-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdudeML_withSplit.py
1067 lines (1029 loc) · 57.6 KB
/
dudeML_withSplit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import division
import sys
import argparse
wgsim_path = "wgsim"
bedtools_path = "bedtools"
samtools_path = "samtools"
def rounder(x,y):
return int(round(x / float(y))) * y
class SmartFormatter(argparse.HelpFormatter):
def _split_lines(self, text, width):
if text.startswith('R|'):
return text[2:].splitlines()
# this is the RawTextHelpFormatter._split_lines
return argparse.HelpFormatter._split_lines(self, text, width)
parser=argparse.ArgumentParser(description='Predict CNVs using dudeML')
parser._positionals.title = 'possible modes (enter \'python3 dudeML.py modeName -h\' for modeName\'s help message'
subparsers = parser.add_subparsers(help='sub-command help')
parser_1 = subparsers.add_parser('predict', help='Predict CNVs in sample based on training classifier including ploidy or frequency of CNV.')
parser_2 = subparsers.add_parser('classify', help='Train a classifier based on a provided training set.')
parser_3 = subparsers.add_parser('winStat', help='Calculate average coverage of windows for a number of bases, given the window size, relative to the chromosomes average coverage.')
parser_4 = subparsers.add_parser('winStatExtra', help='Find averaged coverage of windows, based on previously estimated median coverage.')
parser_5 = subparsers.add_parser('fvecSample', help='Format sample/test file to create sets of windows to analyse as a features vector.')
parser_6 = subparsers.add_parser('fvecTrain', help='Format training file to ID windows with structural variants and create sets of windows to train as a features vector.')
parser_7 = subparsers.add_parser('subTrain', help='Subsample training file for quicker training of the predictor, can subsample a fraction (0.0-1.0) or a number (1-N).')
parser_8 = subparsers.add_parser('simChr', help='Simulate chromosomes containing duplications and deletions using the output of simCNV.')
parser_9 = subparsers.add_parser('simCNV', help='Simulate coordinates of duplications and deletions for multiple chromosomes, which can be combined later.')
parser_10 = subparsers.add_parser('recreateTotal', help='Create the total file from known CNVs for CNV chromosome simulation.')
parser_11 = subparsers.add_parser('covSummary', help='Summarise coverage by chromosome in coverage bedfile.')
parser_12 = subparsers.add_parser('simReads', help='Following simChr, uses WGsim to simulate reads across chromosomes.')
parser_13 = subparsers.add_parser('summarize', help='For a predictions file of known duplications and deletions, finds the number of correctly and falsely identified CNVs.')
parser_14 = subparsers.add_parser('ROC', help='If CNVs are known, works out the rate of true/false positives for given dataset (generated in fvecTrain) and classifier (generated in classify).')
parser_15 = subparsers.add_parser('quantify', help='Quantify CNVs across multiple samples mapped to the same reference.')
parser_1.add_argument('-i','--INPUT',help='Input bed file, generated by winStat and fvecSample.', required=True)
parser_1.add_argument('-o','--OUTPUT',help='Output file in bed format containing predicted CNVs.', required=True)
parser_1.add_argument('-t','--TRAIN',help='Training file or folder, generated by classify function.', required=True)
parser_1.set_defaults(mode='predict')
parser_2.add_argument('-i','--INPUT',help='Input bed file, generated by fvecTrain.', required=True)
parser_2.add_argument('-o','--OUTPUT',help='Output training file in binary format.', required=True)
parser_2.add_argument('-m','--MODEL',help='Type of classifier used, can be set as follows: "CNN" - Convolutional Neural Network, "DTC" - Decision Tree Classifier, "ETC100" - Extra Trees Classifier (100 estimators), "ETC500" - Extra Trees Classifier (500 estimators), "RFC100" - Random Forest Classifier (100 estimators), "RFC500" - Random Forest Classifier (500 estimators).' ,choices=["CNN","DTC","ETC100","ETC500","RFC100","RFC500"],default="RFC100")
parser_2.set_defaults(mode='classify')
parser_3.add_argument('-i','--INPUT',help='Input bed file, generated by genomeCoverageBed.', required=True)
parser_3.add_argument('-o','--OUTPUT',help='Output bed file summarizing stats in windows.', required=True)
parser_3.add_argument("-w",'--WINDOW_SIZE',help="The window size chosen to detect CNVs across.",type=int, default=50)
parser_3.add_argument("-s",'--STEP_SIZE',help="The step size chosen to detect CNVs across.",type=int, default=50)
parser_3.add_argument("-sum","--SUMMARY",help="Summary of coverages file",type=str)
parser_3.add_argument("-chr",'--CHROMOSOME',help="Bedfile of chromosomes to estimate statistics over with start and end of chromosomes.",type=str)
parser_3.set_defaults(mode='winStat')
parser_4.add_argument('-i','--INPUT',help='Input bed file, generated by genomeCoverageBed.', required=True)
parser_4.add_argument('-o','--OUTPUT',help='Output bed file summarizing stats in windows.', required=True)
parser_4.add_argument('-cov','--COVERAGE',help='Coverage to standardize by.', required=True)
parser_4.add_argument("-w",'--WINDOW_SIZE',help="The window size chosen to detect CNVs across.",type=int, default=50)
parser_4.add_argument("-s",'--STEP_SIZE',help="The step size chosen to detect CNVs across.",type=int, default=50)
parser_4.add_argument("-chr",'--CHROMOSOME',help="List of chromosomes to estimate statistics for. Can be a single chromosome, a comma seperated list or a file, with a chromosome on each line.",type=str)
parser_4.set_defaults(mode='winStatExtra')
parser_5.add_argument("-i",'--INPUT',help="Input file in bed format, containing stats on each window, generated by winStat.",required=True)
parser_5.add_argument("-o",'--OUTPUT',help="Output file in bed format, containing stats on focal window and surrounding windows.",required=True)
parser_5.add_argument("-TE",'--TE',help="Bed or GFF file containing repeat locations in genome.")
parser_5.add_argument("-id",'--ID',help="ID of sample analysed.",type=str,default="NA")
parser_5.add_argument("-d",'--DIRECTORY',help="Directory to write output files to.",type=str,default="")
parser_5.add_argument("-windows",'--WINDOWS',help="Number of windows around focal window to include.",type=int,default=5)
parser_5.add_argument("-w",'--WINDOW_SIZE',help="Window size (bp).",type=int,default=50)
parser_5.add_argument("-s",'--STEP_SIZE',help="Step size (bp).",type=int, default=50)
parser_5.add_argument("-c",'--CUTOFF',help="Ignore windows with a higher proportion of masked positions than the cut off.",type=float, default=0.01)
parser_5.set_defaults(mode='fvecSample')
parser_6.add_argument("-i",'--INPUT',help="Input file in bed format, containing stats on each window, generated by winStat.",required=True)
parser_6.add_argument("-o",'--OUTPUT',help="Output file in bed format, containing stats on focal window and surrounding windows.",required=True)
parser_6.add_argument("-TE",'--TE',help="Bed or GFF file containing repeat locations in genome.")
parser_6.add_argument("-dels","--DELETION",help="Bed file containing known deletion locations.",required=True)
parser_6.add_argument("-dups",'--DUPLICATION',help="Bed file containing known duplication locations.",required=True)
parser_6.add_argument("-d",'--DIRECTORY',help="Directory to write output files to.",type=str,default="")
parser_6.add_argument("-windows",'--WINDOWS',help="Number of windows around focal window to include.",type=int,default=5)
parser_6.add_argument("-w",'--WINDOW_SIZE',help="Window size (bp).",type=int,default=50)
parser_6.add_argument("-s",'--STEP_SIZE',help="Step size (bp).",type=int, default=50)
parser_6.add_argument("-c",'--CUTOFF',help="Ignore windows with more masked positions than the cut off.",type=float, default=0.01)
parser_6.set_defaults(mode='fvecTrain')
parser_7.add_argument("-i",'--INPUT',help="Input bed file containing training windows.",required=True)
parser_7.add_argument("-o",'--OUTPUT',help="Output subsampled bed file containing training windows",required=True)
parser_7.add_argument("-N","--NUMBER",help="Number of samples to extract (1+) or fraction to downsample to (0-0.99).",type=float,required=True)
parser_7.set_defaults(mode='subTrain')
parser_8.add_argument('-fasta',"--FASTA",help='Fasta file containing chromosomes to simulate CNVs in.', required=True)
parser_8.add_argument('-cnvBed',help='Bed file containing loci for CNVs to simulate.', required=True)
parser_8.add_argument("-id",'--ID',help="ID to label output files.",type=str,default="NA")
parser_8.add_argument("-d",'--DIRECTORY',help="Directory to write output files to.",type=str,default="")
parser_8.set_defaults(mode='simChr')
parser_9.add_argument("-fasta","--FASTA", required=True,help="Fasta file containing chromosomes to simulate CNVs in.")
