diff --git a/.github/workflows/dockerhub.yml b/.github/workflows/dockerhub.yml index 20f0bde96..b48dde2cc 100644 --- a/.github/workflows/dockerhub.yml +++ b/.github/workflows/dockerhub.yml @@ -7,7 +7,7 @@ on: jobs: docker-build-and-push: - runs-on: ubuntu-22.04 + runs-on: ubuntu-latest steps: - name: Checkout repository diff --git a/.github/workflows/py_lint.yml b/.github/workflows/py_lint.yml index 543a0d221..11d0a8b7d 100644 --- a/.github/workflows/py_lint.yml +++ b/.github/workflows/py_lint.yml @@ -16,7 +16,7 @@ jobs: fail-fast: true matrix: os: - - ubuntu-22.04 + - ubuntu-latest python-version: ["3.10.x", "3.11.x"] defaults: diff --git a/.github/workflows/reusable_notebook.yml b/.github/workflows/reusable_notebook.yml index 8034aca97..9bc09c3a6 100644 --- a/.github/workflows/reusable_notebook.yml +++ b/.github/workflows/reusable_notebook.yml @@ -51,6 +51,7 @@ jobs: env: ENV: 'dev' LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }} + OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} GRAPHISTRY_USERNAME: ${{ secrets.GRAPHISTRY_USERNAME }} GRAPHISTRY_PASSWORD: ${{ secrets.GRAPHISTRY_PASSWORD }} run: | diff --git a/.github/workflows/ruff_format.yaml b/.github/workflows/ruff_format.yaml index a75a795e7..959b7fc4b 100644 --- a/.github/workflows/ruff_format.yaml +++ b/.github/workflows/ruff_format.yaml @@ -3,7 +3,7 @@ on: [ pull_request ] jobs: ruff: - runs-on: ubuntu-22.04 + runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: astral-sh/ruff-action@v2 diff --git a/.github/workflows/ruff_lint.yaml b/.github/workflows/ruff_lint.yaml index 4c4fb81e3..214e8ec6d 100644 --- a/.github/workflows/ruff_lint.yaml +++ b/.github/workflows/ruff_lint.yaml @@ -3,7 +3,7 @@ on: [ pull_request ] jobs: ruff: - runs-on: ubuntu-22.04 + runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 - uses: astral-sh/ruff-action@v2 diff --git a/.github/workflows/test_deduplication.yml b/.github/workflows/test_deduplication.yml index 923bbb68c..2f97e4ea6 100644 --- a/.github/workflows/test_deduplication.yml +++ b/.github/workflows/test_deduplication.yml @@ -16,7 +16,7 @@ env: jobs: run_deduplication_test: name: test - runs-on: ubuntu-22.04 + runs-on: ubuntu-latest defaults: run: shell: bash diff --git a/.github/workflows/test_llama_index_cognee_integration_notebook.yml b/.github/workflows/test_llama_index_cognee_integration_notebook.yml new file mode 100644 index 000000000..aacc31eb5 --- /dev/null +++ b/.github/workflows/test_llama_index_cognee_integration_notebook.yml @@ -0,0 +1,20 @@ +name: test | llama index cognee integration notebook + +on: + workflow_dispatch: + pull_request: + types: [labeled, synchronize] + +concurrency: + group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }} + cancel-in-progress: true + +jobs: + run_notebook_test: + uses: ./.github/workflows/reusable_notebook.yml + with: + notebook-location: notebooks/llama_index_cognee_integration.ipynb + secrets: + OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} + GRAPHISTRY_USERNAME: ${{ secrets.GRAPHISTRY_USERNAME }} + GRAPHISTRY_PASSWORD: ${{ secrets.GRAPHISTRY_PASSWORD }} diff --git a/.github/workflows/test_qdrant.yml b/.github/workflows/test_qdrant.yml index d1447c65c..e2cf9abe8 100644 --- a/.github/workflows/test_qdrant.yml +++ b/.github/workflows/test_qdrant.yml @@ -17,7 +17,7 @@ jobs: run_qdrant_integration_test: name: test - runs-on: ubuntu-22.04 + runs-on: ubuntu-latest defaults: run: shell: bash diff --git a/.github/workflows/test_weaviate.yml b/.github/workflows/test_weaviate.yml index 159fce194..81cc2603f 100644 --- a/.github/workflows/test_weaviate.yml +++ b/.github/workflows/test_weaviate.yml @@ -17,7 +17,7 @@ jobs: run_weaviate_integration_test: name: test - runs-on: ubuntu-22.04 + runs-on: ubuntu-latest defaults: run: shell: bash diff --git a/README.md b/README.md index f35829783..8ff2d71d5 100644 --- a/README.md +++ b/README.md @@ -101,15 +101,9 @@ cognee.config.set_graphistry_config({ }) ``` -(Optional) To run the UI, go to cognee-frontend directory and run: -``` -npm run dev -``` -or run everything in a docker container: -``` -docker-compose up -``` -Then navigate to localhost:3000 +(Optional) To