-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFull Math Symbols List.txt
1384 lines (1346 loc) · 15 KB
/
Full Math Symbols List.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Full Math Symbols List
List of all mathematical symbols and signs - meaning and examples.
Basic math symbols
Symbol
Symbol Name
Meaning / definition
Example
=
equals sign
equality
5 = 2+3
5 is equal to 2+3
≠
not equal sign
inequality
5 ≠ 4
5 is not equal to 4
≈
approximately equal
approximation
sin(0.01) ≈ 0.01,
x ≈ y means x is approximately equal to y
>
strict inequality
greater than
5 > 4
5 is greater than 4
<
strict inequality
less than
4 < 5
4 is less than 5
≥
inequality
greater than or equal to
5 ≥ 4,
x ≥ y means x is greater than or equal to y
≤
inequality
less than or equal to
4 ≤ 5,
x ≤ y means x is less than or equal to y
( )
parentheses
calculate expression inside first
2 × (3+5) = 16
[ ]
brackets
calculate expression inside first
[(1+2)×(1+5)] = 18
+
plus sign
addition
1 + 1 = 2
−
minus sign
subtraction
2 − 1 = 1
±
plus - minus
both plus and minus operations
3 ± 5 = 8 or -2
±
minus - plus
both minus and plus operations
3 ∓ 5 = -2 or 8
*
asterisk
multiplication
2 * 3 = 6
×
times sign
multiplication
2 × 3 = 6
⋅
multiplication dot
multiplication
2 ⋅ 3 = 6
÷
division sign / obelus
division
6 ÷ 2 = 3
/
division slash
division
6 / 2 = 3
—
horizontal line
division / fraction
mod
modulo
remainder calculation
7 mod 2 = 1
.
period
decimal point, decimal separator
2.56 = 2+56/100
ab
power
exponent
23 = 8
a^b
caret
exponent
2 ^ 3 = 8
√a
square root
√a ⋅ √a = a
√9 = ±3
3√a
cube root
3√a ⋅ 3√a ⋅ 3√a = a
3√8 = 2
4√a
fourth root
4√a ⋅ 4√a ⋅ 4√a ⋅ 4√a = a
4√16 = ±2
n√a
n-th root (radical)
for n=3, n√8 = 2
%
percent
1% = 1/100
10% × 30 = 3
‰
per-mille
1‰ = 1/1000 = 0.1%
10‰ × 30 = 0.3
ppm
per-million
1ppm = 1/1000000
10ppm × 30 = 0.0003
ppb
per-billion
1ppb = 1/1000000000
10ppb × 30 = 3×10-7
ppt
per-trillion
1ppt = 10-12
10ppt × 30 = 3×10-10
Geometry symbols
Symbol
Symbol Name
Meaning / definition
Example
∠
angle
formed by two rays
∠ABC = 30°
measured angle
ABC = 30°
spherical angle
AOB = 30°
∟
right angle
= 90°
α = 90°
°
degree
1 turn = 360°
α = 60°
deg
degree
1 turn = 360deg
α = 60deg
′
prime
arcminute, 1° = 60′
α = 60°59′
″
double prime
arcsecond, 1′ = 60″
α = 60°59′59″
line
infinite line
AB
line segment
line from point A to point B
ray
line that start from point A
arc
arc from point A to point B
= 60°
⊥
perpendicular
perpendicular lines (90° angle)
AC ⊥ BC
∥
parallel
parallel lines
AB ∥ CD
≅
congruent to
equivalence of geometric shapes and size
∆ABC≅ ∆XYZ
~
similarity
same shapes, not same size
∆ABC~ ∆XYZ
Δ
triangle
triangle shape
ΔABC≅ ΔBCD
|x-y|
distance
distance between points x and y
| x-y | = 5
π
pi constant
π = 3.141592654...