parser_9.add_argument("-CNV",help="Number of duplications and deletions to simulate per megabase.",type=int,default=50)
parser_9.add_argument("-CNVsize",help="Mean size of CNV, size determined in a poisson distribution.",type=int,default=1000)
parser_9.add_argument("-delLength",help="Mean length of deletions to simulate.",type=int,default=1000)
parser_9.add_argument("-dupLength",help="Mean length of duplications to simulate.",type=int,default=1000)
parser_9.add_argument("-N","--NUMBER",help="Ploidy of chromosomes to simulate CNVs on.",type=int,default=1)
parser_9.add_argument("-d",'--DIRECTORY',help="Directory to write output files to.",type=str,default="")
parser_9.add_argument("-c",'--CUTOFF',help="Ignore windows with a higher proportion of masked positions than the cut off.",type=float, default=0.01)
parser_9.add_argument("-TE",'--TE',help="Bed or GFF file containing repeat locations in genome.")
parser_9.set_defaults(mode='simCNV')
parser_10.add_argument("-fasta","--FASTA",help="Fasta file containing chromosomes to simulate CNVs in.", required=True)
parser_10.add_argument("-dels","--DELETION",help="Bed file containing deletion loci.", required=True)
parser_10.add_argument("-dups",'--DUPLICATION',help="Bed file containing duplication loci", required=True)
parser_10.add_argument("-o",'--OUTPUT',help="Output file containing windows with and without CNVs.", required=True)
parser_10.add_argument("-d",'--DIRECTORY',help="Directory to write output files to.",type=str,default="")
parser_10.set_defaults(mode='recreateTotal')
parser_11.add_argument("-i",'--INPUT',required=True,help="Bed file generated by genomeCoverageBed.")
parser_11.add_argument("-chr",'--CHROMOSOME',help="List of chromosomes to summarize.")
parser_11.add_argument("-sum","--SUMMARY",help="Summary file to output.")
parser_11.set_defaults(mode='covSummary')
parser_12.add_argument("-fasta","--FASTA",help="Fasta sequence to simulate reads for.",required=True)
parser_12.add_argument("-cov",'--COVERAGE',help="Coverage of sample to simulate reads for.",type=int,default=10)
parser_12.add_argument("-d",'--DIRECTORY',help="Directory to write output files to.",type=str,default="")
parser_12.add_argument("-id",'--ID',help="ID to label output files.",type=str,default="NA")
parser_12.add_argument("-RL",'--READ_LENGTH',help="Read Length (bp).",type=int,default=100)
parser_12.add_argument("-chr",'--CHROMOSOME',help="List of chromosomes to estimate statistics for.",type=str)
parser_12.add_argument("-se",'--SE',help="Simulate single end reads instead of paired end reads.",type=bool,default=False)
parser_12.set_defaults(mode='simReads')
parser_13.add_argument("-i",'--INPUT',help="Input file containing predicted CNVs, generated by predict function",required=True)
parser_13.add_argument("-o",'--OUTPUT',help="Summary bed file.",required=True)
parser_13.add_argument("-c",'--CUTOFF',help="Confidence cutoff, CNVs below this value are removed.",type=float,default=0.0)
parser_13.add_argument("-w",'--WINDOW_SIZE',help="Window size (bp).",type=int,default=50)
parser_13.add_argument("-dups",'--DUPLICATION',help="Bed file containing duplication loci.")
parser_13.add_argument("-dels","--DELETION",help="Bed file containing deletion loci.")
parser_13.add_argument("-id",'--ID',help="ID to label output files.",type=str,default="NA")
parser_13.set_defaults(mode='summarize')
parser_14.add_argument("-i",'--INPUT',help="Input bed file, generated by fvecTrain.",required=True)
parser_14.add_argument("-o",'--OUTPUT',help="File containing false-positive and true-positive rates for duplications and deletions.",required=True)
parser_14.add_argument('-t','--TRAIN',help='Training file or folder, generated by classify function.', required=True)
parser_14.set_defaults(mode='ROC')
parser_15.add_argument("-i",'--INPUT',help="List of prediction files to quantify CNVs over.",required=True)
parser_15.add_argument("-o",'--OUTPUT',help="File to output CNV windows to.",required=True)
parser_15.add_argument("-gff",'--GFF',help="GFF containing genes or other factor to identify if CNVs are present in each factor.")
parser_15.add_argument("-c",'--CUTOFF',help="Confidence cutoff, CNVs below this value are removed.",type=float,default=0.5)
parser_15.add_argument("-w",'--WINDOW_SIZE',help="Window size (bp).",type=int,default=50)
parser_15.set_defaults(mode='quantify')
# parser_14.add_argument('-foo', '--foo', action='store_true')
# parser_14.set_defaults(mode='readme')
parser.add_argument("-f",'--FUNCTION',help="The function which will be used within the script, the options are: predict, winStat, simCNV, simChr, fvecTrain, fvecSample, recreateTotal, covSummary, winStatExtra, subTrain,summarize",type=str)
parser.add_argument("-d",'--DIRECTORY',help="Path to export simulated files such as beds containing deletions & duplications or simulated fasta")
parser.add_argument("-id",'--ID',help="The sample ID",type=str, default="NA")
parser.add_argument("-i",'--INPUT',help="The input file across the various functions, may differ in format",type=str)
parser.add_argument("-o",'--OUTPUT',help="The output file across the various functions, may differ in format",type=str)
parser.add_argument('-quiet','--QUIET', help="If set, does not print any messages.", action='store_true')
if len(sys.argv)==1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
argsDict = vars(args)
function=args.FUNCTION
"""
files required for input, a training file with the coverages and std dev of different classes
an input bed file with coverages by window
an output bedfile
"""
if argsDict['mode'] in ['predict'] or function == "predict":
"""
input file is in the following format:
CHROMOSOME START END STRAIN COV-5 COV-4 COV-3 COV-2 COV-1 COV COV+1 COV+2 COV+3 COV+4 COV+5 SD-5 SD-4 SD-3 SD-2 SD-1 SD SD+1 SD+2 SD+3 SD+4 SD+5
Where COV is the average coverage of a window, up to 5 up and downstrain of the focal window, and SD is the standard deviation of coverage in each window
e.g.
2L 8000 8249 N 1.073 0.902 1.085 0.927 0.976 1.024 1 1.049 1.183 1.122 0.951 0.141 0.11 0.152 0.067 0.093 0.198 0.163 0.126 0.111 0.117 0.302
output file is in the following format:
CHROMOSOME START END STRAIN MEDIAN_COV PREDICTED_CNV PROBABILITY PREDICTED_PLOIDY PROBABILITY
e.g.
