forked from dmitryikh/leaves
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlgtree.go
133 lines (117 loc) · 2.87 KB
/
lgtree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
package leaves
import (
"math"
"github.com/dmitryikh/leaves/util"
)
const (
categorical = 1 << 0
defaultLeft = 1 << 1
leftLeaf = 1 << 2
rightLeaf = 1 << 3
missingZero = 1 << 4
missingNan = 1 << 5
catOneHot = 1 << 6
catSmall = 1 << 7
)
const zeroThreshold = 1e-35
type lgNode struct {
Threshold float64
Left uint32
Right uint32
Feature uint32
Flags uint8
}
type lgTree struct {
nodes []lgNode
leafValues []float64
catBoundaries []uint32
catThresholds []uint32
nCategorical uint32
}
func (t *lgTree) numericalDecision(node *lgNode, fval float64) bool {
if math.IsNaN(fval) && (node.Flags&missingNan == 0) {
fval = 0.0
}
if ((node.Flags&missingZero > 0) && isZero(fval)) || ((node.Flags&missingNan > 0) && math.IsNaN(fval)) {
return node.Flags&defaultLeft > 0
}
// Note: LightGBM uses `<=`, but XGBoost uses `<`
return fval <= node.Threshold
}
func (t *lgTree) categoricalDecision(node *lgNode, fval float64) bool {
ifval := int32(fval)
if ifval < 0 {
return false
} else if math.IsNaN(fval) {
if node.Flags&missingNan > 0 {
return false
}
ifval = 0
}
if node.Flags&catOneHot > 0 {
return int32(node.Threshold) == ifval
} else if node.Flags&catSmall > 0 {
return util.FindInBitsetUint32(uint32(node.Threshold), uint32(ifval))
}
return t.findInBitset(uint32(node.Threshold), uint32(ifval))
}
func (t *lgTree) decision(node *lgNode, fval float64) bool {
if node.Flags&categorical > 0 {
return t.categoricalDecision(node, fval)
}
return t.numericalDecision(node, fval)
}
func (t *lgTree) predict(fvals []float64) (float64, uint32) {
if len(t.nodes) == 0 {
return t.leafValues[0], 0
}
idx := uint32(0)
for {
node := &t.nodes[idx]
left := t.decision(node, fvals[node.Feature])
if left {
if node.Flags&leftLeaf > 0 {
return t.leafValues[node.Left], node.Left
}
idx = node.Left
} else {
if node.Flags&rightLeaf > 0 {
return t.leafValues[node.Right], node.Right
}
idx++
}
}
}
func (t *lgTree) findInBitset(idx uint32, pos uint32) bool {
i1 := pos / 32
idxS := t.catBoundaries[idx]
idxE := t.catBoundaries[idx+1]
if i1 >= (idxE - idxS) {
return false
}
i2 := pos % 32
return (t.catThresholds[idxS+i1]>>i2)&1 > 0
}
func (t *lgTree) nLeaves() int {
return len(t.nodes) + 1
}
func (t *lgTree) nNodes() int {
return len(t.nodes)
}
func isZero(fval float64) bool {
return (fval > -zeroThreshold && fval <= zeroThreshold)
}
func categoricalNode(feature uint32, missingType uint8, threshold uint32, catType uint8) lgNode {
node := lgNode{}
node.Feature = feature
node.Flags = categorical | missingType | catType
node.Threshold = float64(threshold)
return node
}
func numericalNode(feature uint32, missingType uint8, threshold float64, defaultType uint8) lgNode {
node := lgNode{}
node.Feature = feature
node.Flags = missingType | defaultType
node.Threshold = threshold
return node
}