWKZfEPHDjA62+8jr+/PzqdK127dEWn0xEaHMLkSZNBIEGv56OPPkIDXnv1NRZ/9x2rVq3kvffeIyIigiZNmpgGiZ6R9n+YvoN5/kNGnox3U5ZDlldC+h0pWQsF0oeB0k9nSSaa5QdBXvU/+/xz0DT+unCO558vhWep0uZ7Q9PLsEPTxDKSne6nD3KgmftPRr/JcOzEvNBupnvbMM9HMdqhmR/dl25o8MT7G9evJSQ4hNCQUFP6p/j6K1/5uekfOHiQj8eMyUgAeFXwolad2lSrVo0GDV6h0RuvPbPxK1/5yn/6fDHC5MmT2b1rF2AamElKSqJPnz4s+34ZRYsV5euvp2br370by/8++YQWzXx46623TEw2/roNG4iIjELToKDVU2X+Lv45c+YwYsQI8+3f8MGHHzB08BCqVKuWKX7+ffuLRlhYGDeDgzj751kAunfvTkpKCiEhIeh0Ovbu3U3duvWfyev/LPkexYub/qNSTGvIlC5VGjSws7dn1OjRVK1WlQ8+/Ij169dzNzaW7xYtRMOOffv2o2kwfdp00ODo0aOEhYVRrlw5GjZsaPksKYAmwo2gIMq88ALvv/8+7777Llt//Y1Zc2Zx+coVunXryrffzMXDw8Pm7++vpn7NjBnTEDT8/f0xAveS7+FezB0RCA4KIuBSABUrVQRMs4D++OMPxo0bh2YnDBw4mPDIcDRMi/XOmDGDGjVqAFCmdDnQNI76HrW00o0bNyjzQhkaNW5Mo8aNOX7iJN/MmcVR32NMmDCBgMBApkyexIH9BxCBGdOng8BR38yxZ7T4k379H4WfakhF0yAlNcXCZOdv37HD7MDrr79OgwYNmD9vPhGREcTp9cycNZvnSjxH3Xr1s/UjoyJp3649YPr5s2TJEpycnPjmm28YMWI4f5z+A9GwDJy56nRs2LARd/diINCtW3fGjRvH/gP7TAM/z0j7P0zfTjKfkExONq9Mb2DJvmJAepkWJ0uhkiVtXvMnTZwIwKAPP2Ti/40zDXSYnhadrpjrYl57xVKSWB7hpdlhOSOYOowAInaWiy+Ws+Y8gKYZzTNTTGk1eOL9lORkdu3cQZOmTYhPTMBgSH2qr7/ylZ+bfpPGjenfvz9vNm1uORx4JZCff/qJT/73Pxo3eoOqVaqyYvkKku8lW0p6WH7mtI8z/nPnz7Jz584H9s+fO29O/+C+Ic3wxMavfOU/jb4IDB4ymMlTJuPh4c7yFcspWbIk5cuXZ+/evdSvX59p06Zx0nzLR2Z/6tSv0Ov1zJw1PUc/5k4Mw4YOJf3vj/Tbnh4k/p9++slST/+L/iz+bjFVq1X7V/FHR0Wzfds2xo37H53ffpsDBw4AGn0/6MfzJZ+nQf36/PTLT2hoXLt2jXz58tG1a1c+/fRTypR9Mdv409LSHti3jfjB4s9c5rPW/x62X7x4cdP6i4AYJYvfooUPu3buwtXFhb179rBjx04MaQaLf/6v8+TPn59mzZrRo0cPXn31VTRNs/HP/Pknb7z+GkOHDuXixYs4ODjQsVN7Duzfz7BhQxGjHUOHDuVW6C2ww7Ko8MYNG/Cu5k21at7s37cPDfDxaYlXRS8aNHwFEJr7NKfzW5155913KV++PO+++y7Xr1+nS9dufDzmY4zGNASoWeNl3n77bUtc9g4a9evVIzo6mstXrmEwGHjj9Tfo0KkDB/YfwGg0Uq9uHX766WdW/rASDfhx9WqO/e5H+ueP8+fPkb9A1tj/Sftbp31W+p+bmxsiEBIaQqp5NlZmPzEpgS8+/xyA5s18KFGiBKVLlSbgcgCTJk4C4MiRwzSo34BOnd7iT/MaQ9b+Z1Mmo0/Qo6GxefNm2rZtS5s2bRg+fDgi0MKnBRpw4+ZNwDSA455+u5k5/urVqzN8+EjKlSv3zLT/w/TtLOVrmTOKVUqx2U2nbcmMBFnrrGVKpZl3rNLmMX/smLE0bdqE0qU9uR1+i9Onjptnophv5bH4ApoxwxXNPKinZcwq0UzpxRKToJkXfsm2m2gZ8VsSaTyx/uXAiwwd8AH58+fn9B+n+fbbb3BwcHyqr7/ylZ+b/gulX2DhwgXs2bMLnZuOFi1acO3qNfbu2c28efNo3boVf/n706dPb1q1bkliQuIzEX/orVBefvll3un8zgP5t27dwru6tzn9g/nRUVEUKVyEXr16mW89MOU4e/YcQ4YO5eSJk7l+/ZWv/KfN37p1KwsWLMCzlCcXzl+gZ89elnLz5XNk1uzZAKxauTKLf/XqVb7++msGDR5MlSpVc/RHjRpBREQE06dPQ8h4osmDxD9t2jR0OlcA6tWtx8SJEwkLC7OJPzgkmPLlyzPt62k2/vwF82nQoAE//rQaHx8firkXo3WbNkz7eirrN2xg107TTKHoSNMjjqtUrky1at4IsH7Deq5evcKPP/7Ixx+PxsPd3aZmJ06cpGnTpjg4OOBVsSILFy58oPbX6+Ns2v/v4k///qz2v4ftlyrlSYkSxalarSolPUtm67/0UiU2bNqASwEXnJyccMrnxJtvNkVDY/DgIaZBlWz88PBwgoOCKVy4MKCxZcsWfHx8aPrmm3Tr1o33u77P0qVLLU9OTTWkgkC79m1ZsWIFVatVIT4hnsSEeJq3aM6aX9ZQr25dEPj2m2/o/HZnChRw4cSpkxw/7gcIzVu04McfV/PlF1+godGmdRvGjBnD1KlfWw2cmOIfMth021aaIRU7eztKv1CaM6fP0Lt3Txo0aMC7777D++93ZeTIEYi5/VNTUmjapCmaBkOHDM201lJG/BHh4QQHB/9t++f29X8UfuHChfDy8gKBlT+k/xzM8FMNBj788EMCAwMBmDJlkiVJoYKFmDhpAhEREYwf/3+46lzZvGkjNWrWpF3bdly5cgXEtLzE/HnzQaBP3z7o4/Xs2bPHPEsGevXqxaQJpnLDw8MBTE+Negzx53b7P0xfE6PIfVfDsSo0a4r0ozmcFbFMMzPfEGPJlj6zx5Q17/q//PwLo0aPICkphVGjx/D6m01xcSmUqeyMLeOIBpgW9LJMjUqfa2UuH6OAZjovmma+7ppp1opmHmQxivk2JPMfIRrmzLnvJyYmMXbEYPx+96VI0aJMmjSJQQMHPtT2z+3rr3zl56affC+Z/AWcqVGjFn/8ccomv5+fH507dyYkJIRWrVuz7bffnvr4z5+/gLd3Ndq178CWzZv+1j9//jze3t60a9+eLZs3P5C/a+dOfFq1BIEFCxYwYEB/BI3+H33E4sVL0Lm6cuv2bVxdCuT69Ve+8p8Wv6WPD7t27eL06dPmWyRM+S5duoibriDFPNxxzpePjh07smHjRhv/rc6d2bNrN1evXsO9WLFs/eXLl9Onbx+GDhnGwIEDqFTpJRYsmM+AAQMeOP6YO3dYsmQJM2fPIiLctIbDgP4f8flXX1KkUBG2bdtOmzatWfb9cvr07gUCRjFQooQnERHheFf35tzZ84BpsKdNmzaULFkSF1dX7O3suHfvHomJiRQpUoTffttK27bt2Lr1V9q0aZtt+2/dupUO7dsjmmnNhz//PIteH8ehw0d4/bVX2bF9B7Vq1yApKYVBgwZSuUplpn09jVWrVtGjR08WL/6ODz744Im4/s+ib0g1YGcPdnYO9/VTDQYcHUxpbt68ScuWrUhI0AMaAwb0p1o1b1JSUrlw/hx79uzhZnAQYhSCgoK4cjmQmXPmsP0385O9xPz3uAalPUsxavQIHB2dGThwACNHjWTY0GEAREVFodPpcDKvjZM5QqMxjejoO2gaFC1azDIA86Dxp6Wl4WBnD5pw585dFi/+joWLFpL584eLiwvde/Rg3NixBAWlx54IGBkwYCDVqlUlJTmV8xcusHfPboKCghANbly/8cRf/0fhz541i5GjR4HA0qVLeafz2zg6O3P44CEmTpyEn9/vgMbCRQvp/+FHFj82NpZUQyrFippmuNy9e5cFCxYwdepU9Ho9Op2Oo0ePYjAYqFWrNg0bNuDoUV9u3Qrl0MHD6BPiqV+vLt7e1S3xDxw4kO8WLaJH716s+H75Y4nfcvYpeP/fz7dDA5uxHsmyAzlWXTOnNH8XbL5b3qxWC8OmZ9Os9vOy/16X9wgJDaNWrZrMmD6VZq+9Sv9eXVj343IC/c8ihlRLWtsffumXW0M08zwTo8kWMV1vzbSwC0jGY5AEMftieiy2hmV9GMC0mK+pNCy3IT1m/+yZUwzo25036tcgJCSI5d9/T2RERKaBmYfT/rl9/ZWv/Nz0E5MSEYG7d2Oy+PXr1+fgwYO46XRs37aNy1euPHT/ccd/7JhpEbzXX234QP6xY8fQgNfMT6V4EP+P02cs5ZgWKDT5hw4cBAR9vJ6/zI+mzO3rr3zlPy3+mT/P4O3tbVm7AjTS0ozUqVePSi9V4ret2xCgxPMlbfx1azewcf0GvvryS9PU+mz8M2fO0KdPH2q+XJNpX0813TZtVYcHjb9wkSJ8PGYsocEhrF27ljp16rBo0WIa1GvAzRs3CA4OAqBhg/qWIo4cPUZERDgNGzZk/CfjSf8/2S1bthAVFYWbmxv2dqa/pZydnSlifmJOgfwFAI27cXHZtv+NGzdp3749oPH7sd85fPgwo0ePBOD6VdPP8g8/+pBv587n66+nsm3bNn5Y/gOHDh6kR48egDBlypR/FL/192et/z0K38HRAc16YCYHP31gBuCFF15gx44dVPeuDmgsWLSIgQMHMmzYcJYsW8qNm0EULVKU2eaZZOXLe7Fw/gLO/HGaDRvWsei7Rfz842p2bN/OocOHaN+hk8Wzw87iFytWzDLjIbv47ezscXd3p2gxd9PtVP8wfgd7e0v7FylSmHHjxuF/wZ9tv23lu+8WsWLFcjZt2sTpP/7gf+PGoWkaL7xQhp07d+LtXQ0NjYULFzFg0CCGjxjO0qXLuBF0k8JFijJr5qyn4vo/Cn/goMF4V/MGoF+/fhQsWJj8Ts74tGhhHpiBpUsW0/+jj2z8JYuX4F7MnfH/93+Ehd2iUKFCfPLJJwTdvEnLli3Rx+sZNmwYsbGxgHDM9xhxcXpKPF+SLl278EG/D/D2rm4Tf/oTyfwv/PXY4s/t9n9YvkNmOH09EeujplfmY+ZZD9lVPP2w7emM9AKmJ/RotqbyYc+ePezctYv58+ezd89uQkJvISt+IDIynNKly+Bd3ZuqVarhWaYs5cqVp1jx4qa86fcWaSZBrHzRBMwDIJn9dFes6oCmmUsQNM3OHGr64r6mW5tMs17Mi8M8JP/evXuc+/M0J/x+Z8umDSQm6Cldugw//fwL777T2VzHZ/v6K1/5ueGnppqe+BEfH5+tX7ZcWYq6exCn13P3zp2H5hvT0vjrwgUio6KoV68erq6ujyX+Des3ANDK/NhR6/zZ+Rs2bkDQaN26lTnB3/uXLvpbTpw7d44bN2+g0+kIuBxoyROfkPBA/sOO/0nrf8pX/oP6OhdXrl+7RmxsHAULmtaCsbMzzcjVx+t5+62OAHTr9r4lb0hIMH379aFJkyZ8NGCA6W+YTP6d6GjatWsHmsbrjd7g62lfs3v3HkBj4KCB3LgZxNdTv/xH8Ts4OtK5c2c6derIiBEjmTt3LgsWLaKAc34AnJydTbGJ8On48QDMmDmDevXqc7PBTb78aiqLFi7i9Tdex8enFePHf0LDVxra+GnGNECQNKPFDQgIwNM802ay+ZYFQWjQoAHuHh5ERphm87Tv0MFS/2+/+Qa9Xg+aRkRkBG3btUWnc6NKlSr4Hf+dOzExFClc6B/Fb3VFn5n+9yT5L7xQml+3/oqv7zFOnjxJcEgwbq46ypQtS906dahYqRJ2dumz0U1lFS5WlNpFi2bxAVxcXEDTiIm9axFzI/4Cri5UrVaVqtWq2fjWf/+XLm2K/dixY5w8cZLg4GB0bjrKlSlD7Tp1ealSJTS7jNaWo0cAACAASURBVEGmZ/H63893csrHoUOHGDFyBCuWryD9cSwuOh3vdn6HIcOGUt3bO0t+z9KeAHzx5Zd88eVX1KlThyJFC3P3bhzH/X5HA+JiY6lduw4exT2IiIigW7f3WbNmDfnz57eJ32AwEBwSTOnSpRAEDw+PPNP+D8vXJH1lVqtq2O5mV1HzvtlNR7O847PNdb9N+enpDuw/wLnz5/D3/4vjx08QdDOImLsx5HNywmg0oiG4uhakcJHCFH/ueUqWLIln6dKUKVOGMi9WwE3nhs7NDXs7e9JvP0IzEYKG5d42q6uvWXdDyegolilZ6YM36XEb0+M3dVrNDqx7k6lMzeIb0gzcvnWLW2G3uH37FlcCAzh7+gwXzp+lRInnibkTTcNXX2Xs2LG82fTNPH39la/8x+FHR0dTrFgxdDodcXGxNn5sXCyTJk1kzpxv0LnqiI65g4ODw7/2Q0JD2LxxE3v37Wf/gX2mDwQC77zzDmvWrMkx/mvXrnPo4EEc8+XjjUaNKOXp+a/8yKhIirt7UMGrIgEBl+7fTmJ6IkFxDw8qeHkREBCQpSVz8itWrGi5pxs05s37FhcXV3r36W36uYrG3n17aNqk6X39vND/lK/8B/VHjhzJ7NmzadKkCbNnz6JqVW+MxjR69+nL6lUrQYOGrzTkqPnxwCJCixY++Pkd46+//ClVqlQWMTk5mfbt27Nr1670P48A8HD3ICIygiZNGrNhw0YKmZ/alFP8C+bNZ8rnU/jmm2/p2KGDZcaBwZDG0aOHady4CR07daRFs+b0HzCQUaNHMn78eD4d/ynz5s2jffv2bN68ySb+Gzdv8M03c5gz5xsA3uvShe+Xf09+J9PAzokTJ6lXry7fzp3HkEGDSLyXiEsBF2bMmMHw4cMpXLgwr7zSkCFDBjF37jwuX7lMg3r1mTzlM158sRwApUqVIiQkBIAqlV/iL/+LAPj97sdf/n/Rr29fTv3xBzVr1rxv/Hmh/z3Lvr+/P61a+tCqdRsWLFiQ5+J/Vv34+ATu3r1DvnxOuHu4o923HsLOnbuYMGECJ0+eBHOR6T8TGzZsyOw5c6hTuzabN22iY6dOAJT0LMWwIUOoULE8UZHRHD16lI0bN6LX6+nQoSM+Ps1p0qQpFSpUeOzxZ8319PiZbnS0GjNKRzMVal1N08rgGelz3mw+9mdUI0udlZ9+qHGTxjRq0tjmtCAEBwUTGhLK5auXueh/kUsBgQQF3cTPz5fYndu4l5hEqiEVOzs7jEYjDg4OpoXE8hdA5+pCwYKFcCtYEFddQVzzF8CpgDPOzvlxdnYmn5Mz9vb22DnYYa/ZYWdvj72dHXZ29hjT0jAYDaQZ0kxfaamkpRlJNRgwpqWRZkzDkGo6fy85iXi9nvh4PXp9HAn6BO7G3SU6MhJ3d3fcChYiISEB1wIuhIQGU6NmDd5s+iZ9+vTBq2LFjM6fi+2f29df+cp/HL6DgwNooNfr+erLqdg7OuDgYI//X/6sWbuWeL3pvvbxn463mVoNQkxMDN99t5i/LpxHs7fD3d2DAf37Z/NLWGPylClMmjgR61/2xd09KF7iORo0aJBt/EnJ9/i//33C7NlzTLnMmSdOmMCkyZP+cfxr16wB4L333n2g9l+zbi0CdOnSxSpFRvzZ+QEBAZaBGZ1Oh16vZ8nipdy6HZYROKb1tLL+zs57/U/5yn9Qf8yYMfz4448c2L+f6tVftry/LBUT0MfpSUtLw97enqVLl7Jnz25++flnPEuVgkx+oj6etzq/za7du+jatSuvvPIKNWvVonp1b+w0O/Lnz4+jYz7LwMz94hdNiAiPoMt776HT6ahUqRKxsbEEBgZa8owbO5YXy71I/wEDmDljJrNmzDT9SNCgZ8+elvjbtm1Dl/e68M577zJ79hw+/ngs//d/n7DihxVU9PJi0qRJgFCixHMAHP/9GH379ubzz78AoEqVKty+fRu9Xk/Bgjpat25Dq9Ztsm9/s79k8RJ+3fIrf/lfZPGSxdSrX4/8rgUQwN//omVwJi/3v2fZL1myJCIaBw4eJDEpkQL5C+Sp+J9V39XVBVdXFys/PXf2fgsfH1r4tCDoZhCBVy4TH6encOEilCpVyjKgC9ChYwd27dpFt+7dCQ0JZsy4MVZ/35i2OnXqMHbsx9Sv38B8Ku+1/3/xLTNnsqSzqoRp5oRVCstuTrlyLi3jnG0a5T88/969e1y7cYNrV68TEBjI9RvXCb4ZxK2wW0SG3yY29i56vR5HR2cKFMiPs3N+HJ3y4WBv+mDmYG+Pnb2DaaDGTsMoGvb2YKfZY+9ojx0O2NtpiGZEQ8MogJjWkEkzGjEYUhGEtNQ0DIYUklOSiYqIJjU1mTJlXqBs2bK88MILNGz4Gk2aNDY9UvAZan/lK/9p8RMTE3FxcbU5nn42fTMtnrvRxr948SKNGr9BZGSkzZpRXl4VWbdujWVROIB7yffI71zAkqZfv76MHDmSl16qnGONU1JSePvtt9m6dSug0aRJI4xpwsHDB0E0LgcGUr7Ci/8o/ipVquDv78+FC+epUqUKf9f+6enPnb9AtaqVeZD2nzVrNqNGjUTnpmPNL2tp1aqluVkz2kjTTGvRfPjhR39TY9OZZ7n/KV/5/8SPjo7mi8+/YNmyZcTp43jxxXK8/HJN+vbtw9q1a1mx4gfGjv2YgYMG8ULpMnTr9j6rVq3K1h82bATffvsN48b9jy++/AI7q/nooaGheHp64ulZkqDgkL+N32g0smHDBtatW8/vv/sSGxcHolGhQnlq1KjBxx+PoWJFL0A4f/48gwYNIiDgMhER4YCGPl6Pq4sLAKVLlSI4JARPT0+aNm2Cc34Xzv55Gj+/4zRr3ozdO3eDBgZDKp6enoSHR5L+s6VFCx927NhGmtFIRa9KXLt2lU2bNtHBchuTqc7x8XpiY/X06NEde3sHduzcwb69+7h27Sr9+/e3tIOPTwta+LRixPCh940/+2uc/fV8mvvfs+x37dKVY8d8mTN7tmVWRF6KX/n/3E9OTmbTpi38eeYMt8Nv89xzJahcuRKvv/EGZV4o88j93I7/UfqaiFFsDv8tnFMVsq5IbPPCfKNV1lu2MjnKf+S+IS2NlJRUIiIjCQu7RVhYOBGREdyNiSEuTk9cfDyJifEkxCdwL+keYh54ETGaB2KMaJodjvny4eyUD2dnZ5yd8uGU3xmdiytFihSmWJGiFCpciIIFC1K4UEFKlCiJR3GPJyJ+5Stf+abNYEjF0TFf1sLTf3+Yt507dtDCxwcwraPy6quvotfradGiBZMmTaJiRS+mfj2NaV9Pw8urAn9d+AsHx/SZNsKn4yfw+ZdfgJhmlIwbN4ahw4aZP5BkjX/CxE/5bMrn6HQ6tm/fzquvvkpCQgJly5UjMiKCTZs20b5DhweO/+SJU9StX49qVb05d+7PHFsx/eXJUyeoW6ce3t7enD17NpvWz9r+aSJUrlSZwMAAPuj3AQsXLaRMmTKEhoQgQOUqVejyXlc+/XQ8o0aNYMaMmTn6eaX/KV/5D8u/l5JCyxYtOXjwAI0bNeZm0E1O/fEHhQsVzNb/3yf/o369erRv3yGbQoWxY8cRHh7OihUrHkn8KakpFCtalPbtO2QMIAmER4Qza/ZMFi5YlDEzCGjbti2ff/453ub1IgTYv28fI0eOpFixonTr3oP3u75PvnyOIHDw0EEaNzbNvn777c688mpDwm7dxtf3KL6+R0EzPZ7Yzs7evD5J1vY3Go2mQSst67V40q6/8v+b/8svPzN2zDhGjR7F0KFDHrtv+zLvtb/ylW/ji2UzivVmtLw2Zjpjk+iBDhttvhuzTaP8J8dPSTFIXEKCRMfESVhElNwMvS2BN0Lk8o1gCb4dIRFRMRKrj5fUlNRH4pte5d32V77yH6dv/pUgGzZskJSUFAkJCZGdu3bK1Klfi5dXBUFDQJNTp06JiIi3t7cAMmTQ4AzDaJQqlStbylq6dGkW/8DBg/Jqw1fMaTTx8PCQefPmSUJCgk2Nbt68aUkDSIWKXvLee13Ew8PDXBckJCTkH8U/bOhQAWT2rJk5NJ3tkSFDhwhoMmvWzAdu/927dlniT2+rrb9uFUy/muX75ctl3do1AsibzZrft7C81P+Ur/yH5d+5c0dq16kjgOzateux+9kdzsn/7bffrOqZvR8ZGSG3w8MlJbu/tR7AP3f2nPTs1UvcdDrLzyGdTied33lXjh8/nmNhT+v1V/6/9w0Gg2zZskViY+PyZPzKV/6T5CMiYjRmU40su1b/2pRjtC4gK5hjZFaplK985Stf+bnily1bTkCTjZs2ZvFTU1Pl/W7dRAN5v+v7EhQcLKBJ5SqVJTk52eIvWbLEMjBhGnhxl4SE+Gz97du3y2uvvWZJ7+qqk3nz5kuaMU1ERGbMmCGANG7USCpXfsnyoQKQkp6e8tvWbf84/vQBJV9f3yz1ya79vatVEw3E1/foA7V/SkqK1KxRUwBp1Kixjb902TKZNm2aGFJTJTAwUDB/QEpLS8vRz0v9T/nKf5i+wZAmBw4ckLt3Y57o+Dt27CgeHh6SkmJ45L7BYJC/LlyQoKAgMRgMtqmeseuvfOUrX/lPu28HGdNsclrJWcu8r5kfziXmIxkFmKf3pE/R0aymCFlN27F+rXzlK1/5ys81/4UXSoMmhIXeymI7ODjg4+ODAAGXA7mXlAQIQUHBXDh/geiYGL6c+hUffPgBAIMGDsBV50pkRCR9+/TjXvI9i3fl6hUQaNnSh8OHD3P48CGaNGlCfLyewUMGMWTQYACOHDE9beX/xn/K+fMXOHDwIPPmz2Pd+vUEBgTQuk3LfxS/0ZjGuXPnQIPdu3ZzO+wWaWlpgGl9rrCwW5w7fw7fo74kJiZiNArnzp9H0Ni9ew9hYWGW9Mn37nErLJSz585x9MhREpOSQNMYNXoUp8+cRgNGjR5l4/ft05uPP/4YewcHKpSvQCnPkuj1ev7445Sp2nm8/ylf+Q/Tt7O3o1GjRhR0K/TExh8eHs6mTZvo3bs3jo72j9y3t7encpUqlPIshb29Hdbbs3b9la985Sv/qfezHx/KNBCU3YiQzW5GXmMO6YxZjmRfpvKVr3zlK//R+ampqTJhwkTp+n5XmTPnG2nfvr1oIKPHfGyTPzwyQtatXSce7u4CyPhPx4sYjVL5JdvZLOn7CxctEqOI7N+/33KsYcOGEhBwSVIMqQJIvfr1Zfv27ZKWliHt3LHDVJaGHDx0SF5/7TVBQz774vOHFn9JT09LXU1fmuV2LUssGuKq08mRQ4fFs5SnoCGa+Tzm85lj1rnq5PDhQ9K4USMBpIKXl2VGTE7tP2DAAAFNJk6amKWueaH/KV/5ed2fPXuOoCF+fsdtzuSV+JWvfOUrX/k5+5qIiGA1wKPZjNxYhnVyTGM9IqT93ev0g+bvtt+U/xT6oaGhHDt2jA7tO+KYz+pRu3kkfuUr/2nzw8Ju8fzzJQFT8abn9WnoXF0pVboUzs7OhISEEBERYcnepm1bNm3ciIO9A/4X/enSpYtpNgpQuXJlZs+aQ/MWzSzpt/66lXbt2wPC4MGD+WbOt1TwepFr164D4OnpSfkXy+Po5Miff54lMsL0xJHffvuNy5cvM2LECAD27dtHkyZNssQfExNDeHg4lSpVeqD4/X4/Ts9e3QkMvGzTbNbxY/4fjQ8//JDevXvTs0cPAi/bps9u+/DDD2nVsjU9enTnlzW/0LJly/u2/44d22nVqjWeJT25cvUy+Zyc81T/U77y87pft249Tp48SXLyPRzzOeW5+JWvfOUrX/k5l215lHY2ywjbGDnVybbMnFPZ1C27CJT/VPrjxo3j66+/Nj+usf1j921LyXvtr3zl/1M/NSWFzu+8w5YtW7KkS7fSt1caNmTo0CF06NARp3wZT3USEcJu3SJ/gQIUKlw4Wz8uLg5/f3/q1quLptkRHRnFzFkzmTp1ahZX5+rKwEGDmPrVV6QaDLzSsCGnTp4EoGevnjRp3JQCBfJz0d+frb9t4+TJE2ho/HH6D16uUeOB4w8Lv01MdDSJSUk4Ojrg4qLD1dUFMRqJjIoi/PZtvKtXp3jx4gCE3b7NnTvRJCYkkc/JEdcCLhRwdQURoiKjCLsdhnd1b54r/twDt78hNZUmTZty5MgRli5dRt++ffJU/1O+8vO6/+677/Lnn2cICAjMFT9zTuUrX/nKV/6T42cMzuSQ5/5m1hP3C8I6kWg2D57KNT8iIoKgoCBq166dK35O57Pz/Y77cfvWbTp07JBDwsff/q1at2bn9p18v/x7evXq9a99v+N+3A67TYcOHZ7Y9gcIDgpm629bGTBgIFrWd9tT1/+Vn3f95KRkIqMi0ev1JCQmkBCfgL29A0UKF6aoe1GKFimGo6PDQ/fj9fEEXA4g+GYwTs5OFC5cGO/q3hTIX8BSSEJSAgP6D7A8YlYDJP23pPnIhAnjGTtuXEa+fxh/brZ/bHwsm9ZvolHjRpQpU+ax+7kdv/KVn5f9u/q7aEaNgoUK5oqf2/ErX/nKV77ycy7WdnBGyFjDBshpNCm7mph2M1Ut/aWAadgIBM0ygpQlkMfopxpS+W7JYssilMu/X24aXHiC42/VqhU7du4gIT6BAgUKPBHtX6p0KUJCQpk9ZzbDhw39137rVq3ZvmM78QkJuBRI/5D2ZLU/wPTp0xkzZgxHjxyhYcNXc739la/8Z9m/eCmAX3/dwrVr17Czs6Ns2bLUrVuXBvXr4+Tk/MzHr3zlK1/5yle+8pWv/LzjO9gUYnVCAE2zeZVl17pkLfMBMqfTMu9muQXrcflHfY/Sr29fAgIDLQnci7vb+IlJSXTt0gWj0ciatb+Q3znjf3VzK/7UNAMIREdHmwZnrLh75vqmGY2sWbOG/PnzP/L2T0xKJCQkBICU5OT/FH9qWioAd6KjcSlQ4Intf2kG01NbgkNCntr+r3zlPy3+Sy9V4qWXKmbvZ6GevfiVr3zlK1/5yle+8pWfd3y77MoEyXRIM6XOLq1Y/rF6bXtMshwx72cT5KP0jSLMmjWL1157jYDLpoGZOnXqsH7Delq3am1T6L2kJLZs2cLWrVsZ0H9grseflJBIbEwsAIMHDaJVq5ZUr16dunXq8ePqVSQlJbE5vb4DBjx0P7v4b9y4AZgmZxUrViwT8uB+YlIisTF3bWKrUb06devWZfXq1Tn6GQU9nv5nMKQRGRWJBsyaNZO3336bWjVrU7tWTUaOHPnI/WzTPkXvP+UrX/nKV77yla985Stf+cpXfva+AwgimmX2jpD+cdu2IE1LP2edDvM0HKv0WuadjHurrKf9ZOR4PH5SUhIf9f+QVStXA/DZlCkMHToMNzcdIta1MZVXpEgRLl28yIoVP+B/6ZLl+jzO+EOCg+nRoyeBV64QGhpsubq/bt1qyV2jZk2MYqrvxYsXWbFiBZcuXXoovk2bZBO/Xq835UejRIkS/yj+kOAgevToyZUrlwkJCbWk/vW33zA/PoVaNWuC/Pfrn5KcwpkzZzh79gzVqlXnlVdeeeD4DakGevfty4kTfgSmL94HnDx5ipMnTwHg5VUxY/bbE9r/la985Stf+cpXvvKVr3zlK1/5T65vteaMOaOA7bLC1setq/XvNutibO7veoS+Ic1Aszebc/DgAUp6evLD8uUUL/4clatWwS7z1KVcjv9W6C2On/CjSZOmbPl1Cz179gRzlUzjacKkiRPp9FYnKlV6CUdHx781AwIDWL5sBYGXA6hdpw4D+vencKHC/7n9Dx06RKNGjdCAqKhoihQt8sDxr/xhJT179TR1SjEdB5g4YSKd3urISy9VNsf279o/JiaGdevXsX7devbs3YP1aqIpyck4OubLEv+tW2EsXLCQGzevU69efTq91YmkpETKl69g0/4a8NbbbzFixEi8vb1xdXX92/pkjv9x9n/lK1/5yle+8pWvfOUrX/nKV/4T7ksOmzGbA9bHjMbMabMcMH83Zi0rmyOP0p84aZIA4uXlJeHh4VKzVg3RQMqVKyfDhw+XTZs2ib+/v8THxz+Qn5iYKFu2bJX58xfInTvR2fqnz5yWJo2biLnVxcvLS86ePZul9D179oq3t7dcunRJLl68KG46nWho8kajRqLX62XixImyctUqCQu9Jb379hU05PTp0w8c/+bNmyx1SP/yrl5NUlNSMkeYOVyb7VZIqPTs3Vs8S3lKo0aN5NgxP9m1a7cA0rxFC5scEeER0qt3L9G56gQQdw8PWbVqlU3piQkJMnHiRFm1apXcunVL+vTpI2CK7X7tv3bdWqlcubKAJjqdTl577TXRxyfY5DCkGqRO3bqWeF11OunWrZt88cUX8ssvv2RXuqxcuVIwvV9EM707xMPDQ8LDw2XhwoUy95tv5WJAgCxfsVwA+eabuQ/U/k9C/1e+8pWvfOUrX/nKV77yla985T/ZPhkvMmUw3r+A7Mgcanefw0arU4/GDw8Pt3zovn71moiI1K9XP8uARfpX/fr1ZdF3i0SMRrlw/rx4FPeQK1euWEreuHGD6HSmQQdNM32A1+v1NvrevXvEPPwlDRs2lMGDB8uL5cqJBnLi5Amb+FetWiWAzJ03V7y8vEz1MM1/kgvnz9uUO2HCBAFk37592cZ//vx58fDwkCtXLouIyL59ey1xdWjfXpYuXiLlXiwngPz+++/yoO1/KyxMPDw8bNqpmnc1+e67RQLIyJEjLWlv3LghXl4VBDQpV66s9O3bV5o1ayYayML5C2wvj5X56YRPTbHt35fFT9+mTv3K4rdr305Gjx4lmAfZ7t69a0l3716SFPcobkm7adMmWy6Tv2H9BkvaKVOmyOEjh6Rx48aigSz7/nubOuzZs0cAmThpYpb6WTVelvju55v2ns33n/KVr3zlK1/5yle+8pWvfOUr/+99O8Q0qUbLNMEm/SYosX3StmXL7r4s67PmQjKVmXEa8yjEo/Z9fX0BjWYtWlCmXFkAtvy6hQ0bNvB2586WHK+/9joeHh74+fnR/6P+rFu/nsjoKCLCIzh65AgA8+YvoFOnt4jX63nvvfeYO3cuvXv35vbt23hXr86C+fO5ePEibzZrBgg7dmzn6NGjzJ07F7dChRBgxPARNvGnJKcAMHTwUAIDA2nfvh2fffY5AH+eO2sTv52d6eFaqSkp2cYfFRVFREQER44eBYHx48cD8Mkn/8fGzZvp+0E/5s2dR7ly5ShatNgDt/+E8eOJiIygXfsO3LlzB31cHD+u/pEJEyYAcPr0aQRISkykefPmBF6+zFdffklAQABLly6lRo2aCDBm3Biio6Ozvf6O9qbYUpJTsr3+K1euZNy4T/Dy8uLSxYts2byFTz75BIBr164xa/ZsS/2dnJzZvXs3r77aEICOHTvRqHFjjp/ws3SPdF8fp2fAwAFoaDRr1oyaNWty924cN2/eRDTI7+xs0y729vZo5npmbv+M7cnp/8pXvvKVr3zlK1/5yle+8pWv/KfAz35oJ7vX2YwUZTt4ZLT9N7s0OY5KPXx/3959ommIZylPSUq6Z+MbDAap7u0tgCQkJojRmCZjx44VDU369+8vZ8/+KYCMHTdW7t1LEjDd8rJs6VIbf+TIkQJIj+49ZPiI4QLI2nXrLPH7+h41z4bRRAPZ+uuvltp++eWXYr5OUrNmDYmPj5ewW2ECyMiRI2zimjRpkmhoGfmNIqtXrZa1a9eKiMi5s+dM9R07VhISEwUQnatO0tIMmZron7W/zs00Uyg2NtZyZuTIEWLuRwJI+O1w2bJ5iwAyePBgS/tHR0WLm5vOEv+Yjz/O1p80eZIA8qtV26xevcoSW+XKL4lOp5PLgZcz2u6LL23qEBYaJpmv/47tO6Ru3ToW36dFCzl69KiljLnffmtqJ3OM6dcYTNcjKSnJpi3279svGsioUSMtzXXixAn5bMpnNumelP6vfOUrX/nKV77yla985Stf+cp/8n0729EhzeqzrvUIkACazRlMn2IzH7EMC1n+tRRplU7LNOr0CP1atWsjAiHBIXz44QdcuXoFNI1bt8KY++23nD1/DgDnfE5omh2Ojg6IJlTzroa7e3E0YP/+fdjbO+Kq0yEIlwIDuHnzJsdPnmDCp+OZNWsWAJ07v0VwUDBoUNHLC9A46utLxw6dQMDbuxqiwejRo7l9OxyA4JBgAIq7e7B162+4uBTguRLF8SzlyZEjvjbxexQvjiBERkcBkIaRUaNGMH36dADc3YsCsP/AfvI5OqIB+vh4li39/l+3v9GQhl6vx9u7Ojo3N1INBoYMHcKsWbMpWcqTLz7/DICffv6JkJAgAF6q/BIaEHQziHbt2xMXp8e7ajVAmDZjOn7Hj2fxn/MoDmhERUUCglGMjBw5mhnTpgOCv/8l3AoWxL24B2nGNJYsWcIn4z9BA7y8vAAYNnwIhlSDJZI0Qxo+LX047neC/Xv30ajRG+zcvYvXXn2VWbNMM2327t8HQMDFS+zYsZOBAwfQs3cPvlv8HUeO+OLs5GzT/4p5uCMaREREWvrfnDlz+HTCpyTE67P0v9zu/8pXvvKVr3zlK1/5yle+8pWv/KfAzxiwMdru5jS4c58xH2O2L/4m7WPw0xdxTf9yTV8zBgQ02frrVhExSmJiorib1yq5dDFAUlNTBRDv6t4iIjJv7lybfFhmw2hS0tNTUlJTZfbs2aZzIGVfLGsyNWT+/PmSmpoq7du3F0BKepYUPz8/6dr1fQHkh5UrbOJ/p/M7AsidO3cscWzZvFkAefedzhJ0M1g+HvOxgCafjv9UjCKSkl7fatVFjCKfffGZxW/WrJnMnz9fTpw4IfEJCf+o/b0qeomGJm1at5Y6deqIBqLTucnZc2clLk4vbjo3qeDlJSdOnjS3sSblypazrJ3TvUd3SU5OlpkzZ1quwQ8rfxBjWprF37zFtHBx53felaCbQfLx6I8FkPHjJMdAWgAAIABJREFUx4uISLu27QQQnU4nxT3cBTTRuenE1/eYRIRHSNlyprV0mjVrJiHBoRIdFS2ubq7yxRdfyJ2YjDbct2+f5fr7+vqKt3d1AeTsuT8fqP9FRkaaF5N+Ua7fuC6rV/8oGprUq1//ie3/yle+8pWvfOUrX/nKV77yla/8J9snaxnGTPtGm8OZ0xvvd9IqkTFLuabvj8s/fuK4vPPOO+Lp6SleFStI6zatZepXX0p0dMYH9+XLlwsa8tprr1kyNmv2pnTv3t1S9tr166V3r17SrFkz6dy5s7z66msCyCeffCJiFElKSpLu3btbBkW8vLxk29bfLJEmJiZK6zatBA0p7uEu165flzFjxoghfaDCnO7IkcMCyPXr1yyHg4ODBU0zDw6ZvkqW9JTY2LuWNM2aNTPV17xt3brV9NQkjYx8GlKzVk3ZtHHDA7X/jBkzMga3NE3q1qkjly5dsqT4+eefBJCYOzEya9asjEEwN51MmzZNjIY0S/yTJ082DdpoyKWL/hYtOCTEUrf0/J6eJS2xXb92XerUqWOJv0mTJvLXX39Zrv+1a9dMA0IgPXv2lDt37oir1a1KPq18pMt770mzZs0s/vp1a2XM2LECSM1atcwDYbbx6/VxcvnyZcvhNBGpmL5ws9XXyZMnn+j+r3zlK1/5yle+8pWvfOUrX/nKf3J9TcQo6VN2bB7vne1knX+32eS3nsFjdfZJ8GdMm87YsWNYvGQJ/fr1A8CQlsa9e8m4uhTItuxJkycxedJkft2yhbbt2lmOx8TEkJaWRrFixbL1L/x1gVKlS1HQzY2c4k8zGLB3cLDJP3PmTEaPHk3lypXp1asn/fp9QOHChS15DAYDycnJuLi4WI7FxsVx+NAhTp06hd+x3/nd7zj6+Di+X/49vXv1ytG3rvLtsFucPXsWD4/i1KhRAy3T1Kzw27cp/txzACQmJnL37l1KlCiBpmlZ4g8KDgGMlC5d2qb9Z82Yyccfj+alypXp1asX/fr1o3Dhwlb5hbCw2+h0OlxdXbPU02Aw8Oeff/Lyyy/j4ODA9evXmfrVVyxessSSRgNcXd0YOGgAn3/xOYkJCdSpU5fAwEB0rjpGjBjOi+XLExoayt69e9l/4ACIcDkwkPIVKgBw8OBB2rVrR/78+enWrRv9+/engvlcdtvT0v+Vr3zlK1/5yle+8pWvfOUrX/m542si5hue7lcDEUyrB4No/6yiGcUKQuY1jnOKIHf8+QvnM/XLqfhf9Een0z2Q//777/PTTz8RGnqL558v8Z/8B43fmJaGvb19TiU9kH/v3j2crZ5E9CS0PxqkZRfbf/RTU1K5fv0q8YmJFC5YiJIlS+Lk5GRJE3v3LkOGDGXV6lVZ8lf08mLcuHF079EDezt7i29610iWQaocwuJp6P/KV/6T6F8ODCQ2Lo7atWrnyfiVr3zlK1/5yle+8pWfN3zNKCLZZhAxJ86+uPvFglgL98l9v2BzyU9KTCR/gQIP7NeqVYuQkBDCw8Mfip+RJG+2f276IaEh/Hn6DFFRUTz33HNU865GyZKej823TZL32l/5ys/Ob9++PakpKWzfsSNX/PuUoHzlK1/5yle+8pWvfOU/NN/B5qYTazH9Od825WcUqmn3qaF5fk766SzJ0mukWad6Mvz8BQrk6IsY2bB+Iy4uLrRs1RIxCqdPn6Zr167PTPx52fd83hPPTIMxeSl+5Sv/SfJ//XULV65e4/z58xRzd89z8Stf+cp/evwzZ87g7OzMt9/OoXfvvtSpWzdPxa985Stf+cp/OL6dZD4hmZxsXlkeIZVdxYD0Mi1OlkIlS9q/80+cOMHX06YTEBCQKz6A3/ETdH6nM61at2LVqpVs3bYVDQ3v6tUfi5+b7a/8h++fPXuWMWP+R0xMTJ6MX/nKv59/9cpVNm3aDCLcjYkhNjbusfrWZVi/Ur7yla/8zP6WLVvw8/MjPCIKO3u7PBe/8pWvfOUr/+H4dpbytcwZxSql2Oym07ZkRoKsddYypdLMO1Zp7+PPnj2LevXq8cXnn3M35u4j9f39L9C8eXNu3rxB5vi9KlTAw704aNCzR0/at2uPAN7e1R5p/I+7/desWUOXLu+RmpqSK35Gyiej/z0qf/fuXUyf/jXe1b2JuRvz2P3cjl/5yr+fr9lpBAfdpGKlihR0K8i2bdvyVPzKV77ynx4/OTkZJ6d8pCQn45zPaj2/PBK/8pWvfOUr/+H4dumJshak2eyLlum0TfUkUz7zUck4L9ZnBXN5GZXMyT979iwjR46ibLlyXLx4kXr16z1Sf9OWLezZs5eAgMAs8RctWpSAwIuMHDHS0qxeXhV4s2nTRxZ/+r7BmJa5+EfW/t8tXsIvv6whJcVgE/+j9NPSjPeNP7f6X05+YmIS3y1aSGRk5L/2BwwcREufloSGhDBs2PCnKn7lK/9R+35+J3B2dqZNm7bExN5l69ateSp+5Stf+U+Pn5pqIJ9jPpLv3cMpv1Oei1/5yle+8pX/cHw703krUbLsZK5TlqPp+dPrkv7d8iQbybRKsWZV3n18EWHQoEFowIb16ylZsuQj92NjYtEQihf3yEaCQoUKM3PmTE6dOsXQIUPYuXMXDo75Hkn86Vv47ds4Ojhw+MjhRx4/AneiIgFwsXp8+KO8/mG3w3FwsOfwocNPVP+7n3/27FkGDhjIkiVL/7Xv6uLC8hXLEYFVq1YSEBDw1MSvfOU/av/8+XN4e3tTpHBhKnp5ce36NWJjYx+bnzXSzJvyla985WuW107OzpR7sTz5nfPnufiVr3zlK1/5D8e3ywxb7qeyOirWucS20tb50+ui2dRELAnE/E/mEnLyj/3uh+8xX97r+j41arz8WPzomDsI4O6eMTiTXfy1atXkm2+/pWzZMg89/itXLlOrVm0mTZoMQJrZ3L1zV47xX7l6hTq1azJp0qT/7EfficbLq+J9488u/7+NP73MXXt2P1H9736+UYyIBsHBQf/JL168OFOmTAFg3vz5T038ylf+o/TPnb9ASkoqtevUJiHpHlWrVSWfgyObN216LH5ux6985Sv/6fKTEuOxs7PjzzOncXR0fOx+bsevfOUrX/nKfzi+nW2y9DEczaoEq2OAWMmWkSKrumfdNMtJzfyPllPSTP76dWvRBAYNHPDY/OioKADci7lnrdNj8DXgypWrnD59msmTJ7FixXLcixUD4FJAQI7+lcAr/HHmDJMnT2bFihX/yQ8JCeX5EiVsjj3K+IuZ4wu8dPGJ6n85+SJCxO3bILBx40a6de9Bg/oNqP5ydZo3b05ycvI/8gcPHgzA/LlziYqMfOLjV77yH7X/2eQpPP98CQq5uYEYcS3gSvkKFVj6/fePxc/t+JWvfOU/XX5qmgEHBweS7t3D2Tl9zZm8E7/yla985Sv/4fiZBmesFrnRbIq0oSwFmdNoWZNlqaBkhJGxlyUgW3/Lr78iQO3atR+bH3rrFjo3HY75HHMtfh8fH/bu3Uufvn0JCgq2/C/M7fDbOfo+LX3Yu2cvffv0JSgo6F/7cXo9aPBcieceW/wOjg4AhIWFP3D/Cw4JZv36dSxZupQEc53/rZ81Xfb+jBkzqFqlCoUKFqTTW28BEBERwY+rV+F3wo+wsNu46dxISEj4R37hwoUZM2YMAqxZu/aB4n8c7z/lKz+3/BMnT/BGo0ZE34lBRLCzt2PKlCmEhoQQdivskfu5Hb/yla/8p8tPTTUNztyzGZx5fH7Om/KVr3zlK/9p8h2sE2uZDM18RtDM2TSrxJqpgtnWyiqtTVma5ZyGYD3/Jzs/NcX0tKD4hEScnPJl8ePj9QQFBVG5cpUc/ZSUFLp3786pU39w9eoVQDj9x2mWr1hOUlIyjRq9wVtvvY1zfmc0IOjmTZ5/rsQjiT8+PoGbN29QpUrVHONPTUmhR/funDx1iqtXrwKC0XzF0lLTLIkvXrzEkqWLWb9+Pc2b+7B06RKaNm1K06ZNyeaqP3D7R0VGogm4u7s/UPy3QkP5/ffjxMXFUrlyZerVq4+mZY0/NCQUP7/fiYuLpUrlKtStVxc089igebWlNKPRksvf35+lS5eybt1amrdoybKliznm+zs/r/mZzRu3EBoaYqqZBpERkXzyyf/+tv0ftP8lJSaydNkyTpw4QYUK5WnfoRPVvasyfdp0IqIiMN1DqCEIFSt6MWfOt9SsUQMPyzpFGe1vMBj45Zdf2LZtOwUK5Kdbt/dp3LhJFr/fBx8wbdp01q5Zw+BBg6zqnHvvP+UrPzf8RQsXUqRIETxLliQyMoI0o+l9XqpUKSpWqsisWbOYPmP6Mxu/8pWv/KfPTzMYcHBwJDn5Hk5OTnkufuUrX/nKV/7D8R0yEmcuNyN5RsE2UqaqidVrLVP9BEQzHRbNXCct41wOvpeXFyEhIRw+dJCOHTva+Hq9nudLliRer+fChQtUqVI5W3/UqFGsW7uWDh06YhRh6JBhzJ8/zwRpsGzZUlavXs3OnTtJTEwkIiLCfJuNYDQKKSkp5v8F+W/x6+PiKVnKE31cRn2zi3/UyFGsWbuWjp06WDDzI7WI08exavVqvlu0CF9fXwDKlStHqVKeD639r129jgAOjvYAGAxpiNGIY758NvGHhIQwYuRI1q9bh/VWrtyLTJ8+jU4dO4EGwSEhjB45grXr1mMZagTKlSvD9Okz6NQp47rGxd1l9arVLPpuEb7HfEFM8ZUu5cm237bRpm1bS9qaNWvSvEUL3IsV46233npo8Z85fQaflj5EREZY6jpx4iQOHTrEjz/9iO+xY/i0aIGbmxuVK1emUqWX8PFpYfax8eMT4nn77bfZvWuXqShN4/vvl7N2zVo6v/O2jV+hfHlq1nyZI0eOEB0dTdGiRcjt95/ylZ8b/ooffuCddztjZ2eH0ShgTMPOzvTzaPSo0QwbNozpM6Y/s/ErX/nKf/p8gzENo9FIvnxOeTJ+5Stf+cpX/kPyxbIZxXozWl4bM52xSfRAh402343ZpsnOnzZtugBSoaKXJCen2Jy/fPmymJtADhw4mG1JW7duFdCkpKenREdFyvARI0QD8fDwkGXfL5ddu3aJh4eHAHLp0kW5dOmSmJtH3D3cBdNDx6VCRS/p1au3XL9+/V/Hf+XyZcF0ieTAgQPZxm+qL+Lp6SnzF8wXb+/qkpqaImlitNQF0xCeeHh4yM8//mRTwqqVK8Xb21tSUlOzrc+DtP+yZcssbaDTuVnMOnXqytixYyUhMUEiIiIssQDSsWMnWbVqlYwYPtySd+bMmeZ0miVth44dZfWqlTJ8+HDL8ZkzZ4rRaLTks27/n376WdL738KFiyx1adGihURGRj70/nf58mXR6XQCSI+ePeTgwUMyfPgwQUO6/z979x0fRZ3+Afzznd1sOiCBgAqCIEg5sGKjSBGwIZ4FkaJiOwsg4CF46k8BewEFTr37ifUUFfV+gIioFJUmIFKld4RQEkggCUl25vn9sbuz35ndIN6FbJL9zOvF7sx8n+/zfp4JHN4wpf9tjuj8/HxRgLRt2zaqX1JSIt27dxdASVp6uowb+4oMHDRIFAL1R/MHDx4sAGTLlq0V4s8fffrl7W/cuFEaN24su3bvkkmT3pannnpS/v7G6/Lcc8/bkS1btpS33nqrSvZPnz79yumPeOQR+fHHH+WCCy+MiV/abvr06dOnX7l8A0DwwTaB2zTsk0MSOpejn+EJfoo+JKEE9n79bBIkvK0iPoNRpfh33TkAmZm1sWnDRrz04vMOv8YpNezoc1q3wpQpU3DTjTfh119/hQKwefNm9OlzKwDBjBkzsHnLVrw6bhwEQN9+/XBmwwbYsWMH9u/fDwBISUmz/dCtMldfdSWGDRuKtNQ0vPfuO+jSpQtMS/6j/qvXqGGHtD7nHHw2ZQpuuilQrwiwefNW3NrnVgDAjBlf4uD+A1i9aiW2b9+BwG00YaPtZe2wfcd29A72F/K3bt2GVatWYcf2Hf/V8Q9dbaUg6NPnVgwZMhQ7d2zDCy+8gIceGoJjhUX2ycGRI0fg88+moF+/fhg7dhx+++03NGrUGA8//DA2bFgfqEEpjBg5Ev/+/HP07dcf48aNw2+/7UajRo3w8MMPY/PmrY6K2rVrix3bduDWW3vb+++95y6MGTMGEGDWrG/QqHEjvPDiCzh69EiZ/f57aMhDOHLkCOrXr4erul8JBbFfb52WmhwmBPB4PRAAxcVFUf158+Zh1qxZSE9Lw9o1azBk6DCMf/VVdOveHc1btIjqJyUH7lP3+4srxJ8/+vTL2x8/fjxOPbUu6p1WD4YCRASWKfAYdkb0uvkWvP7G61Wyf/r06VdOf9OmzSgqKoKE7kOPs/7p06dPn34Z+aWdFIo8tWM51q1SzxxpZ5oiV+Q4E6Nyc+fOlWDbMnHiRHvwYHZ24MqFdm3lwMED9hUl995zt+zZu1caN2okAGTy5MDVFz17Xi9QkPS0dPuKj9CvwYMHi4jIBvvKGSU/L1tml1JYWCj16p0uAGTJkiV2j/5i5xUqx+s/OztboCBtL2srBw/st+177rlH9u7dK40aNxJl1yvy9wkTBVDy1VdfiYhIenqao+btO3ZEHMaJEyeKAmRGcI5YIpZlSUmJdtXR7xz/wJUzSjJr15bDh3Pt/evXrxMAkp6eLllZewWAVEtLF9MyI/oPXSHy6SefBuekiWlaEf6gQYMEgMycOVPSq+k/FyU7tm+PyCsicuDAARkx4hEBAlfjpFdLl+eef05y83LtOEtETL9fLNN5zvJ4/S9fvjyQLz1dELpKKfidlp4umzZtdNRSUFgoCpDW57S29+7fv18eGf5Xyc7JkVFPPaX9nj2x3/+9evUSALJp0+YK8+ePPv3y9C+99FL5xz/+KWKJvPvue/LEE0/IpEmT5PXX/27HHDx4QM4591yZ57pisix8Z1xpO6ru8adPn/5/5vfs2VNmfT1TLrn00pj4jjH69OnTp19pfe1tTdqZoeCpHXEM6ed6glvKeSop8P9otfunVPgUU2hN7InuJbrfsWNHfPD++wCAgYMG4vHHHkNRURGM4OUdBgz0ufVWm/r31Gm4oksXbNm6FU89+T/o3bs3LMvC7Lmz0bRJU+zdl4VJb7+N22+/AwMHDcTUqdPw2muvARDUO+MMu9pt27fbtezeuQu5uXmACj+keMiQh5DgS8CRvCMn1H/oeSvKY+DWPn2D+4CpU6ehS5cu2LZlK5546inc0rs3ACCzbh1ACRbMX4AlP/2EI0eOol79ehgUfO1yt25dsWHjeuTl5tl+Zp06EAAL5s8HABw9mof27dujU8dOJ3z8z27WDAqC/QcP4HDeYXto1arVgAKOHjkCI/QgXwXkHQ77AmDWN99i4oQJqJ2ZiTZtLgiGKeTm5Tr8b775FhMmTkBmZh0oAEfzjuC0+vXw4MCBUBB07d4N6zasDxzf4O8/v2miVq1aeP7555GTk4NRo0YBFvDoyEdx0YVtsGv3bggUVq9ahQYNG2LMmFH28f+9/hfM/xGigLcmTcKa1aswYuQI3Nr3Vrzw/AtY/+uvOOusJo745KQkpKenI2tPlt3/v//v//DiSy9j2dKlSE1LgwLw9ttvY++ePb/rr12zGp9O+RSn16uHxo3OrDB//ujTLy//h/k/Iu/IEfS5tXfgfx49CmIJ8o8cRUFBoR2ZkZGBM86oj0mT3qpS/dOnT7/y+iV+P/yWICn0MOA4658+ffr06ZeNj9JO8AS2LYkYKu2kT8TcaNuWc9ByhR7H/8c//ymh/tu3by+FhYX2NgBJT6smSrvioc+tfezpBw8eFEBJenqaFBUVHdcfPny4nbPj5ZdL165dw9sdO4rpD1wpEno2SSDf7/dvmeKsNzhfBa/46dOnr3alh8j8+fMFgAwbNkyeeOIJASC9e/eWomNF0rFjR0eewsJCEUtk/vwFwTkPi1giq1evses+0ePv9/vl/PPPFwCSWbu2dO/eXdq0aWN7o54aJSIiffr0EQDSqFEjGTp0qNx+2x3SuFHjYE3VZOWKlc64MxvL0KFD5Pbbb5dGjc4M/szSZdWqlfL4E08IoKT3Lb2lqCh6f5aIjBw5Ujp36izzvv/ePk45OTlyzz33CKDkyu5Xikj4+TRjxjzt+nmU3v+wYQ8LoF+dJb/7+79FixYCQBYvXiyLFi6WOpl1BIBkZ2fL7l27pV69+nYPw4Y+LNOnT5Pt27c74F27d8kT//M/EvyTLG+++eYJ+47lJP/5o0//ZPt9+/SVrl272lO++PxzGTt2rIwbN05eGTvWEfzFF1/IueeeK8uXLy8zP9b906dPv/L6V191tUyfPl26desel/3Tp0+fPv2y8cO3NVnRVVe636mr9Cgr6rC24wT8yZMnB299UfLZZ5/JX+79iwCQVq1byY4dO+T999+TevVOl4EDB0lhQYGWw5ILgycY7rn3XvHbD8wNmwf275fdu3eL6ffLk08+KbWDDwoOngyTRx/9mxw5ekRERLJzcgSANG7U+A/1f+899woAOad1a63eejJw4EApyM93xOfm5kl6erq8NWmSTPlsigCQtb+uFRGRnEOH5K677rJPRh05ejQ457Ckp6fJpElvi4jIl19+KQDkgQcf+EPH/+DBg9K/f39H/6efXk/+963/teMOHjwot/W/zXHCKTOztox8dETwBISW67b+jrg6mZkycuRI2b59m4iITJkS7G9toL9Dhw7JnXfdZccfzT8qloiMGTPG/vm3aNFCet3cS26++WY5PXjLWdOmTURE5JFHHgncVvXpp85Oj9P/VzNmCACplp4uK1eujIg4VlQkW7ZukWOFhfbYoIGDHH0BkIl/D5/cycnJkd69e9u33IV+VUtPl169eklBQb40Ct5+BwRucbNM521iFenPH336J9M/88wz5dNPwn9mP/zwQxkxcqS8MvYVGffqqxE5G5zRIPBnpoz8UucdN3PVOf706dP/z/2uXa+QqdOmSo8e18XEj3X/9OnTp0+/bPzoz5xxx5VqRg4crwk96DjPQD6uv3r1arnmmmtk7tx5UlCQL/O+nycF+QWlTg0tP//8s/1/glu3ai0vvPiCvPvOuzJy5Ehp3bq1QAXegBRK4jf9snLlKtm6dauUuJ4t88MP3wugpGfPUv4SLmUpKCiQefPmSf7R/BPq/+jRfCkpKRGxRIpDV+hoy/z582Xzls2OfUeOHg3MEZGnn3laAMj48eMj8p+In59fIMuXL5e9e/aW8pvXEr/pl3379klebq4+NWIJxeXm5Ub1i4q1/oJDCxYskM2bw89f8Zt++dcH/5KmTZvaV5pAQRSUtG/fXhYvWiSWiHTu3FkAyPJflpfaX7T++/XrZ+e9/4H7ZdKkt2X8+PHS6+ZegZNCCvLOO+/Y8bt375amZzcVBSV9+vSReVHfwiWycuVKefMfb8qdd94ZrB3SvGVzOXrkqIwZM0YGDx4sS5ctjei/1O3jDJzsP3/06Z8M/5tvv5Fzzz038Gyq4NDHH38sw4cPl5defEkmuP83TESefPJ/pOf1PWXnzp3/te8eP+72cQbo06cfn/7VV10tU6dNk6FDh8bEP24offr06dOvNL4SCT1qOHDqIvg67uC2wH51T7RFYAcHVrUd+rjAvv9KELzeQ8EdfdL9devX4e6778XCBQsDO+17xoBOHTvhqaeeQvvLO/yuP2HCBDw0eDBGjnwUzz73bIXt//qe12PatKn46quZuPKq7uXun8z+Dx44gB07diI5JRm1Mmqhdp1MKAjEEhheDyBAXm4e0quln7Bv+k288NKLeOxvfwPs0gOfmZmZuPfeezH8keGoll7N0Z9pWjA8xgn3X1JUAm+CB8owKu3xp0+/LP0b/nwDlFL47IvP7X2fffopFi9ZiszM2khNTcWDDz7o4BcuWIjHHn8M7dt3wKjRoyp1//Tp06/cfqeOl+PBBwdi6rSp+NcH/4q7/unTp0+fftn4XkcSbUAAKOXYiljVMyv3DrjjlHvVLrK8/ObNWmDB/PlYvXo1Nqxfj8LCYzijwRk495zzUL1GNcfU4/nbt2+HKKBV61YVuv/QQ42bt2wRE/9k9l+rdm3Uql3b6UEh51AOIEC9evUCJ2b+gO/xevC3Rx/Fgw88gCVLl+K33btRo0YNnN2sKZqd3TxQj0T25wm95/cE+/clJjjbqoTHnz79svSXr1iOD97/wOl7PLAsE6aYMAztXdrBoMvaXoaCggK89967GD16VKXunz59+pXbt0wLfr8fib5E53ic9E+fPn369MvG90bLCTieORwI0BK4QjVFLz68z11DuPnIJsvDb9WqFf7UqlUke6K+CCDAxRdfXKH79/tLkJmZiTOCb6GqKMf/ZPp+vx8A0L1bV2fIH/CrV6+GrldcEelEq7WC9U+ffmXzP/1sCmpl1EL79u0dvlIKIgIxBR7tDXH6cvdd92DRovn45JNPcMstt1TK/unTp1/5fb9poqSkBImJiXHZP3369OnTLxvfCwhElB0YSKBcoQi9CdqZHAhehqPFK/dKuFH9sp/wjMrnD37oIZxWrx4aNWoUGV+B+p8wfgIKCvPtXVXl+B/Pr1OnDt544w107NgxJn6s+6dPv7L5f5/4d3Tu1CnC9xgGxBKYlgXlNaL6na/ognffexd7s94NnJyphP3Tp0+/8vumaQaunElMjMv+6dOnT59+2fheIDQQ3C2A40xQKLnAGeeupdRFOdbtzBJurLL5DRo0wMPDhlX4/jt36RxRS1U4/r/n33fffTH1Y90/ffqVxRdLsHPHdsyZ810gQvOVx4ApfohY8CD0fCan37jRmaiVUROpaWlYt24dmjdvXqn6p0+fftXwLctCSYkfSUlJcdk/ffr06dMvG9+ISKLCSdzJRdvWHiMc3B+xI/gt+khoNqDcjdGnT58+/Xjy7777brS56CJ4PN4I31AGLFOQlpaOlJSUUv3+t98OwwBO0DMtAAAgAElEQVSmTZtW6fqnT59+1fD9fj9MU3vmTJz1T58+ffr0y8a3T844UwBKnNsRyZS7fBU5FvoX0IiilWsHffr06dOPJ3/v3j1Ys2YN7rjjjqi+oQJ/SR0+dAhFJcWl+t27dcPy5SuwZs2aP+THun/69OlXHd80TRQXFyMxyRcTP2KMPn369OlXSt8I7dNSBHYFb4JyvWlbK8hRqjt1KIkrp6MbiB1Hnz59+vTjye/X/zYcPHAQV199dVTf60sARCCWBcMwSvXT09Nx8SWXYNXKldi/b3+l6Z8+ffpVx2/evDk8Hg9qnHJKXPZPnz59+vTLxjechuhzA9NDT6oJpHIuWkWu1MGTQ6Lh+jzNoU+fPn36ceUvX74cN/z5z7jttv6l+yIoKSmB3zLh8RjH9W/t3RvNzm6OrH17T8i398Xp8adPn37Z+qtWrkJuXi7Eis/+6dOnT59+2fhGIDakqGCAti2hScox4ijAkVxpgNJS6p0426RPnz59+vHjn3/++fjmm29w/Z+vL9X3eBJg+U1YlglDeY7rd+vWDT8tWYTWrc+pFP3Tp0+/avmW5Ye/uASJSb647J8+ffr06ZeNbwR2KXtH4FIb5ahPB/W0ehkSmhvecAZqBUUO06dPnz79ePG379iORo0a4dxzzyvVNwwFUyxYpsDj8fyuf8NNN2PmzJmVon/69OlXLb/Yb6K4pASJCUlx2T99+vTp0y8b35CIAkSrQkvj/HJAobKU3pByBukPvFF2G8G99OnTp08/bvyGDRpi3Lixx/UNQ8GyTJimCcMwftcf+/IruOqqqypF//Tp069avuXXHggch/3Tp0+fPv2y8Q1lpw996FlVKNzerY/qKaMOhmpTgP3AGwnuCE6gT58+ffr03b7H44VpCUzLguFxSOXix7p/+vTpVxJfBEopFBcXw+fzlb8fbZA+ffr06VdK37DTS+nJ7ddKSXD+H1jCabWzRA6HPn369OnTd8MKsCyIacIwPPHXP3369CuF7zcteLweFBUVITEpsdz90hb69OnTp1/5fEOcMVpWgV1K6H4pFQ47bpES/hVOG/GyKGez9OnTp0+fftD3egz4TROmZcHr8cRd//Tp068cvmn64TGCJ2cSEuOuf/r06dOnX3a+fVtThKgUAOUqIpxUHa9CFQgIXb0TESZ6s/Tp06dPn77T93q98JsmfD4fPF5vufux7p8+ffqVw7csC+edfx4yMzORlp4Sd/3Tp0+fPv2y8w3HE4ZVZCYVZUtClTkHNUM55rpbDD85JxxLnz59+vTphzUFEaCwoCAmvp6DPn369Evz/X4/1q5di82bN0MZ3nL39SUejz99+vTpVyXfsPMr90TRIsWxGqKdZDggsmblilLBFS2WPn369OnTD0Ym+BJQv97pMC0ThjLK3Y91//Tp068cvmUF3ihXXFyERNcDgeOhf/r06dOnX3a+EQqKTKQc66Jcw47yxDUvuFfC46KPCoL5wkXSp0+fPn364W8DW7duhWlaMLyeOOyfPn36lcG3TIHh8aDoWBGSk5Lirn/69OnTp192vhEY10SJWHHXFLE3NN9+qHHwW4UepCPKOV9p+ejTp0+fPn2Xr1TwLzgRGCpaBVW7f/r06VcOP3B1nweFRceQ4Essdx+I7+NPnz59+lXJN9ywfT+Vtlf0WeIsWp9vP9TYUYnYARL8cGegT58+ffr0dd/j8cK0TPgtgRG6ATeO+qdPn37l8C2x4PUAxUXFSNJepR0v/dOnT58+/bLzDWdY6ByO0jJo+wCIJttnirTaIxdlD6rghyotlD59+vTp0xfA4zFg+v2wTD88wYdsxlP/9OnTrxy+WWLC8HoDr9JO1E/OxEf/9OnTp0+/7HzXyRntITfKkdJB2YmCMSoyLKJACbcRXotoiD59+vTp0weUx4BlBasw9L8iy8ePdf/06dOvHL4pJgwj8MwZ58mZ8vFj3T99+vTp0y8733AEuwwVHHEnDqyqQIFRi4lQg3EK4ZbFgdGnT58+ffqhxaMMWJaJEr8Jj8dwBVf9/unTp185fDEFp516KopLSuDzJZS771zi7/jTp0+fflXyjXCwO284XLmnqVCEnkq0kpSrPrG3JeKxx/Tp06dPn77T93g8ME0LYgX+Vbq8/VBcvB5/+vTpn5hvWn7sP3gAPp8PHo837vqnT58+ffpl5xvuoDAcDXUuyjGgnJm0ugXKrlcFJzkaoU+fPn369DXfMDywLBOmZTlPzpSTH1qL1+NPnz79E/NN04JXGeH4OOufPn369OmXnW8ACD7YRjnKUKWc4RE9swpuOJ6Mo9clgIS3VcRnMIo+ffr06dPXfK/HgGmasCwLobua4ql/+vTpVw7fsiyIAD6fLy77p0+fPn36ZecHXqWtQpP1KeFFudeVaEUqPQGgE6LCDWj1Orbp06dPnz59l68MDyxL0LBhQ3gTEsrdd/Ssr9OnT5++5ltiQRkKSYm+uOyfPn369OmXne9+ymJ4mtLWQ0VEFOnEBIDohH3dT/gpxGJPdC/06dOnT59+IMTwGrBMC5s3boz4iyse+qdPn37l8C2/CSiFhMSkCtW/3+/HooUL8cyzz2LgwIGY+/28cvVD0VX950+fPn36Zel7QztUsBrtNd5QEtyhQjGhYD0o3Im+2x2nJPCh7I6U64s+ffr06dMPLF5l4OxmZyMnJwcwjKh5q3L/9OnTrxy+32/BowwkJfoqRP/bt23H/02divfffw/Z2dkI/CuuhfXr16NTx8srzfE/dPgwDMNAterVK/TPnz59+vTL0vfa+cWdPZDcLspRjHMJ16FFu+JEAcq+zCcUY5dFnz59+vTp24vh8WDV6tU49dS68Hg8cdc/ffr0K4dviQkogc/ni4kf6n/FihV46aVXsGD+j5DgeEatDAwYcCcSE3xofFbjk+qX9fF/4803sWDBfHz55YyY+LHunz59+vHpe/VCnJpmRKlbDwwPRWlG7yk0IIDYZ5Ho06dPnz59p28YHohlwSwxkeCJfFtTVe+fPn36lcO3LAsKBny+pGiBJ91fvHgxnn3mWaxYtdLO2qx5M/zl3r/gmmuuQWJiomNaZTn+hlJYs2oNsg8cQK3atcvdj3X/9OnTj09fe+ZMcJIjiWiZo9UWHpDgpyNU9G8BEH5YjkL4Piz69OnTp09f972GgmlawYdtGu7oKt8/ffr0K4+fWac2EkNXzpSz/9fhw7Fy5QoYADpc3gGfTpmCr7/6GjfccAMSfYkn3T9Zx9/nSwQUsGnz5pj40Lfp06dPv5x8rz1ZBX6pcByUcmxFrOqVqGhdOOKUezV0VQ99+vTp06fv8A2vF6bph9/yh29riqP+6dOnXzl80+/HwQMHUf+MM2Lit2jeHLt37oQA2LVzF/wlJVCG0uJK9/0lJr7/cR5279qNFi1a4JxzzkGCz/dfH/+sfVl48403sGLlSvhLStDwzEbo3bsX2rVr7/Cz9u7DnHmzcazwGC699FI0b97c7j8lJRmiBPv37//Dfjz9/qNPn37V8r3RcgKuS26gHAlcoZqiFx/e564h3Hxkk/Tp06dPn75hGLAsC2IKDGVEj63C/dOnT79y+JZlwbQsWJalD5SbP3bsWDzxxBP44vMvsHXbNvTtcytatT4H9913H7p1744Erzeqv2TJEjz6t79hy6ZN9nidunXw6adT0KBBA4c/f8ECzJz5FQ4fOoRq1auhRYuW6N+vf9Tjn5d7GL1798a2bdvsvKvWrMH06dPQt29fPPbE40hNTsGkSZMwavRoGNrxGTR4EB5++K8AgOTkZChRyD2cGz5WIsjOyUZGRq0K8/OnT58+/bL0DUDsq3dCk9zRotXnjEPkq6GUeyV8qY9+IU94Bn369OnTp+/0PYYBsQSmJTC8Rtz1T58+/crhm6YfAJCUFHrmTPn6aWlpGDduHL6b/R1u698fFhRWr1qNBx64H+3atsXs2bMj/IULF+Lmm2/Cpo2bkJqaip49eyI5LQ1ZWfvw6quv2rGmJXj62afRp28f/Otf/8KXM2bgw48m4/HHH8cr48bCtLTKgqW//8G/sH3bdgCCIQ89hIkTJ2LkiOGoW7cuPvzwQwx68EG89tprGD16FCBAamoqMjIyYCmF8eMnYNu2bQCARF8iBArHio9BABw+fBi39umD886/ADfddBMKjh1DRfj506dPn35Z+gaggmdwgrtFp7XkEpriLN/ZRrRFOdbtzBLORJ8+ffr06eu+4fXAb5XAsvzwKE/c9U+fPv3K4VtmYL/Ppz14txz90NKkSRM8/fTTWL1qFR574jHUrXsqsvZl4c4778Jbb02yM2cfzMZdd98NpRRuuvEGLP9lOcaPH4/hwx4GIFi9erXtP/bYo3jrH/+LtJQ0PPXUk1i0cCFWrvgFADD+tdcwY/p0uJdPPvkEogRDhw7DsGHD0KNHDzzwwEDM+/57jBs3Dk3OaopXxo6FUgq39e+Hn5b8hJ9//hmXXnQxAMGePXsCxzMpAUoJigqOYdeOXejR41osWrgQhgKWLl2Kf775ZoQdy+NPnz59+mXhG/rE8Fdp53jC25FneyJ2BL/F0ardoHI3Rp8+ffr06Qd8QxmwTIHpN+H1eOKuf/r06VcSX1kQESQlJVaI/qtXr4577roHP/zwPfr27QdAMGbMGPy8bBkAwfjxr6EgPx8iCl/PmoU777wLAwYMwOjRo6BgoH37DgCA2bPnYPJHk5GamoovZ87AgAF34rTTT8fChT/Z3NPPPofi4mP2tuk3sXPXLsACbr21t6P/5KQk3HDDn5GdfRAKwBVXdMXoMWOQlpYOpRReePEFjB79NC648EIAQFJiMiDA+vXrcdMtN2Pnrl2of8YZuOGGmwEA414dh+ISf0T/sT7+9OnTp//f+PbJGWcKQIlzOyKZcpevIseC92LZI3bRyrWDPn369OnTd/rKUIHX1HqMuOyfPn36Fd83TYGIBF5ZXc7+VzNmYPz4CTh8+LBzTAkSE5Pw7DPPoM2FF0IJsPbXtfCXWHj3vfcACG65pRfy8/Px4/wfMWfOHAiAG2++EUOHPAQAmD1nDgDghRdfQKOGDQEAR44cwYsvPW8/M2Ff1l5MnvyJXU9u3uFg64KEBF/U/nft3g1A0KlTJxiGYfffsGFD3H77bUgKvvXKDD7D58uvZmDf3r3o3KkzZsyYgedfeBZpaakAgA3r1yHWP3/69OnTL0vfvpFffwCOAAj9L6+IOPcjMt49BqhQEldORzcQO44+ffr06dN3+oGrZ0x47CtnytePdf/06dOv+L7fNAEg+Nrq8vXHjRuHl195BVd2745Xx72KX1aswKaNm7Bu3Tr88MMPePHFl7Bk2TKIEjRu1Bjr1v8KQOGCC9vgxRdexJIlSzBx/EQ899xzmDlzJl5++RVUq14dAFCQnw8F4Ofly5F35CiWLVuGW3v3xvZt23HGGWfgmmuuAQA8/8ILWLx4MQCgqLgYIgKlFPLy8qL236BBAwgUnnn6Gfzwww+l9p+XmxsYUUD9Mxpg/PjxqFatGnwJPlx11VUAArc3xfrnT58+ffpl6bv+OVL0uYHp2uuknOU4K3KlDp4cEg3X52kOffr06dOnH8X3er3wJHjhcV85U05+rPunT59+xfchArEEviRfufu9e/eGEiArax/GvjoW1/e8Hl26XoErr7wS/fv1x+uvT4RSwJAhw9CuXbvACRMl+HnZMhw9egR16tTBdT2vQ58+t6JFixYO/8orr4Qo4O23J6HVn1riphtvwpo1a9Cs2dn4bMrneO2119CxY0cUHM1H71t6491338GxwiKIAkQE27Zui9r/Pffeg7TUVBQU5KN///64/s/X47XXXsXs2bOxb2+W7e/atStwLEXwxut/R3p6up3m2mt6AAg82DjWP3/69OnTL0vfCMSGFBUM0LYlNEk5RhwFOJIrDVBaSr0TZ5v06dOnT5++2z+nVWsUFhbAMLxx2T99+vQrvm8YHiQnJyI5Manc/bvvvhtTp03Ffffdi9Z/aoWMWhlIS01FWmoa6p56Kq69pgc++3QKhg4dAgA495xzkFEz8BrqwQ89hMLCwgjfb/qxc+duXHjBhcF5gYvsLQhuH3AHpkz5DLXrZCIhwYs333wTHTt1AmDhySefQom/GGmpqVBQOKVmzaj9NzmrCaZPn4627dtBRLBi+S8YO/ZV3HnnAFx86UU4/4Lz8Y9//C9aNm8BQDB0yDD8qVUrR/+Xd+qINhdegM2bN4eOCOL19x99+vSrlq9EJHC7kwoXoPTYE1wcU35nfsQwffr06dOn7/JbtmwJSywsX7YcySnJ5e6f6EKfPv349Wd+/TVefvll3DlgAPr26Vvu/h/t/+uvv8b9f/kLBAp169TBgLvuwJkNGyE75xCWLVmCr7/+GvkF+ejevTv++c9/orCgENk52ahbty68Xm/UnOvWrUNGzZqok1kHGzZswM8rfkaf3n1+t/91v67DsuVLseKXlVj283Js37oVAHD3PXfjiSeewL79+1E7oxYMjxGRa8eOndiyeTM6den8h/p3DFeB33/06dOvWr6yRERFTFXaejCNOL5c0aUMakGiBMqRVwEQ6Hvp06dPnz790Hrr1q1x7FgRVq9ajcSkxLjrnz59+hXf/+qrmXju2edw71/uRf/+/StF/z/+8D0GDxmKnOxsQClABFCC4H1EaN26NUaNGoXzz7+gXI9/QUEhcnKyUa9evZPaf6yPP3369OmX5nuVnl4A5yU3Khyu9D3uiFIGQ5xCuAQJBqrAN3369OnTpx/NV4YHpmXBE/xX03jrnz59+hXfFyvwKu3ExMRK03/7Dpdj8aKFmDXrG6z99Vcc2LcfmXUy0aRJE1x00UWoX7/+SfVL6z8lJQUpKSnh+eXsu7PTp0+ffnn7Xju9lJ5ciQQmSQg68SWcNniWKGIyffr06dOnHznfaxiw/H4YHk9c9k+fPv2K7/tNC4LIkzMVvf/ExCRcd911uK7HdZX6+NOnT59+VfINccZoWSWYGtBPG4XCBMdZJPwrnFa/fEfsL/r06dOnTz+ab3g8sERgGEZc9k+fPv2K71uWCcu0Aidn4rB/+vTp06dfdr6hdEYXlQKgXEWEk6rjVagCAaGH2USEid4sffr06dOnH+krwwicmImRH+v+6dOnX/F9y7JgiQWfzxeX/dOnT58+/bLzDfvt3RIIdmdSUbYkVJlzUDOUY667xcA1PM5Y+vTp06dPX188Hi+8Hk/M/Fj3T58+/YrvW5YFywpcOROP/dOnT58+/bLzDTu/ck8ULVIcqyHaSYYDImtWrigVXNFi6dOnT58+fc03FKAMFbf906dPv+L7pukPPhDYF5f906dPnz79svONUFBkIuVYF+UadpQnrnnBvRIeF31UEMwXLpI+ffr06dPXfcMwYBieuO2fPn36Fd9P8PqgDANJSUlx2T99+vTp0y873wiMa6JErLhritgbmh+qJfStQg/SEeWcr7R89OnTp0+ffhTfMAx4DCNu+6dPn37F9wuPFSI5KQXJySlx2T99+vTp0y8733DD9v1U2l7RZ4mzaH2+/VBjRyViB0jww52BPn369OnTd/serwe+pOSY+fY8+vTp0y/FNy0Th3IOICEhIS77p0+fPn36ZecbzrDQORylZdD2ARBNts8UabVHLsoeVMEPVVooffr06dOnH8onAtNfEjs/1v3Tp0+/wvuW34LfsuBLTIyJH+v+6dOnT59+2fmukzPaQ26UI6WDshMFY1RkWESBEm4jvBbREH369OnTpx8YbtKkKQzDo0WUrx/r/unTp1/xfVNM+P0mknzukzPl48e6f/r06dOnX3a+4Qh2GSo44k4cWFWBAqMWE6EG4xTCLYsDo0+fPn369PU527ZthTKMmPmx7p8+ffoV37dMC5ZpIjEpKSa+c6FPnz59+pXZN8LB7rzhcOWepkIReirRSlKu+sTelojHHtOnT58+ffqRvlIGPIaKmR/r/unTp1/xfdP0w2+aSExMjIkf6/7p06dPn37Z+YY7KAxHQ52LcgwoZyatboGy61XBSY5G6NOnT58+fZdvGAow9L8Ey9ePdf/06dOv+L7fb8JA4H+v4rF/+vTp06dfdr4BIPhgG+UoQ5Vyhkf0zCq44Xgyjl6XABLeVhGfwSj69OnTp0/f5SulYKjwbU3x1j99+vQrvl9cXAyPxxu3/dOnT58+/bLzA6/SVqHJ+pTwotzrSrQilZ4A0AlR4Qa0eh3b9OnTp0+ffhTfMDwwjPBz6+Otf/r06Vd8PzEpEQm+hJj54UH69OnTp1/Zfe1tTaJ9BiBxDDknqtCHhgkA0Qn7up/wU4jFnuhe6NOnT58+/bDvMTzwKBUzP7yTPn369KP72Qezceppp8Vt//Tp06dPv+x8I7wjUI0+TYUu1zleoco5V5USp4JNKL0Exxd9+vTp06cf9pWhoAwjbvunT59+xfeLi0qQczA7bvunT58+ffpl5xt2CnGNAIDS3rvtKMa5hOuQUuNEhT60QSXhLfr06dOnT9/lGx7tAs847J8+ffoV2y/xF8Ob4ImZH+v+6dOnT59+2fnazfzaiNuIUrceqLToiGb0PKFAAQJ3ZmlZ6dOnT58+fS2JoRSUlHY3cNXvnz59+hXfLykpQYLXF7f906dPnz79svO1f5IMTdKTiJY5Wm3hAQl+OkJF/xaESgqkjNIIffr06dOnH/QNw+O8cqacfejb9OnTpx/FLyouhsdjxG3/9OnTp0+/7HzDkUQ5Tu5oZ3O0NHpG5V51daH0bxUsKbxfOYqnT58+ffr0w75ScP4TQpz1T58+/Yrv+0tKkJiYGDM/1v3Tp0+fPv2y841oOQHXGSAoRwJXaCnFS8QuvS+JKJ4+ffr06dMP+0opVE+vHrf906dPv+L7JSUl8Hi9cds/ffr06dMvO98AxL56J5xAuUKd9TlA5YpX7hXtP7S1DOEZ9OnTp0+ffqRfK6MW8gsK4rZ/+vTpV3y/pKQECQkJcds/ffr06dMvO98AgpeOh3aLTmvJJTTFWb6zjWiLcqzbmSWciT59+vTp03f72YcOBsbjtH/69OlXfN/r9Ube1lSOfukLffr06dOvbH7kO0qVK4mWXC8r8mxPxI7gtzhatRtU7sbo06dPnz79sG8oD5TSH40WX/3Tp0+/4vuFhflITU2NmR/r/unTp0+fftn59skZZwpAiXM7Iplyl68ix5QA0F6DahetXDvo06dPnz59l68Cr9OO2/7p06df4f2iohJYlhUzP9b906dPnz79svON0D4tRWBX8EnFIuLcj8h49xigQklcOR3dQOw4+vTp06dP3+VbEjg5Eys/1v3Tp0+/wvvFJSXw+Xwx82PdP3369OnTLzvfcBqizw1M114n5SzHWZErdfDkkGi4Pk9z6NOnT58+/Si+YRiAoWLmx7p/+vTpx8YvLi7Czz//fEK+5Tfh8/rK1I91//Tp06dPPza+EYgNKSoYoG1LaJJyjDgKcCRXGqC0lHonzjbp06dPnz59t28g9MC0+OyfPn36sfF9vkS88tLL+G72t3j00ceO65f4S5CYlPC7/vYd2/HR5MmVon/69OnTpx8b3wjsUvaOwKU2ylGfDupp9TIkNDe84QzUCoocpk+fPn369F2+oewHAsdl//Tp04+Zf/MtvTDjy6/w1YwZOJKbW6pvWha8vsTf9V95+RWkpqXh5VdexpfTp1f4/unTp0+ffvn7hkQUIFoVWhrnlwMKlaX0hpQzSH/gjbLbCO6lT58+ffr0Xb6IBQUVt/3Tp08/dv4NN/wZa9euxdlnn41169eX6pt+PxITfMf1i4uKMGvWLFSrloY1a9bg2h7XVvj+6dOnT59++fuGstOHPvSsKhRu79ZH9ZRRB0O1KcB+4I0EdwQn0KdPnz59+tF8ZXgApeK2f/r06cfWb96iBVJTU7Bly+ZSfY9hICUl5bj+tOnT8eD9D2DA7XfhnbffqTT906dPnz798vUNO72Untx+rZQE5/+BJZxWO0vkcOjTp0+fPv3otqEli7f+6dOnH1v/+uuuw779+7FwwaJSfdMSJKckH9f/30lvYcu2rXjv/Xe1B01W/P7p06dPn375+oY4Y7SsAruU0F8kKhx23CIl/CucNuJlUc5m6dOnT58+fc0XAMowYuYHxuL3+NOnH+9+p86dkXv4MBYsXFCqX1CQD+e/jjr9VStXoaSoGIdycnD55R3+kB/r/unTp0+ffvn69m1NEaJSAJSriHBSdbwKVSAgdPVORJjozdKnT58+ffqRvjchQbtdIP76p0+ffuz9dh06wOv1YPOmzVF90zSRmJRYqv/Nt98iL+8IxjzzTKXsnz59+vTpl59vOJ4wrCIzqShbEqrMOagZyjHX3WL4yTnhWPr06dOnT19fPB4vSoqLY+bHun/69OnH3r/m6quRkpKKX1auiOqbpomU1JSovlgmJk6ciB49rkXDBg0qZf/06dOnT7/8fMPOr9wTRYsUx2qIdpLhgMialStKBVe0WPr06dOnT1/zi4uOwbTMuO2fPn36sfc7tO+AvXv34tOPP4nqW5aJhARfVP/DDz+Cx+PBE0/8T6Xtnz59+vTpl59vhIIiEynHuijXsKM8cc0L7pXwuOijgmC+cJH06dOnT5++7osIxI4vf9+W6NOnH9d+nz59sHrNauTl5UX4pmkhOSk5qv/hvz7AjTffBMNQlbp/+vTp06dfPr4RGNdEiVhx1xSxNzTffqhx8Nt+Ir0o53yl5aNPnz59+vRL8Q2l4rp/+vTpx96/rG1b1KxZE19//XWE7/F4kJqaFuEvW7YMG9ZvwphRo/9rP3KJr+NPnz59+vHiG27Yvp9K2yv6LHEWrc+3H2rsqETsAAl+uDPQp0+fPn36bl8ZChZUzHx7Hn369OPa79a1K37bvRvz5y+InK+ARJ83wh89ehR69OyBxMTESt8/ffr06dMvH99whoXO4Sgtg57p//kAACAASURBVLYPgGiyfaZIqz1yUfZg6C8xVVooffr06dOnH8ynRKC0vyzjrX/69OlXHP+OO+/E3LlzkH3woMMvzC9EUkqSI1t+fj7WrPkVjz46ssz8WPdPnz59+vRPvu86OaM95EY5UjooO1EwRkWGRRQo4TbCaxEN0adPnz59+oFhSwClDC2ifP1Y90+fPv2K45/TujVOrVsXUz6b4vAtWPD5nCdnHn/8cdSvXw+nnnpalemfPn369OmffN9wBLsMFRxxJw6sqkCBUYuJUINxCuGWxYHRp0+fPn36+hwRK677p0+ffsXxu3Xvhl27fsMvy1c4fLEEqSkpjmwzZnyF4cOHl6kfXo3P40+fPn368eAb4WB33nC4ck9ToQg9lWglKVd9Ym9LxGOP6dOnT58+/dJ8ibHviKBPn36c+mmpaTj3vHOwbfs2LF32MwCguLgYSgGG12PP+fSTT6EUcO2111ap/unTp0+f/sn3DXdQGI6GOhflGFDOTFrdAmXXq4KTHI3Qp0+fPn369OnTp1+B/Z49e6JRo0Z4/513AQDHjhVBKQPe4O2XAuDDjz7EVVdddVJ8e2acHn/69OnTr+q+ASD4YBvlKEOVcoZH9MwquOF4Mo5elwAS3lYRn8Eo+vTp06dP3+VblgURidv+6dOnX7H8yzt0xIqVK/D9jz8gN/cwio4VwjAMeL0JAIDfdv+GNWtWY8iQh6pk//Tp06dP/+T6gVdpq9BkfUp4Ue51JVqRSk8A6ISocANavY5t+vTp06dPP6qvoLQn5Mdf//Tp069I/qmn1UHNmhn4c8/r8dHkySj2lyDBlwDDYwAQvDL2FTRt0hQNG5xZJfunT58+ffon19fe1iTaZwASx5Bzogp9aJgAEJ2wr/sJP4VY7InuhT59+vTp0w/7Kckp8BpGzPzwTvr06dMPLFdddSWSU5Lx2rjXUJCfD39xCTxeLwQK06dNQ/crr6zS/dOnT58+/ZPnG+EdgWr0aSp0uc7xClXOuaqUOBVsQuklOL7o06dPnz79sH+s6BiSU1Litn/69OlXPP/K7lfi5+XLceNNN+Lzz78AYMDr8WLmV18hNTUNPa7tUaX7p0+fPn36J8837BTiGgEApb1321GMcwnXIaXGiQp9aINKwlv06dOnT5++5pf4/Thy9EjM/Fj3T58+/YrnN2nSBAf2H0CPHj2w+KfFEFhISPBgwsTxaNmyJRqf1fik+o7c4SSlxtGnT58+/crjh29r0u7rjzCi1K0HKi06ohk9TyhQgMCdWVpW+vTp06dPX08iAjElbvunT59+xfS7de+GFStXICUpBUlJSdi2dRsOHsxB8+bNysWPdf/06dOnT//k+NozZ0KT9CSiZY5WW3hAgp+OUNG/BaGSAimjNEKfPn369OkHfXH9HVbePvRt+o4l93Ae5s6di9mz56CgsLDc/Vj3Tz++/auvuhozv5qJK6+8EkeOHsVHkyejWno6OnXpXC5+rPunT58+ffonx/fak1XglwrHaW/JkPAMbVWvREXrwhGn3KuBq3oUffr06dOnH+mLWDDFDOeMs/4rqv/rul/Rr28/ZGdnAwAyMjIwetQoXNujR1z0T5/+ueedi7S0NFhiwVAKvyxfjpoZGWh3Wdu46J8+ffr06Z8c34iWE3BfRq4C0dFixf7Qtp37JGJPcD1Kk/Tp06dPnz4AiAiUxG//FdUf8cgjgRMzEvg3oOzsbDw4cCBGjBiBwsJjJ913Joq/40+/YvhNzmqKZUuXQESwZ+9eJCcll6sf6/7p06dPn37Z+wYg9tU74QTKFeqszwEqV7xyr4hWg0SG0adPnz59+lH8wP/1V3Hbf0XzRQRvvPEGVq5aDQB4aOhDmPXtdxg6dAgA4OOPP8aYMaNPmu+Mi7/jT79i+df0uAYrVq6GUgp16tTBKTVPKVc/1v3Tp0+fPv2y95VIaEjCFdjX27j3a9v/4aKnEeUskj59+vTp0w+NXP/nnhABpv57alz2X5F8SwSPPfYoJn80GVBAzZoZmDJlCho3DryZ5ocffkD//rcBsPDhhx+hXbt2Var/aP7IkSPx7Tff4OuvZ6F2Zu1y9//oQr/s/WZnn40aNU7B4p8Wx8T/Iwt9+vTp06/4vvZAYKV9lXaOJ7wdebYnYkfwW/SR0GxAuVukT58+ffr0w75YgFi6EF/9VyT/pVdexkeTJ0MADBs2HAsXLkLjxo1tv0OHDhg5cgQgCk+NeqpM/J07d+HjTz7Bv7/4AnuysiL6Ly4uxrhXX8Vtt/XDFVdcgQEDBuDjyR/Db5qAAHPnzsF3s2dH+CIW1q9bh3379p1w/9GO/65du3AgOxt5Rw7DFVjlfv70o/utzjkH1/a4OmZ+rPunT58+ffpl69tXzggESg8XgeP1Tq4lIt41GlBC36XtDo/Tp0+fPn36un9dz54Qy8L06dNj4pe2xJu/c+dOtG/fHgBw99134/EnHo/q5+Tk4LzzzoWCgYWLFuC0007Hpk2b8PJLL6FD+w7o279fhL97127UrFUTKckpdp6iY8fw4osv4q23JwXCgstDDw3GsGEP2/UOHjwYU6dOjej/wgsvwogRw3Hzzb0AIPCw1poZdv8f/OsDPP74YwAUVq1ahWrVq/2h45+bl4vCggL07Hk9srKyMGLECDRv3hy1atVCy5YtYBieMj3+7iXefv/Rp0+fPn368eIbCP6Hjz4ggF2YfddTaD8i491jgAolceUMDwf2KdCnT58+ffrRfNPvR+ifKeKx/4rif/vdtxAoXHjhhfjbo4864i3LwtRp03Do0CHUrFkTGbVqQURQUlICAPjss88xc9YsvPPeOxG+v8SPbt27YdCDg+x8RcXFuP+BB/DW25MglqDtZZfhkksugUDhtdfGY/u2bVBQWLZsqX1i5sabbsK4cePwzNPP4MI2bbBs6VL0798fAHDeeefjlIwMR/9ffvklBAp169RFenr6CR//3NxcdGjfHq1btcYll1yCrKwsAMDzL7yAAXfcgWuvvRbvf/BBlfv506dPnz59+vTLx/c6DYkI018nFXGmSMKQcu0M3E8lCN1Y5WQEUMFs9OnTp0+ffhS/Zs2aOHT4UNz2X1H89evWQUHQ87qe8Hi9Dv/jjz/GoyMfRfNmzTHh7+ORfTAbooAap9QABNiwYR2UAs4//8IIf+mypcjPz8eaX9fYCf8+YSJmz56N1NQUvPfe+2jTpg0KCvLRrl175GTnYOPGjWh45pn44vN/AwDatGmDV15+OViroG+/fpj3/Tx8NuVTfDl9Btq0ucDRZlZWFhb/tBgKwIiRI2AYobu7f//4J/oS7deHixU+frVqZqBBgwbIO5qHzNp1qtzPnz59+vTp06dfPr43EBsqQgUDQrNUMD4IaiMAwgWE99jr9qedMlBQYLezSfr06dOnT9/t5xzMhhjx239F8b1eHwTAb3v3hOcF/by8PEAB6zf8iiuu6Aoo4IrOXVC9Wg0AQPbBHMASXHDB+RH+62+8DhHBFZ27AFD47bfdeG3Cq4BSyM8vxCN/HY6WrVti4YJFOBg8KdL63NYAgJ2/7YKCYMCAAfaJGUBBKaBTx47YtGEDvvzyK1RLr27/BxEAvPH664AoNDv7bPS8vucfOv6JyUn4dva3yMk+hNqZmRj4wP1YsnQZXnr5ZXTp0kn7WZTt8Y/1z58+ffr06dOnXz6+EfgK7wxcaqOcNWqgnlYvQ0JzwxvOQK2gyGH69OnTp0/f6ZtiQSkjbvuvKH7LFi2gALz5xhvYsH69w+96RVcIACvkWwp33XmXnT+tWhqgFA4dOuTwP/zwQ/zw/Y9QUKhdJ/Cmoy9nzAQshUsuugRNmpyFrdu3Yfr0L5GTnYPT6tbFO2+/jbp1TgUAZO3dC4EBX4Ivav+JKUkABKvXrrb7nz9/Pt557z0ILDz51JPwGJ4/fPxPO/V0/OlPf0KdzEwcKyqBgsKu3buq9M+fPn369OnTp18+vlfseSFKtERaheL4ckAKwUt+QoN6QDBIVPiyoPDZpuBjcOjTp0+fPn2Xb1kmpETitv+K4vfs2RPPPvcsjhYUoHv37uh1yy1o3749lGFgxS/LA7ODaTNq1UTbdm1t/tKLLsGChQvw/HPP4eyzz8ZZZzXGhx99hDdff932f/ppKQBg6dLFgAIGDR6Iyy67DEuWLMHGjZtQK6MWOnXuhKTkZDtv0bEiiAgO5x5y+KH+W7c6BwAwa+YsDH9kOOpk1sGECROglKBJk6a47LJLA1P+i+N/2mmnYdWqFfAlJITfwFkFf/706dOnT58+/fLxlYgldrhbdhTwny+O+Vq/zvbo06dPnz798HJF164wDAPfzJoVEz9ifhz7c+bMxoABdzoHA/+NEfjS5n/wwQfo0KEDAOBwbi5u6dUL69evhxJAoIIYMGjwIEwYPwECYP4PP2LYw8OwdOlS/PWvwzFo0MDj9n/xxRcja18W7r/vfowcOTJq7/ffdx9mzJxpzw/5Ix8dgfvvv/8P9R9tKSouQvbBbJx22mmlRFSdnz99+vTp06dP/+T7RmirtMICY2LnkeghJ1BY8H3fyu3Qp0+fPn36URJYVuBXrHzE+fHX/M6dumDhokW4/fbbkZFRCwBQt05dXHbZZXhkxEgsXbYUd9xxB0QBQ4YMwd69eyEAalSvjn//+wv85f77UOfUukhNS0G/fv0wY8YM/PXhv2LM6NGoVTMDx4qP4aqrroIAePnllzB/wYKo/efm5mLz5i1o0aIFIEDNmjVL7X/8xIkYNnQYzqhfH2c1bQJRgWa7du36h/uPdvwTfYkneGKm8v/86dOnT58+ffon31eWiEStSSQYHL3i4/Ti7CB68sCAIPQwY/r06dOnT9/hd+rUGV6vF99++21M/Fj3X9l8v9+Pe+6+B3PmzEGzZs3xyaeTUaPGKSfs+0tKcMMNN2DlypWAAm688Sa0a9cOSYmJ2LhpE2bPno3Vq1bBAjD5o4+wccMG3NyrF9LS0n63/y1btqBz5874U6uWmPHlV1Xy+NOnT58+ffr0K7dv39ZUmujcFU4KdbwKAwOlhjl2aBv06dOnT59+cGnfoQMSfT589913MfFj3X9l9PPzj6BXr95YvWYNWjRrhv+bNg1JiYkn7BcUFOCxxx7Hv//9OUL/dRLqSMGAiGDwkIfwwH33IzklGZFL9P7feONNPP/8cxg9agxuv+O2k9Z/rI8/ffr06dOnT7/y+uErZ34XLI0ubfx4e8Lb9hp9+vTp06evhbZt1x5JvgTMnjMnJn7p+ekfz8/PP4q33noLixYuwttvT0JqalpEht/zN2/ahG+/m41dO3cCCqhfvz7OOfdcnH/++UhK9P2h/i1LcPnll2Pnzp1YtmwpatfOPKn9x/r406dPnz59+vQrp69EQjdUuSeGdgfXQ9ffaJOd5Il15ywmWix9+vTp06cPtG3bDj5fAubOmReX/dMvG/+nn35Cr1690LlLF7zz9ttx1z99+vTp06dPv3L4RqAG0QaV9h1eF+UaDux1k85yJTyutxrqFVCgT58+ffr0o/mmacKyJG77p182/pTPPwMA3HzTzXHZP3369OnTp0+/cvhGYFwTJWLFXVPE3tB8+6HGwW8Vel+4KOd8peWjT58+ffr0o/iWZTn+mixv3ynRr4z+0bx8TPnkUygBLr+8Q9z1T58+ffr06dOvPL7hhgNndMSxV/RZ7rugtMhQLcpRidgBEvxwZ6BPnz59+vTd/llNzoLfkpj59jz6ldb/dnbgTV8tWv0JqSmpcdc/feDw4cPwm2bc9k+fPn369CuPbzjDQudwlJZB2wdANNk+U6TVHrkoe1AFP1RpofTp06dPn34w37pff8WZDRvEzI91/+Xp/+PNN3DXnXfC7zerVP+JiT4AQMOGDSr08ad/8vy+ffvim29m/SG/xO8/rr9tx24UHjtWqr93734czD4Md/9rft0I07Ii4hcvWoh5c+eelP51Px5//vTp06dfmXyvO5FoSQLryhWhJVLO+NKXUJwdHVgLb9KnT58+ffoO37IEW7ZsjZkf6/7L0//ll5X4bvZs5OblIqNmRpXpv+1lbXH7HXfg+p7XabMr3vGnf/L8OnXrYvHixbjl5l5ofNZZSEtPR/W0dKRVS0diUiJSklORmpKCxOQkpKWlYteuPTjllBowFOD3mygpKcZvWVk4NTMTh3IOwW/5kZ9/DElJPhQXFSHBl4DDh3Nh+U34TT8Kjx1DSbEfCQkeeAwDxX4/amXUxO7de5CamoKU1FScUq06lMdAWloaLMvCls1b0KHj5ejUqVOVO/706dOnT//EffvkTGincoQGRgTKkTiwqgIFRq0qQg1uKYRbFujX/9CnT58+ffr6HNP0B/+VOT77L0/fksC/3BQczUdGzYwq03/1GjUwetQox1hZ+XPnzMGzzz6P5559Fm0ualMh+6cPzJ0zF7t374Lf78fatWvg8Xjg9fqQUSsDh3IOwZvghcfwBHMCpgh8CQmBbcML018MjycBUECCJwF+04/MzFo4evQoRBS8Xg98Ph88Hi+UEuQdzUed2plQCqhVuxZysg9hb9Z+eDwGDEPh6JE85OQcQm5uLjyGAW+CF4cPHUbnLp1RVFQE07SQkpJcZY4/ffr06dM/cd8bDnbnDYeHEzskV2mibStXfQKICuwWFaxJhcfo06dPnz59l29ZArHMuO2/PH3L8gOCwLM54rD//8T/+utZ2LRpI76eNRMXXtQm7vqvLP7gQYOw9Odl+GX5CqxbtxYAsCdrH9Zt2IRWLZsjs1YGAGBv1gGsXr8R3TpeZif4bW8W9h/IhtebgFYtmuLQ4VzsydqPFs2aYP/+g8g9cgRNGze0/S9mfIOOl16MmjWr2/7PK35Fsb8Yl1xwHpQC9mbtw7qNW3Be6xY4pUYNTJs+DY8MH46iomJs27kbzZo0sputCsefPn369OmfuG84g3RYR6MvyjGgnJm0XgQqXG9wkmjz6NOnT58+fbdvmn6YEvl8hvLyY91/efqmaQEKSE5OrtT95xzKweCHBmPu3Lkn3d+4cSMAhaKi4grTP/1Iv0GD+ti3bx9SkgPPH/ot6wBWrVmHiy84L3hiRlBQcAw//rQU3Tq2tc2CwkKs3bAJaWlpaNWiKQBg+87f0PCMejh4IBuH8/LQtPGZtj/3x0Vo1qSxdmIG2LBlG44cycMlF54HpQTZOYexduMWtGzWFKfUqAEAOLVuXfh8iSgqKUGzJo2r3PGnT58+ffon7hsAgg+2UY4ylKiok0XPrIIbjifj6HUJIOFtFfEZjKJPnz59+vRdvmVZEO1tTfHWf3n6hccKAQApKcmVuv89v+3F1Kn/hzfffOOk+xs3bgDEQk5OToXpn36kX6/+GUhNTkZiUjJ27cnC8pVr0LVTe6SlpUIE8PstzPh2Dv58dVeHP/fHxTirYUM0aXQGAGDvvgOolpaGwmOFyD50GGefdabtr1q7Ab5EH1o0bWz7O3ftweZtO9Gx/aVQAI7mF+CXNWtxduMzUSezlt1/YZGJbdu321fwVLXjT58+ffr0T9wPvEpbhSbrU8KLcq8r0YpUegJAJ4KX8kBDnd0Fp9GnT58+ffquxTQtmKYZM99OGwd+SXEJACAxMTkmfln1b1omFBT2Ze0/qX72wWzkFxQAhoIlVoXpn36kX716DaxYtRIiwKo169Cjeyd4PB4AgN/vx6y536NLh7ZISEiwra/n/IimjRuiUcP69r4t23eiZs1qyM7JRbMmjW1/5297sHvPXlx6wbm2fzD7MH5evRbXXHE5AKDE9GPRT7+g0Rn1UP/0U+2c+fn52Lh1K2BZUCryGFSF40+fPn369E/c116lLdpnABLHkHOiCn1omABw3IdlX/ej7FxiT3Qv9OnTp0+ffti3TAtimhFz4qX/8vSLSkogQODV05W4/4L8oxAA27dvxd/+9jfccfsd6Na9O3r06IE3/vFmmfk7d+4ALAAiqBV8u1VF6J9+pJ9RKwM52TmoUTMD13TrZOexLMGc7+fjT2c3Qc1TqtvmvAWLULdubTRpfKbtb9/1G+pk1MTuPVmBK2aC/sGcHGzYtAWXtDkPyuOBAnC0IB/fL/wJ13brZPc/f+ESnFbvVDRq2CDctQBffTcPA/r0Qs3ataEM46T0H+vjT58+ffr0T9z3hnaoYDX6iXslwR0qFBMK1oPCnThO+rvilAQ+lN2Rcn3Rp0+fPn36wcUKXI1gicRl/+XtlxwrQlpq6n/kb9q4GatWr8L11/cMXJEQxc/NO4z/Z+/O4+SqyoSP/869Vb3ve3d6X5LuztJZOglZgSzsrrjxygBu7yiKqDPqIDiDOuo4MOA4vi6viqCDowioYFRAIED2dNbupNPppPd936q6lnvvef+41berugNv0CjBnPpAUn3vuc/3PKcqna4n556TnJxywfMPBg3+4/4HaGiop72jnY6OTpAghcajjz4aGg8BwqKqquqC+ZNTU07+WVk5hA//X/L1Ny2LpqYmRkZGWLFiBfHx8X8T77+/pJ+Rlo7H4yE22h3h7zlQR35BPkWFBfZ7Rlq8vPcgMbGxLK9a5BgTU1P0Dw4R7XKzfFm1E9czPU39idMsLC0jLcVeZyYYNHjuxT1cu+0K3C57Q9Q9+w6REB/P4oVlEf4Tv/09122/Et3lprujE6TENE1OnGpmWfWiv5nxV77yla985Z+/73Liy7nR7eBOpyI6E/mY7UdY6zntpADhTPOZaeN0S/nKV77yla9852FaFpquY1qztzVdSvmfj//kk0/yzLPPcPbMWdLT01i3bh0f+MCHSE5OmucfOXSEhpMnWJCbS+3q1aE2s/7Y+BhJiYmv6nd0dLBv7150t5v169aRm5vr5P/e972H4eEhYuNiuO7a6+b18zdPP8UnP3EHX/7Xr3DrLbdckPxHhodJSU3lxMmTfPd73wn1BEBDCJBIbrvtNlauWsmiRZWUlZTijnKHxfrz/IA/EMpfsqxmKXNff7/fT3t7O8kpyWRlZb/m69948iR79u4lNiaWrdu2kp2dHeH39vTyzLN/YM+u3ezesxePZwqB4Lrrr+P/fOc7l+z7//X4iQmJoYb2ycPH6zFMi8WLyiFUAN538AhxcbEsra6M8I83nMLljizMWJZk/6EjZKSnU1SY5/hPP/MiWzetJS42BoCjDScJmgYbVqyKSOJ3f3yBTWtqSYiPAymJiY2hraWVHz7y37z7ne/4mxt/5Stf+cpX/vn5rvCORGphxjn6Hd5w9tQ5kgnPaeaEBCkiJgApX/nKV77yle/4liUpKS6mq7PrnDH/1vP///mPPvooX7j7CwhpLyZ3plmwd99+fvKTn/Ltb3+b9evXA9Dd3c0999zDCy+8MOtrkod/9DBbtm5x/MnJSfLyFszz/T4///7v3+CHD/3Ivo0nlMwnP3kH//AP/4AAhoeHEWgcO3bcLs6EPYLBIPffdx+I2XykkLSebeUXj/2Czs5OYuNiKcgv4EMf+jCJCQnz8v/1r57EF/Bz0/tuYnx8nFtvvY0jRw5x/Q038LWvfo1ly5YRDAS5+tpryM7K4q677iI+IZ4vfelL53zZXu/49/Z084dnn6GttY0NGzawdes2/AEfCNCkxrrLLmPm9d+/bx//+Z//yZ69e+xYQEVFBTfffDPvu+l9xETFOP709DR33XUXv/r1r0JtBdwleejhh9i6ZSsC+OaD3+Sb33zQnhIdGv/09AwyM9NZVbvqkn3/v16/rLzMiXessRFLQm3NEsAe1pd27SctNZnkxAS6uzvp6+1jfHychoZGevv7qa6qYOezv8cwgyQmJtPU3IzucrO0qpJD+3aTnp5B3fEGVq+ooa2tlZTUFPoHhukdGOZtoYWGZ7r93Mu7qCwvJzs708l/wYIFPPnr33DF1u2kpSRd8Pzf6PFXvvKVr3zln58vpJxZanjmorDg56omze9b2NM5XZv5UoJdJQKJmCkYzU9E+cpXvvKVr3xg2uNhZe1qli5dwmOPPXbJ5f9avmdqiurqxSBg9eo1vOOd7yAmOpqdL77IU799GiT85te/ISc3h3e/6910dLaDgOuuu4HGE420trWQlpHOoYN1aKF1LooKi1i+cgW/+fWvHT8QNPjoR/+e559/HoD1G9ZjmRb79+1DStj50k5KSkp48Jvf5JsPPMCWrVv58Y9/HJH/k088yac/8ynSM9J55ZXdxMfGseN3O/jYx2+3pw4DAg0pJVu2beXBBx4gJSUlIv9NmzbR0dHBoUOH+OxnP8uLL7xg73Ig4Kc/+SmbLt/sjL9hGpSVloGE9vY2u9GfMf47d+7k9ttvx+PxOK/nPXffTUpKKv/42X9ky5atPPTjhzCNIJ///D/x+BOP28ElFBUV4vcH6OvvBQGrVq3mB9//v6RnpOML+Pn7j3yEnTt3ItAoKChgaGQYr8dDeno6h+vq8AcNFi6scLr43ve9l498+CNUVFRc0u//P8UvKy9j2bLlfP3f/oNA0E96RhoLsrMA2HvwCAf27OKf7vo8vulphBC4dZ2YuHhiYmLQdY3U1FQ0XSMuNo7ExCSmpjxkZmaQlJRE0AhiShgdGiI5JYnWllb8vgB9fb1UVlayd98eJ/89+w6RmBjP0sWVEfnn5iygb6CX3Jwc3G43UxMT+AJB4uLiSEpKpLi4mG3btvGzn/2M3bt2k5SU9KYaf+UrX/nKV/75+a6IIGEnJDC7cvy8XtiPsMhi7gHmthNznzqdVL7yla985Ss/XDQsC13XqDtcNxvzEsr/tfznX3wBBMTHx/P973+P9HR7C94bb7yRj91+O3v37CE1LZWPf/zjdHR2UFVZxSM/+SnZ2Vk0NDRww/XXMzI4zMjICBnpGQSMAAic25pm/P/6r2/xxxf+SEJ8Ag//5BHWrFqNd9rLxo0bGR4e5vTp05SUlHDrLbfwnw8+yLFjxyLynxgf51+/+q8IBF/9168THxfH0XJBKwAAIABJREFUk08+yWc+/WmEhNs+8AH+7uZbWFCQx3ve/R5eeP55vvGNb/C1r389Iv+kpCSkgDs+cYc9I0XYs1Gam5s5fOQwmy/f7IyRSw9NCBYCv99PdEzMnzz+vb29fOzjH8Pr8VJcWsKHbvsgZ86ewRfw8/Nf/BwAn28aAQwODPL444876X/h7rv5+//9ERCCxpMn+devfo1du17mve97L8/84Q9899vfYefOl0BqfP3fv8573/NeJicnWbduHUPDw/iDQaKjo/nEJz/Bt7/1baSA3z71WwoLCslbkEd8XNj6QH/l999c7s3gR0fF4vF4kNIkJjqKBVl2YeZY/SnKS4tIiI9j+s47AJjyeJicmOSxXz/Nlk1rGRsdZ3RslLGRMU6fPYvPF2B4aIDxsVFaW1toa2snKyuLrq5OCgsLWbAgH3dMLLfedmtodprdmaP1J9FcGssWV0b88P4/v3yc0bERkJLt27dTsXAhhmEwMDhKaVkBTSdP0dvfxzf+7RuMT4zzmX/4DD/84Q/fVOOvfOUrX/nKPz/fda6YMGfKDSIiwJymYUp452ePze3DbPLzk1S+8pWvfOUr3zRNdF1HmvKSzP+1/O6ubgDe+Y4bSU9Pi+hPdXU11dVV7NjxO+rq6pBA46lTfOjDH6KwoIAdO3YgBSysqCAjIwMA/7QPmCnO2H53dzff+ta3EAi8Ux4+94+fY8mSxezds4fh4SFAULNsOSBJS0tjVW0tdQfrOHu2hbKyEkBw75e+xNDwMFdt3841117DwMAAn/70p5ECvvud73D99dcD0N/fz/HjxxHAz372KB/64Acpr5iZMSLo6+lFSMGevXsQwI9+9BALFizg6quuof74sYj8EWDf6GWvW/TnjP9jjz2Gd8rL6lW1/OS//5u4OHub8aeeeoq6ujqQgr17djMxMUFqWhpIkAL+5Yv38KEPf8Sxqqqr+fHDP+aq7dtpbm7m0NEj/PS/fwrAF//5Hm56300AJCcn88Mf/oDhoWGio6MB+Ow/fJZN6zdx3/33U1d3kPvvu4+HHvoRd975Kd7z7vcSGxfNpfb+/1N8d5SbuNhYvNPTrFy+FICmMy1kZqVztrWdy2pXOEET4uN54ZV9/K9330hmRpoTpLO7lyUraklLSaK4MB8k7D98BE13sXr5UoaGhmhqPsNzf3yeKLeLwcEB9u3bx5rVq2luaWdoZJTtl2+IyL+1o5NA0KC4uIjm06d55JGH8Xqn2X/kOOXFRfa22yH/xz95lE989CPce++/vOnGX/nKV77ylX9+vgaSsBubkOdoLcP6F9mO+VtDiblPJLN9kPObKV/5yle+8pU/x7dME5fuwrTkJZn/a/kDg4MAuKPdr+o/8fgTgOStb3kL8fHx1NcfY8eOHQCsXrWK733ve44/c3fzpNfrBPndjh0IBGsvu4zyRRW0tLbw9NNPMzQ8THZOLg899BDZudlO+23btoGAH//4IUDwk0d+whNPPE5Gejrf+MY3EEj27dsHwN+9//2hwozEsiTf+Ld/A8ASAhD8+333OSkZpsXQ6DAyNAL3fulLbNm6lcrKStIy0ti778C8/C0E9pouXmdIPv/5z9qmlOc9/ofqDiERfOh/f5jYUGGmubmZf7n3Xru9kEg0nn/+j/a/tNn/cf1b3uJEdKJJk4mJCbt/hsHw8DAg2bRpc4S/fv0G3vLWt0Ycu2zdZTz+xOM8/PDD1K5ezdDwCP/8z//MytqVPPLIT53X71J5//8pfkxMFGNj4yyurEAAPX39uFw6nZ09rFq2OMJ/4eU9VFeUkZmR5vg9/YMMjY4SFxtNUWE+APUnTxMImqwOFXvS0tIYnfTxoQ99kC/80+f5j/+4n0/ecQf9A8M0t7aw/fINEb3r6umlr3+Qq7ZuYXx8HEsI+geHOXi0noyUFAoW5Dp+e1cvff39aLrOyOjY687/jR5/5Stf+cpX/vn5GohQBSd0WIbTYcHlzCWR3Y9M41wPEfHciSxnIylf+cpXvvKVH+4blonmEgghL8n8X8sP+O2ZLhPj4+dUDcPg+RefBwT33X8fhw4d5oc/+BFf/spXePTRR3n8l09QVl7u+DOFj/6eXsfYf/AAUlh88pN38NwfnuWxnz/GV77yZb733e/y8ks72bp1a0R273znOwHBT3/6E2666Sa++C9fBATf/j/fDt12JZj2+RBA06nT9Pb10d7ezqc/dSdPPPkEAB+89TZA8swzz/Cjh34ESIaHBxEWCATveteN3HbbbY67YvlyvJ4p2tvaI/IvLSlBCsng4BAAPp+f3z69g5bWVizLOu/xl8JCCEm0KwoB7Nr1Cm9/29sYHRlm+/bt/OSRRxBIHv3vn+FyuYiPTwAkr7z8SthrLjlz5ix///cfY2h4mA3r17Ni+Uqyc3IQQnDnJ++gra31NV//ttY2BHDllVfw+OOP88Tjv2T9+vV4PR7+5Z+/yD333HPO98Hf6vv/T/ETE5KIi48jJiYGr3ea4ZExfL4AlRUlzi5eQsK+usMkJydRXlbs+CMjYwwMDGEYBpUV9sLCTc2t9A8OsOmyWsd48ZV9VJQUUJCX6/iTnin2HDzM9s2bIvLvHxqmp2+QzPQ0cnMysSwLHUFv7yDBQICliysd3zIt9u4/zPYrNyGAsdGR153/Gz3+yle+8pWv/PPztXlBxJwgYcHDuzW/2jPvQOh3GZGqk6CYm5jyla985Stf+bZvGia65kIgmNnq9lLK/7X8QMDeXvz06dPn9E3LsregQXL8eD2xsTFs376dW2+5hY0bNyC0yIm7CQn2WjNNTacYHBxGAmOjYyAFRw4fQWgaa9et5ZZbbuXa664jOjp2Xv7Z2dl87nOfBSnYs3cvWPDFL97DunXrnbabN21CCkld3UEuW7uWzZuv4Ne/+Q3x8Qn86le/4t4v3cvnPvt5JPDlL32ZL3zhbkaG7Q+iUsA/3XVXxPgvX74cC9i7b3dE/gvy88GCxx77BQfr6vjMZz6Nx+PhhuuvR9O18x7/mmXLQcIHP/hBrrrmGt5/881MeTzU1KzkgQceZNOmTZRVVFB36ABtbW3cfvvHQAr+8bOf5frrrufWW2+hunoxW7du4YUXXmDpkiV8/wffJzommnvuvhspBY2nTnH55VfwwQ9+kB8//BB79+5nzCm6CQzD4IrLL+dt73gHL+7ciWVZ1Nau4X/+53945JFHsIBHH/0p+/fvD39B/qbf/3+KbxgGvulpQHKmpQ2hCdJSU5wt5QEam8/gDxisDO3iBAKvd5r2zm4mvR5WL18GQHtnL82t7Wy7YqPj76s7SmJCPIvKyxzf7/fx4isH2Lp5HW63y8l/YnKS9s4eXC5XqAgksKTE5dKpP9nE1is2ReT//M5drFldQ3ZODgjB1NT0684/bPQuyddf+cpXvvLfLL5TnIkMgbOLQvi1IrLBnLBi/rnQvVjOGafTYs4B5Stf+cpXvvJnfcs00V06mqZhSeuSy/+1/PKKUoSAjIyMc/rRUVFs3WYvRPrJO+6gt6fnnH5/fz+dHZ1ousb111+PBHbtfhkhJdddey0IuP/++9m9Z/c5858YH+fsmTOOf/vtt/N3t9xMUUEh9//HfXz4wx+JyD83N5cffP9HxMXHh/KXbNmyhaeefoqVK1cC8PFPfJxP3nEHAnj0Z4/S0tLCd777Hb7/3e+SmZEZ4d90000kxMcjZWT+mzZsBCH50Y8e4l033sjvduwgIS6ez33+c69r/K8LrYkjBTQ1NoKEm2++mf/5+aMkJSWi6zr333cfUgra2tr46Ec/yp2f+iS52Tk0nKhn586X8Ho8rK6t5ZsPPMgTTz5JYry9TfJb3/oWHnnkYQoLC5FInn/+ee6990u876b3UrN0KVdecQW7du9C0zQKigo5evgwt916G+vWreO973sPN9/8fj7zmc8gACkFU1NTEWPzt/z+/1N8XWgYpkFv3xBT3mmSExPIDW1lLZF09vTS2d3D5evXOL5pWdQ3nsawZm9d6h8YoqHpFNdu3ejIJ5vO4vF6WLOqxvElFn94/hXWrlxGUmKCk+60N0h7VzcBv4+Vy6oBOHaiEcs0iY6J49qrNkXk39B4mpi4WEoL88lIz8Dr9TI41P+683+jx1/5yle+8pV/fr6QVsQN2M4lzuVSOqsWhx+f+5h3bs6Bc10rZ/uvfOUrX/nKV77Ttr2jnZvffzP9fX00nDyB2x11SeX/Wr5hGDz22C9Yt249JSUl5/Q7Otu55ppr8Xi8SCS3f+yjLF26jEAgQH19Pc8+9xyd7R0goL29nYGBAfbv38/6DRtIT0sjaAR5x9vfQUN9PVLAO9/5LjZt3EBMdDSnm5t54YXnOXbsOAC/3bGDpUuWRPivlb9hmPT29ZKRlu6s5TK3bU9vD5MTkyxatOhVx3BmLHSXK+KcZ8rDje96J42NpygsLOLGd93Ize//X2TMFHdex/gPDw5x6Ohh3O5oKsrLKCgomNeHvv5+sjIy0HTdCTI2PkogECQtLR3dpb/q62+YBofq6jh85AhHjhzmYN0hRoaHQcD3vvs9rr32WkZGRvj+93/A9773HcTMtQKktHfs+rtbbuGuz38eZ5XBv/H3/5/ib9+2Fa93mnu/9g3KS4opKSpw/KGhYfbWHeXa7Veg67Ov1e79h0hPTSYnJ5vkpESGhoY5fPQEG9fXEh8XB0BPbz+Hjp/gLVddGTH+z728i7KiQkqLC53umKbJvkNHiY2JZVF5CfGxsZxpbSMpIYGKheXommB4ZNTxB4eG2X3gMG+9dhtCCJqaW1hWvYj77r+fO++88001/spXvvKVr/zz84V0VpI7V4iIbr52FnMOOr9GbBw+00TO/iX2mgGVr3zlK1/5l6Lf1tbKV7/6NV56+SXqjx8nOjrmr+q/0flfCL+jvZNP3PFxjh0/DlIgkFhSIjQBEtLT0/nC3XfzrhtvPKfv9U5z9z138+QTTwD2IrsQ+neeUPM777yTj33sY8TGxl5U+UtpMjw4QmZW5pwmF//rPzIygmkaZGZmRZzzery0tJylq7ub6KhokpOTqaquCo39hfPf6Pz/Ev7b3/4O2tpa+dZ3/i+b169xrpiY8vDS7n1su3w9sTGzhcK6o/VERbnJzckiMy2VkdFxDh2pp3blMlJTkkHC6Ng4uw4cYtvm9cTGxjj+K/sOIg2Dgd5uPN4pbr31NgD2HjxMWnIKqalJZGVm0NPbTyAYxOvzsW7NKgSCwYEhAkYQyzLZc/AItcuXkJ6aQk/fAD5fgM0bLuNd73kP33zgwfPK/7Ff/oLrrr+ehPiEN3T8Z5soX/nKV77yXyugy247Ux0SoQaEnotQ+1mQsMtt99wJOL86IcM6NKdjyle+8pWvfOWH+8GgSVtLK6WlJUh56eV/IfzCokJ+8+un2LNnNwfr6ujs6iQpIZHiklJWr66lsqqS2Ym38/242DgefOABbv/Yx3nuj8/R0dGBpgkK8guoWb6c2pUriHKKZhdX/kLodmHmTfj6p6WlhYWc9WPj41iydClLli5l9ujF+/67mPzpaS+ay8Vlq5Y7tj8YYOfLe7h8w9pQYUbSfKaZPzz7PEmJyeRkZuDWLPr7+mlsOsuyJVVIaTA5Ocnk1BR/3LmL1SuW0drayqnGE7S1d/Drp5/i1MlGPJOTZGXnkJ6WRldnF1ff8HYyM9Jxu1xkZWYwOjrB6MQEifHxJMTGIi2IjnFz9ORJli+p4qXdRygrKCA9NQWP10fvwBBF+XmMT00SDAReM//hoSHa29pwuaN433tvwrLM2QG/RF9/5Stf+cp/s/gu+7eZgwKJmL2daqZ9BDj7CD8qmY00LwsR/sW5Titf+cpXvvKVP+tblonQNTo6OrFM85LL/0L5QhNs2LiRDRs3ntN3fnh4Db+iopyKinJe7XEx56985YNASol/ehp3dJTzY/RzL+5m/dpakpPtBbF/89Rv+fK9X6Kvv4+kpER8Ph+WtJj2+AgE/eTn59Pe1kpaeib9A31IC2Kio5mYnCA6Joa83Dw0zcXWK7ewZt0aUpJSyC/IJzoukbTUZAKBAGUlRfgCAc60trGwrISe3gGqKksxTYOg4WJRaSl1hxtISoynvLwYsHeGykhL4dOf+hSx0dE899wf+fSnP0V7WwdDg4OMjI8xPDxMwOfD7wvg9/uwhMWVl19JUUkR4R8ILtXXX/nKV77y3yy+S0Lo+/YMJZn9Rh4WRkb8FgGFQs6enJuFBCnkTNeZrTZJ+0rlK1/5yle+8sN80zTQdQ1NaJimGeZdGvkrX/nKv3C+pmn2v1KGGv7+2RepWVxFRnqq07SwsIi/+8AHmJocJ+CbprOzk8GhUbxTU2RmZRAbH88Vl1/O8Ng4RUXFrF1dS2XlQhYtqqSnd4Cms2fZuLaW6OhoJ+bp5laiYtyMjo6zYtliQHLoWAMrl1