run the with an UI, go to cognee-mcp directory and follow the instructions. +You will be able to use cognee as mcp tool and create graphs and query them. + If you want to use Cognee with PostgreSQL, make sure to set the following values in the .env file: ``` diff --git a/cognee/modules/graph/cognee_graph/CogneeGraph.py b/cognee/modules/graph/cognee_graph/CogneeGraph.py index 279a73b19..491f83b5a 100644 --- a/cognee/modules/graph/cognee_graph/CogneeGraph.py +++ b/cognee/modules/graph/cognee_graph/CogneeGraph.py @@ -8,7 +8,7 @@ from cognee.modules.graph.cognee_graph.CogneeGraphElements import Node, Edge from cognee.modules.graph.cognee_graph.CogneeAbstractGraph import CogneeAbstractGraph import heapq -from graphistry import edges +import asyncio class CogneeGraph(CogneeAbstractGraph): @@ -127,51 +127,25 @@ async def map_vector_distances_to_graph_nodes(self, node_distances) -> None: else: print(f"Node with id {node_id} not found in the graph.") - async def map_vector_distances_to_graph_edges( - self, vector_engine, query - ) -> None: # :TODO: When we calculate edge embeddings in vector db change this similarly to node mapping + async def map_vector_distances_to_graph_edges(self, vector_engine, query) -> None: try: - # Step 1: Generate the query embedding query_vector = await vector_engine.embed_data([query]) query_vector = query_vector[0] if query_vector is None or len(query_vector) == 0: raise ValueError("Failed to generate query embedding.") - # Step 2: Collect all unique relationship types - unique_relationship_types = set() - for edge in self.edges: - relationship_type = edge.attributes.get("relationship_type") - if relationship_type: - unique_relationship_types.add(relationship_type) - - # Step 3: Embed all unique relationship types - unique_relationship_types = list(unique_relationship_types) - relationship_type_embeddings = await vector_engine.embed_data(unique_relationship_types) - - # Step 4: Map relationship types to their embeddings and calculate distances - embedding_map = {} - for relationship_type, embedding in zip( - unique_relationship_types, relationship_type_embeddings - ): - edge_vector = np.array(embedding) - - # Calculate cosine similarity - similarity = np.dot(query_vector, edge_vector) / ( - np.linalg.norm(query_vector) * np.linalg.norm(edge_vector) - ) - distance = 1 - similarity + edge_distances = await vector_engine.get_distance_from_collection_elements( + "edge_type_relationship_name", query_text=query + ) - # Round the distance to 4 decimal places and store it - embedding_map[relationship_type] = round(distance, 4) + embedding_map = {result.payload["text"]: result.score for result in edge_distances} - # Step 4: Assign precomputed distances to edges for edge in self.edges: relationship_type = edge.attributes.get("relationship_type") if not relationship_type or relationship_type not in embedding_map: print(f"Edge {edge} has an unknown or missing relationship type.") continue - # Assign the precomputed distance edge.attributes["vector_distance"] = embedding_map[relationship_type] except Exception as ex: diff --git a/cognee/modules/retrieval/brute_force_triplet_search.py b/cognee/modules/retrieval/brute_force_triplet_search.py index 9c778505d..c27e90766 100644 --- a/cognee/modules/retrieval/brute_force_triplet_search.py +++ b/cognee/modules/retrieval/brute_force_triplet_search.py @@ -62,24 +62,6 @@ async def brute_force_triplet_search( return retrieved_results -def delete_duplicated_vector_db_elements( - collections, results -): #:TODO: This is just for now to fix vector db duplicates - results_dict = {} - for collection, results in zip(collections, results): - seen_ids = set() - unique_results = [] - for result in results: - if result.id not in seen_ids: - unique_results.append(result) - seen_ids.add(result.id) - else: - print(f"Duplicate found in collection '{collection}': {result.id}") - results_dict[collection] = unique_results - - return results_dict - - async def brute_force_search( query: str, user: User, top_k: int, collections: List[str] = None ) -> list: @@ -125,10 +107,7 @@ async def brute_force_search( ] ) - ############################################# :TODO: Change when vector db does not contain duplicates - node_distances = delete_duplicated_vector_db_elements(collections, results) - # node_distances = {collection: result for collection, result in zip(collections, results)} - ############################################## + node_distances = {collection: result for collection, result in zip(collections, results)} memory_fragment = CogneeGraph() @@ -140,14 +119,12 @@ async def brute_force_search( await memory_fragment.map_vector_distances_to_graph_nodes(node_distances=node_distances) - #:TODO: Change when vectordb contains edge embeddings await memory_fragment.map_vector_distances_to_graph_edges(vector_engine, query) results = await memory_fragment.calculate_top_triplet_importances(k=top_k) send_telemetry("cognee.brute_force_triplet_search EXECUTION STARTED", user.id) - #:TODO: Once we have Edge pydantic models we should retrieve the exact edge and node objects from graph db return results except Exception as e: diff --git a/cognee/modules/users/methods/get_default_user.py b/cognee/modules/users/methods/get_default_user.py index c67d9d71f..2bb15ea95 100644 --- a/cognee/modules/users/methods/get_default_user.py +++ b/cognee/modules/users/methods/get_default_user.py @@ -1,4 +1,4 @@ -from sqlalchemy.orm import joinedload +from sqlalchemy.orm import selectinload from sqlalchemy.future import select from cognee.modules.users.models import User from cognee.infrastructure.databases.relational import get_relational_engine @@ -11,7 +11,7 @@ async def get_default_user(): async with db_engine.get_async_session() as session: query = ( select(User) - .options(joinedload(User.groups)) + .options(selectinload(User.groups)) .where(User.email == "default_user@example.com") ) diff --git a/cognee/shared/utils.py b/cognee/shared/utils.py index e57decde1..affd92c87 100644 --- a/cognee/shared/utils.py +++ b/cognee/shared/utils.py @@ -468,16 +468,20 @@ def graph_to_tuple(graph): def setup_logging(log_level=logging.INFO): - """This method sets up the logging configuration.""" + """Sets up the logging configuration.""" formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s\n") + stream_handler = logging.StreamHandler(sys.stdout) stream_handler.setFormatter(formatter) stream_handler.setLevel(log_level) - logging.basicConfig( - level=log_level, - handlers=[stream_handler], - ) + root_logger = logging.getLogger() + + if root_logger.hasHandlers(): + root_logger.handlers.clear() + + root_logger.addHandler(stream_handler) + root_logger.setLevel(log_level) # ---------------- Example Usage ---------------- diff --git a/examples/python/dynamic_steps_example.py b/examples/python/dynamic_steps_example.py index 11596a5e2..4422dd39d 100644 --- a/examples/python/dynamic_steps_example.py +++ b/examples/python/dynamic_steps_example.py @@ -192,7 +192,7 @@ async def main(enable_steps): if __name__ == "__main__": - setup_logging(logging.INFO) + setup_logging(logging.ERROR) rebuild_kg = True retrieve = True diff --git a/notebooks/llama_index_cognee_integration.ipynb b/notebooks/llama_index_cognee_integration.ipynb new file mode 100644 index 000000000..772c0a8c7 --- /dev/null +++ b/notebooks/llama_index_cognee_integration.ipynb @@ -0,0 +1,285 @@ +{ + "cells": [ + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "## LlamaIndex Cognee GraphRAG Integration\n", + "\n", + "Connecting external knowledge to the LLM efficiently and retrieving it is a key challenge faced by developers. For developers and data scientists, integrating structured and unstructured data into AI workflows often involves multiple tools, complex pipelines, and time-consuming processes.\n", + "\n", + "Enter **cognee,** a powerful framework for knowledge and memory management, and LlamaIndex, a versatile data integration library. Together, they enable us to transform retrieval-augmented generation (RAG) pipelines, into GraphRAG pipelines, streamlining the path from raw data to actionable insights.