2L 8000 8249 N 1.024 N 1.0 1 1.0
"""
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn.externals import joblib
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import ExtraTreesClassifier
import os
if os.path.isfile(args.TRAIN) == True:
if args.QUIET == False:
print("Classifying over a single training set")
clf = joblib.load(args.TRAIN)
clf2 = joblib.load(args.TRAIN + "2")
input = args.INPUT
test_in = pd.read_csv(args.INPUT,header=None,sep="\t")
output = args.OUTPUT
test_in2 = test_in.drop(test_in[[0,1,2,3]], axis=1)
test_Y = []
test_in2.columns = list(range(0,len(test_in2.columns)))
test_in2_y = []
test_in2_yA = []
test_in2_y2 = []
test_in2_yA2 = []
if args.QUIET == False:
print("Classifying windows")
test_in2_y.extend(list(clf.predict(test_in2)))
test_in2_y2.extend(list(clf2.predict(test_in2)))
test_in2_yA.extend(list(pd.DataFrame(clf.predict_proba(test_in2),columns=None).max(axis=1)))
test_in2_yA2.extend(list(pd.DataFrame(clf2.predict_proba(test_in2),columns=None).max(axis=1)))
out_df = pd.DataFrame({"chr":list(test_in[0]), "start":list(test_in[1]), "end":list(test_in[2]), "ID":list(test_in[3]), "coverage":list(test_in2[(len(test_in2.columns)-5)/2]) ,"CNV":test_in2_y,"CNVprob":test_in2_yA,"ploidy":test_in2_y2,"ploidyprob":test_in2_yA2})
out_df.to_csv(output,sep="\t",index =False,header=None)
elif os.path.isfile(args.TRAIN) == False and os.path.isdir(args.TRAIN) == True:
if args.QUIET == False:
print("Bootstrapping over multiple training sets")
pathe = args.TRAIN
if pathe.endswith("/") == False:
pathe += "/"
out_bs_1 = pd.DataFrame(columns=[0])
out_bs_2 = pd.DataFrame(columns=[0])
count = 0
test_in = pd.read_csv(args.INPUT,header=None,sep="\t")
output = args.OUTPUT
test_in2 = test_in.drop(test_in[[0,1,2,3]], axis=1)
test_Y = []
test_in2.columns = list(range(0,len(test_in2.columns)))
for d,s,f in os.walk(pathe):
for inf in f:
if os.path.isfile(pathe + inf) == True and os.path.isfile(pathe + inf + "2") == True:
if args.QUIET == False:
print("Processing classifier " + str(count+1))
clf = joblib.load(pathe + inf)
clf2 = joblib.load(pathe + inf + "2")
out_bs_1[count] = list(clf.predict(test_in2))
out_bs_2[count] = list(clf2.predict(test_in2))
count += 1
if args.QUIET == False:
print("Estimating consensus states")
bs_1 = list(out_bs_1.mode(axis=1)[0])
bs_1_prob = list(out_bs_1[out_bs_1 == bs_1].count(axis='columns')/float(len(out_bs_1.columns)))
bs_2 = list(out_bs_2.mode(axis=1)[0])
bs_2_prob = list(out_bs_2[out_bs_2 == bs_2].count(axis='columns')/float(len(out_bs_2.columns)))
out_df = pd.DataFrame({"chr":list(test_in[0]), "start":list(test_in[1]), "end":list(test_in[2]), "ID":list(test_in[3]), "coverage":list(test_in2[(len(test_in2.columns)/5)-1]) ,"CNV":bs_1,"CNVprob":bs_1_prob,"ploidy":bs_2,"ploidyprob":bs_2_prob})
out_df.to_csv(output,sep="\t",index =False,header=None)
elif argsDict['mode'] in ['classify'] or function == "classify":
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn.externals import joblib
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import ExtraTreesClassifier
models = {"RFC100":RandomForestClassifier(n_estimators=100), "RFC500":RandomForestClassifier(n_estimators=500), "CNN":MLPClassifier(), "ETC100":ExtraTreesClassifier(n_estimators=100), "ETC500":ExtraTreesClassifier(n_estimators=500), "DTC":DecisionTreeClassifier()}
training_in = pd.read_csv(args.INPUT,header=None,sep="\t")
X = training_in.drop(training_in[[0,1,2,3,4]], axis=1)
X.columns = list(range(0,len(X.columns)))
Y = list(training_in[3])
clf = models[args.MODEL]
clf.fit(X,Y)
Y2 = list(map(str,list(training_in[4])))
clf2 = RandomForestClassifier(n_estimators=100)
clf2.fit(X,Y2)
joblib.dump(clf, args.OUTPUT)
joblib.dump(clf2, args.OUTPUT + "2")
if args.QUIET == False:
print("Classifier Trained")
elif argsDict['mode'] in ['winStat'] or function == "winStat":
import pandas as pd
import numpy as np
import scipy.stats
import os
"""
input is generated by genomeCoverageBed -d in the following format:
CHR POS COVERAGE
Following that, per chromosome, find the median coverage of covered bases.
Can find median for all chromosomes or a specified set of them, one chromosome ID per line.
"""
os.system(bedtools_path + " makewindows -b " + args.CHROMOSOME + " -w " + str(int(args.WINDOW_SIZE) -1) + " -s " + str(args.STEP_SIZE) + " > dudeml_chrs_wins.bed")
os.system(bedtools_path + " genomecov -d -ibam " + args.INPUT + " > dudeml_temp_covsperbase.bed")
os.system(samtools_path + " view -hb -F 0x02 " + args.INPUT + " > dudeml_notproper.bam")
os.system(samtools_path + " view -hb -f 2048 " + args.INPUT + " > dudeml_split.bam")
os.system(samtools_path + " view -H " + args.INPUT + " > dudeml_header.txt")
os.system(samtools_path + " merge -f -h dudeml_header.txt dudeml_temp_splits.bam dudeml_notproper.bam dudeml_split.bam")
os.system(bedtools_path + " coverage -counts -a dudeml_chrs_wins.bed -b dudeml_temp_splits.bam > dudeml_cov_splits.bed")
if args.QUIET == False:
print("Calculating median coverage")
test = pd.read_table("dudeml_temp_covsperbase.bed",header=None)
splits = pd.read_table("dudeml_cov_splits.bed",header=None)
covs_median = {}
splits_median = {}
for line in open(args.CHROMOSOME):
i = line.split()[0].rstrip()
covs_median[i] = test[2][test[2] != 0][test[0] == i].median()
splits_median[i] = splits[3][splits[3] != 0][splits[0] == i].median()
splits[3][splits[0] == i] = splits[3][splits[0] == i]/splits_median[i]
print(i,covs_median[i],splits_median[i])
splits[3] = np.around(splits[3],4)
splits.columns = ["chr","start","end","split"]
if args.SUMMARY is not None:
out = open(args.SUMMARY,"w")
for i in covs_median:
out.write(i + "\t" + str(covs_median[i]) + "\n")
out.close()
if args.QUIET == False:
print("Calculating relative median coverage per window")
chr_stats = []
count = 0
"function takes in a pandas dataframe column and outputs a dataframe containing the start and end of window, as well as window coverage median and standard deviation"
def rolling_with_step(chr,s, window, step):
vert_idx_list = np.arange(1, s.size - window, step)
hori_idx_list = np.arange(window)
A, B = np.meshgrid(hori_idx_list, vert_idx_list)
idx_array = A + B
x_array = s.values[idx_array]
idx = list(s.index[vert_idx_list + (int(window))])
med = list(np.around(list(map(np.median, x_array)),4))
intq = list(np.around(list(map(scipy.stats.iqr, x_array)),4))
means = list(np.around(list(map(np.mean, x_array)),4))
std = list(np.around(list(map(np.std, x_array)),4))
return pd.DataFrame({"chr":chr,"start":vert_idx_list,"end":vert_idx_list + window,"med":med,"iqr":intq,"mean":means,"std":std})
out_df = pd.DataFrame(columns=["chr","start","end","med","iqr","mean","std"])
"""
For each chromosome, divide each base by the chromosome median (or total median).