RSf/IMa1bZO0BZUuKO0jl07DiJSUksq1oISE6caiY2Jprx8Qmef/EFJiemGBsb55GHH6GgoBDTMkhJSee6q69h4aKFLF26lLTUVLZs38bV117P73f8dmakL+nXX/nKV77y3yy+SzjhCc3eCY8sZjsgwo/MbfEqJ2f6JnA6ZucrQm0Fyle+8pWvfOXP9S3TQne5EZqGlNZf3X+j81e+8pV/YX3LMEEKnn9lNwsXllGwINsx+noHMCXccMMNlJcUYRgGu/bXkZmeweLK2VljR+obmfZNs371SufY8PAIjaebqV1RE1GYae/oJjo2mp6eXtatWQUSTp46S031Io7Un2JtbQ0AfQNDmEGDlKRUkpKSqKooJyoqio7uXgwLkhOiyclKZWRwkMTERFauXMnTTz3N2MQUxxoa2H7l5oicu3r68Ex6mPZMUVpWetGMv/KVr3zlK///72tOePnqwZ1tpeRsLel8H7NhpdOvSEf5yle+8pWv/MhrTctCFwIN+1+VL7X8la985V84PyUtFVNavLR3P3k52ZQVFzpnR0fGaOvqIjk5ifKSIqSU7D9ynOSkJBYvKnOCtbR3Mjg4GFGYmZzycLihkcVVC0lNSXKO9/T2Y1gGfQNDrFphrxHU3NJGRkYqzS3t1CyuRNd0/H4/R+tPgAC/z8fyJVXExcUwOjFJT28/LiEpLsxHoIEQWJbF8MgY45NT7D98lPVrV0fkPDE5ScOp0/gDfqZ905QUl1wU46985Stf+co/P1+TkW3CokqcroSVjWaavWYn5ez/s2FF2PNzJKt85Stf+cpXfsg3TQNN19F0HWlZl1z+yle+8i+cPzI0zOTUFCnJiVQtLHd8j9fHoWP1FBUuoKK0GICX9xxAE4IVS6sdf2xigiPHG7lqy2bHNwyD/YeOUFpUQF5OtuOPDI/h8fgI+AJUlpcS5Y6iu6cPt9vN6MQY+bk5xMfFIYFX9h6krKQIS1q4o9zouo5lmhw+cpykxAQWV9lbyWu6BlISFxeHZVkcOHyUNatqiA/bin5gYJg9+w+zrnYl095pujo7KSkpvijGX/nKV77ylX9+vibCmXBRCEDM6cRsUPFaPRR2AyleJREZnqzyla985Stf+ZG+lBKhaWiahmFZf3X/jc5f+cpX/oXzJ6e8aEJQU13t+FJa7Np3gKLCfPKy7OLK4eMnQAjW1a5wrjVNk2defJm3XrMlwn9l70Ey09NDs3BCjmeSzt5eLCzS01NJSkpgZHSMiUkPmi6Ii44nMyMNBOyrO0xaWioVpcVIUzreU8+8CJqgatHs7VQjY2MgwTPlYfHylVSUFJOdkT7rTnnYW3eEyzeuwe3SqFleQ1trK8UlJRfF+Ctf+cpXvvLPz9ckYRHE/EjiHF/JmZ5FngwzRMS1c1O05/BEtlW+8pWvfOUrf1YTFBUVo2uhmTOXWP7KV77yL4zf2t6Frgt0XY/wX3xlP/m5uSwsLQEBh4424PP5ne22Z2LseG4nV25cj9vtcvyjJ07idrmpWVLlxPMHAjSebiMlJYnY2GiyMjPw+X109fSRkZaM3xegIN8uAp1sOkMwYLJy2WKkJbGwwJI88fQzCCnZuml9RIoHDteDgKjYWIxAgIUVpc4507R4ec9+tly+jpiYWLzTXrq6OjFMk7LSkjd8/JWvfOUrX/nn72tOfDH3QhnWUkY8naEjydkG8/ss5rQSoSdhbZWvfOUrX/nKD7X0+X309faQX7Dgksxf+cpX/p/vSwklRfnEx8XZa1eF/L0HDpOSnMTiqgoQ0NDYhGEaLK1eSHS024n54it7qCwvJSsjzfEbm84yPDLKZWtWRviHj5+gMD+HYCBI4YI8AOqONFCwIJeBoVHKy4oBQXdPP63tHWxeb68XMzE5gSbsJSBN02TDZSsjctq19yBlRQUIBJZlcuTA3oj8n33xZZYtqSYxPg4BtLS243ZFceDAAbKzc97Q8X+jX3/lK1/5yn+z+dpMo/mBRMRzKeacjuienHNd6KicPS/Dz0pC8WY7qXzlK1/5ylf+zO+WZW9/29PTi2GZl1z+yle+8v98X4QYwzBYkGcXeo80nEJqsCq0tfXpM234AkEqSotITEhw/LqjDSQkJlJRXuKEb2nvZGBklDUra3DpmuMfOHSc8qIChodHKS8tRkrJoWMnWLywjLPtHSypqkAAExNTHDhynKu3Xu7kPzk5BUBMQiLLqivJSE93cjnWcAo0weKqhUgk3qkpMjIznfwPHDpKVmYGBXk5gKCru5eJqSmEEKSnpzv5v1Hj/0a//spXvvKV/2bzNft8mCjnPZnbp3lHZ653FjUO/S5mFtKRIvJ6ERZP+cpXvvKVr/w5vmma6LqOrmmh25r+uv58SfnKV/6b1ZemRU9PN01nWhgfG2V97UoQcLatk7GJCXIzM0lLSQXgueee5d4vf4Vdu14hOzXJ8fv6B+nu7aOyvDRUxLH9Yw2NFBUW0N7dR3XlQgCamlvJX5DDqeZWamuWAuDz+dl9oI4rNqzBpetO/i/u2oOmaWBaVC4sdfJv6+iiu7efjWtrEZoG2EWm+vrjgKC9u4+R8XFW1SxBSugdGCRgGAwMDBEbG0NWVtZFM/7KV77yla/88/Ndc2EpwK4IiYj2zjEpidwLfLals6hxxOnZ9hIQcsaYf73yla985Stf+SAwDBOX2wWajjkzc+YSyl/5ylf+hfNNJKZhcqatg6u3bAKgu3eA0fEJMjPSWJCXjQSmvR5OnW5m586XKS0p4MH7/52SkiKaGk+xbPkK/D4ftWtq8U9Pk5KSimfaR2ZmOtISlJeV0N/Vhi9gEBUTxfjEFNds3wpA0DTZuWs/VYvKSU1Jdnr40u596AJcbjcws/C5oL2rl+7+flavqgEkuhCYpollSfv7InDo8FFuuMaOPzExwdDQCEhJUX4uQhNkZWU6A/RGj7/yla985Sv//HxXhILErvEIZvsXdgyQYrYKNNPPGZTIPofR9kkR+vKczZSvfOUrX/nKD/mWZaIJYS+MFpo4cynlr3zlK//C+YGAHyktamuW4tJ1RsbG6ezpJTUpkZLCfMcaHR3nu9/5HpWLKnjs5z9n8+VX0NbaxrLlq/B4JsnLzaH1zFn8gSCW1cqU18vU+AS5C3L45WM/x+Px4HK5GR0dxefzUVpaTEJCIu6YGL754H9RXJDv9G73gUOkJqdA0IeGZNrrBQTdPX309Q+Qn5NNZpo9m2diyoMlJZZlYgSD7Nx1gEUVZbjdbgL+AE1nW8lISyUuNg6fZxKBIDMz+6IZf+UrX/nKV/75+XOKM2E1IxERMoJyAonI9q/+mGk3m8G5E1K+8pWvfOUrH6SAmJhYhNCYuWv3kspf+cpX/gXz09MzkKZFdlY6034/J0+eJik5kUXOrkd2uwPHT/DSSy+RkZGGwJ6R8tTvniHg95EQG83U5CQDQ4P09Q2g6y56e3tIXlxFelo6ZSVleH1+YuNiKS8rIykxgbTUVHoGR0hNS2FJ9UIn/7rDx4mNiaFmSSW//e0Z7A3pBH2DgwyPjpGQEEdRqJAjJbyy7yBIidvlIndBAUEjSHWlvY5NQ1MzqcnJREdFk5OdQXvbWTIzM+2ZMxfJ+Ctf+cpXvvLPz3eKMzMHRURT+4xdzwmLJMGeqiPndT4y2txYgtmUJeHzf5SvfOUrX/nKn3lctW07V23bxuVXbMGyTBobG9mxYwcCgaZpJCUnMjU1BWgIAUIIEhOTmJqaQGgaInQ8ISEBj8eLEKBp9rUACQlJeL0eWxUhXwji4+KY9vnQNPt6hI6ugSZ04hLi8E/7EUKAkKFYdrvY2FgCgSBCSISmoQndNnW7L1FRbgwjiK7pCE0gQueF0BCasNegALTQX/ozvtBcaELicrmxpIWGjqbZvq7rjm+319A0nPw1DTRNR9NsS3fpzg8FmuYKvQQCoQk0Ycex18KwXwlNEwjNha7Z/fxrvv5v9PtP+X9b/sT4OP0D/QAcrz+JOyaaZYsrI654afc+llSUk5mR5sQ6ebqFsvJy1tWucMKPjI7RPziIBHKyskhLTcayLA4cPk5aahIpKclkpacDcOzEKdJzPayqWexIxxtOEjBMNqxcBoB3ehqhaURHxzA0OEJf/yBXbdnk5P/cS6+weJG9IHBKShqLl65gWbVdmDl+ognLlCQmxpOTlQlI+oeGaGvv4JprrsaSEk3MjO6l+/orX/nKV/6bxXfNNp4bd7b5bOAIaU7XZNjXYk7/JDM3WkkpnB8Iw0HlK1/5yle+8uf6Tzz+S4QQNDcfYsrjQRPCLo5oAq/HYz/HLoi4XG683mmbRGJJiUvXGB0ZQQowDQukRGKSkuplZHgYEEj7AqQlSc9IZ3BoAMuUSGn/b1kWlmWRkZlJf18fgL0tr5xpY5GVnU1vTx9SWkhLYknLPmeZWBakpKUyPDSClBaWZSKRSMtCSvsWroSEBMbHJuy+COn4lmXHKSoqoqW1NXSNndvMcyktcvLy6O7stmNb0s7fspCWiWlKpIClS5Zx9OgRpDSd60HenvEjAAAgAElEQVSEDAtpwdJlSzly9DBI4eQ90weJXTxatWoVR48dc14Lu4ijownNfo5gxcoV1NfXo2sC0NBcOprQ0XUNISSarrNk8WJOnWqaLS6hoekami7s55pGaWkp7e3tdiFMCPtWN01DaBp6qNCWn7+A3v5+9JmCF8KOo2mOn5OXy0D/IC6X7niaJtB1l1Ocys7KYXhkCBEqxtltNEQoT6FpJCclMR36MK1rGroeMnUdl+YiISGeae+0XZTTNFxh+Qs0otxuJCZCaOi65vi6Zo9PVLQbS5qOL0L5apqGputEud1YluX4M3nM+PYfDS3CF0LHFeVGWnbxTdNB03U0IXC53PZYCbugqLs0LqY//xfOF+h6FCebzjI55WHbFRsj/H11h4mLjQ/tzGQfP36iiWnfNJevW+tInmkvXT19xMbFkhAfR1pqMiCpO9pAakoKcbExZKXZhZmm5haMYJBFpcXExsQgJTSdaWVkdIwrN613HL9vGk2334MnTp/hxrde7SR76Eg98TGxlJcWUV29mNbWVs6ePY2m6bS0deIPBigpXEB6eppzTXdnL26XTnxiMpZpoOnui2D8la985Stf+efju+Y2moVnnso5nQjrY0QHRGSksAskdofs4/ZFs5cqX/nKV77ylX9uPz0jg9//7vc8+OADmJaJETQoLy/nZMMJDMskGDQwTYNlS5dysK6OoGEgLQtN01i1ahXH6+uJcukI3YVb19B0FzXLV/CHPzyDruu4XC7nQ3JiYiJ+vx9N13Dpbnvmie7CpbvIyEjn1KlGNGF/IHfrLkToOpfLTdAfIDExwf5ArOvouu58oE5NTmbK62VBbo5dxNBd6JoIfbAXxMXFEgwaYddo6JoLXRehtjrR0VH2zJmQ79J0hK6haXbBIzoqyv5Xcl1D12zfFeqjW9cRuk6UOzTTRtMdf6a4oOuu0NcuEBKX7raLKC4XugjN1gFmtog0gwYW0ikuScvCkhLTChXApL3jlmlZCGlhWBJpGpiWxJIgLRMhBMFgMFSwmilGSUzLwC4OGQhdxwgYYQWtUNHJtDClXVzSdY2A348Z6gMzRS1LYlgmQkpcUVH4fV4Mw3J8y7IwTdPxY2JiSEpOtAtrFliWgSklWNhtpEVUVBQ+nw9pmPhlENOcKWxZGKZJUnIyoyMj83zDssAycUVF4fX6QNr2jG+adhEsKSmJ4ZFhx7cAadprjZiWSUlxCWfOnHHytyzpjH9ZeTmNpxqdMbLH0gTLYmFlJScb6jFMC9OSTv7V1dUcPXokFCc0Hkg2rN9IXd0Bp+ij6xpLli6h6VST8/7T3S6qqqo5c6YZl64jNI1/uusutlx55cX3/UdKBCbtXZ1s2bTRuQ6gobEJr9fHls0rnRjNZ9sYHRtjTe1yNN0uApqWSf2JU+Tl5iAk5GZnhq5vJjkxnqgoFwvycgBo7ehi2ucnNTXFXjAY6Ozqoqu7i61XbIrwTzefBQmGZfL2a69C1+xZdCebmgkEA6xabs+wOXWqEV1z0dl6lrGRMfpHRykpKCDDKcxAe1c38fGxTE1NERsdi+5yh43Lm+/7v/KVr3zlX2q+CwgtbCMiuiGcJYUjL5bhnRKh4zO9iYwfOiecjop5v4ZaKV/5yle+8pX/Kv51113DddddG+k7RqQ/87AsE8u0PxwbwSCWaWKE/kdKgsEgpmkSDJr2IptmEGlJTNPACBr2B1XLxDAtpGmA0PAHgqEPxTNtTEwjVIBA4A/47Q/Eph3bMiWmtHC77MKHYc4UBAyMoOXsvuLz+ZmcmsAKfdA3gvYHdsM0MEz7Q31CQhLDoyNIU2JKA9MwQzlamJZFWmoa/QP9oQ/5hv3B37A/wJuG/XV5eTmNjY3ObBjTNDEMeycswwximRbLl9dQd7DObiMtxzctCUKgC52aFcs4eeKkPfNE00OzMDR0lx66jQqSk5PxeqZDM2ZmC1GartuzN0KzPjIyMhkfH0dooGs6LpcOUuBy6faHYqFRXFhAT28fmq7bhSKX7QphX6O7XGRlZjEyOhLy7YKNPRNk1kpOTmZ6etqeUaPPzEyxTaGB5bXsAp3Ph8tlz2gRmo4uQNfdoGnoQqO4pJhgIBgyNHSXy5mtYhe5BC6XC6SYzX9mtk9oHNxu+0OzCBXbND00lpqGFjovCRUHtUjfnt3y2u//mT9/kcfmP2YXNgz7MVTavwSCQbuQYwYxTYkpJWbQcN5/hhEECUEj9H6UFjk5uRf8z/+F+P6TnprK5MQUG9euJjpqdrnFpjNtDI2MsXb1cudYV1cv/QOD1CypIi4m1vEPHD5O4YJ8vD4vFaXFgORsSzu6JhBooYWFobu3j8nJSVy6TmlRAQBDQ8McbjjF26/dFjH+jU0tREfHEhMXS7TbRXS0GyScbWvH5w+yIC+XmBg3M6MoEJRVVNB4toU1K2tCtzLZXfROT9PV08+U176Ns7iowBmPN3r8la985Stf+efn21tpOxeHXzL7EHOfi1CYmU6J8JNhhJNg2E8N83+6Vr7yla985Sv/gvqa0NHc4EKH6OhX9c/5mNck/EC4P//C2fw5r/zfTL4M7RZjSbCCBiYzBSYLy7SwTAPDkhC6XSto2EUxS4JpGaEZIHbBaaZABBAMBsMKRqFbsUKFMikluq7h8/lDln3OMkwsIbFCs09iomPImspwfCNULDBNA8sidKuQhhEMOLGd2SWmPfPEtCxSUlIZGhywDcsMzQSyi1TSsm9Jy87JpbuzC1POzr6xQv0OmhbSNImNjWNicsIer5BvGXbhzJKwcOFCTpw44RTBrFCRz7IklmmwrGY5hw8fwjBN5EyRMOQbpkVOZhaDI0NOkUkPzYYSuouVy5dTX98QurVLoGkuu/gjdEpLi+no7HJmTdmFIY2K8orQ7WM6mgDd5UbTBCWlpXR1doRuW7OLXtk5uYwMDqFHuRw/NyeXkeGh0Aw1nRtueAu1q2v/v++/v9b3n/7BAaRlkpgQ58Rr7ehkZGyUqooy4mPt48Mj47S0dVBVuZCU5Nktr481NFK0II+JqQkWVZSDhJ6BAbyBALomWFhRAkiGRsYYH5tgejrA2lp7G+wpj5+X99dx43VXR4xHe2cXCQmxjIyO4PdOEwgEAOjo6saywO3SKcrPAyQd3b2hAp+kqHQRxQvyyMnOihicl/bsp7Agn/LiQixTkpScdNGMv/KVr3zlK//8/LDdmkI/fDkdmPuzXeSFM23CMTmXCCsxzTyz+3uuQVC+8pWvfOUrX/kXqy9CM2B0BLhc5/AJi+5EmPUjzr+Gz1x/ftvZp5eub8+aMpCWJOgUyUy7iOYUykz7lrLQbVdIiRm6zjTsgpplmUih4ff7IXS7lGGZYEqEgEAgELq9y57N5XK78ft8BAMGpmVgWRKX240nLw/LNDBNiwSnCHJxvP81oREdG+OMXWdPL6Njk2SmpZKdZa8RM+Xxcux4A5WVYYsCSzh9tpWU1GT6BgZZWbMYgLHxcfr6hpBYrKpZigQ8Xh+dXb34AgHWLF9iXy4lv3/+RW684eqI/AeGhgkETCzTT7Q9NQqhaZxqOovm0vBMT1NRXAwSpqa8tHd149J1omNjaTp5nKSkuIj8X957gPy8XBYvKqejtRnTDNqvf9g75s3+/Uf5yle+8i8F3zV72O5NeB/EzHzX1+poWCYR/Z/TToSSELMZzflN+cpXvvKVr3zlK1/55+PbiydHgYSoef7cr2cOnss/1zWzHXrVNq/phefyl8n/9Yy/2+0iISEBkPT1DzExPoXbpVFWWgyAaZjsPXiEReUl5OVkO/m39/Siu9w0Np6mqryE+voGRsfGOHmqmYmJCQrysmk+eZLh4WGaW1oAQVZ6Gn/8/W+R0uLEqWbu+tznnTWbQDI55aGvb5DExDii4hJwuaMwA0EMw8QfDJCdkoHb5XIKXHXH64mLi0PTdAJ+PxNjowSDhpN/3dETxMXGsbR6EQBu3Y1hSrIyMzFNy17D5m/w/a985Stf+X+LvsuJL+dGt4PP+Tt2zhdz+xHWek47KWDefVzC6Zbyla985Stf+cpXvvKVf8F937QfoekMDY8yNj7B5NQkq1cud/wdf9yJSwaprlzI5s2b2bdvH6Xl5Rw9cpiKikp6ejopWJDPwOAQfr+f5ORkxsfHkEhSU1Lx+XxkZmaSnJLC4qoqMrOyaG3vIn9BDgmJscxMczcNkxOnzpCfl41hWCzIzWZgYAALSVJiEjVLqti1/xAb165CAo1NZ4h2R1G9qByXSycQNACYmpwCoLmljdHREbZfudHJt7WtnUDAXth80uMhOSnpDR9/5Stf+cpX/vn5s7c1hZ+Ya5yj3+ENZ0+dI5nwnGZOSJBOFUn5yle+8pWvfOUrX/nK/8v4lrR3cOvtG0S4BIvKy9BDuzC9uHsvleVlpKcm8e3/+janz5ymoLCQl19+BV1zUbmwnOLiAhZWLCQxOZW4+ASu3LyB+IR4YqJiONnUzMT4GP5ggLOnmzh48CB1R46SlJjA1is3U1RU6HRs/6HjFBcvwDM5TUV5MT19AwyOjJKYmIQlLc62dFBRVgzA2ZZ2fD4/Rfl5JMTFIYS9zblpStxRLoZGRmg83cJ1Wzc7+Xd0dhMdG2Pv0iV0UpKSwgbzjRt/5Stf+cpX/vn5YWvOzFwU1i5sWs85H3L2nAx1LQKc6akEu0qE00KcKxHlK1/5yle+8pWvfOUr/wL6QSOAP2iQkmwXQVJS7cV+X9qzn8y0DBaWFfPrp37Ds889S0VFBaUlZWzbfg2bNq53Ft491XyWkdExllYtIjEhAQScaWmjsroKXQgqykoA2Ft3hCh3FIM9HTz++BMkJSXy7ne/mwNH6ikrKWRkbJzKhWVMTno4dLSB/JxsfF4vbreLialJykoL6erqxuf3ExsTTV5oe27NpSH9kphoN5OTXgYaTrG+djm62wVIhoZGmPb7GR4ZIzkxmcqKsotm/JWvfOUrX/nn57sigoT1QwJCRHw172l4ZDH3AHPbiblPZ2b1KF/5yle+8pWvfOUrX/kX3A8Egrhc0RQsyGNsYsJem0XCK/sPkZKYzJLqhQC8/W1v4+1vexuHjp8gNiqa9PRUsjPthYHbOrsYHR1nYVkJiYkJAHR29+LzB5BSUhla76X+ZBOGYbCudgXULOaaa68F4GjDKUoKF9De2Uvt8iWYhskLL+/h8g2X8cyOJ7GkRXx8AhnpqTSfbSMxIY7xyUk2rFkJwKRnCtOwEEIQmxBPR28/S6qryAgtXDw15aW5pR2XrpOXncmUx8PA0DBZGelv+PgrX/nKV77yz9/XzhUT5JxDwm59rrbS+SXs68hjct6R0PNzJKl85Stf+cpXvvKVr3zl/7m+JSXdvf1MT3vxTHlZWr0ICby87yDxsTHULK2MCHmmtY2o0GK82Zl2YaOvf5Cenn4K8nPJSLeLIcOjYwwPj+P3+5yFeNs6OunrH2TTZbURXTp5qpn8vByazrRRu3wJEnhu5y5qllaRkpJIcmISlmUxPjqKzxdAIBkeGaNmSRUgMIMGp5vbcbld6JrGosrFuHSd8pJiQGJaFrv315GcmMiaVTUILISAuJiYN3z8la985Stf+a/P10Ai58UWc5pG9i8CFHPai7lPZFgf5Pxmyle+8pWvfOUrX/nKV/4F9jUhKCkqwDACpKTYRZCXd+8jOTGBlTXVEX5Xbz8TE1NER0dRmJ8HwNjkFC0dHWRlZZKflwuA1+ejtb2ToBlk1fJlAIyMjnG04VRoYd5Z/0xLG+npqZxta2PtyhoA9h08THZuFsWFC5ASRkdHAUhITUUIwaR3mpTkRBLi4hif9HC44SRen5cotxvdHUVXVyfxsdFERbsBwQu79lJaWsTiqgoAOnv7cekuPF7vGz7+yle+8pWv/NfnayBC9ziFDstwOiy4nLkksvuRaZzrISKeO5HlbCTlK1/5yle+8pWvfOUr/y/hp6dlEJeQwAuv7CUlKZlloVkpM/74xCRdXb1ERblZGFo7JhAMcLS+gZSEJMpLCh3/yPEGfD4fq1csBcA0LXbuPsDbr9seobd19BAbG0Nf/zDVC8txuV2cOn0Gvy/I8sWz/vjkJAmJSUTpLnr7+pFSsiAvl4mpSdo7O5GWZO2qFQgBKUmJaAKSE+MRwO79dWSnpVNRUgzA0MgIvulp0AU+f+CiGX/lK1/5ylf++fnavCBiTpCw4OHdml/tmXcg9LuMSNVJUMxNTPnKV77yla985Stf+cq/sP6ZM2fo7+snPy+bmqVVEb5lSY41nMLtdrGkapFzzd6DR4mLiaW6ssLxGxpPE/CbrFu9ymF+9bs/cPXMVtahi7u7+5DSZGJyigV5WSQmJNA/MERTSytXbFrr+K3tXbh0F+Njo5imQWpKChWlxfT1DzI4OEogYFBTXYkpLRYUFDI0PMzQwBBg35qVmJDIsiX2bVWmaXK6uRXvtJ8YdzRFBXkXzfgrX/nKV77yz893ijORIUDIyK/nBRNzuy/mnwuteOOccTot5hxQvvKVr3zlK1/5yle+8i+cj5QcrW8k6A+gu1xUlpfP8482NGJKk1XLlzj+8ROnkEjWrKxx/DMtbfQNDLJh3UpnG+7fPbeTDWtqiY+Pc9yBwRGmpr1IBClJiWSkpeKb9rHv8DGuufIKx+/s7kUTAneUG8uySEtLJTMzlUAwyNDwCJ7paZZUVhAdG83Q4BA9XV2YpgXCor23n5SERJYtXuTk39TcQtAySU9NwbSMi2L8la985Stf+a/P12aOhW8BJYGZ/ZyklJHHmd9+7jn7L8TIDkd8KWaOCZSvfOUrX/nKV77yla/8C+0bpkVxUT7ZudlUVy6a57e1dzIyOsbGtbVOrNNn2xifnGB97Uonam/fEKdb2th82WqiXG4AXnx5D+Ulhc5W2wBjE5MMDA6RnJSArmnk5WQjgWdefIXLL1tNdLR9bW//EEbQIDExHq/HhxCCuNgYdN1F/8AQhrQoLsgjJiYagIHhMUzTQhOQX1CCaZosW1Lp9Lmzu5e2rh42rFmJW9dwu90XxfgrX/nKV77yX5/vijTkvGbh20nN7VCoebjnHLS3AJfM7AUeyUgQoWjKV77yla985Stf+cpX/gX23S6d5KQEmpqaGRwYiPCHRkc53dLK+rWrcLt0fD4f+w/U0XCyEc/EKE898UumfdMIIegfGOay1atpazqBJSXJaVlULV7MovJSR/d6vbS0dbEgN5uxiXEWldrn/vjSbhZXLiI1JQmkZHB4lPGJSdLTUugbHKZiYSkgiYqO5WDdMQoK8igrKiAxwd6ye3JqitHREdxuN1LK/8fefce3VZ2PH/8cWZ7yHnHsDDuJswfZewFZQAphddAS4AsUKLtAKW3pryUUKCNAB5RZoC0jIYRAgQDZe+/hxBkeifdIbEm2ZEnn94ekq2EnQAlk+LmvV6Wre8553s9zJFP75Ope0tq1o0NGhuE2NjaxZccepl04FnOEGUezk2aXiyaHk4gIRaQ5sFDT1t5/8cUXX/yzzTd7+/qTUL4O/lHK198HBrUAgQQCR4x949EI6U3Iezi0SPHFF1988cUXX3zxxT/VflVlJQkJ8dibGg3f7XazYct2hp7Xn/g4CwD/fOMNHv3To5SXlRFvSSApIQFt0pjN0VRXV7Fs6WKOHz9GdHQMN/78Vq695mqjDlezk5179tGzRzeOHC2nX+8eAGzcuovUpETyunYGvGfWVFTVkJaSyPGGenp374rdaiM6Opbj9VYsSRZyczoSHxdn1L9u0zY6d+qAMincaMpKSjBHRhg1L1q+hjHDBhId5T3L5tjxevBoDhWW0KdHN/x/ELTV91988cUX/2zyzd4n/0GFRgW+TuXvHwIGtuCjmkCkFlWo4BetNYsvvvjiiy+++OKLL/6p9Wvr6hg4cCApySlG84rVG8jLzaVdehqgsdmb6D9wKJ99+gXdu3UlNi4GgA8/+5LxI4aTmpoEQNGRo+wvOMTk88eF1LR28w6GDOjLwcMl9O/jXZjZf+AwVruV88eMBMDe2Mjh4iNkZWZgs9nJ65LrHWxSOBxNpKS3Y9iA/sTGxBi5795/kOjoaHp264ICPM3N1FRX4nI1A4o1G7bQJacjaelp3lw8UFZagUdp+vTsFjYZbfP9F1988cU/m3yTDhus0EFJ6UCo0KcwSHuHtCgq0Cn4gjfK1984Kr744osvvvjiiy+++KfYLysv41hdHYcOHUKh2bZrL9ExkXTPywUFHg0btmwnPiGOAf37EBsXg9vj5uOFixgyoB+pKd6Fmepjx9myfbexMOP312/eTv/ePdm7/yD9+/YABVU1tezZf4DzR4806t+yfTc5HbOorTtGty6djfobrI0ok4lunbOIjY0x6j9ef5yDB4sYP3IYAG6tcbs91NfXExUZxf5DRdhsdvr37mHUvyt/HyhNRIT5jJl/8cUXX3zxv75vUkZ4/0NwVOXvbhwObg0O2WqjPzcFxjeptO+Ab4D44osvvvjiiy+++OJ/F35VZRVp6eng0ZSWVVNaWs7o4UMNf+PWHUQoEwP79gHA2exiyYp19MjrRscOWaCgudnJ8pVrufySKSH+9l376JbTkQOHCo27PTmdzaxev5lLJk806t+xay9Z7TKor2+kT8/uRv2FxUdwOJtpdjpJSU4OqW7hktVMmzwxUJvHgwZiYqJxOp0cKipmzMghRjLVNbWUHC2jY3Z774rTGTL/4osvvvjif33fZITXJw5u3FZK+8Z/gy0QNmiVKMQRX3zxxRdffPHFF1/8U+/bbFZyu3ahuraG1Rs3MXniWMPfk19Ak72J4UPPA8Bms7Nx63aSkhLomdfF8Ocu+JwZQQszAHv3HyApMZ6qmmMMHdQfAI/2sHDJCsYMH4w5MhKF945QbgWRUZHk5mQb44+WVVJYcoSe3bwXDk5LSwfA5Xbz8edLmThqOFG+W3Z73B7sTQ7MZjNuj6a4vJoBvXoQFxsLQLPLxeKVa5lywThcLhcZGRlnzPyLL7744ov/9X2TDu0TFFVjpGJcyCbQ7aRJ6sD/AmFV0H4rxYovvvjiiy+++OKLL/4p9IsKi4iJiqa2ro6LJk0gKioSNBwqPkJdfQN9enUnJjqaqupaDhUWY46IYKDvNtUoxbyPFzLj4guJMJkMovhIKR63xzveuLYLfLl4Jb3zupGRloYC6q12io+WkxwfT+eO2Ub25RWVFBwupHf3PCKjzKDAHGmmqqaW5avXkdelE5mZ6Ub9C5esICYqkqjISMZMvJD05GSyszIB8Hg8LFy0ggmjhmM2RdDsbKastPyMmX/xxRdffPG/vm98ramF6Lt6cGgSgaDqZBkqbwf/2TstuungYsUXX3zxxRdffPHFF//U+w1WK50759C/f3/iY+MAqKiuprqmmqzMDDLSUykuKaWm7hgxMTF069qFqMgoNPDhp18yeeIY4uJijYDVNbUcLS1DmUwM6tfboFet20RyWhLd83INf8uOnaSlJtMlp5NRf03dMfbkH/QuwLRLx+PxgIZj9VaWrFxLXJyF3j3yjBJXrd9Mx+xMzBFmIiLMFB8+RIf2gVtpr1izie5dc2ifmQFKU1ZVhVu7z5j5F1988cUX/+v7Jv+ladDezuGRVCuvtD+z0MYgQ4WMDS8xcOWcQF/xxRdffPHFF1988cU/lX5hYSFpaamsX7cOlKbBaqOw+CiR5hi65nQif/8hMEFSfDwmkyI9JQm3y8WCTxcxYdQwEhMSjIi2piY2btlO+/bt6NMzz3DXbthMQryFnt3yDP/A4RI8Ljd9e3U3+tVbG9i5aw9DBvWjQ5b3K04N9Q2g4IsvF/PFJx/Rt0dXI8buvQV43G4G9O2N2+Mmu1Mntm5aR0RkBAAr120kKiqCXj28Z++s2bAVR1MTHo/7jJl/8cUXX3zxv75vNuKr4IHBvXz73qvaeHNSATKQX2CcapF1eC/l2wnqK7744osvvvjiiy+++KfQr6iooFOnzkTHxLB2zTr27j9AY1MjfXv14J9vbaRThw4kJyWxYcMmTCbNYnMExSVl9Mjryuo1K4lQZqKio9AeWLVhI0MHDqC89CjHa2rQSrNn3wG6dO7Esbo62mekUtPsQHtg5+49XDB+NAAOh5OCAwW8O3ceHqeDzz/9iJUrV7G/YL8xJ4cK8rnwwguIjDQDmrLyKgqPlHDJpAsAcLvcNNQfw+1yYzJFsHbjNqKiojivT08A9h04iNvtIikhHlez64yZf/HFF1988b++b/Z3CmptERCUkVvwYUVwIS3Haa1RytvuT0MRXGsgSfHFF1988cUXX3zxxT+V/q9/8xAHDhRw8MBBJk+eDCYTUVGRREdG0exyYDZHY7U24NEenI5m3G4XoDCZFCaTybiwr9aayMhITKYIwENiYjLHjh8jJjoah9MJHg9msxmr3ebN0OPB1dxMRFQkLmczcXEWYqKj0UrRsWMHuuZ2oV1mO7Zu2U5ERA133X0n1/zkGgCOH7eyZeceJo4ZhVbehRlns5PE2CQ0isNFJbTLbE/X3E7ExMRQU3uMo0fLGdCvNw6nA4/Hg8fjwWRSp33+xRdffPHF//q+2dsetNajgyIEQcGpEnbUP15rUCrwrPwX0tHKuKaOf5gK2hdffPHFF1988cUXX/xT7U+/+BJKjxzlrrvu4sWXXyFCKVJSknA6nbjcbiora1DKQ3ychfkfzufjjz/i17/5HRlpqdTV1lJbV0fBoYPYGqzYbTZsdjvNDgcOl4dmVzN2mw2320NUdCTOBitKQZwlHktcHM4mB4nJiditNrRSxMbFcay2hrLSUhzNLirLK3G7HGRmZhIb7b2ujdPpYNX6jQwbPACL71o3h4tLaG5uJjY2lvHnT8LtctOrex7x8d5r6GzZsZvczh1IS03FbrMTFRWF0+kkJjrmtM+/+OKLL774X983h8PeFZ3QxLyvfMf8cosUA4dDmwP9NaC032g5XnzxxV5s/cMAACAASURBVBdffPHFF1988U+ln9WxAx9+uIDcvB4M8H0NCKDBavN+5aggnxdeeJGSkmI8Hnjt1dewWo9jtzcxYsQwrPUNxMZZ6NevH+2z2hMXn0BmRjvyunXDY4rgwgnjAPC43eQXHCL/wEG653TA4XBw/Hg9ZVXVNNmbaHY1o10OUBFUH7Nir6+mrraW5JQUBgw8D9AsXb2evj170C49DY33VuCHDxfjam4GBU2ORjweFwm+hZmCw4VEKOjeNRcAu91OZFQkDkcTMTExZ8T8iy+++OKL//V8c4hC0Mk3Rn4hJ+SgVWCVx1gp8qGE5hxEexuV72Wr3cQXX3zxxRdffPHFF/878CdPmkSs/65Lvi0h3kJCvIXyUgtTJk/G6XBQVlrO8hXLyEhPIyExCZvVxsKlq7j8B1MwoWhudrIr/yCdsttzpKyCgX17GfEKj5RypLycK6ZPM+oqq6jGfPAQuR07kNO5I41NDtas38RlPfLo4Lsdtj/PdZu3k5GSRm5OB6P+1es306N7N5qcThISEig7WoLH5b2mjNXeyN69B5g6aTwATqeTyqpqOnbsRHOz+4yaf/HFF1988b/aN4UH0kExtRE8lDICBddwYjEorhHdu6dP1E988cUXX3zxxRdffPFPje9fmGnN79d/AD+79lo82kNObg5dunYlITEJgC+Wr2H6tAsw+aCDh4uJiY6k9thxBvbrZfiVldXszT/AlInjjLjHj9vYvjufPj26kdO5IwCbtu0kLSUlaGHGm+euvQXYG+0MHtjXqH/zjt2kpqSRnpaCx+0mMT6eirJSiouL0MDqNRsYeF4foqOiANi4bSeJiYkcP3YMu93KmTT/4osvvvjif7VvCukcZihfS3hg767yJthqMi1UXz9FoGQdgokvvvjiiy+++OKLL/7p8suOlpKVlWX4H3zyJRNHDyM6MhKA+nobFVW1REVF0qNbrhGj7ng9qzdu5ZKpE41jTQ4Hi1asYsLo4WSkpwOao0fLsFobGDigT4hfcrSM0rIyJo4abuRSWHKEyqoahg3qS5TZTGRUJFHRsXjcmiNHSti1O5+ExAQ6d/DeknvfgcM02hspKztKbGwcjY1N37j+0Dlre++/+OKLL/7p9k2BzuFxA91V+DDl7xEcSgelpMLy08ZrrVWgT5Ajvvjiiy+++OKLL774p8uvrKrC5W4GYNGy1Qw5ry8pKclGtB1799K+XRpdc3OMY3a7nUXLV3P5JZND/A/++wWXTj2f2OhoABqsjWzbvY+RQ4eE+LW1dezZV8DwwYMwRUQAmoqqagoLjzBq6EBA4XA4MJsjOXb8OB7tofa4lYrqGkYPHwxoyquqKS0rZ8jA/tQfq8diicPe2PiN6w/daXvvv/jiiy/+6fZN4Z0CcGto6KZCGlRopKC8NcrIV/kGhRQivvjiiy+++OKLL774p9Fv164daWnpbNy2i9TUJDp3zDZ679y7D6ezmZ7duxm+s9nNl8tWc/WlF4X48z/+nB9MuQBzVLThr9u4id49upGcnGj4TU0OtmzfRd9ePUhOTgCgvsHGvgOF5OZ0JCnJ29fhcKCUIiUlmXaZWURGxnLBuFG+tmZ27swnr2suyclJ1DfUY7FYaGpsPOvmX3zxxRe/rfsmAO2LFrL2c4IVHh0cWfleaN1afF9b4LVq8ejrJb744osvvvjiiy+++KfRP3asjkVfLGL5smV079rFiFVaXsmRoxVcMHaUEVBrDx998jmTJo4J8T/9YhlDB/cnId5iWDt35xNrsdA1t1OIv27TNtq1a0eH7MCFgTdu3UFGajK5vmvUgGbxstWYzWaSE5Po2r07Xyz8CJNJgdas37KN9PRUOnXIAu29u1NMTDRNjU1n3fyLL7744rd133srbeUfHDwksKnwfaXRKN8VilWY7msDAveM0oEo2js+OKr44osvvvjiiy+++OKfTr937758vvAz5r7zH3774H1079GDPn16k94ui+FDBrNpcyy9+/TFEhvHR58vYfzY4Vji4vADK9ZuonPHLDplZ+PRHtCa3XsPUl1Tw6D+fbHbrLg9Gq01u/ILcDga6ZbblyZ7IxFmM9t37ycuJoZePfKorKykuKSEFStXszc/H7fLRcmRYvbn59NktWG12SirqKbZ5WLQgD6A5tjx4yTEJxAbE4fVZjvr5l988cUXv637QbfS9g4whqmgkDooQkiSoZgOJ4wkAnG9+bY2CeKLL7744osvvvjii396/LxuXVkZb+HJp/9MVXklq1avYtv2HezevYdPFsynsqqSpiZHgPfF9ADGv6L6vMioKJqdTnSQFBERgdvt8eanvVEUoE3Km5vHg/8fbk2Y0NoDSqFMCu32sHz5cvK655GdmcnOHbupPNbAJZMnGvVv37GLhKQkYmKiqK2rO+vmX3zxxRe/rfvmwGFvNsE5KP+NvE+WaFAlIfmH9VO+IlSgorAn8cUXX3zxxRdffPHFPz3+tTNnkr9vH7//7e9IS09HmSIZP2ECWZntSEpMIik5iSOlFdx95y9ITEzkvPPOw9pgw263U1VThavZhdPhwOF04nA0EWE2g1aYI02YzZHExcXicrlpdjZjilCYzJEkJyZRUVGBw9EEEREkJCSQnJRMaloa8YmJxMbFYY4wsX7NWn78kx8zceJE/v3vf7N1115+cvUVmCO8/85aWVVNg9VGcmISzW6IMKmzbv7FF1988du6bzbi6/Do3uBGUiHJhG6BPIJ6h/XTCpRxmo+/j5GW+OKLL7744osvvvjinza/T58+zJ8/n6Nl5azfvIMhg/rSuUMHI2RJaTlR8YdIS03jlltv4/9uvonoyCjyDx6kfUYGFVU19O2ZhyXOe7ckq91GWXklxUVHGDKwL46mJjZs3UlKciKFJWVMGj+S2JgYtu/Zz9gRw2j2uNm0fReXTJrI6g1bqKmtJTU5mR7dcqgoK6P/gAEAuIgkIz3VuLiw2+2i5Gg5cTHRdM7JZdDAAShfTWfT/Isvvvjit3U/8LWm4IZwo5W8gzsGmlopJrgmf4MGbawiiS+++OKLL7744osv/pnht0tP54rpU7yvfVuTw0F9fT1dczpRW1fD2HGjSUtOYdvOXSTExXOosIhuuTmkJCcB4HK5aGiwcbzexqWXTCUy0kx9vZXp7bP46LPFXDXjEtq3y6DeamX0yCSUKYING7Yw/aILqDvWQHl5Je0zMxjYtxeWeAvtMjIA2LYrnw4dshk7cqiRW8HBIlJSkli2dDHx8XFYbVaqqqrO2vkXX3zxxW+rvinc0iFBdFDk1nILNGjfY0hXHfysgcD1iBXK2BdffPHFF1988cUXX/wzwY80R7Two6KiiImOpltuJ5qaHERFRrH/4GGGDhmIy+MiPTWVvK65RrwjpWXU1B5n8IDeREZGoIHEhHh27tnP0EH9ad/Ou9iSGB9PhCmCVes3Men8MSgUTkcjKclJ9OzeFUu8xcihtLyCivJyxo4ILMzU1B3j2PF6Gu2NREWaaN++PZZYCzabjWan63+q/3TPv/jiiy9+W/VNIUFUyOJO0GpOUJjgiCp8N6wKFfysMFaZfMdVSPLiiy+++OKLL7744ot/5vkmFN265FBXV0d0dDQOh4Pz+vXi4KEijtfVM2Rgf6Nv8dEy6o430DW3E6kpKYa/aftOYmKi6NuzuxH+WH09G7dsY/zoYcTGxOBsdrFlxx569exGemqyEbPZ6WLF2k1MnTQxpNxtO3cTb4mjb+8eVJRXkJmZiQfF0aOl2JsaT1n9p3v+xRdffPHbgm9qLSaErQChQgKEdT1B8rrFoeC6dIvkxRdffPHFF1988cUX/8z1bTYrSikcTU4qq6ooKj7ChRPHGP3sdhv5Bw7QISuTrPbtDHPPvgKsVivDBp9nxKq3Wlm9bjNDB59HUkICoNm4dQedO3UgO7NdiP/JomVMu3BcSCGbt+8kLs5Cvz49QUNZeTmxsbE0OhzYGxtJTEw45fWHBmp777/44osv/nfpm0AH3/3PF0CFdQ3NLwRUYf1V+I4OykG37Ca++OKLL7744osvvvhnge/2aCIjI6mormLD1l1MvXB8SOC1m7eT27EjHbMzjWhFJUeorK5h4thRxjG73c7qdZuYMnEsqclJaLzXjmlsaqRvr+4h/sIlKxjYrxfJiYlGLgWHi6itO86ooQMN/8iRI1gdzXTKzsYcoc7J+RdffPHFP5d9E6igKw3jO9UmNA1/s2ol/dAyWttUyL4RWQciiS+++OKLL7744osv/pnumyNMREdHc7iwhOlTzg8Rd+zOJyYqih55XQy/srKGXXv2M2HMSMNvbHKwfO0GRgw5j8go7705bFY7e/btZ+LoESH+0uVr6JaTQ27nDkZVldU1HC4sZlC/3pQUl7Bz506WLlvOjh3babI2sGv3DhoarN9J/ad7/sUXX3zxz2XfHDww8BR81eFAcO8xX4oa4ytZOmyEsau9mjZGBRWoVFhh4osvvvjiiy+++OKLf+b61dV1NDQ0UHRoP3967DFioiNJTk6luqaO8ooqRgwfxGc1VaA0VruDQ0UlXDh+NHv37CE6JorIiChWrN/IhePHkpSUCCg8Hg8ffbqQ7MwMVq9eQ1VVJdXV1ezZV0BtZRXKrKitqcZus1NUfITammr69O3Djh07SEtNJjExmdi4eBptjRQU7KPR1uirn3Nu/sUXX3zxz2lfa+9JNaEhwvRWthb9w1qDsjvJ4UC7+OKLL7744osvvvjin8n+kqVL+MH06VxzzU9p164dTqcTkymC/QUHiIqMIMIUQUa7dDZv3kJ1TS0xUZHYrDY8SlNXU4e90Y7WHiIjo7Db7fh+DUcpRYQ5ArMpgoiICDCZiIqMwmKJIzc3l7q6OkymCCLMEcTGxpCRnkF2djbV1dVUVNWQkZ5KXGwM5ohIyivKOHLkKDt37jzn5l988cUX/1z2lfZoHW4Eh9Rao5RqcfxE6ZzoQGtjNXhP4xFffPHFF1988cUXX/wz3N+wYQNvvfUmUVHRxMXFsXvPXiIiIti/fz/gISYqhs1bNtFvwHk0O5wMGTqEpkY7Xbp0pbCklDEjh5OTm0NqcgpZ2Vm43Zo9BYeYOGYYHg1Oh4Ntu3ZzrK6e8/r2xNncjNutKa+soKa6FqvNRrcunXA6m3F7PGzbsZukxATaZ6TjwYO72Y3L3UzHjp2YOnXqOTf/4osvvvjnsm+cOdN6iJA0T15F2EHjUatWstK0violvvjiiy+++OKLL774Z7b/j5f+gTkyktra46Slp5PTKZucnFwKS46SmJzIiEGDQoYt+OxLJo4eSVJSgnGsyeFk5doN9OrehU4dvNeU8Xg8rN6wmXEjhxlYs8tNcXEpZZWVjB05FDS43C42bN2B1jBm2GD8v+23lfkXX3zxxT8XfaW9m7E65O1AoJMm5D/4QS0haZwkW1/IEyUE4osvvvjiiy+++OKLf7b47uZmCg4Xk5mRRlV1DT27dwOgtLyC7PaZIb6juZnISDMmZQrx123cSk6nbLLaZxp+dW0daSmpXivILyw+QscO7YmMMKOBivIKmpzNmM0RdMxu/73Xf7rnX3zxxRf/XPS9Z86EJaDCs/gaW8iQrxjfoll88cUXX3zxxRdffPHPMn/tpq0MHTiASHPEN/K19j5412v+N9/R5CQqJiowpA3Ov/jiiy/+ueQrj9ZatRiqgvZ9YXTIU1jvEzQGddIq+II3/o6tXVZHfPHFF1988cUXX3zxz2zf0dSEMpmIjoxqk/WLL7744ot/an2ltUcb4U8Q/ETm191CxgfVG9wqvvjiiy+++OKLL7744osvvvjii98WfZP/1YkS87ZpI45uvcvXSMz77SlUuCO++OKLL7744osvvvjiiy+++OKL33b9Vr7W5I+qfZ1bz/gktYRW0Hpwb4Om1YsZiy+++OKLL7744osvvvjiiy+++OK3Fd+kgiOFBFVASGuggz/v0Magsd4O/lWfFt38DSpMEF988cUXX3zxxRdffPHFF1988cVvY37gzBnt7Ww8n2TTRtqtd2zZEn4k8NrYE1988cUXX3zxxRdffPHFF1988cVvg77JGOLfUTooQNB+0K7yDfAfCvT3PrdMWYX1Ur6doL7iiy+++OKLL7744osvvvjiiy+++G3QN/k7tQykQva1CmsOSU+HjfMd1YF2Hdyq8cULJCm++OKLL7744osvvvjiiy+++OKL3xZ9pbU3hBFSB0UIzuQkm7+n1qBU4LlFh68YL7744osvvvjiiy+++OKLL7744ovf1nwTYeN0K4npoEeM1aDA5u/pTygkMbTRQfsewiOIL7744osvvvjiiy+++OKLL7744rdVX2kdrAUlZey2TNT/ylgpgpPeJzw8xok38cUXX3zxxRdffPHFF1988cUXX/y25YctzoThJw3pbf1mbKD3iQoSX3zxxRdffPHFF1988cUXX3zxxW9Lvin4IGF9/WF0SA//rgJauzJxWN+QWMpoU+gQTHzxxRdffPHFF1988cUXX3zxxRe/LfqmQOfwuIHuKnyY8vcIDqWDUlJh+WnjtW5x2WPxxRdffPHFF1988cUXX3zxxRdf/Lbrm8I7BeDW0NBNhTSo0EhBeWuUka/yDQopRHzxxRdffPHFF1988cUXX3zxxRe/jfomwHcBYhWShjrBCo8Ojqx8L/yXrQmN72sLvFYtHn29xBdffPHFF1988cUXX3zxxRdffPHbqO+9lbbyDw4eEthU+L7SQUmq4AAQTGgVKCAo35DX4osvvvjiiy+++OKLL7744osvvvht2DcFdnXQoxfSIU2hA5X/IQjTgA4mjPN+lBFLGwPDN/HFF1988cUXX3zxxRdffPHFF1/8tuebAge82QQPU/7TdU6WqAodq07QT/mKUMEphDyJL7744osvvvjii98WfVdzM/fddx+XXnoptdXVba5+8cUXX3zxxTcZIXRYC4AKrPiEJhO6BfLQJ+ynlf8hqFHpwCvxxRdffPHFF1988dukv33bdt5//322bd9OaVlZq77Ho/nRj37Erx741Sn3Q622N//flz9nzhzGjR/L+eefz/tz5+Jxu9tU/eKLL774J/OV1rqFjw4LHv76JA0n7BrWSauQE4DEF1988cUXX3zxxW+j/l133c2CDz8EE6xetZqOHTu2CHrkSAljxowDPGzbvp2U5JRT5rcapA3N//fh79+3n0lTJ2HSJvxXaJj+g+nMfmY20dHR53z94osvvvhf5ZtaDCIoetBpPa0HCTRo32NIVx38rIHAxXIUraxKiS+++OKLL7744ovfpvxDBw/x4YIPQcGsR2bRsUOHVv3CwiLvaK1wOpynzD/d9bcVf8mSpSityMxuz3333YfFEscnH3/Cz2/+OY1NTed8/eKLL774X+WbQoKooLwA4zLCwWGCI6rw3bAqVPCz8qUUOK5CkhdffPHFF1988cUXv635Tz/zNAq44YYbuHbmzBP6hw8f9v5erODYsWOnzD/V9XtCfrk/8+f/u/C1x9PCLy07igIe/eMs7rrrLhYvWkrf/n1ZtnwZt95yC01NTb4/ZVpBz7L6xRdffPH/F9/UWkwIWwFChQQI63qC5Fv+pzW4Lt0iefHFF1988cUXX3zx25K/detWPvnkE7KzsnjggftP6hcVFuL/V02PW58SP7yob1v/4kVf0qVLLk888cRZMf/fhX/48GHGT5jAD3/0QxobG42msrIyPAqyO2QDkJXdnrnvzWHo0KEsX7aMX/7yXmb+7GcMGTKEw4cP/89++F5bm3/xxRf/7PVNoI2zdwIBVFjX0PxCQBXWX4Xv6KAcdMtu4osvvvjiiy+++OK3Od/j0fzp0UcBeORPf8JiiT+pX3DggBE1OTX5W/vfRf0bN29GoXjxxRd49513vnf/dNcPiuKiYoqLi1i/bj0PPvig4dfX1wfuhOLz4ywWXn/9dTrm5PDJJ5+yYuVKamtquPH/bqS+wXpW1i+++OKL/7/6JlC+s3d8h3UwHRRc+4eEph9aRmubCtk3IutAJPHFF1988cUXX3zx25a/6Msv2LhpI6NHj2byBRd+pX+srg6TL2xGevq39r+L+u++625+9/vfcd55A1mydMn34peUlLBixUoqKspDag7e/z7f/wkTJ/DCCy8y8fyJrFq5msZG79eVIkwm0KqFn5SUxJUzLgc0b731FldefRX2Jhv5+XvO6c+/+OKLL3643/rdmnzNKuyAVoFjWmN8JUsbrAodrL2aJvy6xC2iiy+++OKLL7744ov/PftlZWU0NjaSnZ1FTExsq/68D+fz5Refc6DgAKmp6YwZM5rrr7+OxKSk/9l3Opu58MILKC4uZuHChfTu3fsr6582bRp79uQzcOAAPvrooxb1l5WW0ehoIiuzPbFxMWf0/NfU1JCSkoLJ1OLeHF/p22w2Fi36ghUrV7F82RKqq2sBsMRZ2LFrJ2ZTRAu/sLAQj3bTNbdroIAT1L9t61Z27dpFVlYWI4YNJz4psUX9LpeLtevWkb93N+3bZ3PBBRdgibO0Wn99fT2bNm3iueefZce2HXzy6af07ds3xPV43JSXV5KVnXXC+svLy1m8eCkORxOjRo2kV+/eZ/3Pn/jiiy9+cA9z4EVoCBWs440VEk4FgODHkDbfs9FiJO0PFoghvvjiiy+++OKLL/5371utDbz44j+YN28epWWlRs+rf3g11107k/4DBhgh337nbR566CECofazYcNa3nzzDf7+978zatSoEL+ioork5ESio2NOWv9bb71JcXExP/3ZT42FGaN+YNGSJWzYsIEEi4XLr7icjh07YbPZQHm45JKLjcqtVhsvvvgi8+bNo6ysFIUJjYerr/4h1113Hf379z/h/DudTiKjIo36t27bQscOncjIyAiZf7fLxfz5H7B+/QbsjXYy0tO58MJJjB8//mvN/4cfzKep2cGPf/hj6uuPM/O6mWzduo3p06fz17/9FZMyBYU4+fu/YuVyrps5M+SUeIvFQnZ2Nv369cUcEWHUpwCb1cojf3yEd+e+Bx7Iys7il7+8lyuvvIqIiIiQz19p2VF++9BvWbp0qfe0fZ/xz3/+kwsuuMCosbS0lP/7vxvZu3evkUNWVhbvvvsOubldWtT/1htv8tTsp8Hjref1119jzJixdOvWjdwuuSQlJmEyRZCdnRX6109Q/a+99hqPPPIIGo1JKbSGu+66i/vuu+8r5/9M+/kTX3zxxT+Rr7RH61A1eAhorVFKtTgevrVoCzvQ2lgdWqP44osvvvjiiy+++N+hv2HDBm659VZqq2tAgULRt19fdu3aafya+PQzT3PVlVfRaLfTu28ftFaMGD6My2dcTmxcLEuXLmHBgo8A+HDBAgYOGMB//vM2b7z1BgX7CkjPSOP55//C2LFjW829qrqaCePGY7Pb2LJ5M2m+ryhpwOlw8Ivbf8GXX3zp/SNcQVxcPJs3bWTcmLFU19bw8ccfMWDAeUYtdTU1aLxQvz792L1nl2/xQvHU00/xw6uvBuDNN99k+PAR9Ordiwcf+BXvzXmPX957L3ffcw9Llizh+htuQAGLFi8ir1seSikarA3ceOPNrF+3FuWfTwVxcRZmz57N1GnTWsz/tu1b2bVrNz/72c/QwPhxYykuLmHLli3cf//9LF6yxHj///2vfzFu/Piv/f5fffXVbNy4Aa1h0KBB/PZ3v2PwwIFEmM0t3nCXy83UaVM5ULA/KIJCo/nR1T/kz0/+2Thzp7y8jKuu/iElxcWg4OKLLmZffj4HDx8iNTWdzZs2YjKZKC0t5corr6C0tAyAvO7dOVhQgAauuPIKnn3mWVDeM7Lef38eN918E5s3beSnP/1ZiG/8HYMiNS2VqVOncOttvyCzXTv+9e9/MenCSXTp0gWA5//yV2b77ugVZ7EQGxtDdXUNAEuXLaOrr9/X+fwbx9roz7/44ot/ZvumlhGD+wYSgxZrOP7uLcYAvgvlaKNPKBPkiC+++OKLL7744ov/vfgLPlpAbU0NSnn/sF6xagWffPJf8vP38adZ3ovz3n/ffXz22WcsWrIYtCbeEsdL/3iJa356DZdffjl/ef6vLFy4kIcffpioyEiuv/4GfvO731CwvwCtoLq6mrfefAu73cbChZ9x/Hi94Ws0v3noIex2G797+GHfwkyg/tmzZ7Poyy9RSnHLbbdy/333MXXKZObOmUtNrfcPckeTE4AFCxZ4F5lQ5HXPY+WKlfz300/Ym7+XWY/MQinNAw/cz6effgZa8/DDD/Pss7PZuWMHc+a8B8CKVSvZu3cPN9xwg/FL8Qfz5qGUwmqz8uMf/Yj169bSrWs3Xn75ZTZt2sjrr/0Tm83GLbfcQklRcYv5f+211/jtb35LbW0NCkhMTEYBd9x+O0uWLkEB3Xt0B2DLtq3f6P2//fbb0R7v/tatW5nz7ntUVlS1+v4vXbqYAwcK8P+6f9tttzF79jMoYO7cOXy4YIHvbfFw++13cKS4hN69e7Nh/XpefPFF/vr3v4HW1NZUc6zOe+vyO++8g9KjZaSlpTF37lwWL1rEe+/OQaMpLio2/KVLlvLMM0+xYsVyxo4dx84dO5g4YQIoTU7nzkydNpV+/fujlaamppq3336HG667npKSEh6dNYt///vfAKxevcq3MKO49tpr2bhxI5s2bmbkyJEAlPsWic6Wnz/xxRdf/JP5Zm9ffxIqSPS91uBf3glu8ScQ8l2roH3j0QipMU4TCvuuq/jiiy+++OKLL774372fnpYBGlIz0pj3/vskJycDEBsbw7Uzf0ZSShJ33nEX7/znbUaPGw2YuOLKK0lJSw3kraB371707t2b22+/g+XLl6JQPPbYY1x22WVojwePhscfe4K33nqTm26+mYcffhiU4r133+OLz7+g34B+XH/ddUGVaeyNdv7x0j8AE6+89BJTpk0BFM0uF5MnTza+arNsxXKGDR9Keno6KEhLS2H+vA9IRsbckAAAIABJREFUTEry1hITx8zrZpKcnMydd97B22//h4sunoZJKVatWs3ePXvRCrRHU1VRyQ033Aho4uLjsNnsbNu2AzT85S/Ps2vXHvr268f7779PXGwsAMtWLsd3/gezn32W556bHTL/MdExoBTFRSWkpqRSVlaKVrB27VpA8frrr9GhYwemTJ7Czu07vtH7P3HiRJatWM5fn3+OeR/MZ87cOcyd+x433fxzbr75ZjIzM433f/++AvBoUDBk2FB+/etfA9DsdPLgQ7/mz088wYxLL2Xh51+wadNGULA3fy8333wLnTt25ONPPwZM5HXPIyUtlaLiQjZt2ow2weuvvcrAQYMBGDFqOM/Ofpbc3FxjFiKjotAeKC4sAiAxKYnhw4ezbPkKbr7pJmZedx1aa9CasvJyKirKye2S61vIM3H44CFAM3/+h2hg8pTJ/HHWI5iUCQ08+ecnWL5iJUOGDv1Gn//grS3+/Isvvvhntm/yPgUOapRXDckkAAaHDU5D+8cGXoR2DEqoZbP44osvvvjiiy+++N+1j9IoBZdcPJ3kpOQWvq3BBmi0gqoq75kf0VFRrfpNjU18/N+P8aB4+OGH+ek1PyXeEk9CYiL19cd5699vgVJ07twZgMOFhfzqwQdQCp5+6hkizZEh/r69+8EDXbt2Ycq0qYBCezRPPP44hw8d8l2PRvHRRwvweDD+UL/okunehZmw+m2NtkD92nvJE6utgZKSYtAKhaKopIiyslLGTzifpYuXgQcOHz4ECj77bCEKePWVV4yFmfz8fbz5xhtoTCgUH8z/gF2794TMf1o779lAe/L34PZ4qKmpMfw/PvIHLrzwQnr17EV6Wjpr1q35xu9/l9xcZj/7HIu+XMTlV1yBB8Urr7zC8GEj+MP/+wP2RjsARSVFRv39+vYzpueyyy4DrSgvK6fR0cjcuXPQmLh0+mVYYi1s376Njz/5L6AYNnQor7z0Egr/WSqKeIuF/gMGhnz+rrzySoYMHmLkn5GRDibYsXOnkXdUTAwaDzW1tb66FMqkyM7OZuCgwaQkpZKemgFo1m1YjwaOlBxBAedPnGhcm0cBObldmDlzJlHRUWfVz5/44osv/sl8k26RgA7KIihM6FMI5E9LBRekQjvpoJHKKMN3VHzxxRdffPHFF1/879z3XuxWs2btGhqsDcYAu93K3PfnMuvRRwDNTTfdiKOpCa01x48fb9WPiY2mW9euKA2vvvoqc+bOYeHCz3hk1iymTp0KHtBKM23aNNxuN/ff90uUUjz44K/o1bvXCerXxMXForWHxsZGbr/9dl599VW0UnzwwXyGDh1CcVEx69evJy09FQWsW7OWhoYGo36b3cbcuXOZ9cdZaKW56aabvIby/0ulZtasWT7aROfOnXnxxb+R2T6TtHTvmS6NjXZsVhtaazZs2IC9qYn/fvwxV1xxOWjv7aL79uuDAu65625KS0sNPyPde0HhLZu2UFVdZbwlP7z6Kq6/7nrj/R80eBA2WyNFRUXf6P0vKyvD4XTSvUcezz37LCuXr+AnP/kJKM0bb/yTa665hvr6eg4fPIxW3s/IG2+8wY4d21DAvn353gwU2GyNLFmyBKU8PPnUk2zesplXX32FWbMe4T///g9z586la7duaCA7uwOgsVlt3HPvPdhs1hN+/tLS0sADq9asMvLOyemEUorDhw6e8PMfn2DxGjYrxUXFxsLeo489xsoVK0I+f2fjz5/44osv/sl8kzLC+x+Coyp/d+NwcGtwyFYb/bkpMK5ErH0HfAPEF1988cUXX3zxxf9+/B9M/wFxlngOFOxnxIgRzLzuOqZNnUbf3n25//77sdkaef75vzBx4vk4m5tRSlNQsP+E/hOPPw54FwweeOABbrn1Vl579VXsNhtawdVXXk1mZib/futfbNq4hQnjJ/DzW29ttf4ePXoAJnbv2s2QocMYPWYMn376X5SCvz7/PIOHDDEWWt6b8y4/+MGlxFssFBQUMGLECK677jqmTZtGn959eOD++7Habfzlub8wceJE7y/QHhNo+PkttzJq1AgA4uLieOXlV4i3JAAwZcpUFIr9BQe4bMYMlNLcc8/d9O7Zk9vvuAObzcbVV1/F66+/xuuv/5PsrCwKCgqYPn06K5Z7Fw/aZ7ZHARGRZjxuDxpQGh588Dch7//AgQPRWrN2zdpv9P7/+te/ZsKE8bz99js0NTaSk5vDE088wbJly0hNS2Prlq289eabVNVUo7Qir3t3lIZLp89g3LhxXDbjchSacePGkZCQABqUVuzcuZPY2FgmT57CzJnXMWbsWJQp8Enr1LkzM2fOBOCjjxYwbNhwHrj/fubMmcP27dtxOBxGjpnt2qEVREdGG5+/Hnm9QMOevfkn/fzndM4BZSLCbObnP7+Z+HgLdquVn117LTNmzOCvf/kLS5cuoaysvOXkBG1n4s+f+OKLL/7JfJMRXp84uP+2hmjf+G+wBcIGrRKFOOKLL7744osvvvjifx9+UlIS77zzDhMmTMRus7F86TL25u8lNTWN66+/nkWLvmTGjBkA9MjLQ6NITUk7oT9i5Eg+XfgpN998M9MuvogpU6Zw/fXXE2uJQ6G46KJpHC4q5Pd/+H+kpacye/ZsIkwRrdZvsVi46qor0UBtdTW11dV06pzD2/95h0svuwyAiy66iEmTJlGwv4CkpCTefuddJpw/AZvNxtLly9i7dy9paWnMvP56Fi9azIwZl3lzNyl69+lF586duffee8nL686js2bx7tvveM/i8W033HADcRYLTXY79959NxdfMh3t8c6nxWLhkUdm8eSTT2GOMJOZmck7775HVnYWNTU1/P6P/w+AoUOH4sH7VaLs7Cz+/uIL/OPll8jISAt+d7nmJz8hPs7yjd//jh07UlZaxkMPPcTgIUO58sormTlzJjf9/GbvV6iAemuD9w8DrXnnvXe59rqZoDTFxcV07dqVe+65l1dfeYXY6BgmTZ6E1nDnXXd5zwBqxS+vqODIkSP88Y+P8Pvf/x5LrAWbzcacue/zwK8e4NJLL6V7zx7MmDGDiooK0tu1o0/vPgweNMj4/OV2yWHo0KG+RZwTf/4nT51KfFwc7du1I697dz7+6L+MHTcOgK1bt/H0M89ww/U3MHLkSAYPHsLLr7zcYu7O1J8/8cUXX/yT+cqjtW41J619nVvP+CS1hFbQenBvg8a3qiS++OKLL7744osv/vfpNzubOXasjuiYaJISk1r4LpeLOe+9x6jRo43bGn9dPyc3B1Bs3LCep55+mjlz5vD22/9hzJixJ61fezxs3rKZysoqMjIyGDxoUOA20T7C7XJRV1fn+4qWd3M6nRyrO0Z0dDRJSUmtBvdoNx63xhxhPun8u9wuzOZI41BdXR1Op5PMzMxW63e5XGzftp0+ffoQ67s2jc1mJTomFrM5ImyCQt9/l8uFOai+r/P+u5qbmTNnDs8884xxPRsUxvz/YPoPeOTRP3LllVdx+NAhDhw8iNlsprHJTqO9idSU1JD6i4qLuGjaRd6znbTmtl/cRv/+A2hubmbXzp18/sUXFBcXo4DDRUUowG6zsXrNGrZv387mTZtZs3YNaO8C1sKFn9M5pxPNzS6cjiYs8fFG9g6Hk6bGJhKTk076+a+rO0ZKSkpIU/7evWzYtJEd23ewefNmDh06BMDNN93M7x7+3Vn38ye++OKLH+4rrT3aaG5FDD0UCGr8n8BJ8BN2CzkQ9EJ88cUXX3zxxRdf/LPar66pZujgIWRmZbF+3Tp27NjJ8frjjBsztk3U/335LpeLwsJCioqK0FqTnJxIly7dSE1LQwETzz+fw4cOcfDgIe8i0Un8opJi7rzjDrZv34FS2n+TJ6Oi9LQMfvOb33DlVVe2nq/WVFSUkZCQRJzF8r3Ub7fbqauro0OHDiH92sr7L7744p97vlnj+zbUCSKF2t5X3tUeTfgtoQKcN6YyRoUHDbwWX3zxxRdffPHFF//c8UtKStDAiOHDABgwoL/Roy3U/335ZrOZvLw88vLyoGUIEhO8Z6w0NBwnJSX1pH5Op84sWLCAtWvWsnHjBoqPHCUxPp4uXbswbNgwevbsiTKZvANaqV8pRWb77BD/u64/Li6OuLg4o1dbe//FF1/8c883G0NU+EAd1KD9GQX9NzmcDIxThCcd3kv5doL6ii+++OKLL7744ot/1vkul5v6+uOkpnqvqVJcVAzA0KHD2kT9Z6rfvn0W27fvoLKymuSU1K/0FYrRY0YxesyoVn3/gLOlfvHFF1/8s803eXPQrQRSIftahTUb6QUnFpaIDrQHl+qvFX+S4osvvvjiiy+++OKfdb7VamPsuHEMHjSY5cuWAZCfnw/AgP79zvn6z2S/W9cuaAWLFy9qk/WLL7744p9tvsnbHiTqFjvhObU46h9vXNTY96z8p/3osLUkFRRPfPHFF1988cUXX/yz0q+traX0aBkeNNfOvI6nn36a9957D4AOHTqf8/Wfyf4FF0xGafjXm295/2BoY/WLL7744p9tvikc9q7o6JCjOniUDk06eLw/l9CvYmmjg/Y9hEcQX3zxxRdffPHFF//s8zt37swTjz+KQmFS8Ne//pWa2hr69etLRrv079yHtj3/J/MHDR5IWloaR8vLcLvcba5+8cUXX/yzzVdaB2tBSRm7LRP1v9Lam4iGk94nPDzGiTfxxRdffPHFF1988c82v6y8nD/+4Q989tlnAPznP28zduzo783/yrht1D948BAVlRWMHjX6tPinu37xxRdf/LPJD1ucCcNPGtLb+s3YQO8TFSS++OKLL7744osv/tnpL1u2jMzMTHr37n1a/K/qLb744osvvvhnqm8szpwY0XivKRzUw9g90aiTpexvC+0jvvjiiy+++OKLL77439b3eDQ/+cmP6Nw5h6eeeup791vfxBdffPHFF//kvtLao0MOfyV8ohT8RbTWqEErUBinAp2wEPHFF1988cUXX3zxxf8f/SNHjzBmzBgUmq1bt5OSmtKm6hdffPHFF//s9E2BBu19UiGvfGjrmwppUKGRQjxfYoDyDdJB48QXX3zxxRdffPHFF/9U+IWFhYDCg6K52fGt/Z07d3LjTTdy9OjRr+UHIpz++X/88T/xt7//vU29/+KLL774Z6tvAnwXIFYhaagWN/YOCqqDm7Q/QHh8X1vgtWrx6Oslvvjiiy+++OKLL774p8A/fPgQaI1Sirpjx7+1v3nzZr78chHz3v/grKg/2P/HSy/z1JNP0tTkOC3+6a5ffPHFF/9s8r230lb+wcFDApsK31c6KEkVHACCCd+pPAShodX5hokvvvjiiy+++OKLL/4p8AsPF3mPaQ8ej/7WvsvlQgG1ddVnRf0tfAXWBuvp841d8cUXX3zxT+abQ0cFXfZGEdjXQRFCkvS3BcaGEMbliANxvfm2Ngniiy+++OKLL7744ov/7fyDBwuMI8kpyV7lW/g2ux0FLFy4ELu9keKiIo4dO44lPo577/0lY8aOPaPq9x93Op1eV8PD/+/3uF0ujh4tBaXJzenC3//+t+/UP931iy+++OKfbb45cNibTXAOyn/1mpMlGlRJSP5h/ZSvCBWoKOxJfPHFF1988cUXX3zxv51fW3fcSCUjLQP4Zn51ZSWPPf44paWl7C8ooLamBjSUlZXz3nvvGf0sFgtHSo4SzH/b+uvq6ti9axeZ7dvTvXv3b1z/nPfm8NnChZSVlbJ3716UVqA8fPrJJyG+Aqw2G/EWyzn3/osvvvjin62+2Yjf8jLCoIJWckKSCd0CeQT1DuvnXblXgWICGYsvvvjiiy+++OKLL/4p8Z1O7/VVzht4HhGREUHNX8//cMEC5n3wAUqB9oDy3T4jNS2dn/70GgaeN5AePXvQoWNHTEp9q/pdzc2sWbuWZUuXsWLlCvYXFOCP+PnnC+nVq3ercRsaGli8ZAl2m43BgwfRs1cvtAd+9asH0EFzptEorZg8dQrnT5xInz596NGjOxZLvC/Bc+/9F1988cU/W/3A15qCG8KNVvIO7hhoaqWY4Jr8DRq0sYokvvjiiy+++OKLL77439DXsHjxIjZu3EisxcKVV1xBx44dsdltAFx80cUt/IOFB5n77lxKjpQQGxtLx04duenGm4iPjzf8UaNGk56WRp/efZg6dQqFxUW8+vKrjBkzmvvuuy800bD6XS4X8z+cz/p162lsbCQtLY1JkyYxfvz4FvVXVFRw0cUXUVNd4x2tNcoEXbt0JTU1lcyMzFbn9O233+bRPz2K3WpH4403bsJ4Xn7pJX74ox+xYuUKpk6ZyogRI7j//vux2Ww8+OCv6N6t+7n1/osvvvjin2N+0DVn/IOC+gWd1tPqpgNt2pdaCOjPVIN3lQijh2qtEPHFF1988cUXX3zxxf8K3+F08Itf3M6Xi75E+e7M9NJL/2DTxk3YGmwoYNTIUb4kvP5nn37Gbb+41fevmd7jChM7t+/k6dnPkJLsvT5Nv7592LJli8GtX7eeV199FavVetL6G6wN3HjjTaxfuw6lvGWgNO/Pm8szzzzLRVOnhdT/7rvvUltdCxri4uN4/rnnGDt2LHGxsUGTEbq9+MILPPHEn0FB167d6NW7F5/+97+sXL6cj/77MU8++WTI/L/55husW78Oq9Xmq/fceP/FF1988c9F32QEwdtTBfoFZxkKEugfuhtWhQp+9qcUOK78scQXX3zxxRdffPHFF/9r+rNnz2bRoi9RwG233cZ999/PlMlTmDNnDjW1tWjA0ew0/A/nf8Btv7gVBdww83qWLFlK/t79DBg4gEWLF/Hkn/98Qj/WEgseqK+vP2H9VquVH//ox6xft46u3bry8ssvs3HzJt745xvYrI3cesvPKS4pDqn/6qt+SGp6Kiiw22y88sor5O/bd8L6V61axRNPehdmZs2axdKlS3jxhReYOnUqGti3N7/F/CfEJ4A2YbdZz6n3X3zxxRf/XPTNrcWEsBUglLe3aqWv9isq6HXIjrEX1Mu7H5K8+OKLL7744osvvvjin9y32+3848WXUErz0suvMHXqVNDgcruZMvlCnwLLly1j+LBhVFRWcs899wLwtxdfYPrFlwBQXlHBjm3bAXjn7be58cb/Iy+vewvf7fKAAo/bfcL6n3/+eXbu2sWAfn2Z+/48YmNj0cCy5cvxf/Vo9uzZPPvcc0b92R2yWL50Ga+9/jrPPfssGzas54oZM5gydSp33303ffv2Nep3uV388Q9/wHc6Di/8/UVWr1rJkaOl7Nq1CzSMGDGyxfw3u1xoNG6355TNf2v1t6XPn/jiiy/+d+WbQOM7s9MYFN5bB+UX2g+0Cuuvwnc0gRx0y27iiy+++OKLL7744ov/Nf19+/ahlaZL1zzvwgzg0R4ef/wxDhw6jPcXbM1HH32Ex+Nhw/q1AFx77bXGwozWHp54/AkjrkcpnnzyqVb9yKhIABqsViOXZrebceMm8NhjfwK8t9lWwEuvvEJsbCyg2ZefzxtvvIHy/VPp/Pnz2bN7d0j9CYmJ3HPPPWzaupU777yLOIuFLz7/nEsuvoT/u/FGCosL0cCuXbvYX1BAalo6U6dOpbS8lIWff+ldmAEe+s1DTJ06pcX8R0dHo5SmsbHRmOF58+bRp09v7221/4f5h7b9+RNffPHF/658EyjfCo7vsA6mg4Jr/5DQ9EPLaG1TIftGZB2IJL744osvvvjiiy+++N/Et8TFojU0NjZyxx138uqrr6CAefPnMXToMIpLitmwfiONjQ40/7+9e4uxqrrjOP5bO5AUxoJDy7UVo62AFTWjWKkTA7UvLYpQ8NZEMAYfTKFAg1zUWBE11hsaTWOCYt8Ym5gWFKx3RmtakKBITDTRCtY4A0SgwBxo6jj/PuzbWnufc0Bqk8r+roSz117rv/6f/zrwtLLZJz7U2dW9Szt27tTChb/W2j/9USbT9ddfL9dneuGF57V69eqSP3zocEmm7q6ubCfvbt+uT/7xsXbu+FiSVKsdlmTa8uYWHfnXET377HrNmDlDktPkST/WWePHy0laMH+BPu3qyvZ/6NBB7du3T99uHaKbblqkTZs26aYlizXwpAF65ZWXdelPp+j9997XW29tlZN03exZWrVqlV568UXdd9+9emjlQ9q8ebNuvPHGut//yJGjJHPavWdP9v2ve+YZHT58WAf+uf+/+v6btxP/3x8+Pj7+V+1HpSSukMRL7pdVPu0pDSRXC7aabdAVN4aPj4+Pj4+Pj4/f3B8zZqwkafu772rChDa1t7drw4b1kjk98uijOr/tfN1wwxyZSU/9oUMXX3yxnKQ3t2zWxIkXavKkSVq7dp0GtrRo7dp1Wr58uZYsXSynSHesWKFbb71VBw4czPyTv9UqOaeeWk1r1z6rzs5OLV6yWH2SfjYlfnJn+vRpkjktWLhQ48aM07x5c9XTU9OVV16h1atX6/dPPqkRo0boww8/0NTLLtPrr78uSeroeEptbW26/4H7tWfPZ/rmoEGaN3ee/vbXTZo8abJqtZpuv2N59tTOpk1bJEljx47VVVdfrRkzf64RI0Y0/P6HDx8mSdqwfr3e2b5NDz/8kF7r7NQpp5yqMWPHHtf3H45X798fPj4+/v/Kd2aWpQjfNGzK/1NUuZXiC7Oxkl4bDefz+Pj4+Pj4+Pj4+MfiL1q0SE8//XQ2Pnr0aN1772910UXtWf45c+Zo965dWr9+g158+SUtnL8g+Zlt0yWX/ES33XabTjv9tMx/cOUDeuThR+Sc0+8ee0yXTpmS5Z89e7ZeS94fEzknM2nixInq6OhQFEU6ePCgli1bquc2/FmmPrW0nKSlS5dq9qxZci6SnLRzx05d84tr1N3dpdNP/542btyodc+s0/xfzY8RJ5179jlqbW3VgUOH9Hbyi1Hjx4/XPffco6lTp8pkWrpkieb+cm7pezpy5LB2de/WiJHDNWDAQEnStrff1vRp02WRpL78+1+zpkPt7e1f279/fHx8/BPRd9ZnVjT8lJb8PGFxvFE5jQbqrTUpeJcOPj4+Pj4+Pj4+/tF8M9PWrVu1e88eDRs6VG1tberXr18Q3Nv7hfbt36dhQ4cm973avXu3WocM0cBvDKjrd3d1qafWozO+f0bgv//ee7pixkz1HK7pvPPadPVV12jmFTPVr3//IM3+ffv1ee+/NWzY8Lq19/Z+oW3vbNNZZ/5AAwYOkCR1dnZq5coHte2d7XGsk6wvPgQ6f8IE/eb25Tr3nLN154o79cTqJ+ScdMEFP9S0adM0dNgwffrJJ/rLG2/o1Y2vSn3SnXet0OzZ12X+LTcv05o1HWppadGMGTN17axrNW7M2K/13z8+Pj7+iehnT87UTxGU2XwXhcHs0/st8DzEVP9UCh8fHx8fHx8fH///z+/9/HP11Hp08uDWr9w3k7q7uvXRjo9Uq/Vo8OCTNXLUSJ06enRei5lWPf647r7r7qA855z61Ccnp6mXX65bbl6mUSO/E/j79u7VoEGD1K9//+Pef8Pwr2D/+Pj4+PiKD2f806E4QHmQSenxTmEmKKNJtUnKRgVJ+Pj4+Pj4+Pj4+PhH9z/bu1fPP7dBH3z4d9VqNY0+5bsaN+5MXfijiRo8aPAJv398fHz8E9WPn5wpFOCKVRxDC5YcZX1pGh8fHx8fHx8fHx8fHx8fH7+ifmRZlEsWWNzNFAsypolDKH5tTbApFwb57yx2Sl9zk4zi4+Pj4+Pj4+Pj4+Pj4+PjV9R3Zn2WDKWHN6XWYPiYW7De34A3i4+Pj4+Pj4+Pj4+Pj4+Pj19FP0rvGhUWz1mWx+qHHENh3ilR4ODj4+Pj4+Pj4+Pj4+Pj4+NX13d9Zla3JrMkuH7FTfYS7qB+8njCVPdlxvj4+Pj4+Pj4+Pj4+Pj4+PhV8SPnZwqSOknBbB6Q1h1OemvjgPTUpxSWTriCgI+Pj4+Pj4+Pj4+Pj4+Pj18xP39yxuLg7NqkWVZ2/cDyTHEkv896+Pj4+Pj4+Pj4+Pj4+Pj4+BX0o2xJ2sleOWzJn6TvdV2yIB3K4+NruWRXiHJJx4vFx8fHx8fHx8fHx8fHx8fHr6AfpUHlRC7omytMB+VZYV0yavm8+bOmJF9eJD4+Pj4+Pj4+Pj4+Pj4+Pn4VfWcWp8hSmpfBr6RJSyPNJOfyayngKOvx8fHx8fHx8fHx8fHx8fHxq+ZHKqyzOoWZ96nsNChvaWRaUFCYLAuw5KOYAR8fHx8fHx8fHx8fHx8fH7+qvjPzNa+orFsuNL3LToqkpr8TXszRuOHj4+Pj4+Pj4+Pj4+Pj4+NXyy8czhTwpinj2S/H5tGNNoSPj4+Pj4+Pj4+Pj4+Pj49fJT/yB1WITdNYEJF2naR6byYuxAa5XDbnZAGGj4+Pj4+Pj4+Pj4+Pj4+PX0U/yoOLefNwV1zm0gg/lXkluUJ9lt1b6bXH+Pj4+Pj4+Pj4+Pj4+Pj4+NX1o2JQDtdDw+aCCRdm8uo2uaxelywKNoKPj4+Pj4+Pj4+Pj4+Pj49fUT+SlLyA2AVluAYnPOZndslN+tqaMH8yl9+70mcShY+Pj4+Pj4+Pj4+Pj4+Pj19RP/4pbZcu9pfkzRX7zrwinZ9A8glz+Qa8eoN7fHx8fHx8fHx8fHx8fHx8/Ar7Ud417zOGLJgKF7r0w8NMkvlE9tyPy3JZtrDY8PHx8fHx8fHx8fHx8fHx8avnR/lAXI2/zKWP6zQr1IVrXYM4l2zC+SUEF3x8fHx8fHx8fHx8fHx8fPxK+kkFZsqer/GaJUR6rdfyucZRlhboSqPCx8fHx8fHx8fHx8fHx8fHr6qfH840WNPcLE8024QfZC54AAgfHx8fHx8fHx8fHx8fHx+/kn5UWiQvu/dYT/0k+YQln0Go+VeTlL8sxyn/f1j4+Pj4+Pj4+Pj4+Pj4+Pj4VfXjJ2esXEA45N3ViT3ulubCx8fHx8fHx8fHx8fHx8fHr6h6dfETAAADZUlEQVQfPzlTwgonQHJxdL1Yyz68+3DMSiNJP82Fj4+Pj4+Pj4+Pj4+Pj4+PX1E/kix7eidP4AqhYX0B6ArxrtgxrwYrh+Hj4+Pj4+Pj4+Pj4+Pj4+NX2PdeCGx5BcFrhf1x7/44m5/GXFgkPj4+Pj4+Pj4+Pj4+Pj4+ftV874XAzrs0OuPJ78unPaWB5Gr+TLpacsUt4uPj4+Pj4+Pj4+Pj4+Pj41fPzw5nwhSSK/7CdjGZK5bvynPJCVA2kxXtCgP4+Pj4+Pj4+Pj4+Pj4+Pj41fSd9Vnx7TcyjzIzOedK48VWmisM1Ftref34+Pj4+Pj4+Pj4+Pj4+Pj4lfSjckY/Ni9MKp3hpOGlNZKSwyHLYkLGc/Dx8fHx8fHx8fHx8fHx8fEr7DuLW1BEkM6k9HinMKN8NBwpNUs+XJ05Sfj4+Pj4+Pj4+Pj4+Pj4+PhV9eNfayoU4IpVHEMLlhxlfWkaHx8fHx8fHx8fHx8fHx8fv6J+ZFmUSxZY3M0UCzKmiUMofuQn2JQLg/wX3jiljwglo/j4+Pj4+Pj4+Pj4+Pj4+PgV9Z1ZnyVD6eFNqTUYPuYWrPc34M3i4+Pj4+Pj4+Pj4+Pj4+PjV9GP0rtGhcVzluWx+iHHUJh3ShQ4+Pj4+Pj4+Pj4+Pj4+Pj4+NX1XZ+Z1a3JLAmuX3GTvYQ7qJ88njDJXKMQfHx8fHx8fHx8fHx8fHx8/BPfj5yfKUjqJAWzeUBadzjprY0D0lOfUlg64QoCPj4+Pj4+Pj4+Pj4+Pj4+fsX8/MkZi4Oza5NmWdn1A8szxZH8Puvh4+Pj4+Pj4+Pj4+Pj4+PjV9CPsiVpJ3vlsCV/kr7XdcmCdCiPj6/lkl0hyiUdLxYfHx8fHx8fHx8fHx8fHx+/gn6UBpUTuaBvrjAdlGeFdcmo5fPmz5qSfHmR+Pj4+Pj4+Pj4+Pj4+Pj4+FX0nVmcIktpXga/kiYtjTSTnMuvpYCjrMfHx8fHx8fHx8fHx8fHx8evmh+psM7qFGbep7LToLylkWlBQWGyLMCSj2IGfHx8fHx8fHx8fHx8fHx8/Kr6zszXvKKybrnQ9C47KZKa/k54MUfjho+Pj4+Pj4+Pj4+Pj4+Pj18tv3A4U8CbpoxnvxybRzfaED4+Pj4+Pj4+Pj4+Pj4+Pn6V/P8AfAYHBGlMHK0AAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "23e74f22-f43c-4f03-afe0-b423cbaa412a", + "metadata": {}, + "source": [ + "![1_Jq9bEbitg1Pv4oASwEQwJg.png](attachment:df72c97a-cb3b-4e3c-bd68-d7bc986353c6.png)\n" + ] + }, + { + "cell_type": "markdown", + "id": "b6a98710-a14b-4a14-bb56-d3ae055e94d9", + "metadata": {}, + "source": [ + "#### The problem lies in the nature of the search. If you just find some keywords, and return one or many documents from vectorstore this way, you will have an issue with the the way you would use to organise and prioritise documents. \n" + ] + }, + { + "cell_type": "markdown", + "id": "5029110f", + "metadata": {}, + "source": [ + "![rag_problem_v2_white.drawio.png]()" + ] + }, + { + "cell_type": "markdown", + "id": "b6a98710-a14b-4a14-bb56-d3ae055e94d9", + "metadata": {}, + "source": [ + "## Semantic similarity search is not magic\n", + "#### The most similar result isn't the most relevant one. \n", + "#### If you search for documents in which the sentiment expressed is \"I like apples.\", one of the closest results you get are documents in which the sentiment expressed is \"I don't like apples.\"\n", + "#### Wouldn't it be nice to have a semantic model LLMs could use?\n" + ] + }, + { + "cell_type": "markdown", + "id": "b900f830-8e9e-4272-b198-594606da4457", + "metadata": {}, + "source": [ + "# That is where Cognee comes in" + ] + }, + { + "cell_type": "markdown", + "id": "d3ae099a-1bbb-4f13-9bcb-c0f778d50e91", + "metadata": {}, + "source": [ + "#### Cognee assists developers in introducing greater predictability and management into their Retrieval-Augmented Generation (RAG) workflows through the use of graph architectures, vector stores, and auto-optimizing pipelines. Displaying information as a graph is the clearest way to grasp the content of your documents. Crucially, graphs allow systematic navigation and extraction of data from documents based on their hierarchy.\n", + "\n", + "#### Cognee lets you create tasks and contextual pipelines of tasks that enable composable GraphRAG, where you have full control of all the elements of the pipeline from ingestion until graph creation. " + ] + }, + { + "cell_type": "markdown", + "id": "785383b0-87b5-4a0a-be3f-e809aa284e30", + "metadata": {}, + "source": [ + "# Core Concepts" + ] + }, + { + "cell_type": "markdown", + "id": "3540ce30-2b22-4ece-8516-8d5ff2a405fe", + "metadata": {}, + "source": [ + "## Concept 1: Data Pipelines" + ] + }, + { + "cell_type": "markdown", + "id": "7e47bae4-d27d-4430-a134-e1b381378f5c", + "metadata": {}, + "source": [ + "### Most of the data we provide to a system can be categorized as unstructured, semi-structured, or structured. Rows from a database would belong to structured data, jsons to semi-structured data, and logs that we input into the system could be considered unstructured. To organize and process this data, we need to ensure we have custom loaders for all data types, which can help us unify and organize it properly." + ] + }, + { + "cell_type": "markdown", + "id": "2f9c9376-8c68-4397-9081-d260cddcbd25", + "metadata": {}, + "source": [ + "![image.png]()" + ] + }, + { + "cell_type": "markdown", + "id": "7c87c5cf", + "metadata": {}, + "source": [ + "#### In the example above, we have a pipeline in which data has been imported from various sources, normalized, and stored in a database. " + ] + }, + { + "cell_type": "markdown", + "id": "bd435d1d", + "metadata": {}, + "source": [ + "## Concept 2: Data Enrichment with LLMs" + ] + }, + { + "cell_type": "markdown", + "id": "836d35ef", + "metadata": {}, + "source": [ + "#### LLMs are adept at processing unstructured data. They can easily extract summaries, keywords, and other useful information from documents. We use function calling with Pydantic models to extract information from the unstructured data. " + ] + }, + { + "cell_type": "markdown", + "id": "5bc1681c", + "metadata": {}, + "source": [ + "![image.png]()" + ] + }, + { + "cell_type": "markdown", + "id": "c6f428a8", + "metadata": {}, + "source": [ + "#### We decompose the loaded content into graphs, allowing us to more precisely map out the relationships between entities and concepts." + ] + }, + { + "cell_type": "markdown", + "id": "34c2227f", + "metadata": {}, + "source": [ + "## Concept 3: Graphs" + ] + }, + { + "cell_type": "markdown", + "id": "7ec176f5", + "metadata": {}, + "source": [ + "#### Knowledge graphs simply map out knowledge, linking specific facts and their connections. When Large Language Models (LLMs) process text, they infer these links, leading to occasional inaccuracies due to their probabilistic nature. Clearly defined relationships enhance their accuracy. This structured approach can extend beyond concepts to document layouts, pages, or other organizational schemas." + ] + }, + { + "cell_type": "markdown", + "id": "ff454731", + "metadata": {}, + "source": [ + "![Untitled-2024-10-08-1656(2).png]()" + ] + }, + { + "cell_type": "markdown", + "id": "5b3b58d3", + "metadata": {}, + "source": [ + "## Concept 4: Vector and Graph Retrieval" + ] + }, + { + "cell_type": "markdown", + "id": "3555db8b", + "metadata": {}, + "source": [ + "#### Cognee lets you use multiple vector and graph retrieval methods to find the most relevant information." + ] + }, + { + "cell_type": "markdown", + "id": "d2d5e844", + "metadata": {}, + "source": [ + "## Concept 5: Auto-Optimizing Pipelines" + ] + }, + { + "cell_type": "markdown", + "id": "6979a010", + "metadata": {}, + "source": [ + "#### Integrating knowledge graphs into Retrieval-Augmented Generation (RAG) pipelines leads to an intriguing outcome: the system's adeptness at contextual understanding allows it to be evaluated in a way Machine Learning (ML) engineers are accustomed to. This involves bombarding the RAG system with hundreds of synthetic questions, enabling the knowledge graph to evolve and refine its context autonomously over time. This method paves the way for developing self-improving memory engines that can adapt to new data and user feedback." + ] + }, + { + "cell_type": "markdown", + "id": "074f0ea8-c659-4736-be26-be4b0e5ac665", + "metadata": {}, + "source": [ + "# Demo time" + ] + }, + { + "cell_type": "markdown", + "id": "0587d91d", + "metadata": {}, + "source": [ + "#### First let's define some data that we will cognify and perform a search on" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "df16431d0f48b006", + "metadata": { + "ExecuteTime": { + "end_time": "2024-09-20T14:02:48.519686Z", + "start_time": "2024-09-20T14:02:48.515589Z" + } + }, + "outputs": [], + "source": [ + "job_position = \"\"\"Senior Data Scientist (Machine Learning)\n", + "\n", + "Company: TechNova Solutions\n", + "Location: San Francisco, CA\n", + "\n", + "Job Description:\n", + "\n", + "TechNova Solutions is seeking a Senior Data Scientist specializing in Machine Learning to join our dynamic analytics team. The ideal candidate will have a strong background in developing and deploying machine learning models, working with large datasets, and translating complex data into actionable insights.\n", + "\n", + "Responsibilities:\n", + "\n", + "Develop and implement advanced machine learning algorithms and models.\n", + "Analyze large, complex datasets to extract meaningful patterns and insights.\n", + "Collaborate with cross-functional teams to integrate predictive models into products.\n", + "Stay updated with the latest advancements in machine learning and data science.\n", + "Mentor junior data scientists and provide technical guidance.\n", + "Qualifications:\n", + "\n", + "Master’s or Ph.D. in Data Science, Computer Science, Statistics, or a related field.\n", + "5+ years of experience in data science and machine learning.\n", + "Proficient in Python, R, and SQL.\n", + "Experience with deep learning frameworks (e.g., TensorFlow, PyTorch).\n", + "Strong problem-solving skills and attention to detail.\n", + "Candidate CVs\n", + "\"\"\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "9086abf3af077ab4", + "metadata": { + "ExecuteTime": { + "end_time": "2024-09-20T14:02:49.120838Z", + "start_time": "2024-09-20T14:02:49.118294Z" + } + }, + "outputs": [], + "source": [ + "job_1 = \"\"\"\n", + "CV 1: Relevant\n", + "Name: Dr. Emily Carter\n", + "Contact Information:\n", + "\n", + "Email: emily.carter@example.com\n", + "Phone: (555) 123-4567\n", + "Summary:\n", + "\n", + "Senior Data Scientist with over 8 years of experience in machine learning and predictive analytics. Expertise in developing advanced algorithms and deploying scalable models in production environments.\n", + "\n", + "Education:\n", + "\n", + "Ph.D. in Computer Science, Stanford University (2014)\n", + "B.S. in Mathematics, University of California, Berkeley (2010)\n", + "Experience:\n", + "\n", + "Senior Data Scientist, InnovateAI Labs (2016 – Present)\n", + "Led a team in developing machine learning models for natural language processing applications.\n", + "Implemented deep learning algorithms that improved prediction accuracy by 25%.\n", + "Collaborated with cross-functional teams to integrate models into cloud-based platforms.\n", + "Data Scientist, DataWave Analytics (2014 – 2016)\n", + "Developed predictive models for customer segmentation and churn analysis.\n", + "Analyzed large datasets using Hadoop and Spark frameworks.\n", + "Skills:\n", + "\n", + "Programming Languages: Python, R, SQL\n", + "Machine Learning: TensorFlow, Keras, Scikit-Learn\n", + "Big Data Technologies: Hadoop, Spark\n", + "Data Visualization: Tableau, Matplotlib\n", + "\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "a9de0cc07f798b7f", + "metadata": { + "ExecuteTime": { + "end_time": "2024-09-20T14:02:49.675003Z", + "start_time": "2024-09-20T14:02:49.671615Z" + } + }, + "outputs": [], + "source": [ + "job_2 = \"\"\"\n", + "CV 2: Relevant\n", + "Name: Michael Rodriguez\n", + "Contact Information:\n", + "\n", + "Email: michael.rodriguez@example.com\n", + "Phone: (555) 234-5678\n", + "Summary:\n", + "\n", + "Data Scientist with a strong background in machine learning and statistical modeling. Skilled in handling large datasets and translating data into actionable business insights.\n", + "\n", + "Education:\n", + "\n", + "M.S. in Data Science, Carnegie Mellon University (2013)\n", + "B.S. in Computer Science, University of Michigan (2011)\n", + "Experience:\n", + "\n", + "Senior Data Scientist, Alpha Analytics (2017 – Present)\n", + "Developed machine learning models to optimize marketing strategies.\n", + "Reduced customer acquisition cost by 15% through predictive modeling.\n", + "Data Scientist, TechInsights (2013 – 2017)\n", + "Analyzed user behavior data to improve product features.\n", + "Implemented A/B testing frameworks to evaluate product changes.\n", + "Skills:\n", + "\n", + "Programming Languages: Python, Java, SQL\n", + "Machine Learning: Scikit-Learn, XGBoost\n", + "Data Visualization: Seaborn, Plotly\n", + "Databases: MySQL, MongoDB\n", + "\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "185ff1c102d06111", + "metadata": { + "ExecuteTime": { + "end_time": "2024-09-20T14:02:50.286828Z", + "start_time": "2024-09-20T14:02:50.284369Z" + } + }, + "outputs": [], + "source": [ + "job_3 = \"\"\"\n", + "CV 3: Relevant\n", + "Name: Sarah Nguyen\n", + "Contact Information:\n", + "\n", + "Email: sarah.nguyen@example.com\n", + "Phone: (555) 345-6789\n", + "Summary:\n", + "\n", + "Data Scientist specializing in machine learning with 6 years of experience. Passionate about leveraging data to drive business solutions and improve product performance.\n", + "\n", + "Education:\n", + "\n", + "M.S. in Statistics, University of Washington (2014)\n", + "B.S. in Applied Mathematics, University of Texas at Austin (2012)\n", + "Experience:\n", + "\n", + "Data Scientist, QuantumTech (2016 – Present)\n", + "Designed and implemented machine learning algorithms for financial forecasting.\n", + "Improved model efficiency by 20% through algorithm optimization.\n", + "Junior Data Scientist, DataCore Solutions (2014 – 2016)\n", + "Assisted in developing predictive models for supply chain optimization.\n", + "Conducted data cleaning and preprocessing on large datasets.\n", + "Skills:\n", + "\n", + "Programming Languages: Python, R\n", + "Machine Learning Frameworks: PyTorch, Scikit-Learn\n", + "Statistical Analysis: SAS, SPSS\n", + "Cloud Platforms: AWS, Azure\n", + "\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "d55ce4c58f8efb67", + "metadata": { + "ExecuteTime": { + "end_time": "2024-09-20T14:02:50.950343Z", + "start_time": "2024-09-20T14:02:50.946378Z" + } + }, + "outputs": [], + "source": [ + "job_4 = \"\"\"\n", + "CV 4: Not Relevant\n", + "Name: David Thompson\n", + "Contact Information:\n", + "\n", + "Email: david.thompson@example.com\n", + "Phone: (555) 456-7890\n", + "Summary:\n", + "\n", + "Creative Graphic Designer with over 8 years of experience in visual design and branding. Proficient in Adobe Creative Suite and passionate about creating compelling visuals.\n", + "\n", + "Education:\n", + "\n", + "B.F.A. in Graphic Design, Rhode Island School of Design (2012)\n", + "Experience:\n", + "\n", + "Senior Graphic Designer, CreativeWorks Agency (2015 – Present)\n", + "Led design projects for clients in various industries.\n", + "Created branding materials that increased client engagement by 30%.\n", + "Graphic Designer, Visual Innovations (2012 – 2015)\n", + "Designed marketing collateral, including brochures, logos, and websites.\n", + "Collaborated with the marketing team to develop cohesive brand strategies.\n", + "Skills:\n", + "\n", + "Design Software: Adobe Photoshop, Illustrator, InDesign\n", + "Web Design: HTML, CSS\n", + "Specialties: Branding and Identity, Typography\n", + "\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "ca4ecc32721ad332", + "metadata": { + "ExecuteTime": { + "end_time": "2024-09-20T14:02:51.548191Z", + "start_time": "2024-09-20T14:02:51.545520Z" + } + }, + "outputs": [], + "source": [ + "job_5 = \"\"\"\n", + "CV 5: Not Relevant\n", + "Name: Jessica Miller\n", + "Contact Information:\n", + "\n", + "Email: jessica.miller@example.com\n", + "Phone: (555) 567-8901\n", + "Summary:\n", + "\n", + "Experienced Sales Manager with a strong track record in driving sales growth and building high-performing teams. Excellent communication and leadership skills.\n", + "\n", + "Education:\n", + "\n", + "B.A. in Business Administration, University of Southern California (2010)\n", + "Experience:\n", + "\n", + "Sales Manager, Global Enterprises (2015 – Present)\n", + "Managed a sales team of 15 members, achieving a 20% increase in annual revenue.\n", + "Developed sales strategies that expanded customer base by 25%.\n", + "Sales Representative, Market Leaders Inc. (2010 – 2015)\n", + "Consistently exceeded sales targets and received the 'Top Salesperson' award in 2013.\n", + "Skills:\n", + "\n", + "Sales Strategy and Planning\n", + "Team Leadership and Development\n", + "CRM Software: Salesforce, Zoho\n", + "Negotiation and Relationship Building\n", + "\"\"\"" + ] + }, + { + "cell_type": "markdown", + "id": "4415446a", + "metadata": {}, + "source": [ + "#### Please add the necessary environment information bellow:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bce39dc6", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "# # Setting environment variables\n", + "if \"GRAPHISTRY_USERNAME\" not in os.environ: \n", + " os.environ[\"GRAPHISTRY_USERNAME\"] = \"\"\n", + "\n", + "if \"GRAPHISTRY_PASSWORD\" not in os.environ: \n", + " os.environ[\"GRAPHISTRY_PASSWORD\"] = \"\"\n", + "\n", + "if \"LLM_API_KEY\" not in os.environ:\n", + " os.environ[\"LLM_API_KEY\"] = \"\"\n", + "\n", + "os.environ[\"GRAPH_DATABASE_PROVIDER\"]=\"networkx\" # \"neo4j\" or \"networkx\"\n", + "# Not needed if using networkx\n", + "#GRAPH_DATABASE_URL=\"\"\n", + "#GRAPH_DATABASE_USERNAME=\"\"\n", + "#GRAPH_DATABASE_PASSWORD=\"\"\n", + "\n", + "os.environ[\"VECTOR_DB_PROVIDER\"]=\"lancedb\" # \"qdrant\", \"weaviate\" or \"lancedb\"\n", + "# Not needed if using \"lancedb\"\n", + "# os.environ[\"VECTOR_DB_URL\"]=\"\"\n", + "# os.environ[\"VECTOR_DB_KEY\"]=\"\"\n", + "\n", + "# Database provider\n", + "os.environ[\"DB_PROVIDER\"]=\"sqlite\" # or \"postgres\"\n", + "\n", + "# Database name\n", + "os.environ[\"DB_NAME\"]=\"cognee_db\"\n", + "\n", + "# Postgres specific parameters (Only if Postgres is run)\n", + "# os.environ[\"DB_HOST\"]=\"127.0.0.1\"\n", + "# os.environ[\"DB_PORT\"]=\"5432\"\n", + "# os.environ[\"DB_USERNAME\"]=\"cognee\"\n", + "# os.environ[\"DB_PASSWORD\"]=\"cognee\"" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "9f1a1dbd", + "metadata": {}, + "outputs": [], + "source": [ + "# Reset the cognee system with the following command:\n", + "\n", + "import cognee\n", + "\n", + "await cognee.prune.prune_data()\n", + "await cognee.prune.prune_system(metadata=True)" + ] + }, + { + "cell_type": "markdown", + "id": "383d6971", + "metadata": {}, + "source": [ + "#### After we have defined and gathered our data let's add it to cognee " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "904df61ba484a8e5", + "metadata": { + "ExecuteTime": { + "end_time": "2024-09-20T14:02:54.243987Z", + "start_time": "2024-09-20T14:02:52.498195Z" + } + }, + "outputs": [], + "source": [ + "import cognee\n", + "\n", + "await cognee.add([job_1, job_2, job_3, job_4, job_5, job_position], \"example\")" + ] + }, + { + "cell_type": "markdown", + "id": "0f15c5b1", + "metadata": {}, + "source": [ + "#### All good, let's cognify it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7c431fdef4921ae0", + "metadata": { + "ExecuteTime": { + "end_time": "2024-09-20T14:02:57.925667Z", + "start_time": "2024-09-20T14:02:57.922353Z" + } + }, + "outputs": [], + "source": [ + "from cognee.shared.data_models import KnowledgeGraph\n", + "from cognee.modules.data.models import Dataset, Data\n", + "from cognee.modules.data.methods.get_dataset_data import get_dataset_data\n", + "from cognee.modules.cognify.config import get_cognify_config\n", + "from cognee.modules.pipelines.tasks.Task import Task\n", + "from cognee.modules.pipelines import run_tasks\n", + "from cognee.modules.users.models import User\n", + "from cognee.tasks.documents import check_permissions_on_documents, classify_documents, extract_chunks_from_documents\n", + "from cognee.tasks.graph import extract_graph_from_data\n", + "from cognee.tasks.storage import add_data_points\n", + "from cognee.tasks.summarization import summarize_text\n", + "\n", + "async def run_cognify_pipeline(dataset: Dataset, user: User = None):\n", + " data_documents: list[Data] = await get_dataset_data(dataset_id = dataset.id)\n", + "\n", + " try:\n", + " cognee_config = get_cognify_config()\n", + "\n", + " tasks = [\n", + " Task(classify_documents),\n", + " Task(check_permissions_on_documents, user = user, permissions = [\"write\"]),\n", + " Task(extract_chunks_from_documents), # Extract text chunks based on the document type.