is the ratio between the circumference and diameter of a circle
c = π⋅d = 2⋅π⋅r
rad
radians
radians angle unit
360° = 2π rad
c
radians
radians angle unit
360° = 2π c
grad
gradians / gons
grads angle unit
360° = 400 grad
g
gradians / gons
grads angle unit
360° = 400 g
Algebra symbols
Symbol
Symbol Name
Meaning / definition
Example
x
x variable
unknown value to find
when 2x = 4, then x = 2
≡
equivalence
identical to
≜
equal by definition
equal by definition
:=
equal by definition
equal by definition
~
approximately equal
weak approximation
11 ~ 10
≈
approximately equal
approximation
sin(0.01) ≈ 0.01
∝
proportional to
proportional to
y ∝ x when y = kx, k constant
∞
lemniscate
infinity symbol
≪
much less than
much less than
1 ≪ 1000000
≫
much greater than
much greater than
1000000 ≫ 1
( )
parentheses
calculate expression inside first
2 * (3+5) = 16
[ ]
brackets
calculate expression inside first
[(1+2)*(1+5)] = 18
{ }
braces
set
⌊x⌋
floor brackets
rounds number to lower integer
⌊4.3⌋ = 4
⌈x⌉
ceiling brackets
rounds number to upper integer
⌈4.3⌉ = 5
x!
exclamation mark
factorial
4! = 1*2*3*4 = 24
| x |
vertical bars
absolute value
| -5 | = 5
f (x)
function of x
maps values of x to f(x)
f (x) = 3x+5
(f ∘ g)
function composition
(f ∘ g) (x) = f (g(x))
f (x)=3x,g(x)=x-1 ⇒(f ∘ g)(x)=3(x-1)
(a,b)
open interval
(a,b) = {x | a < x < b}
x∈ (2,6)
[a,b]
closed interval
[a,b] = {x | a ≤ x ≤ b}
x ∈ [2,6]
∆
delta
change / difference
∆t = t1 - t0
∆
discriminant
Δ = b2 - 4ac
∑
sigma
summation - sum of all values in range of series
∑ xi= x1+x2+...+xn
∑∑
sigma
double summation
∏
capital pi
product - product of all values in range of series
∏ xi=x1∙x2∙...∙xn
e
e constant / Euler's number
e = 2.718281828...
e = lim (1+1/x)x , x→∞
γ
Euler-Mascheroni constant
γ = 0.5772156649...
φ
golden ratio
golden ratio constant
π
pi constant
π = 3.141592654...
is the ratio between the circumference and diameter of a circle
c = π⋅d = 2⋅π⋅r
Linear Algebra Symbols
Symbol
Symbol Name
Meaning / definition
Example
·
dot
scalar product
a · b
×
cross
vector product
a × b
A⊗B
tensor product
tensor product of A and B
A ⊗ B
inner product
[ ]
brackets
matrix of numbers
( )
parentheses
matrix of numbers
| A |
determinant
determinant of matrix A
det(A)
determinant
determinant of matrix A
|| x ||
double vertical bars
norm
AT
transpose
matrix transpose
(AT)ij = (A)ji
A†
Hermitian matrix
matrix conjugate transpose
(A†)ij = (A)ji
A*
Hermitian matrix
matrix conjugate transpose
(A*)ij = (A)ji
A -1
inverse matrix
A A-1 = I
rank(A)
matrix rank
rank of matrix A
rank(A) = 3
dim(U)
dimension
dimension of matrix A
dim(U) = 3
Probability and statistics symbols
Symbol
Symbol Name
Meaning / definition
Example
P(A)
probability function
probability of event A
P(A) = 0.5
P(A ⋂ B)
probability of events intersection
probability that of events A and B
P(A⋂B) = 0.5
P(A ⋃ B)
probability of events union
probability that of events A or B
P(A⋃B) = 0.5
P(A | B)
conditional probability function
probability of event A given event B occured
P(A | B) = 0.3
f (x)
probability density function (pdf)