Following that, finds the median and standard deviation for windows of a given size
"""
for i in covs_median:
test_chrs = test[test[0] == i]
test_chrs_3 = test_chrs[2]/covs_median[i]
wins_step = rolling_with_step(i,test_chrs_3,args.WINDOW_SIZE-1,args.STEP_SIZE)
if args.QUIET == False:
print("Chromosome " + str(i) + " processed")
out_df = pd.concat([out_df,wins_step])
out_df['chr']=out_df['chr'].astype(str)
splits['chr']=splits['chr'].astype(str)
out_df['start']=out_df['start'].astype(int)
splits['start']=splits['start'].astype(int)
out_df['end']=out_df['end'].astype(int)
splits['end']=splits['end'].astype(int)
win_ex = pd.merge(out_df,splits,on=["chr","start","end"])
win_ex.to_csv(args.OUTPUT,sep="\t",index =False,columns=None,header=None)
os.remove("dudeml_chrs_wins.bed")
os.remove("dudeml_temp_covsperbase.bed")
os.remove("dudeml_notproper.bam")
os.remove("dudeml_split.bam")
os.remove("dudeml_header.txt")
os.remove("dudeml_temp_splits.bam")
os.remove("dudeml_cov_splits.bed")
elif argsDict['mode'] in ['simChr'] or function == "simChr":
import pandas as pd
import numpy as np
pathOut = args.DIRECTORY
if pathOut != "" and pathOut.endswith("/") == False:
pathOut += "/"
from Bio import SeqIO
import os
os.system("cp " + args.FASTA + " " + pathOut + args.ID + "_noCNV.fa")
#os.system("maskFastaFromBed -fi " + args.FASTA + " -bed " + args.TE + " -fo " + pathOut + args.ID + "_noCNV.fa")
chrs = []
chr = {}
chr2 = {}
for r in SeqIO.parse(open(pathOut + args.ID + "_noCNV.fa"),"fasta"):
chrs.append(r.id)
chr[r.id] = str(r.seq)
chr2[r.id] = ""
for line in open(args.cnvBed):
if line.split()[3].rstrip() == "normal":
chr2[line.split()[0]] += chr[line.split()[0]][int(line.split()[1]):int(line.split()[2])]
elif line.split()[3].rstrip() == "del":
pass
elif line.split()[3].rstrip() == "dup":
if float(line.split()[-1].rstrip()) > 1.5:
for v in range(0,int(line.split()[-1].rstrip())):
chr2[line.split()[0]] += chr[line.split()[0]][int(line.split()[1]):int(line.split()[2])]
else:
chr2[line.split()[0]] += chr[line.split()[0]][int(line.split()[1]):int(line.split()[2])]
chr2[line.split()[0]] += chr[line.split()[0]][int(line.split()[1]):int(line.split()[2])]
for i in chrs:
out = open(pathOut + i + "_" + args.ID + "_CNV.fa","w")
out.write(">" + i + "\n" + chr2[i] + "\n")
out.close()
os.remove(pathOut + args.ID + "_noCNV.fa")
elif argsDict['mode'] in ['fvecTrain'] or function == "fvecTrain":
import os
import pandas as pd
import numpy as np
import math
from shutil import copyfile
pathOut = args.DIRECTORY
if pathOut != "" and pathOut.endswith("/") == False:
pathOut += "/"
def roundup(x):
return int(math.ceil(x / args.WINDOW_SIZE)) * args.WINDOW_SIZE
def rounddown(x):
return int(math.floor(x / args.WINDOW_SIZE)) * args.WINDOW_SIZE
"""If ignoring TEs is required, due to their inherit weirdness with split reads/coverage, this removes windows with TE sequences."""
if args.TE is not None:
os.system(bedtools_path + " intersect -v -wa -a "+ args.INPUT + " -b " + args.TE + " -f " + str(args.CUTOFF) + " > "+ pathOut + "dudeml_temp.bed")
elif args.TE is None:
copyfile(args.INPUT, pathOut + "dudeml_temp.bed")
del_cp = {}
dup_cp = {}
dup_temp_1 = open("dup_temp_1.bed","w")
del_temp_1 = open("del_temp_1.bed","w")
"""Reformat deletion and duplication windows to find overlapping windows with"""
for line in open(args.DUPLICATION):
line = line.rstrip()
cp = str((float(line.split()[5])*float(line.split()[4])) + ((1-float(line.split()[4])) * 1))
dup_temp_1.write("\t".join([line.split()[0],str(rounddown(int(line.split()[1]))),str(roundup(int(line.split()[2]))),cp]) + "\n")
for line in open(args.DELETION):
line = line.rstrip()
cp = str((float(line.split()[5])*float(line.split()[4])) + ((1-float(line.split()[4])) * 1))
del_temp_1.write("\t".join([line.split()[0],str(rounddown(int(line.split()[1]))),str(roundup(int(line.split()[2]))),cp]) + "\n")
dup_temp_1.close()
del_temp_1.close()
os.system(bedtools_path + " makewindows -b dup_temp_1.bed -w " + str(args.WINDOW_SIZE) + " -s " + str(args.STEP_SIZE) + " -i src > dup_temp_2.bed")
os.system(bedtools_path + " makewindows -b del_temp_1.bed -w " + str(args.WINDOW_SIZE) + " -s " + str(args.STEP_SIZE) + " -i src > del_temp_2.bed")
for line in open("dup_temp_2.bed"):
dup_cp[line.split()[0] + "\t" + str(int(line.split()[1]) + 1) + "\t" + line.split()[2]] = line.split()[3]
for line in open("del_temp_2.bed"):
del_cp[line.split()[0] + "\t" + str(int(line.split()[1]) + 1) + "\t" + line.split()[2]] = line.split()[3]
out = open(pathOut + "dudeml_temp2.bed","w")
for line in open(pathOut + "dudeml_temp.bed"):
copy = "N"
line = line.rstrip()
liner = line.split()
if line.split()[0] + "\t" + line.split()[1] + "\t" + str(int(line.split()[2])) in dup_cp:
out.write("\t".join([liner[0],liner[1],liner[2],"dup",dup_cp[line.split()[0] + "\t" + line.split()[1] + "\t" + str(int(line.split()[2]))], "\t".join(line.split()[3:])]) + "\n")
elif line.split()[0] + "\t" + line.split()[1] + "\t" + str(int(line.split()[2])) in del_cp:
out.write("\t".join([liner[0],liner[1],liner[2],"del",del_cp[line.split()[0] + "\t" + line.split()[1] + "\t" + str(int(line.split()[2]))], "\t".join(line.split()[3:])]) + "\n")
else:
if len(liner) == 5 or len(liner) == 7 or len(liner) == 8:
out.write("\t".join([liner[0],liner[1],liner[2],"N","1.0", "\t".join(line.split()[3:])]) + "\n")
out.close()
v=args.WINDOW_SIZE
if args.STEP_SIZE is not None:
v=int(args.STEP_SIZE)
elif args.STEP_SIZE is None:
v=int(args.WINDOW_SIZE)
window_pos = [[0,1,2,3,4,5]] * ((2*args.WINDOWS) + 1)
output = open(args.OUTPUT,"w")
count = 0
for line in open(pathOut + "dudeml_temp2.bed"):
count += 1
if count % 100000 == 0:
if args.QUIET == False:
print(int(count),"windows processed")
window_pos += [window_pos.pop(0)]
window_pos[(2*args.WINDOWS)] = line.rstrip().split()
class_ud = "N"
if len(list(set([item[0] for item in window_pos]))) == 1:
if window_pos[args.WINDOWS][3] == "dup" or window_pos[args.WINDOWS][3] == "Dup":
class_ud = "Dup"
elif window_pos[args.WINDOWS][3] == "del" or window_pos[args.WINDOWS][3] == "Del":
class_ud = "Del"
cc = 0
cv = 0
for k in window_pos:
if int(k[1]) == int(window_pos[args.WINDOWS][1]) - (v*(args.WINDOWS - cc)):
cv += 1
cc += 1