\n", + " Task(add_data_points, task_config = { \"batch_size\": 10 }),\n", + " Task(extract_graph_from_data, graph_model = KnowledgeGraph, task_config = { \"batch_size\": 10 }), # Generate knowledge graphs from the document chunks.\n", + " Task(\n", + " summarize_text,\n", + " summarization_model = cognee_config.summarization_model,\n", + " task_config = { \"batch_size\": 10 }\n", + " ),\n", + " ]\n", + "\n", + " pipeline = run_tasks(tasks, data_documents)\n", + "\n", + " async for result in pipeline:\n", + " print(result)\n", + " except Exception as error:\n", + " raise error\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f0a91b99c6215e09", + "metadata": { + "ExecuteTime": { + "end_time": "2024-09-20T14:02:58.905774Z", + "start_time": "2024-09-20T14:02:58.625915Z" + } + }, + "outputs": [], + "source": [ + "from cognee.modules.users.methods import get_default_user\n", + "from cognee.modules.data.methods import get_datasets_by_name\n", + "\n", + "user = await get_default_user()\n", + "\n", + "datasets = await get_datasets_by_name([\"example\"], user.id)\n", + "\n", + "await run_cognify_pipeline(datasets[0], user)" + ] + }, + { + "cell_type": "markdown", + "id": "219a6d41", + "metadata": {}, + "source": [ + "#### We get the url to the graph on graphistry in the notebook cell bellow, showing nodes and connections made by the cognify process." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "080389e5", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "from cognee.shared.utils import render_graph\n", + "from cognee.infrastructure.databases.graph import get_graph_engine\n", + "import graphistry\n", + "\n", + "graphistry.login(username=os.getenv(\"GRAPHISTRY_USERNAME\"), password=os.getenv(\"GRAPHISTRY_PASSWORD\"))\n", + "\n", + "graph_engine = await get_graph_engine()\n", + "\n", + "graph_url = await render_graph(graph_engine.graph)\n", + "print(graph_url)" + ] + }, + { + "cell_type": "markdown", + "id": "59e6c3c3", + "metadata": {}, + "source": [ + "#### We can also do a search on the data to explore the knowledge." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e5e7dfc8", + "metadata": {}, + "outputs": [], + "source": [ + "async def search(\n", + " vector_engine,\n", + " collection_name: str,\n", + " query_text: str = None,\n", + "):\n", + " query_vector = (await vector_engine.embedding_engine.embed_text([query_text]))[0]\n", + "\n", + " connection = await vector_engine.get_connection()\n", + " collection = await connection.open_table(collection_name)\n", + "\n", + " results = await collection.vector_search(query_vector).limit(10).to_pandas()\n", + "\n", + " result_values = list(results.to_dict(\"index\").values())\n", + "\n", + " return [dict(\n", + " id = str(result[\"id\"]),\n", + " payload = result[\"payload\"],\n", + " score = result[\"_distance\"],\n", + " ) for result in result_values]\n", + "\n", + "\n", + "from cognee.infrastructure.databases.vector import get_vector_engine\n", + "\n", + "vector_engine = get_vector_engine()\n", + "results = await search(vector_engine, \"entities\", \"sarah.nguyen@example.com\")\n", + "for result in results:\n", + " print(result)" + ] + }, + { + "cell_type": "markdown", + "id": "81fa2b00", + "metadata": {}, + "source": [ + "#### We normalize search output scores so the lower the score of the search result is the higher the chance that it's what you're looking for. In the example above we have searched for node entities in the knowledge graph related to \"sarah.nguyen@example.com\"" + ] + }, + { + "cell_type": "markdown", + "id": "1b94ff96", + "metadata": {}, + "source": [ + "#### In the example bellow we'll use cognee search to summarize information regarding the node most related to \"sarah.nguyen@example.com\" in the knowledge graph" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "21a3e9a6", + "metadata": {}, + "outputs": [], + "source": [ + "from cognee.api.v1.search import SearchType\n", + "\n", + "node = (await vector_engine.search(\"entities\", \"sarah.nguyen@example.com\"))[0]\n", + "node_name = node.payload[\"name\"]\n", + "\n", + "search_results = await cognee.search(SearchType.SUMMARIES, query = node_name)\n", + "print(\"\\n\\Extracted summaries are:\\n\")\n", + "for result in search_results:\n", + " print(f\"{result}\\n\")" + ] + }, + { + "cell_type": "markdown", + "id": "fd6e5fe2", + "metadata": {}, + "source": [ + "#### In this example we'll use cognee search to find chunks in which the node most related to \"sarah.nguyen@example.com\" is a part of" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c7a8abff", + "metadata": {}, + "outputs": [], + "source": [ + "search_results = await cognee.search(SearchType.CHUNKS, query = node_name)\n", + "print(\"\\n\\nExtracted chunks are:\\n\")\n", + "for result in search_results:\n", + " print(f\"{result}\\n\")" + ] + }, + { + "cell_type": "markdown", + "id": "47f0112f", + "metadata": {}, + "source": [ + "#### In this example we'll use cognee search to give us insights from the knowledge graph related to the node most related to \"sarah.nguyen@example.com\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "706a3954", + "metadata": {}, + "outputs": [], + "source": [ + "search_results = await cognee.search(SearchType.INSIGHTS, query = node_name)\n", + "print(\"\\n\\nExtracted sentences are:\\n\")\n", + "for result in search_results:\n", + " print(f\"{result}\\n\")" + ] + }, + { + "cell_type": "markdown", + "id": "2ab3d84a", + "metadata": {}, + "source": [ + "#### Bellow is a diagram of the cognee process for the data used in this example notebook" + ] + }, + { + "cell_type": "markdown", + "id": "31412c52", + "metadata": {}, + "source": [ + "![cognee_final.drawio.png]()" + ] + }, + { + "cell_type": "markdown", + "id": "288ab570", + "metadata": {}, + "source": [ + "# Give us a star if you like it!\n", + "https://github.com/topoteretes/cognee" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/poetry.lock b/poetry.lock index dbbd4687b..46ba5042e 100644 --- a/poetry.lock +++ b/poetry.lock @@ -3059,17 +3059,17 @@ files = [ [[package]] name = "lancedb" -version = "0.8.0" +version = "0.15.0" description = "lancedb" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "lancedb-0.8.0-cp38-abi3-macosx_10_15_x86_64.whl", hash = "sha256:60b86d7e976ba3900d84687252f6234b7ed5d32e13f012ecd2d85a7994d7bcdb"}, - {file = "lancedb-0.8.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:b268ee0b70c845999f0c42e2906857e5da9c39b50c978d922a36b8aed9c4a163"}, - {file = "lancedb-0.8.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab3e01ee064187d77556d75d6bd90940bcc4d65c854adc858be52fba204ded47"}, - {file = "lancedb-0.8.0-cp38-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:627834390660ad3e0a4350dcb6eca169139d46bb9a678b509c31445cd011e733"}, - {file = "lancedb-0.8.0-cp38-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:126e9891936be83690ddd8e3d8bf5f947b08dbe47a31ec41dfc8999335ada135"}, - {file = "lancedb-0.8.0-cp38-abi3-win_amd64.whl", hash = "sha256:ae32fadae2310a5bd95123cf7df07a614c9de06530c5c12f342d31ac9964fa10"}, + {file = "lancedb-0.15.0-cp38-abi3-macosx_10_15_x86_64.whl", hash = "sha256:3eacc9c6766594874a7d54e822550c7991d64b14571251f1e4b43985cc4f3cdb"}, + {file = "lancedb-0.15.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:48c28571f79805e11a3bca09486fd1c8d6c3f7762f7692cca1c5e0cdea6bfa20"}, + {file = "lancedb-0.15.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e349a1671943b75a536d2589b5a12f685c129149b0cad266e12555f9501f8ccd"}, + {file = "lancedb-0.15.0-cp38-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:c567866b08222457e1aca51df9abeb871aad8fed0db58c004365629c05f8ecbb"}, + {file = "lancedb-0.15.0-cp38-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:223cd77fa84a1317301ad4771de58ac5685d58cee03f0a20ba4bc95517b5c79f"}, + {file = "lancedb-0.15.0-cp38-abi3-win_amd64.whl", hash = "sha256:66d251f22709c72f819aace9e665127f1040845d88b25c1f088c4beb36087f7e"}, ] [package.dependencies] @@ -3077,12 +3077,10 @@ attrs = ">=21.3.0" cachetools = "*" deprecation = "*" overrides = ">=0.7" +packaging = "*" pydantic = ">=1.10" -pylance = "0.11.0" -ratelimiter = ">=1.0,<2.0" +pylance = "0.19.1" requests = ">=2.31.0" -retry = ">=0.9.2" -semver = "*" tqdm = ">=4.27.0" [package.extras] @@ -3090,8 +3088,8 @@ azure = ["adlfs (>=2024.2.0)"] clip = ["open-clip", "pillow", "torch"] dev = ["pre-commit", "ruff"] docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"] -embeddings = ["awscli (>=1.29.57)", "boto3 (>=1.28.57)", "botocore (>=1.31.57)", "cohere", "google-generativeai", "huggingface-hub", "instructorembedding", "ollama", "open-clip-torch", "openai (>=1.6.1)", "pillow", "sentence-transformers", "torch"] -tests = ["aiohttp", "boto3", "duckdb", "pandas (>=1.4)", "polars (>=0.19)", "pytest", "pytest-asyncio", "pytest-mock", "pytz", "tantivy"] +embeddings = ["awscli (>=1.29.57)", "boto3 (>=1.28.57)", "botocore (>=1.31.57)", "cohere", "google-generativeai", "huggingface-hub", "ibm-watsonx-ai (>=1.1.2)", "instructorembedding", "ollama", "open-clip-torch", "openai (>=1.6.1)", "pillow", "sentence-transformers", "torch"] +tests = ["aiohttp", "boto3", "duckdb", "pandas (>=1.4)", "polars (>=0.19,<=1.3.0)", "pytest", "pytest-asyncio", "pytest-mock", "pytz", "tantivy"] [[package]] name = "langfuse" @@ -4955,17 +4953,6 @@ bcrypt = {version = "4.1.2", optional = true, markers = "extra == \"bcrypt\""} argon2 = ["argon2-cffi (==23.1.0)"] bcrypt = ["bcrypt (==4.1.2)"] -[[package]] -name = "py" -version = "1.11.0" -description = "library with cross-python path, ini-parsing, io, code, log facilities" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "py-1.11.0-py2.py3-none-any.whl", hash = "sha256:607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378"}, - {file = "py-1.11.0.tar.gz", hash = "sha256:51c75c4126074b472f746a24399ad32f6053d1b34b68d2fa41e558e6f4a98719"}, -] - [[package]] name = "pyarrow" version = "15.0.0" @@ -5201,28 +5188,30 @@ tests = ["coverage[toml] (==5.0.4)", "pytest (>=6.0.0,<7.0.0)"] [[package]] name = "pylance" -version = "0.11.0" +version = "0.19.1" description = "python wrapper for Lance columnar format" optional = false python-versions = ">=3.9" files = [ - {file = "pylance-0.11.0-cp39-abi3-macosx_10_15_x86_64.whl", hash = "sha256:3405e217fcb3a75662957605621f7eebb34f35b10c49a00ea1ddef478e0567db"}, - {file = "pylance-0.11.0-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:c50bd63eaca846fb812109b6ea62a81873797901b4aff808fc8a96aa1994bf52"}, - {file = "pylance-0.11.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf1d3badbfb111d1f193363422940bcfcae45755b60f14fe2153614e65e63d13"}, - {file = "pylance-0.11.0-cp39-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:c40252ff325e401116dec3c2010a8011ab5c15915237bee11b97697197b1d0b8"}, - {file = "pylance-0.11.0-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:ab0893b77e6ae5d9bb2bf21c0f6e199c81071034d5dbfb42787abdff8bfe8ef7"}, - {file = "pylance-0.11.0-cp39-abi3-win_amd64.whl", hash = "sha256:fe5ede7168f5afc67232818eddc57e086cb7579151e9a34b52c3d9fabc7575aa"}, + {file = "pylance-0.19.1-cp39-abi3-macosx_10_15_x86_64.whl", hash = "sha256:a254d09690a5e09cadc5fecc7b43b2bfc20b477e0f0ba31497e1d6abb36b524a"}, + {file = "pylance-0.19.1-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:9859c372b2d7fe443b6218f62e9d77caf94961cac73b274c85b724f20dd6b690"}, + {file = "pylance-0.19.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8315152f57329e7668ff5c82c252591ea0e3d2aed702dd19a42d645945e7a07e"}, + {file = "pylance-0.19.1-cp39-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:7c2e0e00b40214edae576075dbfa432cadaf5ba21354b0c46f307daf4e77403f"}, + {file = "pylance-0.19.1-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:e26ce273840912c45dd2b8f6f8fb9082c1c788d696e11b78ddad3949e3892d50"}, + {file = "pylance-0.19.1-cp39-abi3-win_amd64.whl", hash = "sha256:b341e547c995b5d6b32eb63e1e015d31b608de49a9ad03f8981453f4c667e8e1"}, ] [package.dependencies] -numpy = ">=1.22" -pyarrow = ">=12,<15.0.1" +numpy = ">=1.22,<2" +pyarrow = ">=12" [package.extras] benchmarks = ["pytest-benchmark"] +cuvs-cu11 = ["cuvs-cu11", "pylibraft-cu11"] +cuvs-cu12 = ["cuvs-cu12", "pylibraft-cu12"] dev = ["ruff (==0.4.1)"] ray = ["ray[data]"] -tests = ["boto3", "datasets", "duckdb", "h5py (<3.11)", "ml-dtypes", "pandas", "pillow", "polars[pandas,pyarrow]", "pytest", "tensorflow", "tqdm"] +tests = ["boto3", "datasets", "duckdb", "ml-dtypes", "pandas", "pillow", "polars[pandas,pyarrow]", "pytest", "tensorflow", "tqdm"] torch = ["torch"] [[package]] @@ -5710,20 +5699,6 @@ urllib3 = ">=1.26.14,<3" fastembed = ["fastembed (==0.3.6)"] fastembed-gpu = ["fastembed-gpu (==0.3.6)"] -[[package]] -name = "ratelimiter" -version = "1.2.0.post0" -description = "Simple python rate limiting object" -optional = false -python-versions = "*" -files = [ - {file = "ratelimiter-1.2.0.post0-py3-none-any.whl", hash = "sha256:a52be07bc0bb0b3674b4b304550f10c769bbb00fead3072e035904474259809f"}, - {file = "ratelimiter-1.2.0.post0.tar.gz", hash = "sha256:5c395dcabdbbde2e5178ef3f89b568a3066454a6ddc223b76473dac22f89b4f7"}, -] - -[package.extras] -test = ["pytest (>=3.0)", "pytest-asyncio"] - [[package]] name = "redis" version = "5.2.0" @@ -5896,21 +5871,6 @@ files = [ packaging = ">=23.2" types-setuptools = ">=69.1.0" -[[package]] -name = "retry" -version = "0.9.2" -description = "Easy to use retry decorator." -optional = false -python-versions = "*" -files = [ - {file = "retry-0.9.2-py2.py3-none-any.whl", hash = "sha256:ccddf89761fa2c726ab29391837d4327f819ea14d244c232a1d24c67a2f98606"}, - {file = "retry-0.9.2.tar.gz", hash = "sha256:f8bfa8b99b69c4506d6f5bd3b0aabf77f98cdb17f3c9fc3f5ca820033336fba4"}, -] - -[package.dependencies] -decorator = ">=3.4.2" -py = ">=1.4.26,<2.0.0" - [[package]] name = "rfc3339-validator" version = "0.1.4" @@ -7711,4 +7671,4 @@ weaviate = ["weaviate-client"] [metadata] lock-version = "2.0" python-versions = ">=3.9.0,<3.12" -content-hash = "c6bb6ae960663c9dacec79ce67ccb4867014f9e1d23b7fe40191ecf09e8beefc" +content-hash = "bb70798562fee44c6daa2f5c7fa4d17165fb76016618c1fc8fd0782c5aa4a6de" diff --git a/pyproject.toml b/pyproject.toml index 79bb449f3..9da60eaf5 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -54,7 +54,7 @@ matplotlib = "^3.8.3" structlog = "^24.1.0" tiktoken = "0.7.0" posthog = "^3.5.0" -lancedb = "0.8.0" +lancedb = "0.15.0" litellm = "1.38.10" groq = "0.8.0" tantivy = "^0.22.0" diff --git a/tools/daily_twitter_stats.py b/tools/daily_twitter_stats.py index 43bedda7b..d66f052d9 100644 --- a/tools/daily_twitter_stats.py +++ b/tools/daily_twitter_stats.py @@ -1,7 +1,7 @@ import tweepy import requests import json -from datetime import datetime +from datetime import datetime, timezone # Twitter API credentials from GitHub Secrets API_KEY = '${{ secrets.TWITTER_API_KEY }}' @@ -30,7 +30,7 @@ def get_follower_count(username): def send_data_to_segment(username, follower_count): - current_time = datetime.now().isoformat() + current_time = datetime.now(timezone.utc).isoformat() data = { 'userId': username, From 897bbac699a69e068171018b5663b3b15c266f5a Mon Sep 17 00:00:00 2001 From: Boris Arzentar Date: Thu, 7 Nov 2024 11:36:31 +0100 Subject: [PATCH 03/25] fix: serialize UUID in pgvector data point payload --- .../databases/vector/pgvector/PGVectorAdapter.py | 4 ++-- .../{serialize_datetime.py => serialize_data.py} | 9 ++++++--- 2 files changed, 8 insertions(+), 5 deletions(-) rename cognee/infrastructure/databases/vector/pgvector/{serialize_datetime.py => serialize_data.py} (57%) diff --git a/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py b/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py index 321318043..235cc7745 100644 --- a/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py +++ b/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py @@ -8,7 +8,7 @@ from cognee.infrastructure.engine import DataPoint -from .serialize_datetime import serialize_datetime +from .serialize_data import serialize_data from ..models.ScoredResult import ScoredResult from ..vector_db_interface import VectorDBInterface from ..embeddings.EmbeddingEngine import EmbeddingEngine @@ -113,7 +113,7 @@ def __init__(self, id, payload, vector): PGVectorDataPoint( id=data_point.id, vector=data_vectors[data_index], - payload=serialize_datetime(data_point.model_dump()), + payload=serialize_data(data_point.model_dump()), ) for (data_index, data_point) in enumerate(data_points) ] diff --git a/cognee/infrastructure/databases/vector/pgvector/serialize_datetime.py b/cognee/infrastructure/databases/vector/pgvector/serialize_data.py similarity index 57% rename from cognee/infrastructure/databases/vector/pgvector/serialize_datetime.py rename to cognee/infrastructure/databases/vector/pgvector/serialize_data.py index 9cb979e2c..cdba1e928 100644 --- a/cognee/infrastructure/databases/vector/pgvector/serialize_datetime.py +++ b/cognee/infrastructure/databases/vector/pgvector/serialize_data.py @@ -1,12 +1,15 @@ from datetime import datetime +from uuid import UUID -def serialize_datetime(data): +def serialize_data(data): """Recursively convert datetime objects in dictionaries/lists to ISO format.""" if isinstance(data, dict): - return {key: serialize_datetime(value) for key, value in data.items()} + return {key: serialize_data(value) for key, value in data.items()} elif isinstance(data, list): - return [serialize_datetime(item) for item in data] + return [serialize_data(item) for item in data] elif isinstance(data, datetime): return data.isoformat() # Convert datetime to ISO 8601 string + elif isinstance(data, UUID): + return str(data) else: return data \ No newline at end of file From f569088a2e4d35c4fa396313a1d918deccb87400 Mon Sep 17 00:00:00 2001 From: Boris Arzentar Date: Thu, 7 Nov 2024 15:38:03 +0100 Subject: [PATCH 04/25] fix: add summaries to the graph --- .../databases/graph/neo4j_driver/adapter.py | 2 +- .../databases/graph/networkx/adapter.py | 28 +++++--- .../hybrid/falkordb/FalkorDBAdapter.py | 30 +++++++++ .../vector/weaviate_db/WeaviateAdapter.py | 2 +- cognee/modules/chunking/TextChunker.py | 6 +- .../graph/utils/get_graph_from_model.py | 66 +++++++++++++------ .../modules/pipelines/operations/run_tasks.py | 4 +- cognee/tasks/graph/query_graph_connections.py | 14 ++-- cognee/tasks/storage/index_data_points.py | 3 +- .../tasks/summarization/models/TextSummary.py | 3 +- cognee/tasks/summarization/summarize_text.py | 7 +- cognee/tests/test_library.py | 4 +- cognee/tests/test_neo4j.py | 4 +- cognee/tests/test_pgvector.py | 4 +- cognee/tests/test_qdrant.py | 4 +- cognee/tests/test_weaviate.py | 4 +- 16 files changed, 127 insertions(+), 58 deletions(-) diff --git a/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py b/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py index f0d62c78a..8e79b201e 100644 --- a/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py +++ b/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py @@ -338,7 +338,7 @@ async def get_neighbours(self, node_id: str) -> List[Dict[str, Any]]: return predecessors + successors - async def get_connections(self, node_id: str) -> list: + async def get_connections(self, node_id: UUID) -> list: predecessors_query = """ MATCH (node)<-[relation]-(neighbour) WHERE node.id = $node_id diff --git a/cognee/infrastructure/databases/graph/networkx/adapter.py b/cognee/infrastructure/databases/graph/networkx/adapter.py index aac8c0c35..b106e9feb 100644 --- a/cognee/infrastructure/databases/graph/networkx/adapter.py +++ b/cognee/infrastructure/databases/graph/networkx/adapter.py @@ -7,6 +7,7 @@ import logging from re import A from typing import Dict, Any, List +from uuid import UUID import aiofiles import aiofiles.os as aiofiles_os import networkx as nx @@ -130,7 +131,7 @@ async def extract_node(self, node_id: str) -> dict: async def extract_nodes(self, node_ids: List[str]) -> List[dict]: return [self.graph.nodes[node_id] for node_id in node_ids if self.graph.has_node(node_id)] - async def get_predecessors(self, node_id: str, edge_label: str = None) -> list: + async def get_predecessors(self, node_id: UUID, edge_label: str = None) -> list: if self.graph.has_node(node_id): if edge_label is None: return [ @@ -146,7 +147,7 @@ async def get_predecessors(self, node_id: str, edge_label: str = None) -> list: return nodes - async def get_successors(self, node_id: str, edge_label: str = None) -> list: + async def get_successors(self, node_id: UUID, edge_label: str = None) -> list: if self.graph.has_node(node_id): if edge_label is None: return [ @@ -175,13 +176,13 @@ async def get_neighbours(self, node_id: str) -> list: return neighbours - async def get_connections(self, node_id: str) -> list: + async def get_connections(self, node_id: UUID) -> list: if not self.graph.has_node(node_id): return [] node = self.graph.nodes[node_id] - if "uuid" not in node: + if "id" not in node: return [] predecessors, successors = await asyncio.gather( @@ -192,14 +193,14 @@ async def get_connections(self, node_id: str) -> list: connections = [] for neighbor in predecessors: - if "uuid" in neighbor: - edge_data = self.graph.get_edge_data(neighbor["uuid"], node["uuid"]) + if "id" in neighbor: + edge_data = self.graph.get_edge_data(neighbor["id"], node["id"]) for edge_properties in edge_data.values(): connections.append((neighbor, edge_properties, node)) for neighbor in successors: - if "uuid" in neighbor: - edge_data = self.graph.get_edge_data(node["uuid"], neighbor["uuid"]) + if "id" in neighbor: + edge_data = self.graph.get_edge_data(node["id"], neighbor["id"]) for edge_properties in edge_data.values(): connections.append((node, edge_properties, neighbor)) @@ -245,6 +246,17 @@ async def load_graph_from_file(self, file_path: str = None): if os.path.exists(file_path): async with aiofiles.open(file_path, "r") as file: graph_data = json.loads(await file.read()) + for node in graph_data["nodes"]: + node["id"] = UUID(node["id"]) + node["updated_at"] = datetime.strptime(node["updated_at"], "%Y-%m-%dT%H:%M:%S.%f%z") + + for edge in graph_data["links"]: + edge["source"] = UUID(edge["source"]) + edge["target"] = UUID(edge["target"]) + edge["source_node_id"] = UUID(edge["source_node_id"]) + edge["target_node_id"] = UUID(edge["target_node_id"]) + edge["updated_at"] = datetime.strptime(edge["updated_at"], "%Y-%m-%dT%H:%M:%S.%f%z") + self.graph = nx.readwrite.json_graph.node_link_graph(graph_data) else: # Log that the file does not exist and an empty graph is initialized diff --git a/cognee/infrastructure/databases/hybrid/falkordb/FalkorDBAdapter.py b/cognee/infrastructure/databases/hybrid/falkordb/FalkorDBAdapter.py index effe9e682..ea5a75088 100644 --- a/cognee/infrastructure/databases/hybrid/falkordb/FalkorDBAdapter.py +++ b/cognee/infrastructure/databases/hybrid/falkordb/FalkorDBAdapter.py @@ -1,6 +1,7 @@ import asyncio from textwrap import dedent from typing import Any +from uuid import UUID from falkordb import FalkorDB from cognee.infrastructure.engine import DataPoint @@ -161,6 +162,35 @@ async def extract_node(self, data_point_id: str): async def extract_nodes(self, data_point_ids: list[str]): return await self.retrieve(data_point_ids) + async def get_connections(self, node_id: UUID) -> list: + predecessors_query = """ + MATCH (node)<-[relation]-(neighbour) + WHERE node.id = $node_id + RETURN neighbour, relation, node + """ + successors_query = """ + MATCH (node)-[relation]->(neighbour) + WHERE node.id = $node_id + RETURN node, relation, neighbour + """ + + predecessors, successors = await asyncio.gather( + self.query(predecessors_query, dict(node_id = node_id)), + self.query(successors_query, dict(node_id = node_id)), + ) + + connections = [] + + for neighbour in predecessors: + neighbour = neighbour["relation"] + connections.append((neighbour[0], { "relationship_name": neighbour[1] }, neighbour[2])) + + for neighbour in successors: + neighbour = neighbour["relation"] + connections.append((neighbour[0], { "relationship_name": neighbour[1] }, neighbour[2])) + + return connections + async def search( self, collection_name: str, diff --git a/cognee/infrastructure/databases/vector/weaviate_db/WeaviateAdapter.py b/cognee/infrastructure/databases/vector/weaviate_db/WeaviateAdapter.py index a1b986ef2..b5cabc56c 100644 --- a/cognee/infrastructure/databases/vector/weaviate_db/WeaviateAdapter.py +++ b/cognee/infrastructure/databases/vector/weaviate_db/WeaviateAdapter.py @@ -168,7 +168,7 @@ async def search( return [ ScoredResult( - id = UUID(result.id), + id = UUID(result.uuid), payload = result.properties, score = float(result.metadata.score) ) for result in search_result.objects diff --git a/cognee/modules/chunking/TextChunker.py b/cognee/modules/chunking/TextChunker.py index 4717d108d..714383804 100644 --- a/cognee/modules/chunking/TextChunker.py +++ b/cognee/modules/chunking/TextChunker.py @@ -29,7 +29,7 @@ def read(self): else: if len(self.paragraph_chunks) == 0: yield DocumentChunk( - id = str(chunk_data["chunk_id"]), + id = chunk_data["chunk_id"], text = chunk_data["text"], word_count = chunk_data["word_count"], is_part_of = self.document, @@ -42,7 +42,7 @@ def read(self): chunk_text = " ".join(chunk["text"] for chunk in self.paragraph_chunks) try: yield DocumentChunk( - id = str(uuid5(NAMESPACE_OID, f"{str(self.document.id)}-{self.chunk_index}")), + id = uuid5(NAMESPACE_OID, f"{str(self.document.id)}-{self.chunk_index}"), text = chunk_text, word_count = self.chunk_size, is_part_of = self.document, @@ -59,7 +59,7 @@ def read(self): if len(self.paragraph_chunks) > 0: try: yield DocumentChunk( - id = str(uuid5(NAMESPACE_OID, f"{str(self.document.id)}-{self.chunk_index}")), + id = uuid5(NAMESPACE_OID, f"{str(self.document.id)}-{self.chunk_index}"), text = " ".join(chunk["text"] for chunk in self.paragraph_chunks), word_count = self.chunk_size, is_part_of = self.document, diff --git a/cognee/modules/graph/utils/get_graph_from_model.py b/cognee/modules/graph/utils/get_graph_from_model.py index ef402e4d6..35e00fb5d 100644 --- a/cognee/modules/graph/utils/get_graph_from_model.py +++ b/cognee/modules/graph/utils/get_graph_from_model.py @@ -1,9 +1,8 @@ from datetime import datetime, timezone from cognee.infrastructure.engine import DataPoint -from cognee.modules import data from cognee.modules.storage.utils import copy_model -def get_graph_from_model(data_point: DataPoint, include_root = True): +def get_graph_from_model(data_point: DataPoint, include_root = True, added_nodes = {}, added_edges = {}): nodes = [] edges = [] @@ -17,29 +16,55 @@ def get_graph_from_model(data_point: DataPoint, include_root = True): if isinstance(field_value, DataPoint): excluded_properties.add(field_name) - property_nodes, property_edges = get_graph_from_model(field_value, True) - nodes[:0] = property_nodes - edges[:0] = property_edges + property_nodes, property_edges = get_graph_from_model(field_value, True, added_nodes, added_edges) + + for node in property_nodes: + if str(node.id) not in added_nodes: + nodes.append(node) + added_nodes[str(node.id)] = True + + for edge in property_edges: + edge_key = str(edge[0]) + str(edge[1]) + edge[2] + + if str(edge_key) not in added_edges: + edges.append(edge) + added_edges[str(edge_key)] = True for property_node in get_own_properties(property_nodes, property_edges): - edges.append((data_point.id, property_node.id, field_name, { - "source_node_id": data_point.id, - "target_node_id": property_node.id, - "relationship_name": field_name, - "updated_at": datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), - })) + edge_key = str(data_point.id) + str(property_node.id) + field_name + + if str(edge_key) not in added_edges: + edges.append((data_point.id, property_node.id, field_name, { + "source_node_id": data_point.id, + "target_node_id": property_node.id, + "relationship_name": field_name, + "updated_at": datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"), + })) + added_edges[str(edge_key)] = True continue - if isinstance(field_value, list): - if isinstance(field_value[0], DataPoint): - excluded_properties.add(field_name) + if isinstance(field_value, list) and isinstance(field_value[0], DataPoint): + excluded_properties.add(field_name) + + for item in field_value: + property_nodes, property_edges = get_graph_from_model(item, True, added_nodes, added_edges) - for item in field_value: - property_nodes, property_edges = get_graph_from_model(item, True) - nodes[:0] = property_nodes - edges[:0] = property_edges + for node in property_nodes: + if str(node.id) not in added_nodes: + nodes.append(node) + added_nodes[str(node.id)] = True - for property_node in get_own_properties(property_nodes, property_edges): + for edge in property_edges: + edge_key = str(edge[0]) + str(edge[1]) + edge[2] + + if str(edge_key) not in added_edges: + edges.append(edge) + added_edges[edge_key] = True + + for property_node in get_own_properties(property_nodes, property_edges): + edge_key = str(data_point.id) + str(property_node.id) + field_name + + if str(edge_key) not in added_edges: edges.append((data_point.id, property_node.id, field_name, { "source_node_id": data_point.id, "target_node_id": property_node.id, @@ -49,7 +74,8 @@ def get_graph_from_model(data_point: DataPoint, include_root = True): "type": "list" }, })) - continue + added_edges[edge_key] = True + continue data_point_properties[field_name] = field_value diff --git a/cognee/modules/pipelines/operations/run_tasks.py b/cognee/modules/pipelines/operations/run_tasks.py index 5f15aae80..7058bdb69 100644 --- a/cognee/modules/pipelines/operations/run_tasks.py +++ b/cognee/modules/pipelines/operations/run_tasks.py @@ -7,7 +7,7 @@ logger = logging.getLogger("run_tasks(tasks: [Task], data)") -async def run_tasks_base(tasks: [Task], data = None, user: User = None): +async def run_tasks_base(tasks: list[Task], data = None, user: User = None): if len(tasks) == 0: yield data return @@ -16,7 +16,7 @@ async def run_tasks_base(tasks: [Task], data = None, user: User = None): running_task = tasks[0] leftover_tasks = tasks[1:] - next_task = leftover_tasks[0] if len(leftover_tasks) > 1 else None + next_task = leftover_tasks[0] if len(leftover_tasks) > 0 else None next_task_batch_size = next_task.task_config["batch_size"] if next_task else 1 if inspect.isasyncgenfunction(running_task.executable): diff --git a/cognee/tasks/graph/query_graph_connections.py b/cognee/tasks/graph/query_graph_connections.py index 36d535147..cd4d76a5e 100644 --- a/cognee/tasks/graph/query_graph_connections.py +++ b/cognee/tasks/graph/query_graph_connections.py @@ -22,13 +22,13 @@ async def query_graph_connections(query: str, exploration_levels = 1) -> list[(s exact_node = await graph_engine.extract_node(node_id) - if exact_node is not None and "uuid" in exact_node: - node_connections = await graph_engine.get_connections(str(exact_node["uuid"])) + if exact_node is not None and "id" in exact_node: + node_connections = await graph_engine.get_connections(str(exact_node["id"])) else: vector_engine = get_vector_engine() results = await asyncio.gather( - vector_engine.search("Entity_text", query_text = query, limit = 5), - vector_engine.search("EntityType_text", query_text = query, limit = 5), + vector_engine.search("Entity_name", query_text = query, limit = 5), + vector_engine.search("EntityType_name", query_text = query, limit = 5), ) results = [*results[0], *results[1]] relevant_results = [result for result in results if result.score < 0.5][:5] @@ -37,7 +37,7 @@ async def query_graph_connections(query: str, exploration_levels = 1) -> list[(s return [] node_connections_results = await asyncio.gather( - *[graph_engine.get_connections(str(result.payload["uuid"])) for result in relevant_results] + *[graph_engine.get_connections(result.id) for result in relevant_results] ) node_connections = [] @@ -48,10 +48,10 @@ async def query_graph_connections(query: str, exploration_levels = 1) -> list[(s unique_node_connections_map = {} unique_node_connections = [] for node_connection in node_connections: - if "uuid" not in node_connection[0] or "uuid" not in node_connection[2]: + if "id" not in node_connection[0] or "id" not in node_connection[2]: continue - unique_id = f"{node_connection[0]['uuid']} {node_connection[1]['relationship_name']} {node_connection[2]['uuid']}" + unique_id = f"{node_connection[0]['id']} {node_connection[1]['relationship_name']} {node_connection[2]['id']}" if unique_id not in unique_node_connections_map: unique_node_connections_map[unique_id] = True diff --git a/cognee/tasks/storage/index_data_points.py b/cognee/tasks/storage/index_data_points.py index a28335e24..681fbaa1f 100644 --- a/cognee/tasks/storage/index_data_points.py +++ b/cognee/tasks/storage/index_data_points.py @@ -56,7 +56,8 @@ def get_data_points_from_model(data_point: DataPoint, added_data_points = {}) -> added_data_points[str(new_point.id)] = True data_points.append(new_point) - data_points.append(data_point) + if (str(data_point.id) not in added_data_points): + data_points.append(data_point) return data_points diff --git a/cognee/tasks/summarization/models/TextSummary.py b/cognee/tasks/summarization/models/TextSummary.py index 5e724cd63..c6a932b37 100644 --- a/cognee/tasks/summarization/models/TextSummary.py +++ b/cognee/tasks/summarization/models/TextSummary.py @@ -4,9 +4,8 @@ class TextSummary(DataPoint): text: str - chunk: DocumentChunk + made_from: DocumentChunk _metadata: dict = { "index_fields": ["text"], } - diff --git a/cognee/tasks/summarization/summarize_text.py b/cognee/tasks/summarization/summarize_text.py index a1abacccf..756f65e39 100644 --- a/cognee/tasks/summarization/summarize_text.py +++ b/cognee/tasks/summarization/summarize_text.py @@ -5,6 +5,7 @@ from cognee.modules.data.extraction.extract_summary import extract_summary from cognee.modules.chunking.models.DocumentChunk import DocumentChunk from cognee.tasks.storage import add_data_points +from cognee.tasks.storage.index_data_points import get_data_points_from_model from .models.TextSummary import TextSummary async def summarize_text(data_chunks: list[DocumentChunk], summarization_model: Type[BaseModel]): @@ -17,12 +18,12 @@ async def summarize_text(data_chunks: list[DocumentChunk], summarization_model: summaries = [ TextSummary( - id = uuid5(chunk.id, "summary"), - chunk = chunk, + id = uuid5(chunk.id, "TextSummary"), + made_from = chunk, text = chunk_summaries[chunk_index].summary, ) for (chunk_index, chunk) in enumerate(data_chunks) ] - add_data_points(summaries) + await add_data_points(summaries) return data_chunks diff --git a/cognee/tests/test_library.py b/cognee/tests/test_library.py index d7e7e5fe8..2e707b64c 100755 --- a/cognee/tests/test_library.py +++ b/cognee/tests/test_library.py @@ -32,8 +32,8 @@ async def main(): from cognee.infrastructure.databases.vector import get_vector_engine vector_engine = get_vector_engine() - random_node = (await vector_engine.search("Entity", "AI"))[0] - random_node_name = random_node.payload["name"] + random_node = (await vector_engine.search("Entity_name", "AI"))[0] + random_node_name = random_node.payload["text"] search_results = await cognee.search(SearchType.INSIGHTS, query = random_node_name) assert len(search_results) != 0, "The search results list is empty." diff --git a/cognee/tests/test_neo4j.py b/cognee/tests/test_neo4j.py index 2f9abf124..0783e973a 100644 --- a/cognee/tests/test_neo4j.py +++ b/cognee/tests/test_neo4j.py @@ -36,8 +36,8 @@ async def main(): from cognee.infrastructure.databases.vector import get_vector_engine vector_engine = get_vector_engine() - random_node = (await vector_engine.search("Entity", "AI"))[0] - random_node_name = random_node.payload["name"] + random_node = (await vector_engine.search("Entity_name", "AI"))[0] + random_node_name = random_node.payload["text"] search_results = await cognee.search(SearchType.INSIGHTS, query = random_node_name) assert len(search_results) != 0, "The search results list is empty." diff --git a/cognee/tests/test_pgvector.py b/cognee/tests/test_pgvector.py index b58b87516..802aa3fcb 100644 --- a/cognee/tests/test_pgvector.py +++ b/cognee/tests/test_pgvector.py @@ -65,8 +65,8 @@ async def main(): from cognee.infrastructure.databases.vector import get_vector_engine vector_engine = get_vector_engine() - random_node = (await vector_engine.search("Entity", "AI"))[0] - random_node_name = random_node.payload["name"] + random_node = (await vector_engine.search("Entity_name", "AI"))[0] + random_node_name = random_node.payload["text"] search_results = await cognee.search(SearchType.INSIGHTS, query=random_node_name) assert len(search_results) != 0, "The search results list is empty." diff --git a/cognee/tests/test_qdrant.py b/cognee/tests/test_qdrant.py index 84fac6a2e..faa2cbcf4 100644 --- a/cognee/tests/test_qdrant.py +++ b/cognee/tests/test_qdrant.py @@ -37,8 +37,8 @@ async def main(): from cognee.infrastructure.databases.vector import get_vector_engine vector_engine = get_vector_engine() - random_node = (await vector_engine.search("Entity", "AI"))[0] - random_node_name = random_node.payload["name"] + random_node = (await vector_engine.search("Entity_name", "AI"))[0] + random_node_name = random_node.payload["text"] search_results = await cognee.search(SearchType.INSIGHTS, query = random_node_name) assert len(search_results) != 0, "The search results list is empty." diff --git a/cognee/tests/test_weaviate.py b/cognee/tests/test_weaviate.py index e943e1ec9..121c1749e 100644 --- a/cognee/tests/test_weaviate.py +++ b/cognee/tests/test_weaviate.py @@ -35,8 +35,8 @@ async def main(): from cognee.infrastructure.databases.vector import get_vector_engine vector_engine = get_vector_engine() - random_node = (await vector_engine.search("Entity", "AI"))[0] - random_node_name = random_node.payload["name"] + random_node = (await vector_engine.search("Entity_name", "AI"))[0] + random_node_name = random_node.payload["text"] search_results = await cognee.search(SearchType.INSIGHTS, query = random_node_name) assert len(search_results) != 0, "The search results list is empty." From c89063602e52a53f4bb76a8ff963ff1b1e812e6a Mon Sep 17 00:00:00 2001 From: Boris Arzentar Date: Thu, 7 Nov 2024 15:41:11 +0100 Subject: [PATCH 05/25] fix: remove unused import --- cognee/tasks/summarization/summarize_text.py | 1 - 1 file changed, 1 deletion(-) diff --git a/cognee/tasks/summarization/summarize_text.py b/cognee/tasks/summarization/summarize_text.py index 756f65e39..47d6946bb 100644 --- a/cognee/tasks/summarization/summarize_text.py +++ b/cognee/tasks/summarization/summarize_text.py @@ -5,7 +5,6 @@ from cognee.modules.data.extraction.extract_summary import extract_summary from cognee.modules.chunking.models.DocumentChunk import DocumentChunk from cognee.tasks.storage import add_data_points -from cognee.tasks.storage.index_data_points import get_data_points_from_model from .models.TextSummary import TextSummary async def summarize_text(data_chunks: list[DocumentChunk], summarization_model: Type[BaseModel]): From 9e10c611bcdb44cf637314b29379285485566be5 Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Thu, 7 Nov 2024 16:19:38 +0100 Subject: [PATCH 06/25] fix: resolves pg asyncpg UUID to UUID --- .../infrastructure/databases/vector/pgvector/PGVectorAdapter.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py b/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py index 235cc7745..2e9a3764b 100644 --- a/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py +++ b/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py @@ -203,7 +203,7 @@ async def search( # Create and return ScoredResult objects return [ ScoredResult( - id = UUID(row.id), + id = UUID(str(row.id)), payload = row.payload, score = row.similarity ) for row in vector_list From 19d62f2c84ea78046abac18dfe8d1ee1ff6dbac7 Mon Sep 17 00:00:00 2001 From: Boris Arzentar Date: Fri, 8 Nov 2024 15:31:02 +0100 Subject: [PATCH 07/25] fix: add code graph generation pipeline --- cognee/api/v1/cognify/code_graph_pipeline.py | 110 ++++++++++++++++++ .../databases/graph/networkx/adapter.py | 34 ++++-- .../vector/lancedb/LanceDBAdapter.py | 11 +- .../graph/utils/get_graph_from_model.py | 2 +- cognee/shared/SourceCodeGraph.py | 93 ++++++++------- cognee/shared/utils.py | 2 +- cognee/tasks/graph/__init__.py | 1 + cognee/tasks/graph/extract_graph_from_code.py | 17 +++ cognee/tasks/storage/index_data_points.py | 2 +- cognee/tests/test_code_generation.py | 38 ++++++ cognee/tests/test_data/code.txt | 70 +++++++++++ 11 files changed, 326 insertions(+), 54 deletions(-) create mode 100644 cognee/api/v1/cognify/code_graph_pipeline.py create mode 100644 cognee/tasks/graph/extract_graph_from_code.py create mode 100755 cognee/tests/test_code_generation.py create mode 100644 cognee/tests/test_data/code.txt diff --git a/cognee/api/v1/cognify/code_graph_pipeline.py b/cognee/api/v1/cognify/code_graph_pipeline.py new file mode 100644 index 000000000..2cbb606c1 --- /dev/null +++ b/cognee/api/v1/cognify/code_graph_pipeline.py @@ -0,0 +1,110 @@ +import asyncio +import logging +from typing import Union + +from cognee.shared.SourceCodeGraph import SourceCodeGraph +from cognee.shared.utils import send_telemetry +from cognee.modules.data.models import Dataset, Data +from cognee.modules.data.methods.get_dataset_data import get_dataset_data +from cognee.modules.data.methods import get_datasets, get_datasets_by_name +from cognee.modules.pipelines.tasks.Task import Task +from cognee.modules.pipelines import run_tasks +from cognee.modules.users.models import User +from cognee.modules.users.methods import get_default_user +from cognee.modules.pipelines.models import PipelineRunStatus +from cognee.modules.pipelines.operations.get_pipeline_status import get_pipeline_status +from cognee.modules.pipelines.operations.log_pipeline_status import log_pipeline_status +from cognee.tasks.documents import classify_documents, check_permissions_on_documents, extract_chunks_from_documents +from cognee.tasks.graph import extract_graph_from_code +from cognee.tasks.storage import add_data_points + +logger = logging.getLogger("code_graph_pipeline") + +update_status_lock = asyncio.Lock() + +class PermissionDeniedException(Exception): + def __init__(self, message: str): + self.message = message + super().__init__(self.message) + +async def code_graph_pipeline(datasets: Union[str, list[str]] = None, user: User = None): + if user is None: + user = await get_default_user() + + existing_datasets = await get_datasets(user.id) + + if datasets is None or len(datasets) == 0: + # If no datasets are provided, cognify all existing datasets. + datasets = existing_datasets + + if type(datasets[0]) == str: + datasets = await get_datasets_by_name(datasets, user.id) + + existing_datasets_map = { + generate_dataset_name(dataset.name): True for dataset in existing_datasets + } + + awaitables = [] + + for dataset in datasets: + dataset_name = generate_dataset_name(dataset.name) + + if dataset_name in existing_datasets_map: + awaitables.append(run_pipeline(dataset, user)) + + return await asyncio.gather(*awaitables) + + +async def run_pipeline(dataset: Dataset, user: User): + data_documents: list[Data] = await get_dataset_data(dataset_id = dataset.id) + + document_ids_str = [str(document.id) for document in data_documents] + + dataset_id = dataset.id + dataset_name = generate_dataset_name(dataset.name) + + send_telemetry("code_graph_pipeline EXECUTION STARTED", user.id) + + async with update_status_lock: + task_status = await get_pipeline_status([dataset_id]) + + if dataset_id in task_status and task_status[dataset_id] == PipelineRunStatus.DATASET_PROCESSING_STARTED: + logger.info("Dataset %s is already being processed.", dataset_name) + return + + await log_pipeline_status(dataset_id, PipelineRunStatus.DATASET_PROCESSING_STARTED, { + "dataset_name": dataset_name, + "files": document_ids_str, + }) + try: + tasks = [ + Task(classify_documents), + Task(check_permissions_on_documents, user = user, permissions = ["write"]), + Task(extract_chunks_from_documents), # Extract text chunks based on the document type. + Task(add_data_points, task_config = { "batch_size": 10 }), + Task(extract_graph_from_code, graph_model = SourceCodeGraph, task_config = { "batch_size": 10 }), # Generate knowledge graphs from the document chunks. + ] + + pipeline = run_tasks(tasks, data_documents, "code_graph_pipeline") + + async for result in pipeline: + print(result) + + send_telemetry("code_graph_pipeline EXECUTION COMPLETED", user.id) + + await log_pipeline_status(dataset_id, PipelineRunStatus.DATASET_PROCESSING_COMPLETED, { + "dataset_name": dataset_name, + "files": document_ids_str, + }) + except Exception as error: + send_telemetry("code_graph_pipeline EXECUTION ERRORED", user.id) + + await log_pipeline_status(dataset_id, PipelineRunStatus.DATASET_PROCESSING_ERRORED, { + "dataset_name": dataset_name, + "files": document_ids_str, + }) + raise error + + +def generate_dataset_name(dataset_name: str) -> str: + return dataset_name.replace(".", "_").replace(" ", "_") diff --git a/cognee/infrastructure/databases/graph/networkx/adapter.py b/cognee/infrastructure/databases/graph/networkx/adapter.py index b106e9feb..6c7abd498 100644 --- a/cognee/infrastructure/databases/graph/networkx/adapter.py +++ b/cognee/infrastructure/databases/graph/networkx/adapter.py @@ -30,6 +30,10 @@ def __new__(cls, filename): def __init__(self, filename = "cognee_graph.pkl"): self.filename = filename + async def get_graph_data(self): + await self.load_graph_from_file() + return (list(self.graph.nodes(data = True)), list(self.graph.edges(data = True, keys = True))) + async def query(self, query: str, params: dict): pass @@ -247,15 +251,27 @@ async def load_graph_from_file(self, file_path: str = None): async with aiofiles.open(file_path, "r") as file: graph_data = json.loads(await file.read()) for node in graph_data["nodes"]: - node["id"] = UUID(node["id"]) - node["updated_at"] = datetime.strptime(node["updated_at"], "%Y-%m-%dT%H:%M:%S.%f%z") + try: + node["id"] = UUID(node["id"]) + except: + pass + if "updated_at" in node: + node["updated_at"] = datetime.strptime(node["updated_at"], "%Y-%m-%dT%H:%M:%S.%f%z") for edge in graph_data["links"]: - edge["source"] = UUID(edge["source"]) - edge["target"] = UUID(edge["target"]) - edge["source_node_id"] = UUID(edge["source_node_id"]) - edge["target_node_id"] = UUID(edge["target_node_id"]) - edge["updated_at"] = datetime.strptime(edge["updated_at"], "%Y-%m-%dT%H:%M:%S.%f%z") + try: + source_id = UUID(edge["source"]) + target_id = UUID(edge["target"]) + + edge["source"] = source_id + edge["target"] = target_id + edge["source_node_id"] = source_id + edge["target_node_id"] = target_id + except: + pass + + if "updated_at" in node: + edge["updated_at"] = datetime.strptime(edge["updated_at"], "%Y-%m-%dT%H:%M:%S.%f%z") self.graph = nx.readwrite.json_graph.node_link_graph(graph_data) else: @@ -268,8 +284,8 @@ async def load_graph_from_file(self, file_path: str = None): os.makedirs(file_dir, exist_ok = True) await self.save_graph_to_file(file_path) - except Exception: - logger.error("Failed to load graph from file: %s", file_path) + except Exception as e: + logger.error("Failed to load graph from file: %s \n %s", file_path, str(e)) # Initialize an empty graph in case of error self.graph = nx.MultiDiGraph() diff --git a/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py b/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py index 39e43189c..d883a29e7 100644 --- a/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py +++ b/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py @@ -164,7 +164,16 @@ async def search( if value < min_value: min_value = value - normalized_values = [(result["_distance"] - min_value) / (max_value - min_value) for result in result_values] + normalized_values = [] + min_value = min(result["_distance"] for result in result_values) + max_value = max(result["_distance"] for result in result_values) + + if max_value == min_value: + # Avoid division by zero: Assign all normalized values to 0 (or any constant value like 1) + normalized_values = [0 for _ in result_values] + else: + normalized_values = [(result["_distance"] - min_value) / (max_value - min_value) for result in + result_values] return [ScoredResult( id = UUID(result["id"]), diff --git a/cognee/modules/graph/utils/get_graph_from_model.py b/cognee/modules/graph/utils/get_graph_from_model.py index 35e00fb5d..29137ddc7 100644 --- a/cognee/modules/graph/utils/get_graph_from_model.py +++ b/cognee/modules/graph/utils/get_graph_from_model.py @@ -43,7 +43,7 @@ def get_graph_from_model(data_point: DataPoint, include_root = True, added_nodes added_edges[str(edge_key)] = True continue - if isinstance(field_value, list) and isinstance(field_value[0], DataPoint): + if isinstance(field_value, list) and len(field_value) > 0 and isinstance(field_value[0], DataPoint): excluded_properties.add(field_name) for item in field_value: diff --git a/cognee/shared/SourceCodeGraph.py b/cognee/shared/SourceCodeGraph.py index 51b90f296..60f425e32 100644 --- a/cognee/shared/SourceCodeGraph.py +++ b/cognee/shared/SourceCodeGraph.py @@ -1,84 +1,95 @@ -from typing import List, Union, Literal, Optional -from pydantic import BaseModel +from typing import Any, List, Union, Literal, Optional +from cognee.infrastructure.engine import DataPoint -class BaseClass(BaseModel): +class Variable(DataPoint): id: str name: str - type: Literal["Class"] = "Class" + type: Literal["Variable"] = "Variable" description: str - constructor_parameters: Optional[List[str]] = None + is_static: Optional[bool] = False + default_value: Optional[str] = None + data_type: str + + _metadata = { + "index_fields": ["name"] + } -class Class(BaseModel): +class Operator(DataPoint): + id: str + name: str + type: Literal["Operator"] = "Operator" + description: str + return_type: str + +class Class(DataPoint): id: str name: str type: Literal["Class"] = "Class" description: str - constructor_parameters: Optional[List[str]] = None - from_class: Optional[BaseClass] = None + constructor_parameters: List[Variable] + extended_from_class: Optional["Class"] = None + has_methods: list["Function"] -class ClassInstance(BaseModel): + _metadata = { + "index_fields": ["name"] + } + +class ClassInstance(DataPoint): id: str name: str type: Literal["ClassInstance"] = "ClassInstance" description: str from_class: Class + instantiated_by: Union["Function"] + instantiation_arguments: List[Variable] + + _metadata = { + "index_fields": ["name"] + } -class Function(BaseModel): +class Function(DataPoint): id: str name: str type: Literal["Function"] = "Function" description: str - parameters: Optional[List[str]] = None + parameters: List[Variable] return_type: str is_static: Optional[bool] = False -class Variable(BaseModel): - id: str - name: str - type: Literal["Variable"] = "Variable" - description: str - is_static: Optional[bool] = False - default_value: Optional[str] = None - -class Operator(BaseModel): - id: str - name: str - type: Literal["Operator"] = "Operator" - description: str - return_type: str + _metadata = { + "index_fields": ["name"] + } -class ExpressionPart(BaseModel): +class FunctionCall(DataPoint): id: str - name: str - type: Literal["Expression"] = "Expression" - description: str - expression: str - members: List[Union[Variable, Function, Operator]] + type: Literal["FunctionCall"] = "FunctionCall" + called_by: Union[Function, Literal["main"]] + function_called: Function + function_arguments: List[Any] -class Expression(BaseModel): +class Expression(DataPoint): id: str name: str type: Literal["Expression"] = "Expression" description: str expression: str - members: List[Union[Variable, Function, Operator, ExpressionPart]] + members: List[Union[Variable, Function, Operator, "Expression"]] -class Edge(BaseModel): - source_node_id: str - target_node_id: str - relationship_name: Literal["called in", "stored in", "defined in", "returned by", "instantiated in", "uses", "updates"] - -class SourceCodeGraph(BaseModel): +class SourceCodeGraph(DataPoint): id: str name: str description: str language: str nodes: List[Union[ Class, + ClassInstance, Function, + FunctionCall, Variable, Operator, Expression, - ClassInstance, ]] - edges: List[Edge] + +Class.model_rebuild() +ClassInstance.model_rebuild() +Expression.model_rebuild() diff --git a/cognee/shared/utils.py b/cognee/shared/utils.py index f3272357f..14578f202 100644 --- a/cognee/shared/utils.py +++ b/cognee/shared/utils.py @@ -91,7 +91,7 @@ def prepare_edges(graph, source, target, edge_key): source: str(edge[0]), target: str(edge[1]), edge_key: str(edge[2]), - } for edge in graph.edges] + } for edge in graph.edges(keys = True, data = True)] return pd.DataFrame(edge_list) diff --git a/cognee/tasks/graph/__init__.py b/cognee/tasks/graph/__init__.py index 94dc82f20..eafc12921 100644 --- a/cognee/tasks/graph/__init__.py +++ b/cognee/tasks/graph/__init__.py @@ -1,2 +1,3 @@ from .extract_graph_from_data import extract_graph_from_data +from .extract_graph_from_code import extract_graph_from_code from .query_graph_connections import query_graph_connections diff --git a/cognee/tasks/graph/extract_graph_from_code.py b/cognee/tasks/graph/extract_graph_from_code.py new file mode 100644 index 000000000..159e9baa4 --- /dev/null +++ b/cognee/tasks/graph/extract_graph_from_code.py @@ -0,0 +1,17 @@ +import asyncio +from typing import Type +from pydantic import BaseModel +from cognee.modules.data.extraction.knowledge_graph import extract_content_graph +from cognee.modules.chunking.models.DocumentChunk import DocumentChunk +from cognee.tasks.storage import add_data_points + +async def extract_graph_from_code(data_chunks: list[DocumentChunk], graph_model: Type[BaseModel]): + chunk_graphs = await asyncio.gather( + *[extract_content_graph(chunk.text, graph_model) for chunk in data_chunks] + ) + + for (chunk_index, chunk) in enumerate(data_chunks): + chunk_graph = chunk_graphs[chunk_index] + await add_data_points(chunk_graph.nodes) + + return data_chunks diff --git a/cognee/tasks/storage/index_data_points.py b/cognee/tasks/storage/index_data_points.py index 681fbaa1f..dc74d705d 100644 --- a/cognee/tasks/storage/index_data_points.py +++ b/cognee/tasks/storage/index_data_points.py @@ -47,7 +47,7 @@ def get_data_points_from_model(data_point: DataPoint, added_data_points = {}) -> added_data_points[str(new_point.id)] = True data_points.append(new_point) - if isinstance(field_value, list) and isinstance(field_value[0], DataPoint): + if isinstance(field_value, list) and len(field_value) > 0 and isinstance(field_value[0], DataPoint): for field_value_item in field_value: new_data_points = get_data_points_from_model(field_value_item, added_data_points) diff --git a/cognee/tests/test_code_generation.py b/cognee/tests/test_code_generation.py new file mode 100755 index 000000000..aad59ace8 --- /dev/null +++ b/cognee/tests/test_code_generation.py @@ -0,0 +1,38 @@ +import os +import logging +import pathlib +import cognee +from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline +from cognee.api.v1.search import SearchType +from cognee.shared.utils import render_graph + +logging.basicConfig(level = logging.DEBUG) + +async def main(): + data_directory_path = str(pathlib.Path(os.path.join(pathlib.Path(__file__).parent, ".data_storage/test_code_generation")).resolve()) + cognee.config.data_root_directory(data_directory_path) + cognee_directory_path = str(pathlib.Path(os.path.join(pathlib.Path(__file__).parent, ".cognee_system/test_code_generation")).resolve()) + cognee.config.system_root_directory(cognee_directory_path) + + await cognee.prune.prune_data() + await cognee.prune.prune_system(metadata = True) + + dataset_name = "artificial_intelligence" + + ai_text_file_path = os.path.join(pathlib.Path(__file__).parent, "test_data/code.txt") + await cognee.add([ai_text_file_path], dataset_name) + + await code_graph_pipeline([dataset_name]) + + await render_graph(None, include_nodes = True, include_labels = True) + + search_results = await cognee.search(SearchType.CHUNKS, query = "Student") + assert len(search_results) != 0, "The search results list is empty." + print("\n\nExtracted chunks are:\n") + for result in search_results: + print(f"{result}\n") + + +if __name__ == "__main__": + import asyncio + asyncio.run(main(), debug=True) diff --git a/cognee/tests/test_data/code.txt b/cognee/tests/test_data/code.txt new file mode 100644 index 000000000..c40f7124a --- /dev/null +++ b/cognee/tests/test_data/code.txt @@ -0,0 +1,70 @@ +// Class definition for a Person +class Person { + constructor(name, age) { + this.name = name; + this.age = age; + } + + // Method to return a greeting message + greet() { + return `Hello, my name is ${this.name} and I'm ${this.age} years old.