P(a ≤ x ≤ b) = ∫ f (x) dx
F(x)
cumulative distribution function (cdf)
F(x) = P(X≤ x)
μ
population mean
mean of population values
μ = 10
E(X)
expectation value
expected value of random variable X
E(X) = 10
E(X | Y)
conditional expectation
expected value of random variable X given Y
E(X | Y=2) = 5
var(X)
variance
variance of random variable X
var(X) = 4
σ2
variance
variance of population values
σ2 = 4
std(X)
standard deviation
standard deviation of random variable X
std(X) = 2
σX
standard deviation
standard deviation value of random variable X
σX = 2
median
middle value of random variable x
cov(X,Y)
covariance
covariance of random variables X and Y
cov(X,Y) = 4
corr(X,Y)
correlation
correlation of random variables X and Y
corr(X,Y) = 0.6
ρX,Y
correlation
correlation of random variables X and Y
ρX,Y = 0.6
∑
summation
summation - sum of all values in range of series
∑∑
double summation
double summation
Mo
mode
value that occurs most frequently in population
MR
mid-range
MR = (xmax+xmin)/2
Md
sample median
half the population is below this value
Q1
lower / first quartile
25% of population are below this value
Q2
median / second quartile
50% of population are below this value = median of samples
Q3
upper / third quartile
75% of population are below this value
x
sample mean
average / arithmetic mean
x = (2+5+9) / 3 = 5.333
s 2
sample variance
population samples variance estimator
s 2 = 4
s
sample standard deviation
population samples standard deviation estimator
s = 2
zx
standard score
zx = (x-x) / sx
X ~
distribution of X
distribution of random variable X
X ~ N(0,3)
N(μ,σ2)
normal distribution
gaussian distribution
X ~ N(0,3)
U(a,b)
uniform distribution
equal probability in range a,b
X ~ U(0,3)
exp(λ)
exponential distribution
f (x) = λe-λx , x≥0
gamma(c, λ)
gamma distribution
f (x) = λ c xc-1e-λx / Γ(c), x≥0
χ 2(k)
chi-square distribution
f (x) = xk/2-1e-x/2 / ( 2k/2 Γ(k/2) )
F (k1, k2)
F distribution
Bin(n,p)
binomial distribution
f (k) = nCk pk(1-p)n-k
Poisson(λ)
Poisson distribution
f (k) = λke-λ / k!
Geom(p)
geometric distribution
f (k) = p(1-p) k
HG(N,K,n)
hyper-geometric distribution
Bern(p)
Bernoulli distribution
Combinatorics Symbols
Symbol
Symbol Name
Meaning / definition
Example
n!
factorial
n! = 1⋅2⋅3⋅...⋅n
5! = 1⋅2⋅3⋅4⋅5 = 120
nPk
permutation
5P3 = 5! / (5-3)! = 60
nCk
combination
5C3 = 5!/[3!(5-3)!]=10
Set theory symbols
Symbol
Symbol Name
Meaning / definition
Example
{ }
set
a collection of elements
A = {3,7,9,14},
B = {9,14,28}
A ∩ B
intersection
objects that belong to set A and set B
A ∩ B = {9,14}
A ∪ B
union
objects that belong to set A or set B
A ∪ B = {3,7,9,14,28}
A ⊆ B
subset
A is a subset of B. set A is included in set B.
{9,14,28} ⊆ {9,14,28}
A ⊂ B
proper subset / strict subset
A is a subset of B, but A is not equal to B.
{9,14} ⊂ {9,14,28}
A ⊄ B
not subset
set A is not a subset of set B
{9,66} ⊄ {9,14,28}
A ⊇ B
superset
A is a superset of B. set A includes set B
{9,14,28} ⊇ {9,14,28}
A ⊃ B
proper superset / strict superset
A is a superset of B, but B is not equal to A.