if cv == len(window_pos):
cq = [str(window_pos[args.WINDOWS][0]),str(window_pos[args.WINDOWS][1]), str(window_pos[args.WINDOWS][2]), class_ud,str(window_pos[args.WINDOWS][4])]
for k in window_pos:
cq.append(str(k[5]))
cq.append(str(k[6]))
cq.append(str(k[7]))
cq.append(str(k[8]))
cq.append(str(k[9]))
output.write("\t".join(cq) + "\n")
output.close()
os.remove("dudeml_temp.bed")
os.remove("dudeml_temp2.bed")
os.remove("dup_temp_1.bed")
os.remove("del_temp_1.bed")
os.remove("dup_temp_2.bed")
os.remove("del_temp_2.bed")
elif argsDict['mode'] in ['fvecSample'] or function == "fvecSample":
import os
import pandas as pd
import numpy as np
import gzip
from shutil import copyfile
pathOut = args.DIRECTORY
if pathOut != "" and pathOut.endswith("/") == False:
pathOut += "/"
test = pd.read_csv(args.INPUT,header=None,sep="\t")
if args.OUTPUT.endswith(".gz"):
output = open(args.OUTPUT.rstrip(".gz"), 'w')
else:
output = open(args.OUTPUT,"w")
if args.TE is not None:
os.system(bedtools_path + " intersect -v -wa -a "+ args.INPUT + " -b " + args.TE + " -f " + str(args.CUTOFF) + " > "+ pathOut + "dudeml_temp.bed")
elif args.TE is None:
copyfile(args.INPUT, pathOut + "dudeml_temp.bed")
v=args.WINDOW_SIZE
if args.STEP_SIZE is not None:
v=int(args.STEP_SIZE)
elif args.STEP_SIZE is None:
v=int(args.WINDOW_SIZE)
window_pos = [[0,1,2,3,4,5]] * ((2*args.WINDOWS) + 1)
count = 0
for line in open(pathOut + "dudeml_temp.bed"):
count += 1
if count % 100000 == 0:
if args.QUIET == False:
print(int(count),"windows processed")
window_pos += [window_pos.pop(0)]
window_pos[(2*args.WINDOWS)] = line.rstrip().split()
if len(list(set([item[0] for item in window_pos]))) == 1:
cc = 0
cv = 0
for k in window_pos:
if int(k[1]) == int(window_pos[args.WINDOWS][1]) - (v*(args.WINDOWS- cc)):
cv += 1
cc += 1
if cv == len(window_pos):
cq = [str(window_pos[args.WINDOWS][0]),str(window_pos[args.WINDOWS][1]), str(window_pos[args.WINDOWS][2]), str(args.ID)]
for k in window_pos:
cq.append(str(k[3]))
cq.append(str(k[4]))
cq.append(str(k[5]))
cq.append(str(k[6]))
cq.append(str(k[7]))
output.write("\t".join(cq) + "\n")
if args.OUTPUT.endswith(".gz"):
os.system("gzip " + args.OUTPUT.rstrip(".gz"))
os.remove(pathOut + "dudeml_temp.bed")
elif argsDict['mode'] in ['simCNV'] or function == "simCNV":
import pandas as pd
import numpy as np
from Bio import SeqIO
import random
import os
df_del = pd.DataFrame(columns = [1,2,3,4])
df_dup = pd.DataFrame(columns = [1,2,3,4])
pathOut = args.DIRECTORY
if pathOut != "" and pathOut.endswith("/") == False:
pathOut += "/"
out = open(pathOut + "chrs.bed","w")
if args.QUIET == False:
print("Generating duplication and deletion coordinates")
for r in SeqIO.parse(open(args.FASTA),"fasta"):
out.write("\t".join([r.id,"1",str(len(str(r.seq)))]) + "\n")
dup_lengths = []
del_lengths = []
cnv_count = round((len(str(r.seq))/1000000)*args.CNV)
while len(dup_lengths) < cnv_count:
x = round(np.random.normal(args.dupLength, args.CNVsize, 1)[0])
if x > 50:
dup_lengths.append(x)
while len(del_lengths) < cnv_count:
x = round(np.random.normal(args.delLength, args.CNVsize, 1)[0])
if x > 50:
del_lengths.append(x)
dup_start = list(np.random.randint(len(str(r.seq)), size=(1, cnv_count))[0])
del_start = list(np.random.randint(len(str(r.seq)), size=(1, cnv_count))[0])
dup_ends = list(map(int,[a + b for a, b in zip(dup_start, dup_lengths)]))
del_ends = list(map(int,[a + b for a, b in zip(del_start, del_lengths)]))
dups = pd.DataFrame({1:[r.id]*cnv_count,2:dup_start,3:dup_ends,4:dup_lengths})
dels = pd.DataFrame({1:[r.id]*cnv_count,2:del_start,3:del_ends,4:del_lengths})
df_dup = df_dup.append(dups)
df_del = df_del.append(dels)
out.close()
df_dup.to_csv(pathOut + "dup.bed",header=False,index=False,sep="\t")
df_del.to_csv(pathOut + "del.bed",header=False,index=False,sep="\t")
os.system(bedtools_path + " sort -i " + pathOut + "dup.bed | " + bedtools_path + " merge -i stdin > " + pathOut + "dup2.bed")
os.system(bedtools_path + " sort -i " + pathOut + "del.bed | " + bedtools_path + " merge -i stdin > " + pathOut + "del2.bed")
if args.TE is not None:
os.system(bedtools_path + " intersect -v -wa -a "+ pathOut + "del2.bed -b " + args.TE + " -f " + str(args.CUTOFF) + " > "+ pathOut + "del3.bed")
os.system(bedtools_path + " intersect -v -wa -a "+ pathOut + "dup2.bed -b " + args.TE + " -f " + str(args.CUTOFF) + " > "+ pathOut + "dup3.bed")
elif args.TE is None:
os.system("cp "+ pathOut + "del2.bed "+ pathOut + "del3.bed")
os.system("cp "+ pathOut + "dup2.bed "+ pathOut + "dup3.bed")
os.system(bedtools_path + " intersect -wa -v -a " + pathOut + "dup3.bed -b " + pathOut + "del3.bed > " + pathOut + "dup4.bed")
os.system(bedtools_path + " intersect -wa -v -a " + pathOut + "del3.bed -b " + pathOut + "dup3.bed > " + pathOut + "del4.bed")
no_chrs = list(range(1, int(args.NUMBER)+1))
chr_freq = {}
for i in no_chrs:
chr_freq[i] = i/args.NUMBER
no_chrs = list(range(1, int(args.NUMBER)+1))
chr_freq = {}
if args.QUIET == False:
print("Generating duplication and deletion frequencies")
for i in no_chrs:
chr_freq[i] = round(i/args.NUMBER,3)
for i in ["del","dup"]:
out = open(pathOut + str(i) + "5.bed","w")
for line in open(pathOut + i + "4.bed"):
if i == "del":
num = random.randint(1,args.NUMBER)
out.write(line.rstrip() + "\tdel\t" + str(chr_freq[num]) + "\t0\n")
elif i == "dup":
num = random.randint(1,args.NUMBER)
count = np.random.choice([2,3,4,5,6,7,8,9,10], 1, p=[0.5, 0.1, 0.1, 0.05, 0.05,0.05,0.05,0.05,0.05])[0]
freqs = num/args.NUMBER
cp = (count*freqs) + ((1-freqs) * 1)
while cp == 1.0:
num = random.randint(1,args.NUMBER)
count = np.random.choice([2,3,4,5,6,7,8,9,10], 1, p=[0.5, 0.1, 0.1, 0.05, 0.05,0.05,0.05,0.05,0.05])[0]
out.write(line.rstrip() + "\tdup\t" + str(chr_freq[num]) + "\t" + str(count) + "\n")
out.close()
for j in chr_freq:
out = open(pathOut + i + "." + str(j) + ".bed","w")
for line in open(pathOut + i + "5.bed"):
if float(line.split()[4]) >= chr_freq[j]:
out.write(line)
out.close()
if args.QUIET == False:
print("Removing overlaps, generating total file")
for i in no_chrs:
print("Creating bedfiles for sample " + str(i))
os.system("bedtools makewindows -b " + pathOut + "chrs.bed -w 5 > " + pathOut + "normal." + str(i) + ".bed")