\n", + "\n", + "In this post, we’ll explore a demo that leverages cognee and LlamaIndex to create a knowledge graph from a LlamaIndex document, process it into a meaningful structure, and extract useful insights. By the end, you’ll see how these tools can give you new insights into your data by connecting various data sources in one big semantic layer you can analyze.\n", + "\n", + "## RAG - Recap\n", + "\n", + "RAG enhances LLMs by integrating external knowledge sources during inference. It does so by turning the data into a vector representation and storing it in a vector store.\n", + "\n", + "### Key Benefits of RAG:\n", + "\n", + "1. Connecting domain specific data to LLMs\n", + "2. Cost savings\n", + "3. Higher accuracy than base LLM\n", + "\n", + "However, building a RAG system presents challenges: handling diverse data formats, data updates, creating a robust metadata layer, and mediocre accuracy\n", + "\n", + "## Introducing cognee and LlamaIndex more\n", + "\n", + "cognee simplifies knowledge and memory management for LLMs, while LlamaIndex facilitates connecting LLMs to structured data sources and enabling agentic use-cases\n", + "\n", + "cognee is inspired by human mind and higer cognitive functions. It mimics ways we construct our mental map of the world and build a semantic understanding of various objects, terms and issues in our everyday lives.\n", + "\n", + "cognee brings this approach to code by allowing developers to create semantic layers that would allow users to store their ontologies which are **a formalised depiction of knowledge** in graphs.\n", + "\n", + "This lets you use the knowledge you have about a system connect it to LLMs in a modular way, with best data engineering practices, wide choice of vector and graph stores and various LLMs you can use.\n", + "\n", + "Together, they:\n", + "\n", + "- Turn unstructured and semi-structured data into a graph/vector representation.\n", + "- Enable ontology generation for particular domains, making unique graphs for every vertical\n", + "- Provide a deterministic layer for LLM outputs, ensuring consistency and reliability.\n", + "\n", + "## Step-by-Step Demo: Building a RAG System with Cognee and LlamaIndex\n", + "\n", + "### 1. Setting Up the Environment\n", + "\n", + "Start by importing the required libraries and defining the environment:" + ], + "id": "d0d7a82d729bbef6" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": "!pip install llama-index-graph-rag-cognee==0.1.1", + "id": "598b52e384086512" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "import os\n", + "import asyncio\n", + "from llama_index.core import Document\n", + "from llama_index.graph_rag.cognee import CogneeGraphRAG\n", + "\n", + "if \"OPENAI_API_KEY\" not in os.environ:\n", + " os.environ[\"OPENAI_API_KEY\"] = \"\"" + ], + "id": "892a1b1198ec662f" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "Ensure you’ve set up your API keys and installed necessary dependencies.\n", + "\n", + "### 2. Preparing the Dataset\n", + "\n", + "We’ll use a brief profile of an individual as our sample dataset:" + ], + "id": "a1f16f5ca5249ebb" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "documents = [\n", + " Document(\n", + " text=\"Jessica Miller, Experienced Sales Manager with a strong track record in driving sales growth and building high-performing teams.\"\n", + " ),\n", + " Document(\n", + " text=\"David Thompson, Creative Graphic Designer with over 8 years of experience in visual design and branding.\"\n", + " ),\n", + " ]" + ], + "id": "198022c34636a3a0" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### 3. Initializing CogneeGraphRAG\n", + "\n", + "Instantiate the Cognee framework with configurations for LLM, graph, and database providers:" + ], + "id": "781ae78e52ff49a" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "cogneeRAG = CogneeGraphRAG(\n", + " llm_api_key=os.environ[\"OPENAI_API_KEY\"],\n", + " llm_provider=\"openai\",\n", + " llm_model=\"gpt-4o-mini\",\n", + " graph_db_provider=\"networkx\",\n", + " vector_db_provider=\"lancedb\",\n", + " relational_db_provider=\"sqlite\",\n", + " relational_db_name=\"cognee_db\",\n", + ")" + ], + "id": "17e466821ab88d50" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### 4. Adding Data to Cognee\n", + "\n", + "Load the dataset into the cognee framework:" + ], + "id": "2a55d5be9de0ce81" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": "await cogneeRAG.add(documents, \"test\")", + "id": "238b716429aba541" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "This step prepares the data for graph-based processing.