{9,14,28} ⊃ {9,14}
A ⊅ B
not superset
set A is not a superset of set B
{9,14,28} ⊅ {9,66}
2A
power set
all subsets of A
power set
all subsets of A
A = B
equality
both sets have the same members
A={3,9,14},
B={3,9,14},
A=B
Ac
complement
all the objects that do not belong to set A
A \ B
relative complement
objects that belong to A and not to B
A = {3,9,14},
B = {1,2,3},
A-B = {9,14}
A - B
relative complement
objects that belong to A and not to B
A = {3,9,14},
B = {1,2,3},
A-B = {9,14}
A ∆ B
symmetric difference
objects that belong to A or B but not to their intersection
A = {3,9,14},
B = {1,2,3},
A ∆ B = {1,2,9,14}
A ⊖ B
symmetric difference
objects that belong to A or B but not to their intersection
A = {3,9,14},
B = {1,2,3},
A ⊖ B = {1,2,9,14}
a∈A
element of,
belongs to
set membership
A={3,9,14}, 3 ∈ A
x∉A
not element of
no set membership
A={3,9,14}, 1 ∉ A
(a,b)
ordered pair
collection of 2 elements
A×B
cartesian product
set of all ordered pairs from A and B
A×B = {(a,b)|a∈A , b∈B}
|A|
cardinality
the number of elements of set A
A={3,9,14}, |A|=3
#A
cardinality
the number of elements of set A
A={3,9,14}, #A=3
|
vertical bar
such that
A={x|3<x<14}
aleph-null
infinite cardinality of natural numbers set
aleph-one
cardinality of countable ordinal numbers set
Ø
empty set
Ø = { }
C = {Ø}
universal set
set of all possible values
0
natural numbers / whole numbers set (with zero)
0 = {0,1,2,3,4,...}
0 ∈ 0
1
natural numbers / whole numbers set (without zero)
1 = {1,2,3,4,5,...}
6 ∈ 1
integer numbers set
= {...-3,-2,-1,0,1,2,3,...}
-6 ∈
rational numbers set
= {x | x=a/b, a,b∈}
2/6 ∈
real numbers set
= {x | -∞ < x <∞}
6.343434∈
complex numbers set
= {z | z=a+bi, -∞<a<∞, -∞<b<∞}
6+2i ∈
Logic symbols
Symbol
Symbol Name
Meaning / definition
Example
⋅
and
and
x ⋅ y
^
caret / circumflex
and
x ^ y
&
ampersand
and
x & y
+
plus
or
x + y
∨
reversed caret
or
x ∨ y
|
vertical line
or
x | y
x'
single quote
not - negation
x'
x
bar
not - negation
x
¬
not
not - negation
¬ x
!
exclamation mark
not - negation
! x
⊕
circled plus / oplus
exclusive or - xor
x ⊕ y
~
tilde
negation
~ x
⇒
implies
⇔
equivalent
if and only if (iff)
↔
equivalent
if and only if (iff)
∀
for all
∃
there exists
∄
there does not exists
∴
therefore
∵
because / since
Calculus & analysis symbols
Symbol
Symbol Name
Meaning / definition
Example
limit
limit value of a function
ε
epsilon
represents a very small number, near zero
ε → 0
e
e constant / Euler's number
e = 2.718281828...
e = lim (1+1/x)x , x→∞
y '
derivative
derivative - Lagrange's notation
(3x3)' = 9x2
y ''
second derivative
derivative of derivative
(3x3)'' = 18x
y(n)
nth derivative
n times derivation
(3x3)(3) = 18
derivative
derivative - Leibniz's notation
d(3x3)/dx = 9x2
second derivative
derivative of derivative
d2(3x3)/dx2 = 18x
nth derivative
n times derivation
time derivative
derivative by time - Newton's notation
time second derivative
derivative of derivative
Dx y
derivative
derivative - Euler's notation
Dx2y
second derivative
derivative of derivative
partial derivative
∂(x2+y2)/∂x = 2x
∫
integral
opposite to derivation
∫ f(x)dx
∫∫
double integral
integration of function of 2 variables
∫∫ f(x,y)dxdy
∫∫∫
triple integral
integration of function of 3 variables
∫∫∫ f(x,y,z)dxdydz
∮
closed contour / line integral
∯
closed surface integral
∰
closed volume integral
[a,b]
closed interval
[a,b] = {x | a ≤ x ≤ b}
(a,b)
open interval
(a,b) = {x | a < x < b}
i
imaginary unit
i ≡ √-1
z = 3 + 2i
z*
complex conjugate
z = a+bi → z*=a-bi
z* = 3 - 2i
z
complex conjugate
z = a+bi → z = a-bi
z = 3 - 2i
Re(z)
real part of a complex number
z = a+bi → Re(z)=a
Re(3 - 2i) = 3
Im(z)
imaginary part of a complex number
z = a+bi → Im(z)=b
Im(3 - 2i) = -2
| z |
absolute value/magnitude of a complex number
|z| = |a+bi| = √(a2+b2)
|3 - 2i| = √13
arg(z)
argument of a complex number
The angle of the radius in the complex plane
arg(3 + 2i) = 33.7°
∇
nabla / del
gradient / divergence operator
∇f (x,y,z)
vector
unit vector
x * y
convolution
y(t) = x(t) * h(t)
Laplace transform
F(s) = {f (t)}