os.system(bedtools_path + " intersect -v -wa -a " + pathOut + "normal." + str(i) + ".bed -b " + pathOut + "dup." + str(i) + ".bed | " + bedtools_path + " intersect -v -wa -a stdin -b " + pathOut + "del." + str(i) + ".bed | " + bedtools_path + " sort -i stdin | " + bedtools_path + " merge -i stdin > " + pathOut + "normal2." + str(i) + ".bed")
out = open(pathOut + "normal3." + str(i) + ".bed","w")
for line in open(pathOut + "normal2." + str(i) + ".bed"):
out.write(line.rstrip() + "\tnormal\t1\t1\n")
out.close()
os.system("cat " + pathOut + "normal3." + str(i) + ".bed " + pathOut + "dup." + str(i) + ".bed " + pathOut + "del." + str(i) + ".bed | " + bedtools_path + " sort -i stdin > " + pathOut + "total." + str(i) + ".bed")
os.remove(pathOut + "normal3." + str(i) + ".bed")
os.remove(pathOut + "normal2." + str(i) + ".bed")
os.remove(pathOut + "normal." + str(i) + ".bed")
os.remove(pathOut + "del.bed")
os.remove(pathOut + "del2.bed")
os.remove(pathOut + "del3.bed")
os.remove(pathOut + "del4.bed")
os.remove(pathOut + "del5.bed")
os.remove(pathOut + "dup.bed")
os.remove(pathOut + "dup2.bed")
os.remove(pathOut + "dup3.bed")
os.remove(pathOut + "dup4.bed")
os.remove(pathOut + "dup5.bed")
os.remove(pathOut + "chrs.bed")
elif argsDict['mode'] in ['recreateTotal'] or function == "recreateTotal":
import pandas as pd
import numpy as np
from Bio import SeqIO
import random
import os
out = open(pathOut + "chrs.bed","w")
for r in SeqIO.parse(open(args.FASTA),"fasta"):
out.write("\t".join([r.id,"1",str(len(str(r.seq)))]) + "\n")
out.close()
if args.QUIET == False:
print("recreating bedfiles for sample")
pathOut = args.DIRECTORY
if pathOut != "" and pathOut.endswith("/") == False:
pathOut += "/"
os.system("bedtools makewindows -b " + pathOut + "chrs.bed -w 3 > " + pathOut + "normal.bed")
os.system(bedtools_path + " intersect -v -wa -a " + pathOut + "normal." + str(i) + ".bed -b " + args.DUPLICATION + " | " + bedtools_path + " intersect -v -wa -a stdin -b " + args.DELETION + " | " + bedtools_path + " sort -i stdin | " + bedtools_path + " merge -i stdin > " + pathOut + "normal2.bed")
out = open(pathOut + "normal3.bed","w")
for line in open(pathOut + "normal2.bed"):
out.write(line.rstrip() + "\tnormal\t1\t1\n")
out.close()
os.system("cat " + pathOut + "normal3.bed " + args.DUPLICATION + " " + args.DELETION + " | " + bedtools_path + " sort -i stdin > " + args.OUTPUT)
os.remove(pathOut + "normal3.bed")
os.remove(pathOut + "normal2.bed")
os.remove(pathOut + "normal.bed")
elif argsDict['mode'] in ['covSummary'] or function == "covSummary":
test = pd.read_csv(args.INPUT,header=None,sep="\t")
covs_median = {}
covs_std = {}
covs_mean = {}
if args.CHROMOSOME is None:
chrs = list(test[0].unique())
for i in chrs:
test2 = test[2][test[2] != 0][test[0] == i]
covs_median[i] = test2[2].median()
covs_mean[i] = test2[2].mean()
covs_std[i] = test2[2].std()
print("\t".join(list(map(str,i,covs_median[i],covs_mean[i],covs_std[i]))))
elif args.CHROMOSOME is not None:
for line in open(args.CHROMOSOME):
i = line.split()[0].rstrip()
test2 = test[2][test[2] != 0][test[0] == i]
covs_median[i] = test2[2].median()
covs_mean[i] = test2[2].mean()
covs_std[i] = test2[2].std()
print(i,covs_median[i],covs_mean[i],covs_std[i])
covs_median["total"] = test[2][test[2] != 0].median()
covs_mean["total"] = test[2][test[2] != 0].mean()
covs_std["total"] = test[2][test[2] != 0].std()
if args.QUIET == False:
print("total",covs_median["total"],covs_mean["total"],covs_std["total"])
if(isset(args.SUMMARY)):
out = open(args.SUMMARY,"w")
for i in covs_median:
if args.QUIET == False:
print("\t".join(list(map(str,i,covs_median[i],covs_mean[i],covs_std[i]))))
out.write("\t".join(list(map(str,i,covs_median[i],covs_mean[i],covs_std[i]))) + "\n")
out.close()
elif argsDict['mode'] in ['winStatExtra']:
import pandas as pd
import numpy as np
cov = float(args.COVERAGE)
test = pd.read_csv(args.INPUT,header=None,sep="\t")
v=100
if args.STEP_SIZE is not None:
v=int(args.STEP_SIZE)
elif args.STEP_SIZE is None:
v=int(args.WINDOW_SIZE)
def rolling_with_step(chr,s, window, step):
vert_idx_list = np.arange(0, s.size - window, step)
hori_idx_list = np.arange(window)
A, B = np.meshgrid(hori_idx_list, vert_idx_list)
idx_array = A + B
x_array = s.values[idx_array]
idx = list(s.index[vert_idx_list + (int(window))])
med = list(np.around(list(map(np.median, x_array)),4))
std = list(np.around(list(map(np.std, x_array)),4))
return pd.DataFrame({"chr":chr,"start":vert_idx_list,"end":vert_idx_list+window,"med":med,"std":std})
out_df = pd.DataFrame(columns=["chr","start","end","med","std"])
if args.CHROMOSOME is None:
chrs = list(test[0].unique())
for i in chrs:
test_chrs = test[test[0] == i]
#test_chrs[3] = test_chrs[2]
test_chrs_3 = test_chrs[2]/cov
wins_step = rolling_with_step(i,test_chrs_3,args.WINDOW_SIZE,v)
out_df = pd.concat([out_df,wins_step])
elif args.CHROMOSOME is not None:
chrs = []
for line in open(args.CHROMOSOME):
chrs.append(line.split()[0].rstrip())
for i in chrs:
test_chrs = test[test[0] == i]
test_chrs_3 = test_chrs[2]/cov
wins_step = rolling_with_step(i,test_chrs_3,args.WINDOW_SIZE,v)
out_df = pd.concat([out_df,wins_step])
out_df = out_df.replace(r'\\n','', regex=True)
out_df.to_csv(args.OUTPUT,sep="\t",index =False,columns=None,header=None)
elif argsDict['mode'] in ['subTrain'] or function == "subTrain":
import pandas as pd
import numpy as np
if args.NUMBER < 1.0:
fract = float(args.NUMBER)
test = pd.read_csv(args.INPUT,header=None,sep="\t")
out_df = pd.DataFrame(columns=test.columns)
dict_types = test[3].value_counts().to_dict()
for i in dict_types:
if dict_types[i] * fract < 10000.0:
subwin = test[test[3] ==i]
out_df = pd.concat([out_df,subwin])
elif dict_types[i] * fract > 10000.0:
subwin = test[test[3] ==i].sample(replace = True, frac = fract)
out_df = pd.concat([out_df,subwin])
elif args.NUMBER > 1:
count = int(args.NUMBER)
test = pd.read_csv(args.INPUT,header=None,sep="\t")
out_df = pd.DataFrame(columns=test.columns)
dict_types = test[3].value_counts().to_dict()
for i in dict_types:
subwin = test[test[3] ==i].sample(replace = True, n = count)
out_df = pd.concat([out_df,subwin])
out_df = out_df.round(3)
out_df.to_csv(args.OUTPUT,sep="\t",index =False,columns=None,header=None)