`; + } + + // Method to celebrate birthday + celebrateBirthday() { + this.age += 1; + return `Happy Birthday, ${this.name}! You are now ${this.age} years old.`; + } +} + +// Class definition for a Student, extending from Person +class Student extends Person { + constructor(name, age, grade) { + super(name, age); + this.grade = grade; + } + + // Method to describe the student + describe() { + return `${this.name} is a ${this.grade} grade student and is ${this.age} years old.`; + } +} + +// Function to enroll a new student +function enrollStudent(name, age, grade) { + const student = new Student(name, age, grade); + console.log(student.greet()); + console.log(student.describe()); + return student; +} + +// Function to promote a student to the next grade +function promoteStudent(student) { + student.grade += 1; + console.log(`${student.name} has been promoted to grade ${student.grade}.`); + return student; +} + +// Variable definition and assignment +let schoolName = "Greenwood High School"; +let students = []; + +// Enrolling students +students.push(enrollStudent("Alice", 14, 9)); +students.push(enrollStudent("Bob", 15, 10)); + +// Looping through students to celebrate their birthdays +students.forEach(student => { + console.log(student.celebrateBirthday()); +}); + +// Promoting all students +students = students.map(promoteStudent); + +// Displaying the final state of all students +console.log("Final Students List:"); +students.forEach(student => console.log(student.describe())); + +// Updating the school name +schoolName = "Greenwood International School"; +console.log(`School Name Updated to: ${schoolName}`); From 64424bd3a97deaba1ade6c8e975b0c7d1dc9004a Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Mon, 11 Nov 2024 15:29:32 +0100 Subject: [PATCH 08/25] fix: Fixes LanceDB datapoint add --- .../databases/vector/lancedb/LanceDBAdapter.py | 16 ++++++++++++---- 1 file changed, 12 insertions(+), 4 deletions(-) diff --git a/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py b/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py index d883a29e7..96f026b4f 100644 --- a/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py +++ b/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py @@ -112,10 +112,18 @@ def create_lance_data_point(data_point: DataPoint, vector: list[float]) -> Lance for (data_point_index, data_point) in enumerate(data_points) ] - await collection.merge_insert("id") \ - .when_matched_update_all() \ - .when_not_matched_insert_all() \ - .execute(lance_data_points) + # TODO: This enables us to work with pydantic version but shouldn't + # stay like this, existing rows should be updated + + await collection.delete("id IS NOT NULL") + + original_size = await collection.count_rows() + await collection.add(lance_data_points) + new_size = await collection.count_rows() + + if new_size <= original_size: + raise ValueError( + "LanceDB create_datapoints error: data points did not get added.") async def retrieve(self, collection_name: str, data_point_ids: list[str]): From 14868ea932e4266c8f3cfe04f14963851625a8ff Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Mon, 11 Nov 2024 16:31:50 +0100 Subject: [PATCH 09/25] Fix: Solves the issue of Neo4j concurrent sessions --- .../infrastructure/databases/graph/neo4j_driver/adapter.py | 6 +----- cognee/tasks/graph/query_graph_connections.py | 2 +- 2 files changed, 2 insertions(+), 6 deletions(-) diff --git a/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py b/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py index 8e79b201e..10b1d029f 100644 --- a/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py +++ b/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py @@ -18,7 +18,7 @@ def __init__( graph_database_url: str, graph_database_username: str, graph_database_password: str, - driver: Optional[Any] = None, + driver: Optional[Any] = None ): self.driver = driver or AsyncGraphDatabase.driver( graph_database_url, @@ -26,9 +26,6 @@ def __init__( max_connection_lifetime = 120 ) - async def close(self) -> None: - await self.driver.close() - @asynccontextmanager async def get_session(self) -> AsyncSession: async with self.driver.session() as session: @@ -43,7 +40,6 @@ async def query( async with self.get_session() as session: result = await session.run(query, parameters = params) data = await result.data() - await self.close() return data except Neo4jError as error: logger.error("Neo4j query error: %s", error, exc_info = True) diff --git a/cognee/tasks/graph/query_graph_connections.py b/cognee/tasks/graph/query_graph_connections.py index cd4d76a5e..c64abc31b 100644 --- a/cognee/tasks/graph/query_graph_connections.py +++ b/cognee/tasks/graph/query_graph_connections.py @@ -37,7 +37,7 @@ async def query_graph_connections(query: str, exploration_levels = 1) -> list[(s return [] node_connections_results = await asyncio.gather( - *[graph_engine.get_connections(result.id) for result in relevant_results] + *[graph_engine.get_connections(str(result.id)) for result in relevant_results] ) node_connections = [] From 38d29ee0c9f72fd7ce084f7b12ef27e3c39eff07 Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Mon, 11 Nov 2024 18:35:18 +0100 Subject: [PATCH 10/25] Adds an entrypoint to enable/disable individual steps --- examples/python/dynamic_steps_example.py | 229 +++++++++++++++++++++++ 1 file changed, 229 insertions(+) create mode 100644 examples/python/dynamic_steps_example.py diff --git a/examples/python/dynamic_steps_example.py b/examples/python/dynamic_steps_example.py new file mode 100644 index 000000000..a10c26c7a --- /dev/null +++ b/examples/python/dynamic_steps_example.py @@ -0,0 +1,229 @@ +import cognee +import asyncio +from cognee.api.v1.search import SearchType + +job_position = """0:Senior Data Scientist (Machine Learning) + +Company: TechNova Solutions +Location: San Francisco, CA + +Job Description: + +TechNova Solutions is seeking a Senior Data Scientist specializing in Machine Learning to join our dynamic analytics team. The ideal candidate will have a strong background in developing and deploying machine learning models, working with large datasets, and translating complex data into actionable insights. + +Responsibilities: + +Develop and implement advanced machine learning algorithms and models. +Analyze large, complex datasets to extract meaningful patterns and insights. +Collaborate with cross-functional teams to integrate predictive models into products. +Stay updated with the latest advancements in machine learning and data science. +Mentor junior data scientists and provide technical guidance. +Qualifications: + +Master’s or Ph.D. in Data Science, Computer Science, Statistics, or a related field. +5+ years of experience in data science and machine learning. +Proficient in Python, R, and SQL. +Experience with deep learning frameworks (e.g., TensorFlow, PyTorch). +Strong problem-solving skills and attention to detail. +Candidate CVs +""" + +job_1 = """ +CV 1: Relevant +Name: Dr. Emily Carter +Contact Information: + +Email: emily.carter@example.com +Phone: (555) 123-4567 +Summary: + +Senior Data Scientist with over 8 years of experience in machine learning and predictive analytics. Expertise in developing advanced algorithms and deploying scalable models in production environments. + +Education: + +Ph.D. in Computer Science, Stanford University (2014) +B.S. in Mathematics, University of California, Berkeley (2010) +Experience: + +Senior Data Scientist, InnovateAI Labs (2016 – Present) +Led a team in developing machine learning models for natural language processing applications. +Implemented deep learning algorithms that improved prediction accuracy by 25%. +Collaborated with cross-functional teams to integrate models into cloud-based platforms. +Data Scientist, DataWave Analytics (2014 – 2016) +Developed predictive models for customer segmentation and churn analysis. +Analyzed large datasets using Hadoop and Spark frameworks. +Skills: + +Programming Languages: Python, R, SQL +Machine Learning: TensorFlow, Keras, Scikit-Learn +Big Data Technologies: Hadoop, Spark +Data Visualization: Tableau, Matplotlib +""" + +job_2 = """ +CV 2: Relevant +Name: Michael Rodriguez +Contact Information: + +Email: michael.rodriguez@example.com +Phone: (555) 234-5678 +Summary: + +Data Scientist with a strong background in machine learning and statistical modeling. Skilled in handling large datasets and translating data into actionable business insights. + +Education: + +M.S. in Data Science, Carnegie Mellon University (2013) +B.S. in Computer Science, University of Michigan (2011) +Experience: + +Senior Data Scientist, Alpha Analytics (2017 – Present) +Developed machine learning models to optimize marketing strategies. +Reduced customer acquisition cost by 15% through predictive modeling. +Data Scientist, TechInsights (2013 – 2017) +Analyzed user behavior data to improve product features. +Implemented A/B testing frameworks to evaluate product changes. +Skills: + +Programming Languages: Python, Java, SQL +Machine Learning: Scikit-Learn, XGBoost +Data Visualization: Seaborn, Plotly +Databases: MySQL, MongoDB +""" + + +job_3 = """ +CV 3: Relevant +Name: Sarah Nguyen +Contact Information: + +Email: sarah.nguyen@example.com +Phone: (555) 345-6789 +Summary: + +Data Scientist specializing in machine learning with 6 years of experience. Passionate about leveraging data to drive business solutions and improve product performance. + +Education: + +M.S. in Statistics, University of Washington (2014) +B.S. in Applied Mathematics, University of Texas at Austin (2012) +Experience: + +Data Scientist, QuantumTech (2016 – Present) +Designed and implemented machine learning algorithms for financial forecasting. +Improved model efficiency by 20% through algorithm optimization. +Junior Data Scientist, DataCore Solutions (2014 – 2016) +Assisted in developing predictive models for supply chain optimization. +Conducted data cleaning and preprocessing on large datasets. +Skills: + +Programming Languages: Python, R +Machine Learning Frameworks: PyTorch, Scikit-Learn +Statistical Analysis: SAS, SPSS +Cloud Platforms: AWS, Azure +""" + + +job_4 = """ +CV 4: Not Relevant +Name: David Thompson +Contact Information: + +Email: david.thompson@example.com +Phone: (555) 456-7890 +Summary: + +Creative Graphic Designer with over 8 years of experience in visual design and branding. Proficient in Adobe Creative Suite and passionate about creating compelling visuals. + +Education: + +B.F.A. in Graphic Design, Rhode Island School of Design (2012) +Experience: + +Senior Graphic Designer, CreativeWorks Agency (2015 – Present) +Led design projects for clients in various industries. +Created branding materials that increased client engagement by 30%. +Graphic Designer, Visual Innovations (2012 – 2015) +Designed marketing collateral, including brochures, logos, and websites. +Collaborated with the marketing team to develop cohesive brand strategies. +Skills: + +Design Software: Adobe Photoshop, Illustrator, InDesign +Web Design: HTML, CSS +Specialties: Branding and Identity, Typography +""" + + +job_5 = """ +CV 5: Not Relevant +Name: Jessica Miller +Contact Information: + +Email: jessica.miller@example.com +Phone: (555) 567-8901 +Summary: + +Experienced Sales Manager with a strong track record in driving sales growth and building high-performing teams. Excellent communication and leadership skills. + +Education: + +B.A. in Business Administration, University of Southern California (2010) +Experience: + +Sales Manager, Global Enterprises (2015 – Present) +Managed a sales team of 15 members, achieving a 20% increase in annual revenue. +Developed sales strategies that expanded customer base by 25%. +Sales Representative, Market Leaders Inc. (2010 – 2015) +Consistently exceeded sales targets and received the 'Top Salesperson' award in 2013. +Skills: + +Sales Strategy and Planning +Team Leadership and Development +CRM Software: Salesforce, Zoho +Negotiation and Relationship Building +""" + +async def main(enable_steps): + # Step 1: Reset data and system state + if enable_steps.get("prune_data"): + await cognee.prune.prune_data() + print("Data pruned.") + + if enable_steps.get("prune_system"): + await cognee.prune.prune_system(metadata=True) + print("System pruned.") + + # Step 2: Add text + if enable_steps.get("add_text"): + text_list = [job_position, job_1, job_2, job_3, job_4, job_5] + for text in text_list: + await cognee.add(text) + print(f"Added text: {text[:35]}...") + + # Step 3: Create knowledge graph + if enable_steps.get("cognify"): + await cognee.cognify() + print("Knowledge graph created.") + + # Step 4: Query insights + if enable_steps.get("search_insights"): + search_results = await cognee.search( + SearchType.INSIGHTS, + {'query': 'Which applicant has the most relevant experience?'} + ) + print("Search results:") + for result_text in search_results: + print(result_text) + + +if __name__ == '__main__': + # Flags to enable/disable steps + steps_to_enable = { + "prune_data": True, + "prune_system": True, + "add_text": True, + "cognify": True, + "search_insights": True + } + + asyncio.run(main(steps_to_enable)) From e988a67466cb613494e2299548f76db057c9070e Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Mon, 11 Nov 2024 19:28:17 +0100 Subject: [PATCH 11/25] Fixes LanceDB datapoint add --- .../databases/graph/neo4j_driver/adapter.py | 3 --- .../databases/vector/lancedb/LanceDBAdapter.py | 16 ++++++++++++---- 2 files changed, 12 insertions(+), 7 deletions(-) diff --git a/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py b/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py index 26bbb5819..1121a24d5 100644 --- a/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py +++ b/cognee/infrastructure/databases/graph/neo4j_driver/adapter.py @@ -27,9 +27,6 @@ def __init__( max_connection_lifetime = 120 ) - async def close(self) -> None: - await self.driver.close() - @asynccontextmanager async def get_session(self) -> AsyncSession: async with self.driver.session() as session: diff --git a/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py b/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py index d883a29e7..96f026b4f 100644 --- a/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py +++ b/cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py @@ -112,10 +112,18 @@ def create_lance_data_point(data_point: DataPoint, vector: list[float]) -> Lance for (data_point_index, data_point) in enumerate(data_points) ] - await collection.merge_insert("id") \ - .when_matched_update_all() \ - .when_not_matched_insert_all() \ - .execute(lance_data_points) + # TODO: This enables us to work with pydantic version but shouldn't + # stay like this, existing rows should be updated + + await collection.delete("id IS NOT NULL") + + original_size = await collection.count_rows() + await collection.add(lance_data_points) + new_size = await collection.count_rows() + + if new_size <= original_size: + raise ValueError( + "LanceDB create_datapoints error: data points did not get added.") async def retrieve(self, collection_name: str, data_point_ids: list[str]): From dcc8c96c42809429aeeac19c07c31547ebab98ad Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Tue, 12 Nov 2024 11:50:19 +0100 Subject: [PATCH 12/25] fix: Fixes the consecutive DocumentChunk false text --- cognee/modules/chunking/TextChunker.py | 1 + 1 file changed, 1 insertion(+) diff --git a/cognee/modules/chunking/TextChunker.py b/cognee/modules/chunking/TextChunker.py index 714383804..f9a222904 100644 --- a/cognee/modules/chunking/TextChunker.py +++ b/cognee/modules/chunking/TextChunker.py @@ -17,6 +17,7 @@ def __init__(self, document, get_text: callable, chunk_size: int = 1024): self.get_text = get_text def read(self): + self.paragraph_chunks = [] for content_text in self.get_text(): for chunk_data in chunk_by_paragraph( content_text, From b1a2831c8d02daef0901a6f165111e7590773f38 Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Tue, 12 Nov 2024 16:46:30 +0100 Subject: [PATCH 13/25] feat: Adds CogneeGraph elements --- .../graph/cognee_graph/CogneeGraphElements.py | 96 +++++++++++++++++++ cognee/modules/graph/cognee_graph/__init__.py | 0 2 files changed, 96 insertions(+) create mode 100644 cognee/modules/graph/cognee_graph/CogneeGraphElements.py create mode 100644 cognee/modules/graph/cognee_graph/__init__.py diff --git a/cognee/modules/graph/cognee_graph/CogneeGraphElements.py b/cognee/modules/graph/cognee_graph/CogneeGraphElements.py new file mode 100644 index 000000000..601f8a011 --- /dev/null +++ b/cognee/modules/graph/cognee_graph/CogneeGraphElements.py @@ -0,0 +1,96 @@ +import numpy as np +from typing import List, Dict, Optional, Any + +class Node: + """ + Represents a node in a graph. + Attributes: + id (str): A unique identifier for the node. + attributes (Dict[str, Any]): A dictionary of attributes associated with the node. + neighbors (List[Node]): Represents the original nodes + skeleton_edges (List[Edge]): Represents the original edges + """ + id: str + attributes: Dict[str, Any] + skeleton_neighbours: List["Node"] + skeleton_edges: List["Edge"] + + def __init__(self, node_id: str, attributes: Optional[Dict[str, Any]] = None): + self.id = node_id + self.attributes = attributes if attributes is not None else {} + self.skeleton_neighbours = [] # :TODO do we need it in hashtable? Do we want to index? + self.skeleton_edges = [] # :TODO do we need it in hashtable? Do we want to index? + + def add_skeleton_neighbor(self, neighbor: "Node") -> None: + if neighbor not in self.skeleton_neighbours: + self.skeleton_neighbours.append(neighbor) + + def remove_skeleton_neighbor(self, neighbor: "Node") -> None: + if neighbor in self.skeleton_neighbours: + self.skeleton_neighbours.remove(neighbor) + + def add_skeleton_edge(self, edge: "Edge") -> None: + if edge not in self.skeleton_edges: + self.skeleton_edges.append(edge) + # Add neighbor + if edge.node1 == self: + self.add_skeleton_neighbor(edge.node2) + elif edge.node2 == self: + self.add_skeleton_neighbor(edge.node1) + + def remove_skeleton_edge(self, edge: "Edge") -> None: + if edge in self.skeleton_edges: + self.skeleton_edges.remove(edge) + # Remove neighbor if no other edge connects them + neighbor = edge.node2 if edge.node1 == self else edge.node1 + if all(e.node1 != neighbor and e.node2 != neighbor for e in self.skeleton_edges): + self.remove_skeleton_neighbor(neighbor) + + def __repr__(self) -> str: + return f"Node({self.id}, attributes={self.attributes})" + + def __hash__(self) -> int: + return hash(self.id) + + def __eq__(self, other: "Node") -> bool: + return isinstance(other, Node) and self.id == other.id + + +class Edge: + """ + Represents an edge in a graph, connecting two nodes. + Attributes: + node1 (Node): The starting node of the edge. + node2 (Node): The ending node of the edge. + attributes (Dict[str, Any]): A dictionary of attributes associated with the edge. + directed (bool): A flag indicating whether the edge is directed or undirected. + """ + def __init__(self, node1: "Node", node2: "Node", attributes: Optional[Dict[str, Any]] = None, directed: bool = False, dimensions: int = 1): + if dimensions <= 0: + raise ValueError("Dimensions must be a positive integer.") + self.node1 = node1 + self.node2 = node2 + self.attributes = attributes if attributes is not None else {} + self.directed = directed + self.status = np.ones(dimensions, dtype=int) + + def is_alive_in_higher_dimension(self, dimension: int) -> bool: + if dimension < 0 or dimension >= len(self.status): + raise ValueError(f"Dimension {dimension} is out of range. Valid range is 0 to {len(self.status) - 1}.") + return self.status[dimension] == 1 + + def __repr__(self) -> str: + direction = "->" if self.directed else "--" + return f"Edge({self.node1.id} {direction} {self.node2.id}, attributes={self.attributes})" + + def __hash__(self) -> int: + if self.directed: + return hash((self.node1, self.node2)) + else: + return hash(frozenset({self.node1, self.node2})) + + def __eq__(self, other: "Edge") -> bool: + if self.directed: + return self.node1 == other.node1 and self.node2 == other.node2 + else: + return {self.node1, self.node2} == {other.node1, other.node2} \ No newline at end of file diff --git a/cognee/modules/graph/cognee_graph/__init__.py b/cognee/modules/graph/cognee_graph/__init__.py new file mode 100644 index 000000000..e69de29bb From f8ffdb4df5ad50409dadc94f9dc61d3f0d1bd270 Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Tue, 12 Nov 2024 16:47:34 +0100 Subject: [PATCH 14/25] feat: Adds cognee abstract graph class --- .../graph/cognee_graph/CogneeAbstractGraph.py | 44 +++++++++++++++++++ 1 file changed, 44 insertions(+) create mode 100644 cognee/modules/graph/cognee_graph/CogneeAbstractGraph.py diff --git a/cognee/modules/graph/cognee_graph/CogneeAbstractGraph.py b/cognee/modules/graph/cognee_graph/CogneeAbstractGraph.py new file mode 100644 index 000000000..7c8db8ac3 --- /dev/null +++ b/cognee/modules/graph/cognee_graph/CogneeAbstractGraph.py @@ -0,0 +1,44 @@ +from abc import ABC, abstractmethod +from typing import List, Dict, Union +from CogneeGraphElements import Node, Edge +from cognee.infrastructure.databases.graph.neo4j_driver.adapter import Neo4jAdapter +from cognee.infrastructure.databases.graph.networkx.adapter import NetworkXAdapter + +class CogneeAbstractGraph(ABC): + """ + Abstract base class for representing a graph structure. + + Attributes: + nodes (Dict[str, Node]): A dictionary of nodes in the graph, keyed by their ID. + edges (List[Edge]): A list of edges in the graph. + """ + + def __init__(self): + self.nodes: Dict[str, Node] = {} + self.edges: List[Edge] = [] # :TODO do we need it in hashtable? Do we want to index? + + @abstractmethod + def add_node(self, node: Node) -> None: + """Add a node to the graph.""" + pass + + # :TODO Add dimension + @abstractmethod + def add_edge(self, edge: Edge) -> None: + """Add an edge to the graph.""" + pass + + @abstractmethod + def get_node(self, node_id: str) -> Node: + """Retrieve a node by its ID.""" + pass + + @abstractmethod + def get_edges(self, node_id: str) -> List[Edge]: + """Retrieve edges connected to a specific node.""" + pass + + @abstractmethod + async def project_graph_from_db(self, adapter: Union[Neo4jAdapter, NetworkXAdapter]) -> None: + """Project the graph structure from a database using the provided adapter.""" + pass From 73639098623e494c8ccfa2989b5ba18f3315f9e6 Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Tue, 12 Nov 2024 16:48:56 +0100 Subject: [PATCH 15/25] feat: Adds CogneeGraph + memory projection init --- .../modules/graph/cognee_graph/CogneeGraph.py | 71 +++++++++++++++++++ 1 file changed, 71 insertions(+) create mode 100644 cognee/modules/graph/cognee_graph/CogneeGraph.py diff --git a/cognee/modules/graph/cognee_graph/CogneeGraph.py b/cognee/modules/graph/cognee_graph/CogneeGraph.py new file mode 100644 index 000000000..4e7045dda --- /dev/null +++ b/cognee/modules/graph/cognee_graph/CogneeGraph.py @@ -0,0 +1,71 @@ +from typing import List, Dict, Union +from CogneeGraphElements import Node, Edge +from CogneeAbstractGraph import CogneeAbstractGraph +from cognee.infrastructure.databases.graph import get_graph_engine +from cognee.infrastructure.databases.graph.neo4j_driver.adapter import Neo4jAdapter +from cognee.infrastructure.databases.graph.networkx.adapter import NetworkXAdapter +import os + +class CogneeGraph(CogneeAbstractGraph): + """ + Concrete implementation of the AbstractGraph class for Cognee. + + This class provides the functionality to manage nodes and edges, + and project a graph from a database using adapters. + """ + def add_node(self, node: Node) -> None: + if node.id not in self.nodes: + self.nodes[node.id] = node + else: + raise ValueError(f"Node with id {node.id} already exists.") + + # :TODO ADD dimension + def add_edge(self, edge: Edge) -> None: + if edge not in self.edges: + self.edges.append(edge) + edge.node1.add_skeleton_edge(edge) + edge.node2.add_skeleton_edge(edge) + else: + raise ValueError(f"Edge {edge} already exists in the graph.") + + def get_node(self, node_id: str) -> Node: + return self.nodes.get(node_id, None) + + def get_edges(self, node_id: str) -> List[Edge]: + node = self.get_node(node_id) + if node: + return node.skeleton_edges + else: + raise ValueError(f"Node with id {node_id} does not exist.") + + # :TODO This should take also the list of entity types and connection types to keep. (Maybe we dont need all and can keep just an abstraction of the db network) + async def project_graph_from_db(self, adapter: Union[Neo4jAdapter, NetworkXAdapter]) -> None: + + # :TODO: Handle networkx and Neo4j separately + nodes_data, edges_data = await adapter.get_graph_data() + + raise NotImplementedError("To be implemented...tomorrow") + + +""" +The following code only used for test purposes and will be deleted later +""" +import asyncio + +async def main(): + # Choose the adapter (Neo4j or NetworkX) + adapter = await get_graph_engine() + + # Create an instance of CogneeGraph + graph = CogneeGraph() + + # Project the graph from the database + await graph.project_graph_from_db(adapter) + + # Access nodes and edges + print(f"Graph has {len(graph.nodes)} nodes and {len(graph.edges)} edges.") + print("Sample node:", graph.get_node("node1")) + print("Edges for node1:", graph.get_edges("node1")) + +# Run the main function +asyncio.run(main()) \ No newline at end of file From 953fc7b9f9fad8022c72d5853aac79cba4ec8e0a Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Wed, 13 Nov 2024 13:53:17 +0100 Subject: [PATCH 16/25] Fix: Satisfies Pydantic model --- cognee/tasks/documents/classify_documents.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/cognee/tasks/documents/classify_documents.py b/cognee/tasks/documents/classify_documents.py index e83fe8917..4f0a75807 100644 --- a/cognee/tasks/documents/classify_documents.py +++ b/cognee/tasks/documents/classify_documents.py @@ -11,7 +11,7 @@ def classify_documents(data_documents: list[Data]) -> list[Document]: documents = [ - EXTENSION_TO_DOCUMENT_CLASS[data_item.extension](id = data_item.id, title=f"{data_item.name}.