\n", + "\n", + "### 5. Processing Data into a Knowledge Graph\n", + "\n", + "Transform the data into a structured knowledge graph:" + ], + "id": "23e5316aa7e5dbc7" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": "await cogneeRAG.process_data(\"test\")", + "id": "c3b3063d428b07a2" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "The graph now contains nodes and relationships derived from the dataset, creating a powerful structure for exploration.\n", + "\n", + "### 6. Performing Searches\n", + "\n", + "### Answer prompt based on knowledge graph approach:" + ], + "id": "e32327de54e98dc8" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "search_results = await cogneeRAG.search(\"Tell me who are the people mentioned?\")\n", + "\n", + "print(\"\\n\\nAnswer based on knowledge graph:\\n\")\n", + "for result in search_results:\n", + " print(f\"{result}\\n\")" + ], + "id": "fddbf5916d1e50e5" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Answer prompt based on RAG approach:", + "id": "9246aed7f69ceb7e" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "search_results = await cogneeRAG.rag_search(\"Tell me who are the people mentioned?\")\n", + "\n", + "print(\"\\n\\nAnswer based on RAG:\\n\")\n", + "for result in search_results:\n", + " print(f\"{result}\\n\")" + ], + "id": "fe77c7a7c57fe4e4" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "In conclusion, the results demonstrate a significant advantage of the knowledge graph-based approach (Graphrag) over the RAG approach. Graphrag successfully identified all the mentioned individuals across multiple documents, showcasing its ability to aggregate and infer information from a global context. In contrast, the RAG approach was limited to identifying individuals within a single document due to its chunking-based processing constraints. This highlights Graphrag's superior capability in comprehensively resolving queries that span across a broader corpus of interconnected data.", + "id": "89cc99628392eb99" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### 7. Finding Related Nodes\n", + "\n", + "Explore relationships in the knowledge graph:" + ], + "id": "44c9b67c09763610" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "related_nodes = await cogneeRAG.get_related_nodes(\"person\")\n", + "\n", + "print(\"\\n\\nRelated nodes are:\\n\")\n", + "for node in related_nodes:\n", + " print(f\"{node}\\n\")" + ], + "id": "efbc1511586f46fe" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "## Why Choose Cognee and LlamaIndex?\n", + "\n", + "### 1. Agentic Framework and Memory tied together\n", + "\n", + "Your agents can now get long-term, short-term memory and memory specific to their domains\n", + "\n", + "### 2. Enhanced Querying and Insights\n", + "\n", + "Your memory can now automatically optimize itself and allow to respond to questions better\n", + "\n", + "### 3. Simplified Deployment\n", + "\n", + "You can use the standard tools out of the box and get things done without much effort\n", + "\n", + "## Visualizing the Knowledge Graph\n", + "\n", + "Imagine a graph structure where each node represents a document or entity, and edges indicate relationships.\n", + "\n", + "Here’s the visualized knowledge graph from the simple example above:\n", + "\n", + "![example.png]()\n", + "\n", + "\n", + "## Conclusion\n", + "\n", + "Try running it yourself\n", + "\n", + "Join cognee community" + ], + "id": "d0f82c2c6eb7793" + } + ], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/pyproject.toml b/pyproject.toml index 5a0e83057..446e807de 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "cognee" -version = "0.1.21" +version = "0.1.22" description = "Cognee - is a library for enriching LLM context with a semantic layer for better understanding and reasoning." authors = ["Vasilije Markovic", "Boris Arzentar"] readme = "README.md"