elif argsDict['mode'] in ['simReads'] or function == "simReads":
from Bio import SeqIO
import os
cov = args.COVERAGE
pathOut = args.DIRECTORY
if pathOut != "" and pathOut.endswith("/") == False:
pathOut += "/"
chr_lens = {}
if args.SE == False:
for r in SeqIO.parse(open(args.FASTA),"fasta"):
chr_lens[r.id] = len(str(r.seq))
if args.CHROMOSOME is not None:
for line in open(args.CHROMOSOME,"r"):
chr = line.split()[0].rstrip()
reads = round(chr_lens[chr]/(2*int(args.READ_LENGTH)))*int(cov)
os.system(wgsim_path + " -N " + str(reads) + " -1 " + str(args.READ_LENGTH) + " -2 " + str(args.READ_LENGTH) + " " + pathOut + chr + "_" + args.ID + "_CNV.fa " + pathOut + chr + "_1.fq " + pathOut + chr + "_2.fq > stdout")
for line in open(args.CHROMOSOME,"r"):
chr = line.split()[0].rstrip()
os.system("cat " + pathOut + chr + "_1.fq >> " + pathOut + args.ID + "_" + str(args.COVERAGE) + "_1.fq")
os.system("cat " + pathOut + chr + "_2.fq >> " + pathOut + args.ID + "_" + str(args.COVERAGE) + "_2.fq")
os.remove(pathOut + chr + "_1.fq")
os.remove(pathOut + chr + "_2.fq")
elif args.CHROMOSOME is None:
for chr in chr_lens:
reads = round(chr_lens[chr]/(2*int(args.READ_LENGTH)))*int(cov)
os.system(wgsim_path + " -N " + str(reads) + " -1 " + str(args.READ_LENGTH) + " -2 " + str(args.READ_LENGTH) + " " + pathOut + chr + "_" + args.ID + "_CNV.fa " + pathOut + chr + "_1.fq " + pathOut + chr + "_2.fq > stdout")
for chr in chr_lens:
os.system("cat " + pathOut + chr + "_1.fq >> " + pathOut + args.ID + "_" + str(args.COVERAGE) + "_1.fq")
os.system("cat " + pathOut + chr + "_2.fq >> " + pathOut + args.ID + "_" + str(args.COVERAGE) + "_2.fq")
os.remove(pathOut + chr + "_1.fq")
os.remove(pathOut + chr + "_2.fq")
elif args.SE == True:
for r in SeqIO.parse(open(args.FASTA),"fasta"):
chr_lens[r.id] = len(str(r.seq))
if args.CHROMOSOME is not None:
for line in open(args.CHROMOSOME,"r"):
chr = line.split()[0].rstrip()
reads = round(chr_lens[chr]/(int(args.READ_LENGTH)))*int(cov)
os.system(wgsim_path + " -N " + str(reads) + " -1 " + str(args.READ_LENGTH) + " " + pathOut + chr + "_" + args.ID + "_CNV.fa " + pathOut + chr + ".fq /dev/null > stdout")
for line in open(args.CHROMOSOME,"r"):
chr = line.split()[0].rstrip()
os.system("cat " + pathOut + chr + ".fq >> " + pathOut + args.ID + "_" + str(args.COVERAGE) + ".fq")
os.remove(pathOut + chr + ".fq")
elif args.CHROMOSOME is None:
for chr in chr_lens:
reads = round(chr_lens[chr]/(2*int(args.READ_LENGTH)))*int(cov)
os.system(wgsim_path + " -N " + str(reads) + " -1 " + str(args.READ_LENGTH) + " " + pathOut + chr + "_" + args.ID + "_CNV.fa " + pathOut + chr + ".fq /dev/null > stdout")
for chr in chr_lens:
os.system("cat " + pathOut + chr + ".fq >> " + pathOut + args.ID + "_" + str(args.COVERAGE) + ".fq")
os.remove(pathOut + chr + ".fq")
elif argsDict['mode'] in ['summarize'] or function == "summarize":
import os
import sys
import math
import shutil
os.system("grep -w 'Del' " + args.INPUT + " | " + bedtools_path + " sort -i stdin | " + bedtools_path + " merge -c 4,6,7,8,9 -o distinct,mode,mode,mode,mode -d " + str(args.WINDOW_SIZE) + " -i stdin > del_temp_total.bed")
os.system("grep -w 'Dup' " + args.INPUT + " | " + bedtools_path + " sort -i stdin | " + bedtools_path + " merge -c 4,6,7,8,9 -o distinct,mode,mode,mode,mode -d " + str(args.WINDOW_SIZE) + " -i stdin > dup_temp_total.bed")
os.system("grep -v 'Dup' " + args.INPUT + " | grep -v 'Del' > non_temp_total.bed")
if args.DELETION is not None and args.DUPLICATION is not None:
os.system(bedtools_path + " intersect -wa -wb -a " + args.DELETION + " -b del_temp_total.bed > Del_temp_True-Positive.bed")
os.system(bedtools_path + " intersect -wa -wb -a " + args.DUPLICATION + " -b dup_temp_total.bed > Dup_temp_True-Positive.bed")
os.system(bedtools_path + " intersect -wa -v -a " + args.DELETION + " -b del_temp_total.bed > Del_temp_False-Negative.bed")
os.system(bedtools_path + " intersect -wa -v -a " + args.DUPLICATION + " -b dup_temp_total.bed > Dup_temp_False-Negative.bed")
os.system(bedtools_path + " intersect -wa -v -a del_temp_total.bed -b " + args.DELETION + " > Del_temp_False-Positive.bed")
os.system(bedtools_path + " intersect -wa -v -a dup_temp_total.bed -b " + args.DUPLICATION + " > Dup_temp_False-Positive.bed")
for i in ["Del","Dup"]:
out = open(i + "_temp_False-Negative2.bed", "w")
for line in open(i + "_temp_False-Negative.bed"):
out.write("\t".join([line.split()[0],line.split()[1],line.split()[2],args.ID,i,"1.0","NA","1.0","False-Negative"]) + "\n")
out.close()
out = open(i + "_temp_False-Positive2.bed", "w")
for line in open(i + "_temp_False-Positive.bed"):
out.write(line.rstrip() + "\tFalse-Positive\n")
out.close()
os.system(bedtools_path + " sort -i " + i + "_temp_True-Positive.bed | " + bedtools_path + " merge -c 10,11,12,13,14 -o distinct,mode,mode,mode,mode -i stdin > " + i + "_temp_True-Positive2.bed")
out = open(i + "_temp_True-Positive3.bed","w")
for line in open(i + "_temp_True-Positive2.bed"):
out.write(line.rstrip() + "\tTrue-Positive\n")
out.close()
os.system("cat Del_temp_True-Positive3.bed Dup_temp_True-Positive3.bed Dup_temp_False-Positive2.bed Del_temp_False-Positive2.bed Del_temp_False-Negative2.bed Dup_temp_False-Negative2.bed | " + bedtools_path + " sort -i stdin > total_sum_temp.bed")
out = open(args.OUTPUT,"w")
for line in open("total_sum_temp.bed"):
if float(line.split()[5]) > args.CUTOFF:
out.write(line)
out.close()
for k in ["dup_temp_total.bed","del_temp_total.bed","Dup_temp_True-Positive.bed","Del_temp_True-Positive.bed","Del_temp_False-Negative.bed","Dup_temp_False-Negative.bed","Del_temp_False-Positive.bed","Dup_temp_False-Positive.bed","Dup_temp_True-Positive2.bed","Del_temp_True-Positive2.bed","Del_temp_False-Negative2.bed","Dup_temp_False-Negative2.bed","Del_temp_False-Positive2.bed","Dup_temp_False-Positive2.bed","Dup_temp_True-Positive3.bed","Del_temp_True-Positive3.bed","total_sum_temp.bed"]:
os.remove(k)
elif args.DELETION is None and args.DUPLICATION is None:
os.system("cat dup_temp_total.bed del_temp_total.bed | " + bedtools_path + " sort -i stdin > total_sum_temp.bed")
out = open(args.OUTPUT,"w")
for line in open("total_sum_temp.bed"):
if float(line.split()[5]) > args.CUTOFF:
out.write(line)