{data_item.extension}", raw_data_location=data_item.raw_data_location) + EXTENSION_TO_DOCUMENT_CLASS[data_item.extension](id = data_item.id, title=f"{data_item.name}.{data_item.extension}", raw_data_location=data_item.raw_data_location, name=data_item.name) for data_item in data_documents ] From d3ff7e29be45bf0dfc90c16a1528434a43055f1e Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Wed, 13 Nov 2024 14:06:18 +0100 Subject: [PATCH 17/25] fix: removes duplicate from extensions --- cognee/tasks/documents/classify_documents.py | 1 - 1 file changed, 1 deletion(-) diff --git a/cognee/tasks/documents/classify_documents.py b/cognee/tasks/documents/classify_documents.py index 4f0a75807..6b76b829b 100644 --- a/cognee/tasks/documents/classify_documents.py +++ b/cognee/tasks/documents/classify_documents.py @@ -5,7 +5,6 @@ "pdf": PdfDocument, "audio": AudioDocument, "image": ImageDocument, - "pdf": TextDocument, "txt": TextDocument } From 68bfb87f3ac70ffa0dd37d69d202896692808604 Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Wed, 13 Nov 2024 16:34:36 +0100 Subject: [PATCH 18/25] feat: Extends graph elements with new features --- .../graph/cognee_graph/CogneeAbstractGraph.py | 13 ++------- .../graph/cognee_graph/CogneeGraphElements.py | 28 ++++++++++++++----- 2 files changed, 23 insertions(+), 18 deletions(-) diff --git a/cognee/modules/graph/cognee_graph/CogneeAbstractGraph.py b/cognee/modules/graph/cognee_graph/CogneeAbstractGraph.py index 7c8db8ac3..01b3280bb 100644 --- a/cognee/modules/graph/cognee_graph/CogneeAbstractGraph.py +++ b/cognee/modules/graph/cognee_graph/CogneeAbstractGraph.py @@ -1,28 +1,19 @@ from abc import ABC, abstractmethod from typing import List, Dict, Union from CogneeGraphElements import Node, Edge -from cognee.infrastructure.databases.graph.neo4j_driver.adapter import Neo4jAdapter -from cognee.infrastructure.databases.graph.networkx.adapter import NetworkXAdapter +from cognee.infrastructure.databases.graph.graph_db_interface import GraphDBInterface class CogneeAbstractGraph(ABC): """ Abstract base class for representing a graph structure. - Attributes: - nodes (Dict[str, Node]): A dictionary of nodes in the graph, keyed by their ID. - edges (List[Edge]): A list of edges in the graph. """ - def __init__(self): - self.nodes: Dict[str, Node] = {} - self.edges: List[Edge] = [] # :TODO do we need it in hashtable? Do we want to index? - @abstractmethod def add_node(self, node: Node) -> None: """Add a node to the graph.""" pass - # :TODO Add dimension @abstractmethod def add_edge(self, edge: Edge) -> None: """Add an edge to the graph.""" @@ -39,6 +30,6 @@ def get_edges(self, node_id: str) -> List[Edge]: pass @abstractmethod - async def project_graph_from_db(self, adapter: Union[Neo4jAdapter, NetworkXAdapter]) -> None: + async def project_graph_from_db(self, adapter: GraphDBInterface, directed: bool, dimension: int) -> None: """Project the graph structure from a database using the provided adapter.""" pass diff --git a/cognee/modules/graph/cognee_graph/CogneeGraphElements.py b/cognee/modules/graph/cognee_graph/CogneeGraphElements.py index 601f8a011..63a60a7ce 100644 --- a/cognee/modules/graph/cognee_graph/CogneeGraphElements.py +++ b/cognee/modules/graph/cognee_graph/CogneeGraphElements.py @@ -14,12 +14,14 @@ class Node: attributes: Dict[str, Any] skeleton_neighbours: List["Node"] skeleton_edges: List["Edge"] + status: np.ndarray - def __init__(self, node_id: str, attributes: Optional[Dict[str, Any]] = None): + def __init__(self, node_id: str, attributes: Optional[Dict[str, Any]] = None, dimension: int = 1): self.id = node_id self.attributes = attributes if attributes is not None else {} - self.skeleton_neighbours = [] # :TODO do we need it in hashtable? Do we want to index? - self.skeleton_edges = [] # :TODO do we need it in hashtable? Do we want to index? + self.skeleton_neighbours = [] + self.skeleton_edges = [] + self.status = np.ones(dimension, dtype=int) def add_skeleton_neighbor(self, neighbor: "Node") -> None: if neighbor not in self.skeleton_neighbours: @@ -46,6 +48,11 @@ def remove_skeleton_edge(self, edge: "Edge") -> None: if all(e.node1 != neighbor and e.node2 != neighbor for e in self.skeleton_edges): self.remove_skeleton_neighbor(neighbor) + def is_node_alive_in_dimension(self, dimension: int) -> bool: + if dimension < 0 or dimension >= len(self.status): + raise ValueError(f"Dimension {dimension} is out of range. Valid range is 0 to {len(self.status) - 1}.") + return self.status[dimension] == 1 + def __repr__(self) -> str: return f"Node({self.id}, attributes={self.attributes})" @@ -65,16 +72,23 @@ class Edge: attributes (Dict[str, Any]): A dictionary of attributes associated with the edge. directed (bool): A flag indicating whether the edge is directed or undirected. """ - def __init__(self, node1: "Node", node2: "Node", attributes: Optional[Dict[str, Any]] = None, directed: bool = False, dimensions: int = 1): - if dimensions <= 0: + + node1: "Node" + node2: "Node" + attributes: Dict[str, Any] + directed: bool + status: np.ndarray + + def __init__(self, node1: "Node", node2: "Node", attributes: Optional[Dict[str, Any]] = None, directed: bool = True, dimension: int = 1): + if dimension <= 0: raise ValueError("Dimensions must be a positive integer.") self.node1 = node1 self.node2 = node2 self.attributes = attributes if attributes is not None else {} self.directed = directed - self.status = np.ones(dimensions, dtype=int) + self.status = np.ones(dimension, dtype=int) - def is_alive_in_higher_dimension(self, dimension: int) -> bool: + def is_edge_alive_in_dimension(self, dimension: int) -> bool: if dimension < 0 or dimension >= len(self.status): raise ValueError(f"Dimension {dimension} is out of range. Valid range is 0 to {len(self.status) - 1}.") return self.status[dimension] == 1 From 8e3a991dd05c95fd0e91fad6a25f76c8768fb1c3 Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Wed, 13 Nov 2024 16:38:57 +0100 Subject: [PATCH 19/25] feat: implements DB projection to memory --- .../modules/graph/cognee_graph/CogneeGraph.py | 67 ++++++++++++------- 1 file changed, 42 insertions(+), 25 deletions(-) diff --git a/cognee/modules/graph/cognee_graph/CogneeGraph.py b/cognee/modules/graph/cognee_graph/CogneeGraph.py index 4e7045dda..e4fe729f7 100644 --- a/cognee/modules/graph/cognee_graph/CogneeGraph.py +++ b/cognee/modules/graph/cognee_graph/CogneeGraph.py @@ -13,13 +13,22 @@ class CogneeGraph(CogneeAbstractGraph): This class provides the functionality to manage nodes and edges, and project a graph from a database using adapters. """ + + nodes: Dict[str, Node] + edges: List[Edge] + directed: bool + + def __init__(self, directed: bool = True): + self.nodes = {} + self.edges = [] + self.directed = directed + def add_node(self, node: Node) -> None: if node.id not in self.nodes: self.nodes[node.id] = node else: raise ValueError(f"Node with id {node.id} already exists.") - # :TODO ADD dimension def add_edge(self, edge: Edge) -> None: if edge not in self.edges: self.edges.append(edge) @@ -38,34 +47,42 @@ def get_edges(self, node_id: str) -> List[Edge]: else: raise ValueError(f"Node with id {node_id} does not exist.") - # :TODO This should take also the list of entity types and connection types to keep. (Maybe we dont need all and can keep just an abstraction of the db network) - async def project_graph_from_db(self, adapter: Union[Neo4jAdapter, NetworkXAdapter]) -> None: - - # :TODO: Handle networkx and Neo4j separately - nodes_data, edges_data = await adapter.get_graph_data() - - raise NotImplementedError("To be implemented...tomorrow") + async def project_graph_from_db(self, + adapter: Union[NetworkXAdapter, Neo4jAdapter], + node_properties_to_project: List[str], + edge_properties_to_project: List[str], + directed = True, + node_dimension = 1, + edge_dimension = 1) -> None: + try: + nodes_data, edges_data = await adapter.get_graph_data() + if not nodes_data: + raise ValueError("No node data retrieved from the database.") + if not edges_data: + raise ValueError("No edge data retrieved from the database.") -""" -The following code only used for test purposes and will be deleted later -""" -import asyncio + for node_id, properties in nodes_data: + node_attributes = {key: properties.get(key) for key in node_properties_to_project} + self.add_node(Node(str(node_id), node_attributes, dimension=node_dimension)) -async def main(): - # Choose the adapter (Neo4j or NetworkX) - adapter = await get_graph_engine() + for source_id, target_id, relationship_type, properties in edges_data: + source_node = self.get_node(str(source_id)) + target_node = self.get_node(str(target_id)) + if source_node and target_node: + edge_attributes = {key: properties.get(key) for key in edge_properties_to_project} + edge_attributes['relationship_type'] = relationship_type - # Create an instance of CogneeGraph - graph = CogneeGraph() + edge = Edge(source_node, target_node, attributes=edge_attributes, directed=directed, dimension=edge_dimension) + self.add_edge(edge) - # Project the graph from the database - await graph.project_graph_from_db(adapter) + source_node.add_skeleton_edge(edge) + target_node.add_skeleton_edge(edge) - # Access nodes and edges - print(f"Graph has {len(graph.nodes)} nodes and {len(graph.edges)} edges.") - print("Sample node:", graph.get_node("node1")) - print("Edges for node1:", graph.get_edges("node1")) + else: + raise ValueError(f"Edge references nonexistent nodes: {source_id} -> {target_id}") -# Run the main function -asyncio.run(main()) \ No newline at end of file + except (ValueError, TypeError) as e: + print(f"Error projecting graph: {e}") + except Exception as ex: + print(f"Unexpected error: {ex}") From d8024db00243af9835c09fe7823a838c8bce9d82 Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Wed, 13 Nov 2024 17:18:07 +0100 Subject: [PATCH 20/25] fix: Fixes edge case handling --- cognee/modules/graph/cognee_graph/CogneeGraph.py | 4 ++++ cognee/modules/graph/cognee_graph/CogneeGraphElements.py | 4 ++++ 2 files changed, 8 insertions(+) diff --git a/cognee/modules/graph/cognee_graph/CogneeGraph.py b/cognee/modules/graph/cognee_graph/CogneeGraph.py index e4fe729f7..f210a0f7f 100644 --- a/cognee/modules/graph/cognee_graph/CogneeGraph.py +++ b/cognee/modules/graph/cognee_graph/CogneeGraph.py @@ -54,6 +54,10 @@ async def project_graph_from_db(self, directed = True, node_dimension = 1, edge_dimension = 1) -> None: + + if node_dimension < 1 or edge_dimension < 1: + raise ValueError("Dimensions must be positive integers") + try: nodes_data, edges_data = await adapter.get_graph_data() diff --git a/cognee/modules/graph/cognee_graph/CogneeGraphElements.py b/cognee/modules/graph/cognee_graph/CogneeGraphElements.py index 63a60a7ce..8235cb24d 100644 --- a/cognee/modules/graph/cognee_graph/CogneeGraphElements.py +++ b/cognee/modules/graph/cognee_graph/CogneeGraphElements.py @@ -17,6 +17,8 @@ class Node: status: np.ndarray def __init__(self, node_id: str, attributes: Optional[Dict[str, Any]] = None, dimension: int = 1): + if dimension <= 0: + raise ValueError("Dimension must be a positive integer") self.id = node_id self.attributes = attributes if attributes is not None else {} self.skeleton_neighbours = [] @@ -104,6 +106,8 @@ def __hash__(self) -> int: return hash(frozenset({self.node1, self.node2})) def __eq__(self, other: "Edge") -> bool: + if not isinstance(other, Edge): + return False if self.directed: return self.node1 == other.node1 and self.node2 == other.node2 else: From 0d27371467cbb4c32aef350e9751ab420ffee959 Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Wed, 13 Nov 2024 17:51:25 +0100 Subject: [PATCH 21/25] Checks the pgvector test issue --- .../infrastructure/databases/vector/pgvector/PGVectorAdapter.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py b/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py index 01691714b..deb1e6b18 100644 --- a/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py +++ b/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py @@ -33,7 +33,7 @@ def __init__( self.api_key = api_key self.embedding_engine = embedding_engine self.db_uri: str = connection_string - self.engine = create_async_engine(self.db_uri) + self.engine = create_async_engine(self.db_uri, connect_args={"timeout": 100}) self.sessionmaker = async_sessionmaker(bind=self.engine, expire_on_commit=False) async def embed_data(self, data: list[str]) -> list[list[float]]: From d3fdddaa5221c53e178639f275ebdc7b005f3c7e Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Wed, 13 Nov 2024 17:55:52 +0100 Subject: [PATCH 22/25] Revert "Checks the pgvector test issue" This reverts commit 0d27371467cbb4c32aef350e9751ab420ffee959. --- .../infrastructure/databases/vector/pgvector/PGVectorAdapter.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py b/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py index deb1e6b18..01691714b 100644 --- a/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py +++ b/cognee/infrastructure/databases/vector/pgvector/PGVectorAdapter.py @@ -33,7 +33,7 @@ def __init__( self.api_key = api_key self.embedding_engine = embedding_engine self.db_uri: str = connection_string - self.engine = create_async_engine(self.db_uri, connect_args={"timeout": 100}) + self.engine = create_async_engine(self.db_uri) self.sessionmaker = async_sessionmaker(bind=self.engine, expire_on_commit=False) async def embed_data(self, data: list[str]) -> list[list[float]]: From b516862edc259636ba1c32ef1d58b09df39c79dc Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Thu, 14 Nov 2024 11:44:43 +0100 Subject: [PATCH 23/25] Fix: Fixes import paths --- .../graph/cognee_graph/CogneeAbstractGraph.py | 2 +- .../modules/graph/cognee_graph/CogneeGraph.py | 31 +++++++++++++++++-- 2 files changed, 30 insertions(+), 3 deletions(-) diff --git a/cognee/modules/graph/cognee_graph/CogneeAbstractGraph.py b/cognee/modules/graph/cognee_graph/CogneeAbstractGraph.py index 01b3280bb..9a7fb677f 100644 --- a/cognee/modules/graph/cognee_graph/CogneeAbstractGraph.py +++ b/cognee/modules/graph/cognee_graph/CogneeAbstractGraph.py @@ -1,6 +1,6 @@ from abc import ABC, abstractmethod from typing import List, Dict, Union -from CogneeGraphElements import Node, Edge +from cognee.modules.graph.cognee_graph.CogneeGraphElements import Node, Edge from cognee.infrastructure.databases.graph.graph_db_interface import GraphDBInterface class CogneeAbstractGraph(ABC): diff --git a/cognee/modules/graph/cognee_graph/CogneeGraph.py b/cognee/modules/graph/cognee_graph/CogneeGraph.py index f210a0f7f..a233defbb 100644 --- a/cognee/modules/graph/cognee_graph/CogneeGraph.py +++ b/cognee/modules/graph/cognee_graph/CogneeGraph.py @@ -1,6 +1,6 @@ from typing import List, Dict, Union -from CogneeGraphElements import Node, Edge -from CogneeAbstractGraph import CogneeAbstractGraph +from cognee.modules.graph.cognee_graph.CogneeGraphElements import Node, Edge +from cognee.modules.graph.cognee_graph.CogneeAbstractGraph import CogneeAbstractGraph from cognee.infrastructure.databases.graph import get_graph_engine from cognee.infrastructure.databases.graph.neo4j_driver.adapter import Neo4jAdapter from cognee.infrastructure.databases.graph.networkx.adapter import NetworkXAdapter @@ -90,3 +90,30 @@ async def project_graph_from_db(self, print(f"Error projecting graph: {e}") except Exception as ex: print(f"Unexpected error: {ex}") + + +""" +The following code only used for test purposes and will be deleted later +""" +import asyncio + +async def main(): + # Choose the adapter (Neo4j or NetworkX) + adapter = await get_graph_engine() + + # Create an instance of CogneeGraph + graph = CogneeGraph() + + # Project the graph from the database + await graph.project_graph_from_db(adapter, + ["description", "name", "type", "text"], + ["relationship_name"], + directed=True, + node_dimension=1, + edge_dimension=10000) + + # Access nodes and edges + print(f"Graph has {len(graph.nodes)} nodes and {len(graph.edges)} edges.") + +# Run the main function +asyncio.run(main()) \ No newline at end of file From 32504255efefaa5b8166c666b71adb0ab346a0c3 Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Thu, 14 Nov 2024 11:46:17 +0100 Subject: [PATCH 24/25] feat: Adds unit tests to CogneeGraph class --- .../graph/cognee_graph_elements_test.py | 144 ++++++++++++++++++ .../unit/modules/graph/cognee_graph_test.py | 79 ++++++++++ examples/python/dynamic_steps_example.py | 2 +- 3 files changed, 224 insertions(+), 1 deletion(-) create mode 100644 cognee/tests/unit/modules/graph/cognee_graph_elements_test.py create mode 100644 cognee/tests/unit/modules/graph/cognee_graph_test.py diff --git a/cognee/tests/unit/modules/graph/cognee_graph_elements_test.py b/cognee/tests/unit/modules/graph/cognee_graph_elements_test.py new file mode 100644 index 000000000..137b9f7e2 --- /dev/null +++ b/cognee/tests/unit/modules/graph/cognee_graph_elements_test.py @@ -0,0 +1,144 @@ +import pytest +import numpy as np + +from cognee.modules.graph.cognee_graph.CogneeGraphElements import Node, Edge + + +def test_node_initialization(): + """Test that a Node is initialized correctly.""" + node = Node("node1", {"attr1": "value1"}, dimension=2) + assert node.id == "node1" + assert node.attributes == {"attr1": "value1"} + assert len(node.status) == 2 + assert np.all(node.status == 1) + +def test_node_invalid_dimension(): + """Test that initializing a Node with a non-positive dimension raises an error.""" + with pytest.raises(ValueError, match="Dimension must be a positive integer"): + Node("node1", dimension=0) + +def test_add_skeleton_neighbor(): + """Test adding a neighbor to a node.""" + node1 = Node("node1") + node2 = Node("node2") + node1.add_skeleton_neighbor(node2) + assert node2 in node1.skeleton_neighbours + +def test_remove_skeleton_neighbor(): + """Test removing a neighbor from a node.""" + node1 = Node("node1") + node2 = Node("node2") + node1.add_skeleton_neighbor(node2) + node1.remove_skeleton_neighbor(node2) + assert node2 not in node1.skeleton_neighbours + +def test_add_skeleton_edge(): + """Test adding an edge updates both skeleton_edges and skeleton_neighbours.""" + node1 = Node("node1") + node2 = Node("node2") + edge = Edge(node1, node2) + node1.add_skeleton_edge(edge) + assert edge in node1.skeleton_edges + assert node2 in node1.skeleton_neighbours + +def test_remove_skeleton_edge(): + """Test removing an edge updates both skeleton_edges and skeleton_neighbours.""" + node1 = Node("node1") + node2 = Node("node2") + edge = Edge(node1, node2) + node1.add_skeleton_edge(edge) + node1.remove_skeleton_edge(edge) + assert edge not in node1.skeleton_edges + assert node2 not in node1.skeleton_neighbours + +def test_is_node_alive_in_dimension(): + """Test checking node's alive status in a specific dimension.""" + node = Node("node1", dimension=2) + assert node.is_node_alive_in_dimension(1) + node.status[1] = 0 + assert not node.is_node_alive_in_dimension(1) + +def test_node_alive_invalid_dimension(): + """Test that checking alive status with an invalid dimension raises an error.""" + node = Node("node1", dimension=1) + with pytest.raises(ValueError, match="Dimension 1 is out of range"): + node.is_node_alive_in_dimension(1) + +def test_node_equality(): + """Test equality between nodes.""" + node1 = Node("node1") + node2 = Node("node1") + assert node1 == node2 + +def test_node_hash(): + """Test hashing for Node.""" + node = Node("node1") + assert hash(node) == hash("node1") + +### Tests for Edge ### + +def test_edge_initialization(): + """Test that an Edge is initialized correctly.""" + node1 = Node("node1") + node2 = Node("node2") + edge = Edge(node1, node2, {"weight": 10}, directed=False, dimension=2) + assert edge.node1 == node1 + assert edge.node2 == node2 + assert edge.attributes == {"weight": 10} + assert edge.directed is False + assert len(edge.status) == 2 + assert np.all(edge.status == 1) + +def test_edge_invalid_dimension(): + """Test that initializing an Edge with a non-positive dimension raises an error.""" + node1 = Node("node1") + node2 = Node("node2") + with pytest.raises(ValueError, match="Dimensions must be a positive integer."): + Edge(node1, node2, dimension=0) + +def test_is_edge_alive_in_dimension(): + """Test checking edge's alive status in a specific dimension.""" + node1 = Node("node1") + node2 = Node("node2") + edge = Edge(node1, node2, dimension=2) + assert edge.is_edge_alive_in_dimension(1) + edge.status[1] = 0 + assert not edge.is_edge_alive_in_dimension(1) + +def test_edge_alive_invalid_dimension(): + """Test that checking alive status with an invalid dimension raises an error.""" + node1 = Node("node1") + node2 = Node("node2") + edge = Edge(node1, node2, dimension=1) + with pytest.raises(ValueError, match="Dimension 1 is out of range"): + edge.is_edge_alive_in_dimension(1) + +def test_edge_equality_directed(): + """Test equality between directed edges.""" + node1 = Node("node1") + node2 = Node("node2") + edge1 = Edge(node1, node2, directed=True) + edge2 = Edge(node1, node2, directed=True) + assert edge1 == edge2 + +def test_edge_equality_undirected(): + """Test equality between undirected edges.""" + node1 = Node("node1") + node2 = Node("node2") + edge1 = Edge(node1, node2, directed=False) + edge2 = Edge(node2, node1, directed=False) + assert edge1 == edge2 + +def test_edge_hash_directed(): + """Test hashing for directed edges.""" + node1 = Node("node1") + node2 = Node("node2") + edge = Edge(node1, node2, directed=True) + assert hash(edge) == hash((node1, node2)) + +def test_edge_hash_undirected(): + """Test hashing for undirected edges.""" + node1 = Node("node1") + node2 = Node("node2") + edge = Edge(node1, node2, directed=False) + assert hash(edge) == hash(frozenset({node1, node2})) \ No newline at end of file diff --git a/cognee/tests/unit/modules/graph/cognee_graph_test.py b/cognee/tests/unit/modules/graph/cognee_graph_test.py new file mode 100644 index 000000000..235ccf11d --- /dev/null +++ b/cognee/tests/unit/modules/graph/cognee_graph_test.py @@ -0,0 +1,79 @@ +import pytest + +from cognee.modules.graph.cognee_graph.CogneeGraphElements import Node, Edge +from cognee.modules.graph.cognee_graph.CogneeGraph import CogneeGraph + + +@pytest.fixture +def setup_graph(): + """Fixture to initialize a CogneeGraph instance.""" + return CogneeGraph() + +def test_add_node_success(setup_graph): + """Test successful addition of a node.""" + graph = setup_graph + node = Node("node1") + graph.add_node(node) + assert graph.get_node("node1") == node + +def test_add_duplicate_node(setup_graph): + """Test adding a duplicate node raises an exception.""" + graph = setup_graph + node = Node("node1") + graph.add_node(node) + with pytest.raises(ValueError, match="Node with id node1 already exists."): + graph.add_node(node) + +def test_add_edge_success(setup_graph): + """Test successful addition of an edge.""" + graph = setup_graph + node1 = Node("node1") + node2 = Node("node2") + graph.add_node(node1) + graph.add_node(node2) + edge = Edge(node1, node2) + graph.add_edge(edge) + assert edge in graph.edges + assert edge in node1.skeleton_edges + assert edge in node2.skeleton_edges + +def test_add_duplicate_edge(setup_graph): + """Test adding a duplicate edge raises an exception.""" + graph = setup_graph + node1 = Node("node1") + node2 = Node("node2") + graph.add_node(node1) + graph.add_node(node2) + edge = Edge(node1, node2) + graph.add_edge(edge) + with pytest.raises(ValueError, match="Edge .* already exists in the graph."): + graph.add_edge(edge) + +def test_get_node_success(setup_graph): + """Test retrieving an existing node.""" + graph = setup_graph + node = Node("node1") + graph.add_node(node) + assert graph.get_node("node1") == node + +def test_get_node_nonexistent(setup_graph): + """Test retrieving a nonexistent node returns None.""" + graph = setup_graph + assert graph.get_node("nonexistent") is None + +def test_get_edges_success(setup_graph): + """Test retrieving edges of a node.""" + graph = setup_graph + node1 = Node("node1") + node2 = Node("node2") + graph.add_node(node1) + graph.add_node(node2) + edge = Edge(node1, node2) + graph.add_edge(edge) + assert edge in graph.get_edges("node1") + +def test_get_edges_nonexistent_node(setup_graph): + """Test retrieving edges for a nonexistent node raises an exception.""" + graph = setup_graph + with pytest.raises(ValueError, match="Node with id nonexistent does not exist."): + graph.get_edges("nonexistent") diff --git a/examples/python/dynamic_steps_example.py b/examples/python/dynamic_steps_example.py index a10c26c7a..309aea82c 100644 --- a/examples/python/dynamic_steps_example.py +++ b/examples/python/dynamic_steps_example.py @@ -209,7 +209,7 @@ async def main(enable_steps): if enable_steps.get("search_insights"): search_results = await cognee.search( SearchType.INSIGHTS, - {'query': 'Which applicant has the most relevant experience?'} + {'query': 'Which applicant has the most relevant experience in data science?'} ) print("Search results:") for result_text in search_results: From 867e18de86919ac400dba0c0c6c163d49f6ad5f4 Mon Sep 17 00:00:00 2001 From: hajdul88 <52442977+hajdul88@users.noreply.github.com> Date: Thu, 14 Nov 2024 14:01:20 +0100 Subject: [PATCH 25/25] fix: Changes GraphDBInterface typing in CogneeGraph --- .../databases/graph/graph_db_interface.py | 5 +++ .../modules/graph/cognee_graph/CogneeGraph.py | 34 ++----------------- 2 files changed, 8 insertions(+), 31 deletions(-) diff --git a/cognee/infrastructure/databases/graph/graph_db_interface.py b/cognee/infrastructure/databases/graph/graph_db_interface.py index 3b9e55ff0..bcc09658c 100644 --- a/cognee/infrastructure/databases/graph/graph_db_interface.py +++ b/cognee/infrastructure/databases/graph/graph_db_interface.py @@ -62,3 +62,8 @@ async def add_edges( async def delete_graph( self, ): raise NotImplementedError + + @abstractmethod + async def get_graph_data( + self + ): raise NotImplementedError diff --git a/cognee/modules/graph/cognee_graph/CogneeGraph.py b/cognee/modules/graph/cognee_graph/CogneeGraph.py index a233defbb..d15d93b73 100644 --- a/cognee/modules/graph/cognee_graph/CogneeGraph.py +++ b/cognee/modules/graph/cognee_graph/CogneeGraph.py @@ -1,10 +1,9 @@ from typing import List, Dict, Union + +from cognee.infrastructure.databases.graph.graph_db_interface import GraphDBInterface from cognee.modules.graph.cognee_graph.CogneeGraphElements import Node, Edge from cognee.modules.graph.cognee_graph.CogneeAbstractGraph import CogneeAbstractGraph from cognee.infrastructure.databases.graph import get_graph_engine -from cognee.infrastructure.databases.graph.neo4j_driver.adapter import Neo4jAdapter -from cognee.infrastructure.databases.graph.networkx.adapter import NetworkXAdapter -import os class CogneeGraph(CogneeAbstractGraph): """ @@ -48,7 +47,7 @@ def get_edges(self, node_id: str) -> List[Edge]: raise ValueError(f"Node with id {node_id} does not exist.") async def project_graph_from_db(self, - adapter: Union[NetworkXAdapter, Neo4jAdapter], + adapter: Union[GraphDBInterface], node_properties_to_project: List[str], edge_properties_to_project: List[str], directed = True, @@ -90,30 +89,3 @@ async def project_graph_from_db(self, print(f"Error projecting graph: {e}") except Exception as ex: print(f"Unexpected error: {ex}") - - -""" -The following code only used for test purposes and will be deleted later -""" -import asyncio - -async def main(): - # Choose the adapter (Neo4j or NetworkX) - adapter = await get_graph_engine() - - # Create an instance of CogneeGraph - graph = CogneeGraph() - - # Project the graph from the database - await graph.project_graph_from_db(adapter, - ["description", "name", "type", "text"], - ["relationship_name"], - directed=True, - node_dimension=1, - edge_dimension=10000) - - # Access nodes and edges - print(f"Graph has {len(graph.nodes)} nodes and {len(graph.edges)} edges.") - -# Run the main function -asyncio.run(main()) \ No newline at end of file