out.close()
os.remove("dup_temp_total.bed")
os.remove("del_temp_total.bed")
os.remove("total_sum_temp.bed")
if argsDict['mode'] in ['ROC'] or function == "ROC":
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn.externals import joblib
import os
from itertools import cycle
from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from scipy import interp
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import ExtraTreesClassifier
models = {"RFC100":RandomForestClassifier(n_estimators=100), "RFC500":RandomForestClassifier(n_estimators=500), "CNN":MLPClassifier(), "ETC100":ExtraTreesClassifier(n_estimators=100), "ETC500":ExtraTreesClassifier(n_estimators=500), "DTC":DecisionTreeClassifier()}
training_in = pd.read_csv(args.INPUT,header=None,sep="\t")
clf = joblib.load(args.TRAIN)
out_df = pd.DataFrame(columns=["type","fpr","tpr"])
for i in ["Del","Dup"]:
training_in_subA = training_in[training_in[3] == "N" ]
training_in_subB = training_in[training_in[3] == i]
training_in_subC = pd.concat([training_in_subA,training_in_subB])
training_in_sub2 = training_in_subC.drop(training_in_subC[[0,1,2,3,4]], axis=1)
training_in_sub2.columns = list(range(0,len(training_in_sub2.columns)))
training_in_subC[3][training_in_subC[3] == "N"] = 2
training_in_subC[3][training_in_subC[3] == i] = 1
training_in_sub_prob = np.array(list(clf.predict_proba(training_in_sub2)[:, 1]))
sub_in = np.array(list(training_in_subC[3].as_matrix()))
fpr, tpr, threshold = roc_curve(sub_in, training_in_sub_prob, pos_label=2)
sub_list = pd.DataFrame({"type":i,"fpr":list(fpr),"tpr":list(tpr)})
out_df = pd.concat([out_df,sub_list])
out_df.to_csv(args.OUTPUT,sep="\t",index =False)
if argsDict['mode'] in ['quantify'] or function == "quantify":
import pandas as pd
import os
import shutil
def myround(x, base=args.WINDOW_SIZE):
return base * round(x/base)
def factor_counts_gff(row):
row_counts = []
t = row.iloc[4:].value_counts()
row_counts.append(row[0])
row_counts.append(row[1])
row_counts.append(row[2])
row_counts.append(row[3])
row_counts.append(sum(t[t.index == "N"]))
row_counts.append(sum(t[t.index == "Del"]))
row_counts.append(sum(t[t.index == "Dup"]))
return(row_counts)
def copy_counts_gff(row):
row_counts = []
t = row.iloc[4:].value_counts()
row_counts.append(row[0])
row_counts.append(row[1])
row_counts.append(row[2])
row_counts.append(row[3])
row_counts.append(sum(t[t.index == 0.0]))
row_counts.append(sum(t[t.index == 1.0]))
row_counts.append(sum(t[t.index == 2.0]))
row_counts.append(sum(t[t.index == 3.0]))
row_counts.append(sum(t[t.index == 4.0]))
row_counts.append(sum(t[t.index == 5.0]))
row_counts.append(sum(t[t.index == 6.0]))
row_counts.append(sum(t[t.index == 7.0]))
row_counts.append(sum(t[t.index == 8.0]))
row_counts.append(sum(t[t.index == 9.0]))
row_counts.append(sum(t[t.index >= 10.0]))
return(row_counts)
if args.GFF is not None:
comb_CN = pd.DataFrame(columns=["chr","start","end","gene"])
comb_CP = pd.DataFrame(columns=["chr","start","end","gene"])
count = 1
for line in open(args.INPUT,"r"):
print("processing " + line.rstrip())
os.system(bedtools_path + """ intersect -wa -wb -a """ + args.GFF + """ -b """ + line.rstrip() + """ | awk -F "\t" '{print $1"\t"$4"\t"$5"\t"$13"\t"$15"\t"$16"\t"$17"\t"$18}' > dudeml_temp1.bed""")
os.system(bedtools_path + """ intersect -wa -wb -a """ + args.GFF + """ -b """ + line.rstrip() + """ | awk -F "ID=" '{print $2}' | awk -F ";" '{print $1}' | awk -F "-mRNA-1" '{print $1}' > dudeml_temp2.bed""")
os.system("paste dudeml_temp1.bed dudeml_temp2.bed > dudeml_temp3.bed")
os.mkdir('tempDir_bed')
df = pd.read_csv("dudeml_temp3.bed",header = None,sep="\t")
df_grouped = df.groupby(8)
for index, group in df_grouped:
group.to_csv("tempDir_bed/" + index,sep="\t",index =False,header=False)
# os.system(bedtools_path + " sort -i tempDir_bed/" + index + " | mergeBed -i stdin -c 4,5,6,7,8,9 -o distinct,mode,median,mode,median,distinct >> dudeml_temp4.bed")
os.system("""for file in tempDir_bed/*; do """ + bedtools_path + """ sort -i ${file} | """ + bedtools_path + """ merge -i stdin -c 4,5,6,7,8,9 -o distinct,mode,median,mode,median,distinct >> dudeml_temp4.bed; done""")
#for v in list(df[8].unique()):
# sub = df[df[8] == v]
# comb_CP4.to_csv("tempDir_bed/" + v ,sep="\t",index =False,header=False)
#for line in open("dudeml_temp3.bed","r"):
# out = open("tempDir_bed/" + line.rstrip().split("\t")[-1],"a")
# out.write(line)
#for d,s,f in os.walk("tempDir_bed/"):
# for inf in f:
# os.system(bedtools_path + " sort -i tempDir_bed/" + inf + " | mergeBed -i stdin -c 4,5,6,7,8,9 -o distinct,mode,median,mode,median,distinct >> dudeml_temp4.bed")
shutil.rmtree("tempDir_bed/")
os.system(bedtools_path + " sort -i dudeml_temp4.bed > dudeml_temp5.bed")
os.remove("dudeml_temp4.bed")
# os.system(bedtools_path + " sort -i dudeml_temp3.bed | mergeBed -i stdin -c 4,5,6,7,8,9 -o distinct,mode,median,mode,median,distinct > dudeml_temp4.bed")
df = pd.read_csv("dudeml_temp5.bed",header = None,sep="\t")
df.columns = ["chr","start","end","strain","CNV","CNVprob","CP","CPprob","gene"]
df.loc[(df['CNV'] == "Dup") & (df['CNVprob'] < args.CUTOFF), ['CNV']] = "N"
df.loc[(df['CNV'] == "Del") & (df['CNVprob'] < args.CUTOFF), ['CNV']] = "N"
comb_CN['chr'] = df['chr']
comb_CN['start'] = df['start']
comb_CN['end'] = df['end']
comb_CN['gene'] = df['gene']
comb_CP['chr'] = df['chr']
comb_CP['start'] = df['start']
comb_CP['end'] = df['end']
comb_CP['gene'] = df['gene']
if pd.isnull(df['strain'][0]) == False:
comb_CP[str(df['strain'][0])] = df["CP"]
comb_CN[str(df['strain'][0])] = df["CNV"]
count += 1
elif pd.isnull(df['strain'][0]) == True:
comb_CP[str(count)] = df["CP"]
comb_CN[str(count)] = df["CNV"]
count += 1
comb_CP.to_csv(args.OUTPUT + ".copy_raw.txt",sep="\t",index =False)
comb_CN.to_csv(args.OUTPUT + ".factor_raw.txt",sep="\t",index =False)
print("Quantify CNVs in each window.")
comb_CP2 = comb_CP.apply(copy_counts_gff, axis=1)
comb_CN2 = comb_CN.apply(factor_counts_gff, axis=1)
comb_CP3 = pd.DataFrame(comb_CP2)
comb_CN3 = pd.DataFrame(comb_CN2)
comb_CP4 = pd.DataFrame()
comb_CN4 = pd.DataFrame()
comb_CN4[["chr","start","end","gene","N","Del","Dup"]] = pd.DataFrame(comb_CN3[0].values.tolist(), index= comb_CN3.index)